avformat/mpeg: demux ivtv captions
[ffmpeg.git] / libavcodec / cinepakenc.c
blobf6145131a2939872f1f23da3e8e80ebbb84d7d49
1 /*
2 * Cinepak encoder (c) 2011 Tomas Härdin
3 * http://titan.codemill.se/~tomhar/cinepakenc.patch
5 * Fixes and improvements, vintage decoders compatibility
6 * (c) 2013, 2014 Rl, Aetey Global Technologies AB
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included
16 * in all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24 * OTHER DEALINGS IN THE SOFTWARE.
28 * TODO:
29 * - optimize: color space conversion (move conversion to libswscale), ...
30 * MAYBE:
31 * - "optimally" split the frame into several non-regular areas
32 * using a separate codebook pair for each area and approximating
33 * the area by several rectangular strips (generally not full width ones)
34 * (use quadtree splitting? a simple fixed-granularity grid?)
37 #include <string.h>
39 #include "libavutil/avassert.h"
40 #include "libavutil/intreadwrite.h"
41 #include "libavutil/lfg.h"
42 #include "libavutil/mem.h"
43 #include "libavutil/opt.h"
45 #include "avcodec.h"
46 #include "codec_internal.h"
47 #include "elbg.h"
48 #include "encode.h"
50 #define CVID_HEADER_SIZE 10
51 #define STRIP_HEADER_SIZE 12
52 #define CHUNK_HEADER_SIZE 4
54 #define MB_SIZE 4 //4x4 MBs
55 #define MB_AREA (MB_SIZE * MB_SIZE)
57 #define VECTOR_MAX 6 // six or four entries per vector depending on format
58 #define CODEBOOK_MAX 256 // size of a codebook
60 #define MAX_STRIPS 32 // Note: having fewer choices regarding the number of strips speeds up encoding (obviously)
61 #define MIN_STRIPS 1 // Note: having more strips speeds up encoding the frame (this is less obvious)
62 // MAX_STRIPS limits the maximum quality you can reach
63 // when you want high quality on high resolutions,
64 // MIN_STRIPS limits the minimum efficiently encodable bit rate
65 // on low resolutions
66 // the numbers are only used for brute force optimization for the first frame,
67 // for the following frames they are adaptively readjusted
68 // NOTE the decoder in ffmpeg has its own arbitrary limitation on the number
69 // of strips, currently 32
71 typedef enum CinepakMode {
72 MODE_V1_ONLY = 0,
73 MODE_V1_V4,
74 MODE_MC,
76 MODE_COUNT,
77 } CinepakMode;
79 typedef enum mb_encoding {
80 ENC_V1,
81 ENC_V4,
82 ENC_SKIP,
84 ENC_UNCERTAIN
85 } mb_encoding;
87 typedef struct mb_info {
88 int v1_vector; // index into v1 codebook
89 int v1_error; // error when using V1 encoding
90 int v4_vector[4]; // indices into v4 codebook
91 int v4_error; // error when using V4 encoding
92 int skip_error; // error when block is skipped (aka copied from last frame)
93 mb_encoding best_encoding; // last result from calculate_mode_score()
94 } mb_info;
96 typedef struct strip_info {
97 int v1_codebook[CODEBOOK_MAX * VECTOR_MAX];
98 int v4_codebook[CODEBOOK_MAX * VECTOR_MAX];
99 int v1_size;
100 int v4_size;
101 CinepakMode mode;
102 } strip_info;
104 typedef struct CinepakEncContext {
105 const AVClass *class;
106 AVCodecContext *avctx;
107 unsigned char *pict_bufs[4], *strip_buf, *frame_buf;
108 AVFrame *last_frame;
109 AVFrame *best_frame;
110 AVFrame *scratch_frame;
111 AVFrame *input_frame;
112 enum AVPixelFormat pix_fmt;
113 int w, h;
114 int frame_buf_size;
115 int curframe;
116 AVLFG randctx;
117 uint64_t lambda;
118 int *codebook_input;
119 int *codebook_closest;
120 mb_info *mb; // MB RD state
121 int min_strips; // the current limit
122 int max_strips; // the current limit
123 // options
124 int max_extra_cb_iterations;
125 int skip_empty_cb;
126 int min_min_strips;
127 int max_max_strips;
128 int strip_number_delta_range;
129 struct ELBGContext *elbg;
130 } CinepakEncContext;
132 #define OFFSET(x) offsetof(CinepakEncContext, x)
133 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
134 static const AVOption options[] = {
135 { "max_extra_cb_iterations", "Max extra codebook recalculation passes, more is better and slower",
136 OFFSET(max_extra_cb_iterations), AV_OPT_TYPE_INT, { .i64 = 2 }, 0, INT_MAX, VE },
137 { "skip_empty_cb", "Avoid wasting bytes, ignore vintage MacOS decoder",
138 OFFSET(skip_empty_cb), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
139 { "max_strips", "Limit strips/frame, vintage compatible is 1..3, otherwise the more the better",
140 OFFSET(max_max_strips), AV_OPT_TYPE_INT, { .i64 = 3 }, MIN_STRIPS, MAX_STRIPS, VE },
141 { "min_strips", "Enforce min strips/frame, more is worse and faster, must be <= max_strips",
142 OFFSET(min_min_strips), AV_OPT_TYPE_INT, { .i64 = MIN_STRIPS }, MIN_STRIPS, MAX_STRIPS, VE },
143 { "strip_number_adaptivity", "How fast the strip number adapts, more is slightly better, much slower",
144 OFFSET(strip_number_delta_range), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, MAX_STRIPS - MIN_STRIPS, VE },
145 { NULL },
148 static const AVClass cinepak_class = {
149 .class_name = "cinepak",
150 .item_name = av_default_item_name,
151 .option = options,
152 .version = LIBAVUTIL_VERSION_INT,
155 static av_cold int cinepak_encode_init(AVCodecContext *avctx)
157 CinepakEncContext *s = avctx->priv_data;
158 int x, mb_count, strip_buf_size, frame_buf_size;
160 if (avctx->width & 3 || avctx->height & 3) {
161 av_log(avctx, AV_LOG_ERROR, "width and height must be multiples of four (got %ix%i)\n",
162 avctx->width, avctx->height);
163 return AVERROR(EINVAL);
166 if (s->min_min_strips > s->max_max_strips) {
167 av_log(avctx, AV_LOG_ERROR, "minimum number of strips must not exceed maximum (got %i and %i)\n",
