avformat/mpeg: demux ivtv captions
[ffmpeg.git] / libavcodec / indeo3.c
blobfbabd4b6ad0142dec2e09413efcba0780ce6d777
1 /*
2 * Indeo Video v3 compatible decoder
3 * Copyright (c) 2009 - 2011 Maxim Poliakovski
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 /**
23 * @file
24 * This is a decoder for Intel Indeo Video v3.
25 * It is based on vector quantization, run-length coding and motion compensation.
26 * Known container formats: .avi and .mov
27 * Known FOURCCs: 'IV31', 'IV32'
29 * @see http://wiki.multimedia.cx/index.php?title=Indeo_3
32 #include "libavutil/imgutils.h"
33 #include "libavutil/intreadwrite.h"
34 #include "libavutil/mem.h"
35 #include "libavutil/thread.h"
36 #include "avcodec.h"
37 #include "codec_internal.h"
38 #include "decode.h"
39 #include "copy_block.h"
40 #include "bytestream.h"
41 #include "get_bits.h"
42 #include "hpeldsp.h"
44 #include "indeo3data.h"
46 /* RLE opcodes. */
47 enum {
48 RLE_ESC_F9 = 249, ///< same as RLE_ESC_FA + do the same with next block
49 RLE_ESC_FA = 250, ///< INTRA: skip block, INTER: copy data from reference
50 RLE_ESC_FB = 251, ///< apply null delta to N blocks / skip N blocks
51 RLE_ESC_FC = 252, ///< same as RLE_ESC_FD + do the same with next block
52 RLE_ESC_FD = 253, ///< apply null delta to all remaining lines of this block
53 RLE_ESC_FE = 254, ///< apply null delta to all lines up to the 3rd line
54 RLE_ESC_FF = 255 ///< apply null delta to all lines up to the 2nd line
58 /* Some constants for parsing frame bitstream flags. */
59 #define BS_8BIT_PEL (1 << 1) ///< 8-bit pixel bitdepth indicator
60 #define BS_KEYFRAME (1 << 2) ///< intra frame indicator
61 #define BS_MV_Y_HALF (1 << 4) ///< vertical mv halfpel resolution indicator
62 #define BS_MV_X_HALF (1 << 5) ///< horizontal mv halfpel resolution indicator
63 #define BS_NONREF (1 << 8) ///< nonref (discardable) frame indicator
64 #define BS_BUFFER 9 ///< indicates which of two frame buffers should be used
67 typedef struct Plane {
68 uint8_t *buffers[2];
69 uint8_t *pixels[2]; ///< pointer to the actual pixel data of the buffers above
70 uint32_t width;
71 uint32_t height;
72 ptrdiff_t pitch;
73 } Plane;
75 #define CELL_STACK_MAX 20
77 typedef struct Cell {
78 int16_t xpos; ///< cell coordinates in 4x4 blocks
79 int16_t ypos;
80 int16_t width; ///< cell width in 4x4 blocks
81 int16_t height; ///< cell height in 4x4 blocks
82 uint8_t tree; ///< tree id: 0- MC tree, 1 - VQ tree
83 const int8_t *mv_ptr; ///< ptr to the motion vector if any
84 } Cell;
86 typedef struct Indeo3DecodeContext {
87 AVCodecContext *avctx;
88 HpelDSPContext hdsp;
90 GetBitContext gb;
91 int need_resync;
92 int skip_bits;
93 const uint8_t *next_cell_data;
94 const uint8_t *last_byte;
95 const int8_t *mc_vectors;
96 unsigned num_vectors; ///< number of motion vectors in mc_vectors
98 int16_t width, height;
99 uint32_t frame_num; ///< current frame number (zero-based)
100 int data_size; ///< size of the frame data in bytes
101 uint16_t frame_flags; ///< frame properties
102 uint8_t cb_offset; ///< needed for selecting VQ tables
103 uint8_t buf_sel; ///< active frame buffer: 0 - primary, 1 -secondary
104 const uint8_t *y_data_ptr;
105 const uint8_t *v_data_ptr;
106 const uint8_t *u_data_ptr;
107 int32_t y_data_size;
108 int32_t v_data_size;
109 int32_t u_data_size;
110 const uint8_t *alt_quant; ///< secondary VQ table set for the modes 1 and 4
111 Plane planes[3];
112 } Indeo3DecodeContext;
115 static uint8_t requant_tab[8][128];
118 * Build the static requantization table.
119 * This table is used to remap pixel values according to a specific
120 * quant index and thus avoid overflows while adding deltas.
122 static av_cold void build_requant_tab(void)
124 static const int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
125 static const int8_t deltas [8] = { 0, 1, 0, 4, 4, 1, 0, 1 };
127 int i, j, step;
129 for (i = 0; i < 8; i++) {
130 step = i + 2;
131 for (j = 0; j < 128; j++)
132 requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
135 /* some last elements calculated above will have values >= 128 */
136 /* pixel values shall never exceed 127 so set them to non-overflowing values */
137 /* according with the quantization step of the respective section */
138 requant_tab[0][127] = 126;
139 requant_tab[1][119] = 118;
140 requant_tab[1][120] = 118;
141 requant_tab[2][126] = 124;
142 requant_tab[2][127] = 124;
143 requant_tab[6][124] = 120;
144 requant_tab[6][125] = 120;
145 requant_tab[6][126] = 120;
146 requant_tab[6][127] = 120;
148 /* Patch for