168 s->min_min_strips, s->max_max_strips);
169 return AVERROR(EINVAL);
172 if (!(s->last_frame = av_frame_alloc()))
173 return AVERROR(ENOMEM);
174 if (!(s->best_frame = av_frame_alloc()))
175 return AVERROR(ENOMEM);
176 if (!(s->scratch_frame = av_frame_alloc()))
177 return AVERROR(ENOMEM);
178 if (avctx->pix_fmt == AV_PIX_FMT_RGB24)
179 if (!(s->input_frame = av_frame_alloc()))
180 return AVERROR(ENOMEM);
182 if (!(s->codebook_input = av_malloc_array((avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4) * (avctx->width * avctx->height) >> 2, sizeof(*s->codebook_input))))
183 return AVERROR(ENOMEM);
185 if (!(s->codebook_closest = av_malloc_array((avctx->width * avctx->height) >> 2, sizeof(*s->codebook_closest))))
186 return AVERROR(ENOMEM);
188 for (x = 0; x < (avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 4 : 3); x++)
189 if (!(s->pict_bufs[x] = av_malloc((avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4) * (avctx->width * avctx->height) >> 2)))
190 return AVERROR(ENOMEM);
192 mb_count = avctx->width * avctx->height / MB_AREA;
194 // the largest possible chunk is 0x31 with all MBs encoded in V4 mode
195 // and full codebooks being replaced in INTER mode,
196 // which is 34 bits per MB
197 // and 2*256 extra flag bits per strip
198 strip_buf_size = STRIP_HEADER_SIZE + 3 * CHUNK_HEADER_SIZE + 2 * VECTOR_MAX * CODEBOOK_MAX + 4 * (mb_count + (mb_count + 15) / 16) + (2 * CODEBOOK_MAX) / 8;
200 frame_buf_size = CVID_HEADER_SIZE + s->max_max_strips * strip_buf_size;
202 if (!(s->strip_buf = av_malloc(strip_buf_size)))
203 return AVERROR(ENOMEM);
205 if (!(s->frame_buf = av_malloc(frame_buf_size)))
206 return AVERROR(ENOMEM);
208 if (!(s->mb = av_malloc_array(mb_count, sizeof(mb_info))))
209 return AVERROR(ENOMEM);
211 av_lfg_init(&s->randctx, 1);
212 s->avctx = avctx;
213 s->w = avctx->width;
214 s->h = avctx->height;
215 s->frame_buf_size = frame_buf_size;
216 s->curframe = 0;
217 s->pix_fmt = avctx->pix_fmt;
219 // set up AVFrames
220 s->last_frame->data[0] = s->pict_bufs[0];
221 s->last_frame->linesize[0] = s->w;
222 s->best_frame->data[0] = s->pict_bufs[1];
223 s->best_frame->linesize[0] = s->w;
224 s->scratch_frame->data[0] = s->pict_bufs[2];
225 s->scratch_frame->linesize[0] = s->w;
227 if (s->pix_fmt == AV_PIX_FMT_RGB24) {
228 s->last_frame->data[1] = s->last_frame->data[0] + s->w * s->h;
229 s->last_frame->data[2] = s->last_frame->data[1] + ((s->w * s->h) >> 2);
230 s->last_frame->linesize[1] =
231 s->last_frame->linesize[2] = s->w >> 1;
233 s->best_frame->data[1] = s->best_frame->data[0] + s->w * s->h;
234 s->best_frame->data[2] = s->best_frame->data[1] + ((s->w * s->h) >> 2);
235 s->best_frame->linesize[1] =
236 s->best_frame->linesize[2] = s->w >> 1;
238 s->scratch_frame->data[1] = s->scratch_frame->data[0] + s->w * s->h;
239 s->scratch_frame->data[2] = s->scratch_frame->data[1] + ((s->w * s->h) >> 2);
240 s->scratch_frame->linesize[1] =
241 s->scratch_frame->linesize[2] = s->w >> 1;
243 s->input_frame->data[0] = s->pict_bufs[3];
244 s->input_frame->linesize[0] = s->w;
245 s->input_frame->data[1] = s->input_frame->data[0] + s->w * s->h;
246 s->input_frame->data[2] = s->input_frame->data[1] + ((s->w * s->h) >> 2);
247 s->input_frame->linesize[1] =
248 s->input_frame->linesize[2] = s->w >> 1;
251 s->min_strips = s->min_min_strips;
252 s->max_strips = s->max_max_strips;
254 return 0;
257 static int64_t calculate_mode_score(CinepakEncContext *s, int h,
258 strip_info *info, int report,
259 int *training_set_v1_shrunk,
260 int *training_set_v4_shrunk)
262 // score = FF_LAMBDA_SCALE * error + lambda * bits
263 int x;
264 int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
265 int mb_count = s->w * h / MB_AREA;
266 mb_info *mb;
267 int64_t score1, score2, score3;
268 int64_t ret = s->lambda * ((info->v1_size ? CHUNK_HEADER_SIZE + info->v1_size * entry_size : 0) +
269 (info->v4_size ? CHUNK_HEADER_SIZE + info->v4_size * entry_size : 0) +
270 CHUNK_HEADER_SIZE) << 3;
272 switch (info->mode) {
273 case MODE_V1_ONLY:
274 // one byte per MB
275 ret += s->lambda * 8 * mb_count;
277 // while calculating we assume all blocks are ENC_V1
278 for (x = 0; x < mb_count; x++) {
279 mb = &s->mb[x];
280 ret += FF_LAMBDA_SCALE * mb->v1_error;
281 // this function is never called for report in MODE_V1_ONLY
282 // if (!report)
283 mb->best_encoding = ENC_V1;
286 break;
287 case MODE_V1_V4:
288 // 9 or 33 bits per MB
289 if (report) {
290 // no moves between the corresponding training sets are allowed
291 *training_set_v1_shrunk = *training_set_v4_shrunk = 0;
292 for (x = 0; x < mb_count; x++) {
293 int mberr;
294 mb = &s->mb[x];
295 if (mb->best_encoding == ENC_V1)
296 score1 = s->lambda * 9 + FF_LAMBDA_SCALE * (mberr = mb->v1_error);
297 else
298 score1 = s->lambda * 33 + FF_LAMBDA_SCALE * (mberr = mb->v4_error);
299 ret += score1;
301 } else { // find best mode per block
302 for (x = 0; x < mb_count; x++) {
303 mb = &s->mb[x];
304 score1 = s->lambda * 9 + FF_LAMBDA_SCALE * mb->v1_error;
305 score2 = s->lambda * 33 + FF_LAMBDA_SCALE * mb->v4_error;
307 if (score1 <= score2) {
308 ret += score1;
309 mb->best_encoding = ENC_V1;
310 } else {
311 ret += score2;
312 mb->best_encoding = ENC_V4;
317 break;
318 case MODE_MC:
319 // 1, 10 or 34 bits per MB
320 if (report) {
321 int v1_shrunk = 0, v4_shrunk = 0;
322 for (x = 0; x < mb_count; x++) {
323 mb = &s->mb[x];
324 // it is OK to move blocks to ENC_SKIP here
325 // but not to any codebook encoding!
326 score1 = s->lambda * 1 + FF_LAMBDA_SCALE * mb->skip_error;
327 if (mb->best_encoding == ENC_SKIP) {
328 ret += score1;
329 } else if (mb->best_encoding == ENC_V1) {
330 if ((score2 = s->lambda * 10 + FF_LAMBDA_SCALE * mb->v1_error) >= score1) {
331 mb->best_encoding = ENC_SKIP;
332 ++v1_shrunk;
333 ret += score1;
334 } else {
335 ret += score2;
337 } else {
338 if ((score3 = s->lambda * 34 + FF_LAMBDA_SCALE * mb->v4_error) >= score1) {
339 mb->best_encoding = ENC_SKIP;
340 ++v4_shrunk;
341 ret += score1;
342 } else {
343 ret += score3;
347 *training_set_v1_shrunk = v1_shrunk;
348 *training_set_v4_shrunk = v4_shrunk;
349 } else { // find best mode per block
350 for (x = 0; x < mb_count; x++) {
351 mb = &s->mb[x];
352 score1 = s->lambda * 1 + FF_LAMBDA_SCALE * mb->skip_error;
353 score2 = s->lambda * 10 + FF_LAMBDA_SCALE * mb->v1_error;
354 score3 = s->lambda * 34 + FF_LAMBDA_SCALE * mb->v4_error;
356 if (score1 <= score2 && score1 <= score3) {
357 ret += score1;
358 mb->best_encoding = ENC_SKIP;
359 } else if (score2 <= score3) {
360 ret += score2;
361 mb->best_encoding = ENC_V1;
362 } else {
363 ret += score3;
364 mb->best_encoding = ENC_V4;
369 break;
372 return ret;
375 static int write_chunk_header(unsigned char *buf, int chunk_type, int chunk_size)
377 buf[0] = chunk_type;
378 AV_WB24(&buf[1], chunk_size + CHUNK_HEADER_SIZE);
379 return CHUNK_HEADER_SIZE;
382 static int encode_codebook(CinepakEncContext *s, int *codebook, int size,
383 int chunk_type_yuv, int chunk_type_gray,
384 unsigned char *buf)
386 int x, y, ret, entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
387 int incremental_codebook_replacement_mode = 0; // hardcoded here,
388 // the compiler should notice that this is a constant -- rl
390 ret = write_chunk_header(buf,
391 s->pix_fmt == AV_PIX_FMT_RGB24 ?
392 chunk_type_yuv + (incremental_codebook_replacement_mode ? 1 : 0) :
393 chunk_type_gray + (incremental_codebook_replacement_mode ? 1 : 0),
394 entry_size * size +
395 (incremental_codebook_replacement_mode ? (size + 31) / 32 * 4 : 0));
397 // we do codebook encoding according to the "intra" mode
398 // but we keep the "dead" code for reference in case we will want
399 // to use incremental codebook updates (which actually would give us
400 // "kind of" motion compensation, especially in 1 strip/frame case) -- rl
401 // (of course, the code will be not useful as-is)
402 if (incremental_codebook_replacement_mode) {
403 int flags = 0;
404 int flagsind;
405 for (x = 0; x < size; x++) {
406 if (flags == 0) {
407 flagsind = ret;
408 ret += 4;
409 flags = 0x80000000;
410 } else
411 flags = ((flags >> 1) | 0x80000000);
412 for (y = 0; y < entry_size; y++)
413 buf[ret++] = codebook[y + x * entry_size] ^ (y >= 4 ? 0x80 : 0);
414 if ((flags & 0xffffffff) == 0xffffffff) {
415 AV_WB32(&buf[flagsind], flags);
416 flags = 0;
419 if (flags)
420 AV_WB32(&buf[flagsind], flags);
421 } else
422 for (x = 0; x < size; x++)
423 for (y = 0; y < entry_size; y++)
424 buf[ret++] = codebook[y + x * entry_size] ^ (y >= 4 ? 0x80 : 0);
426 return ret;
429 // sets out to the sub picture starting at (x,y) in in
430 static void get_sub_picture(CinepakEncContext *s, int x, int y,
431 uint8_t *const in_data[4], const int in_linesize[4],
432 uint8_t *out_data[4], int out_linesize[4])
434 out_data[0] = in_data[0] + x + y * in_linesize[0];
435 out_linesize[0] = in_linesize[0];
437 if (s->pix_fmt == AV_PIX_FMT_RGB24) {
438 out_data[1] = in_data[1] + (x >> 1) + (y >> 1) * in_linesize[1];
439 out_linesize[1] = in_linesize[1];
441 out_data[2] = in_data[2] + (x >> 1) + (y >> 1) * in_linesize[2];
442 out_linesize[2] = in_linesize[2];
446 // decodes the V1 vector in mb into the 4x4 MB pointed to by data
447 static void decode_v1_vector(CinepakEncContext *s, uint8_t *data[4],
448 int linesize[4], int v1_vector, strip_info *info)
450 int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
452 data[0][0] =
453 data[0][1] =
454 data[0][ linesize[0]] =
455 data[0][1 + linesize[0]] = info->v1_codebook[v1_vector * entry_size];
457 data[0][2] =
458 data[0][3] =
459 data[0][2 + linesize[0]] =
460 data[0][3 + linesize[0]] = info->v1_codebook[v1_vector * entry_size + 1];
462 data[0][ 2 * linesize[0]] =
463 data[0][1 + 2 * linesize[0]] =
464 data[0][ 3 * linesize[0]] =
465 data[0][1 + 3 * linesize[0]] = info->v1_codebook[v1_vector * entry_size + 2];
467 data[0][2 + 2 * linesize[0]] =
468 data[0][3 + 2 * linesize[0]] =
469 data[0][2 + 3 * linesize[0]] =
470 data[0][3 + 3 * linesize[0]] = info->v1_codebook[v1_vector * entry_size + 3];
472 if (s->pix_fmt == AV_PIX_FMT_RGB24) {
473 data[1][0] =
474 data[1][1] =
475 data[1][ linesize[1]] =
476 data[1][1 + linesize[1]] = info->v1_codebook[v1_vector * entry_size + 4];
478 data[2][0] =
479 data[2][1] =
480 data[2][ linesize[2]] =
481 data[2][1 + linesize[2]] = info->v1_codebook[v1_vector * entry_size + 5];
485 // decodes the V4 vectors in mb into the 4x4 MB pointed to by data
486 static void decode_v4_vector(CinepakEncContext *s, uint8_t *data[4],
487 int linesize[4], int *v4_vector, strip_info *info)
489 int i, x, y, entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
491 for (i = y = 0; y < 4; y += 2) {
492 for (x = 0; x < 4; x += 2, i++) {
493 data[0][x + y * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size];
494 data[0][x + 1 + y * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 1];
495 data[0][x + (y + 1) * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 2];
496 data[0][x + 1 + (y + 1) * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 3];
498 if (s->pix_fmt == AV_PIX_FMT_RGB24) {
499 data[1][(x >> 1) + (y >> 1) * linesize[1]] = info->v4_codebook[v4_vector[i] * entry_size + 4];
500 data[2][(x >> 1) + (y >> 1) * linesize[2]] = info->v4_codebook[v4_vector[i] * entry_size + 5];
506 static void copy_mb(CinepakEncContext *s,
507 uint8_t *a_data[4], int a_linesize[4],
508 uint8_t *b_data[4], int b_linesize[4])
510 int y, p;
512 for (y = 0; y < MB_SIZE; y++)
513 memcpy(a_data[0] + y * a_linesize[0], b_data[0] + y * b_linesize[0],
514 MB_SIZE);
516 if (s->pix_fmt == AV_PIX_FMT_RGB24) {
517 for (p = 1; p <= 2; p++)
518 for (y = 0; y < MB_SIZE / 2; y++)
519 memcpy(a_data[p] + y * a_linesize[p],
520 b_data[p] + y * b_linesize[p],
521 MB_SIZE / 2);
525 static int encode_mode(CinepakEncContext *s, int h,
526 uint8_t *scratch_data[4], int scratch_linesize[4],
527 uint8_t *last_data[4], int last_linesize[4],
528 strip_info *info, unsigned char *buf)
530 int x, y, z, bits, temp_size, header_ofs, ret = 0, mb_count = s->w * h / MB_AREA;
531 int needs_extra_bit, should_write_temp;
532 uint32_t flags;
533 unsigned char temp[64]; // 32/2 = 16 V4 blocks at 4 B each -> 64 B
534 mb_info *mb;
535 uint8_t *sub_scratch_data[4] = { 0 }, *sub_last_data[4] = { 0 };
536 int sub_scratch_linesize[4] = { 0 }, sub_last_linesize[4] = { 0 };
538 // encode codebooks
539 ////// MacOS vintage decoder compatibility dictates the presence of
540 ////// the codebook chunk even when the codebook is empty - pretty dumb...
541 ////// and also the certain order of the codebook chunks -- rl
542 if (info->v4_size || !s->skip_empty_cb)
543 ret += encode_codebook(s, info->v4_codebook, info->v4_size, 0x20, 0x24, buf + ret);
545 if (info->v1_size || !s->skip_empty_cb)
546 ret += encode_codebook(s, info->v1_codebook, info->v1_size, 0x22, 0x26, buf + ret);
548 // update scratch picture
549 for (z = y = 0; y < h; y += MB_SIZE)
550 for (x = 0; x < s->w; x += MB_SIZE, z++) {
551 mb = &s->mb[z];
553 get_sub_picture(s, x, y, scratch_data, scratch_linesize,
554 sub_scratch_data, sub_scratch_linesize);
556 if (info->mode == MODE_MC && mb->best_encoding == ENC_SKIP) {
557 get_sub_picture(s, x, y, last_data, last_linesize,
558 sub_last_data, sub_last_linesize);
559 copy_mb(s, sub_scratch_data, sub_scratch_linesize,
560 sub_last_data, sub_last_linesize);
561 } else if (info->mode == MODE_V1_ONLY || mb->best_encoding == ENC_V1)
562 decode_v1_vector(s, sub_scratch_data, sub_scratch_linesize,
563 mb->v1_vector, info);
564 else
565 decode_v4_vector(s, sub_scratch_data, sub_scratch_linesize,
566 mb->v4_vector, info);
569 switch (info->mode) {
570 case MODE_V1_ONLY:
571 ret += write_chunk_header(buf + ret, 0x32, mb_count);
573 for (x = 0; x < mb_count; x++)
574 buf[ret++] = s->mb[x].v1_vector;
576 break;
577 case MODE_V1_V4:
578 // remember header position
579 header_ofs = ret;
580 ret += CHUNK_HEADER_SIZE;
582 for (x = 0; x < mb_count; x += 32) {
583 flags = 0;
584 for (y = x; y < FFMIN(x + 32, mb_count); y++)
585 if (s->mb[y].best_encoding == ENC_V4)
586 flags |= 1U << (31 - y + x);
588 AV_WB32(&buf[ret], flags);
589 ret += 4;
591 for (y = x; y < FFMIN(x + 32, mb_count); y++) {
592 mb = &s->mb[y];
594 if (mb->best_encoding == ENC_V1)
595 buf[ret++] = mb->v1_vector;
596 else
597 for (z = 0; z < 4; z++)
598 buf[ret++] = mb->v4_vector[z];
602 write_chunk_header(buf + header_ofs, 0x30, ret - header_ofs - CHUNK_HEADER_SIZE);
604 break;
605 case MODE_MC:
606 // remember header position
607 header_ofs = ret;
608 ret += CHUNK_HEADER_SIZE;
609 flags = bits = temp_size = 0;
611 for (x = 0; x < mb_count; x++) {
612 mb = &s->mb[x];
613 flags |= (uint32_t)(mb->best_encoding != ENC_SKIP) << (31 - bits++);
614 needs_extra_bit = 0;
615 should_write_temp = 0;
617 if (mb->best_encoding != ENC_SKIP) {
618 if (bits < 32)
619 flags |= (uint32_t)(mb->best_encoding == ENC_V4) << (31 - bits++);
620 else
621 needs_extra_bit = 1;
624 if (bits == 32) {
625 AV_WB32(&buf[ret], flags);
626 ret += 4;
627 flags = bits = 0;
629 if (mb->best_encoding == ENC_SKIP || needs_extra_bit) {
630 memcpy(&buf[ret], temp, temp_size);
631 ret += temp_size;
632 temp_size = 0;
633 } else
634 should_write_temp = 1;
637 if (needs_extra_bit) {
638 flags = (uint32_t)(mb->best_encoding == ENC_V4) << 31;
639 bits = 1;
642 if (mb->best_encoding == ENC_V1)
643 temp[temp_size++] = mb->v1_vector;
644 else if (mb->best_encoding == ENC_V4)
645 for (z = 0; z < 4; z++)
646 temp[temp_size++] = mb->v4_vector[z];
648 if (should_write_temp) {
649 memcpy(&buf[ret], temp, temp_size);
650 ret += temp_size;
651 temp_size = 0;
655 if (bits > 0) {
656 AV_WB32(&buf[ret], flags);
657 ret += 4;
658 memcpy(&buf[ret], temp, temp_size);
659 ret += temp_size;
662 write_chunk_header(buf + header_ofs, 0x31, ret - header_ofs - CHUNK_HEADER_SIZE);
664 break;
667 return ret;
670 // computes distortion of 4x4 MB in b compared to a
671 static int compute_mb_distortion(CinepakEncContext *s,
672 uint8_t *a_data[4], int a_linesize[4],
673 uint8_t *b_data[4], int b_linesize[4])
675 int x, y, p, d, ret = 0;
677 for (y = 0; y < MB_SIZE; y++)
678 for (x = 0; x < MB_SIZE; x++) {
679 d = a_data[0][x + y * a_linesize[0]] - b_data[0][x + y * b_linesize[0]];
680 ret += d * d;
683 if (s->pix_fmt == AV_PIX_FMT_RGB24) {
684 for (p = 1; p <= 2; p++) {
685 for (y = 0; y < MB_SIZE / 2; y++)
686 for (x = 0; x < MB_SIZE / 2; x++) {
687 d = a_data[p][x + y * a_linesize[p]] - b_data[p][x + y * b_linesize[p]];
688 ret += d * d;
693 return ret;
696 // return the possibly adjusted size of the codebook
697 #define CERTAIN(x) ((x) != ENC_UNCERTAIN)
698 static int quantize(CinepakEncContext *s, int h, uint8_t *data[4],
699 int linesize[4], int v1mode, strip_info *info,
700 mb_encoding encoding)
702 int x, y, i, j, k, x2, y2, x3, y3, plane, shift, mbn;
703 int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
704 int *codebook = v1mode ? info->v1_codebook : info->v4_codebook;
705 int size = v1mode ? info->v1_size : info->v4_size;
706 uint8_t vq_pict_buf[(MB_AREA * 3) / 2];
707 uint8_t *sub_data[4], *vq_data[4];
708 int sub_linesize[4], vq_linesize[4];
709 int ret;
711 for (mbn = i = y = 0; y < h; y += MB_SIZE) {
712 for (x = 0; x < s->w; x += MB_SIZE, ++mbn) {
713 int *base;
715 if (CERTAIN(encoding)) {
716 // use for the training only the blocks known to be to be encoded [sic:-]
717 if (s->mb[mbn].best_encoding != encoding)
718 continue;
721 base = s->codebook_input + i * entry_size;
722 if (v1mode) {
723 // subsample
724 for (j = y2 = 0; y2 < entry_size; y2 += 2)
725 for (x2 = 0; x2 < 4; x2 += 2, j++) {
726 plane = y2 < 4 ? 0 : 1 + (x2 >> 1);
727 shift = y2 < 4 ? 0 : 1;
728 x3 = shift ? 0 : x2;
729 y3 = shift ? 0 : y2;
730 base[j] = (data[plane][((x + x3) >> shift) + ((y + y3) >> shift) * linesize[plane]] +
731 data[plane][((x + x3) >> shift) + 1 + ((y + y3) >> shift) * linesize[plane]] +
732 data[plane][((x + x3) >> shift) + (((y + y3) >> shift) + 1) * linesize[plane]] +
733 data[plane][((x + x3) >> shift) + 1 + (((y + y3) >> shift) + 1) * linesize[plane]]) >> 2;
735 } else {
736 // copy
737 for (j = y2 = 0; y2 < MB_SIZE; y2 += 2) {
738 for (x2 = 0; x2 < MB_SIZE; x2 += 2)
739 for (k = 0; k < entry_size; k++, j++) {
740 plane = k >= 4 ? k - 3 : 0;
742 if (k >= 4) {
743 x3 = (x + x2) >> 1;
744 y3 = (y + y2) >> 1;
745 } else {
746 x3 = x + x2 + (k & 1);
747 y3 = y + y2 + (k >> 1);
750 base[j] = data[plane][x3 + y3 * linesize[plane]];
754 i += v1mode ? 1 : 4;
758 if (i == 0) // empty training set, nothing to do
759 return 0;
760 if (i < size)
761 size = i;
763 ret = avpriv_elbg_do(&s->elbg, s->codebook_input, entry_size, i, codebook,
764 size, 1, s->codebook_closest, &s->randctx, 0);
765 if (ret < 0)
766 return ret;
768 // set up vq_data, which contains a single MB
769 vq_data[0] = vq_pict_buf;
770 vq_linesize[0] = MB_SIZE;
771 vq_data[1] = &vq_pict_buf[MB_AREA];
772 vq_data[2] = vq_data[1] + (MB_AREA >> 2);
773 vq_linesize[1] =
774 vq_linesize[2] = MB_SIZE >> 1;
776 // copy indices
777 for (i = j = y = 0; y < h; y += MB_SIZE)
778 for (x = 0; x < s->w; x += MB_SIZE, j++) {
779 mb_info *mb = &s->mb[j];
780 // skip uninteresting blocks if we know their preferred encoding
781 if (CERTAIN(encoding) && mb->best_encoding != encoding)
782 continue;
784 // point sub_data to current MB
785 get_sub_picture(s, x, y, data, linesize, sub_data, sub_linesize);
787 if (v1mode) {
788 mb->v1_vector = s->codebook_closest[i];
790 // fill in vq_data with V1 data
791 decode_v1_vector(s, vq_data, vq_linesize, mb->v1_vector, info);
793 mb->v1_error = compute_mb_distortion(s, sub_data, sub_linesize,
794 vq_data, vq_linesize);
795 } else {
796 for (k = 0; k < 4; k++)
797 mb->v4_vector[k] = s->codebook_closest[i + k];
799 // fill in vq_data with V4 data
800 decode_v4_vector(s, vq_data, vq_linesize, mb->v4_vector, info);
802 mb->v4_error = compute_mb_distortion(s, sub_data, sub_linesize,
803 vq_data, vq_linesize);
805 i += v1mode ? 1 : 4;
807 // check that we did it right in the beginning of the function
808 av_assert0(i >= size); // training set is no smaller than the codebook
810 return size;
813 static void calculate_skip_errors(CinepakEncContext *s, int h,
814 uint8_t *last_data[4], int last_linesize[4],
815 uint8_t *data[4], int linesize[4],
816 strip_info *info)
818 int x, y, i;
819 uint8_t *sub_last_data [4], *sub_pict_data [4];
820 int sub_last_linesize[4], sub_pict_linesize[4];
822 for (i = y = 0; y < h; y += MB_SIZE)
823 for (x = 0; x < s->w; x += MB_SIZE, i++) {
824 get_sub_picture(s, x, y, last_data, last_linesize,
825 sub_last_data, sub_last_linesize);
826 get_sub_picture(s, x, y, data, linesize,
827 sub_pict_data, sub_pict_linesize);
829 s->mb[i].skip_error =
830 compute_mb_distortion(s,
831 sub_last_data, sub_last_linesize,
832 sub_pict_data, sub_pict_linesize);
836 static void write_strip_keyframe(unsigned char *buf, int keyframe)
838 // actually we are exclusively using intra strip coding (how much can we win
839 // otherwise? how to choose which part of a codebook to update?),
840 // keyframes are different only because we disallow ENC_SKIP on them -- rl
841 // (besides, the logic here used to be inverted: )
842 // buf[0] = keyframe ? 0x11: 0x10;
843 buf[0] = keyframe ? 0x10 : 0x11;
846 static void write_strip_header(CinepakEncContext *s, int y, int h, int keyframe,
847 unsigned char *buf, int strip_size)
849 write_strip_keyframe(buf, keyframe);
850 AV_WB24(&buf[1], strip_size + STRIP_HEADER_SIZE);
851 // AV_WB16(&buf[4], y); /* using absolute y values works -- rl */
852 AV_WB16(&buf[4], 0); /* using relative values works as well -- rl */
853 AV_WB16(&buf[6], 0);
854 // AV_WB16(&buf[8], y + h); /* using absolute y values works -- rl */
855 AV_WB16(&buf[8], h); /* using relative values works as well -- rl */
856 AV_WB16(&buf[10], s->w);
859 static int rd_strip(CinepakEncContext *s, int y, int h, int keyframe,
860 uint8_t *last_data[4], int last_linesize[4],
861 uint8_t *data[4], int linesize[4],
862 uint8_t *scratch_data[4], int scratch_linesize[4],
863 unsigned char *buf, int64_t *best_score, int *no_skip)
865 int64_t score = 0;
866 int best_size = 0;
867 strip_info info;
868 // for codebook optimization:
869 int v1enough, v1_size, v4enough, v4_size;
870 int new_v1_size, new_v4_size;
871 int v1shrunk, v4shrunk;
873 if (!keyframe)
874 calculate_skip_errors(s, h, last_data, last_linesize, data, linesize,
875 &info);
877 // try some powers of 4 for the size of the codebooks
878 // constraint the v4 codebook to be no bigger than v1 one,
879 // (and no less than v1_size/4)
880 // thus making v1 preferable and possibly losing small details? should be ok
881 #define SMALLEST_CODEBOOK 1
882 for (v1enough = 0, v1_size = SMALLEST_CODEBOOK; v1_size <= CODEBOOK_MAX && !v1enough; v1_size <<= 2) {
883 for (v4enough = 0, v4_size = 0; v4_size <= v1_size && !v4enough; v4_size = v4_size ? v4_size << 2 : v1_size >= SMALLEST_CODEBOOK << 2 ? v1_size >> 2 : SMALLEST_CODEBOOK) {
884 CinepakMode mode;
885 // try all modes
886 for (mode = 0; mode < MODE_COUNT; mode++) {
887 // don't allow MODE_MC in intra frames
888 if (keyframe && mode == MODE_MC)
889 continue;
891 if (mode == MODE_V1_ONLY) {
892 info.v1_size = v1_size;
893 // the size may shrink even before optimizations if the input is short:
894 if ((new_v1_size = quantize(s, h, data, linesize, 1,
895 &info, ENC_UNCERTAIN)) < 0)
896 return new_v1_size;
897 info.v1_size = new_v1_size;
898 if (info.v1_size < v1_size)
899 // too few eligible blocks, no sense in trying bigger sizes
900 v1enough = 1;
902 info.v4_size = 0;
903 } else { // mode != MODE_V1_ONLY
904 // if v4 codebook is empty then only allow V1-only mode
905 if (!v4_size)
906 continue;
908 if (mode == MODE_V1_V4) {
909 info.v4_size = v4_size;
910 new_v4_size = quantize(s, h, data, linesize, 0,
911 &info, ENC_UNCERTAIN);
912 if (new_v4_size < 0)
913 return new_v4_size;
914 info.v4_size = new_v4_size;
915 if (info.v4_size < v4_size)
916 // too few eligible blocks, no sense in trying bigger sizes
917 v4enough = 1;
921 info.mode = mode;
922 // choose the best encoding per block, based on current experience
923 score = calculate_mode_score(s, h, &info, 0,
924 &v1shrunk, &v4shrunk);
926 if (mode != MODE_V1_ONLY) {
927 int extra_iterations_limit = s->max_extra_cb_iterations;
928 // recompute the codebooks, omitting the extra blocks
929 // we assume we _may_ come here with more blocks to encode than before
930 info.v1_size = v1_size;
931 new_v1_size = quantize(s, h, data, linesize, 1, &info, ENC_V1);
932 if (new_v1_size < 0)
933 return new_v1_size;
934 if (new_v1_size < info.v1_size)
935 info.v1_size = new_v1_size;
936 // we assume we _may_ come here with more blocks to encode than before
937 info.v4_size = v4_size;
938 new_v4_size = quantize(s, h, data, linesize, 0, &info, ENC_V4);
939 if (new_v4_size < 0)
940 return new_v4_size;
941 if (new_v4_size < info.v4_size)
942 info.v4_size = new_v4_size;
943 // calculate the resulting score
944 // (do not move blocks to codebook encodings now, as some blocks may have
945 // got bigger errors despite a smaller training set - but we do not
946 // ever grow the training sets back)
947 for (;;) {
948 score = calculate_mode_score(s, h, &info, 1,
949 &v1shrunk, &v4shrunk);
950 // do we have a reason to reiterate? if so, have we reached the limit?
951 if ((!v1shrunk && !v4shrunk) || !extra_iterations_limit--)
952 break;
953 // recompute the codebooks, omitting the extra blocks
954 if (v1shrunk) {
955 info.v1_size = v1_size;
956 new_v1_size = quantize(s, h, data, linesize, 1, &info, ENC_V1);
957 if (new_v1_size < 0)
958 return new_v1_size;
959 if (new_v1_size < info.v1_size)
960 info.v1_size = new_v1_size;
962 if (v4shrunk) {
963 info.v4_size = v4_size;
964 new_v4_size = quantize(s, h, data, linesize, 0, &info, ENC_V4);
965 if (new_v4_size < 0)
966 return new_v4_size;
967 if (new_v4_size < info.v4_size)
968 info.v4_size = new_v4_size;
973 if (best_size == 0 || score < *best_score) {
974 *best_score = score;
975 best_size = encode_mode(s, h,
976 scratch_data, scratch_linesize,
977 last_data, last_linesize, &info,
978 s->strip_buf + STRIP_HEADER_SIZE);
979 // in theory we could have MODE_MC without ENC_SKIP,
980 // but MODE_V1_V4 will always be more efficient
981 *no_skip = info.mode != MODE_MC;
983 write_strip_header(s, y, h, keyframe, s->strip_buf, best_size);
989 best_size += STRIP_HEADER_SIZE;
990 memcpy(buf, s->strip_buf, best_size);
992 return best_size;
995 static int write_cvid_header(CinepakEncContext *s, unsigned char *buf,
996 int num_strips, int data_size, int isakeyframe)
998 buf[0] = isakeyframe ? 0 : 1;
999 AV_WB24(&buf[1], data_size + CVID_HEADER_SIZE);
1000 AV_WB16(&buf[4], s->w);
1001 AV_WB16(&buf[6], s->h);
1002 AV_WB16(&buf[8], num_strips);
1004 return CVID_HEADER_SIZE;
1007 static int rd_frame(CinepakEncContext *s, const AVFrame *frame,
1008 int isakeyframe, unsigned char *buf, int buf_size, int *got_keyframe)
1010 int num_strips, strip, i, y, nexty, size, temp_size, best_size;
1011 uint8_t *last_data [4], *data [4], *scratch_data [4];
1012 int last_linesize[4], linesize[4], scratch_linesize[4];
1013 int64_t best_score = 0, score, score_temp;
1014 int best_nstrips, best_strip_offsets[MAX_STRIPS];
1016 if (s->pix_fmt == AV_PIX_FMT_RGB24) {
1017 int x;
1018 // build a copy of the given frame in the correct colorspace
1019 for (y = 0; y < s->h; y += 2)
1020 for (x = 0; x < s->w; x += 2) {
1021 const uint8_t *ir[2];
1022 int32_t r, g, b, rr, gg, bb;
1023 ir[0] = frame->data[0] + x * 3 + y * frame->linesize[0];
1024 ir[1] = ir[0] + frame->linesize[0];
1025 get_sub_picture(s, x, y,
1026 s->input_frame->data, s->input_frame->linesize,
1027 scratch_data, scratch_linesize);
1028 r = g = b = 0;
1029 for (i = 0; i < 4; ++i) {
1030 int i1, i2;
1031 i1 = (i & 1);
1032 i2 = (i >= 2);
1033 rr = ir[i2][i1 * 3 + 0];
1034 gg = ir[i2][i1 * 3 + 1];
1035 bb = ir[i2][i1 * 3 + 2];
1036 r += rr;
1037 g += gg;
1038 b += bb;
1039 // using fixed point arithmetic for portable repeatability, scaling by 2^23
1040 // "Y"
1041 // rr = 0.2857 * rr + 0.5714 * gg + 0.1429 * bb;
1042 rr = (2396625 * rr + 4793251 * gg + 1198732 * bb) >> 23;
1043 if (rr < 0)
1044 rr = 0;
1045 else if (rr > 255)
1046 rr = 255;
1047 scratch_data[0][i1 + i2 * scratch_linesize[0]] = rr;
1049 // let us scale down as late as possible
1050 // r /= 4; g /= 4; b /= 4;
1051 // "U"
1052 // rr = -0.1429 * r - 0.2857 * g + 0.4286 * b;
1053 rr = (-299683 * r - 599156 * g + 898839 * b) >> 23;
1054 if (rr < -128)
1055 rr = -128;
1056 else if (rr > 127)
1057 rr = 127;
1058 scratch_data[1][0] = rr + 128; // quantize needs unsigned
1059 // "V"
1060 // rr = 0.3571 * r - 0.2857 * g - 0.0714 * b;
1061 rr = (748893 * r - 599156 * g - 149737 * b) >> 23;
1062 if (rr < -128)
1063 rr = -128;
1064 else if (rr > 127)
1065 rr = 127;
1066 scratch_data[2][0] = rr + 128; // quantize needs unsigned
1070 // would be nice but quite certainly incompatible with vintage players:
1071 // support encoding zero strips (meaning skip the whole frame)
1072 for (num_strips = s->min_strips; num_strips <= s->max_strips && num_strips <= s->h / MB_SIZE; num_strips++) {
1073 int strip_offsets[MAX_STRIPS];
1074 int all_no_skip = 1;
1075 score = 0;
1076 size = 0;
1078 for (y = 0, strip = 1; y < s->h; strip++, y = nexty) {
1079 int strip_height, no_skip;
1081 strip_offsets[strip-1] = size + CVID_HEADER_SIZE;
1082 nexty = strip * s->h / num_strips; // <= s->h
1083 // make nexty the next multiple of 4 if not already there
1084 if (nexty & 3)
1085 nexty += 4 - (nexty & 3);
1087 strip_height = nexty - y;
1088 if (strip_height <= 0) { // can this ever happen?
1089 av_log(s->avctx, AV_LOG_INFO, "skipping zero height strip %i of %i\n", strip, num_strips);
1090 continue;
1093 if (s->pix_fmt == AV_PIX_FMT_RGB24)
1094 get_sub_picture(s, 0, y,
1095 s->input_frame->data, s->input_frame->linesize,
1096 data, linesize);
1097 else
1098 get_sub_picture(s, 0, y,
1099 frame->data, frame->linesize,
1100 data, linesize);
1101 get_sub_picture(s, 0, y,
1102 s->last_frame->data, s->last_frame->linesize,
1103 last_data, last_linesize);
1104 get_sub_picture(s, 0, y,
1105 s->scratch_frame->data, s->scratch_frame->linesize,
1106 scratch_data, scratch_linesize);
1108 if ((temp_size = rd_strip(s, y, strip_height, isakeyframe,
1109 last_data, last_linesize, data, linesize,
1110 scratch_data, scratch_linesize,
1111 s->frame_buf + strip_offsets[strip-1],
1112 &score_temp, &no_skip)) < 0)
1113 return temp_size;
1115 score += score_temp;
1116 size += temp_size;
1117 all_no_skip &= no_skip;
1120 if (best_score == 0 || score < best_score) {
1121 best_score = score;
1122 best_size = size + write_cvid_header(s, s->frame_buf, num_strips, size, all_no_skip);
1124 FFSWAP(AVFrame *, s->best_frame, s->scratch_frame);
1125 memcpy(buf, s->frame_buf, best_size);
1126 best_nstrips = num_strips;
1127 *got_keyframe = all_no_skip; // no skip MBs in any strip -> keyframe
1128 memcpy(best_strip_offsets, strip_offsets, sizeof(strip_offsets));
1130 // avoid trying too many strip numbers without a real reason
1131 // (this makes the processing of the very first frame faster)
1132 if (num_strips - best_nstrips > 4)
1133 break;
1136 // update strip headers
1137 for (i = 0; i < best_nstrips; i++) {
1138 write_strip_keyframe(s->frame_buf + best_strip_offsets[i], *got_keyframe);
1141 // let the number of strips slowly adapt to the changes in the contents,
1142 // compared to full bruteforcing every time this will occasionally lead
1143 // to some r/d performance loss but makes encoding up to several times faster
1144 if (!s->strip_number_delta_range) {
1145 if (best_nstrips == s->max_strips) { // let us try to step up
1146 s->max_strips = best_nstrips + 1;
1147 if (s->max_strips >= s->max_max_strips)
1148 s->max_strips = s->max_max_strips;
1149 } else { // try to step down
1150 s->max_strips = best_nstrips;
1152 s->min_strips = s->max_strips - 1;
1153 if (s->min_strips < s->min_min_strips)
1154 s->min_strips = s->min_min_strips;
1155 } else {
1156 s->max_strips = best_nstrips + s->strip_number_delta_range;
1157 if (s->max_strips >= s->max_max_strips)
1158 s->max_strips = s->max_max_strips;
1159 s->min_strips = best_nstrips - s->strip_number_delta_range;
1160 if (s->min_strips < s->min_min_strips)
1161 s->min_strips = s->min_min_strips;
1164 return best_size;
1167 static int cinepak_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
1168 const AVFrame *frame, int *got_packet)
1170 CinepakEncContext *s = avctx->priv_data;
1171 int ret, got_keyframe;
1173 s->lambda = frame->quality ? frame->quality - 1 : 2 * FF_LAMBDA_SCALE;
1175 if ((ret = ff_alloc_packet(avctx, pkt, s->frame_buf_size)) < 0)
1176 return ret;
1177 ret = rd_frame(s, frame, (s->curframe == 0), pkt->data, s->frame_buf_size, &got_keyframe);
1178 pkt->size = ret;
1179 if (got_keyframe) {
1180 pkt->flags |= AV_PKT_FLAG_KEY;
1181 s->curframe = 0;
1183 *got_packet = 1;
1185 FFSWAP(AVFrame *, s->last_frame, s->best_frame);
1187 if (++s->curframe >= avctx->gop_size)
1188 s->curframe = 0;
1190 return 0;
1193 static av_cold int cinepak_encode_end(AVCodecContext *avctx)
1195 CinepakEncContext *s = avctx->priv_data;
1196 int x;
1198 avpriv_elbg_free(&s->elbg);
1199 av_frame_free(&s->last_frame);
1200 av_frame_free(&s->best_frame);
1201 av_frame_free(&s->scratch_frame);
1202 if (avctx->pix_fmt == AV_PIX_FMT_RGB24)
1203 av_frame_free(&s->input_frame);
1204 av_freep(&s->codebook_input);
1205 av_freep(&s->codebook_closest);
1206 av_freep(&s->strip_buf);
1207 av_freep(&s->frame_buf);
1208 av_freep(&s->mb);
1210 for (x = 0; x < (avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 4 : 3); x++)
1211 av_freep(&s->pict_bufs[x]);
1213 return 0;
1216 const FFCodec ff_cinepak_encoder = {
1217 .p.name = "cinepak",
1218 CODEC_LONG_NAME("Cinepak"),
1219 .p.type = AVMEDIA_TYPE_VIDEO,
1220 .p.id = AV_CODEC_ID_CINEPAK,
1221 .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE,
1222 .priv_data_size = sizeof(CinepakEncContext),
1223 .init = cinepak_encode_init,
1224 FF_CODEC_ENCODE_CB(cinepak_encode_frame),
1225 .close = cinepak_encode_end,
1226 .p.pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_RGB24, AV_PIX_FMT_GRAY8, AV_PIX_FMT_NONE },
1227 .p.priv_class = &cinepak_class,
1228 .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,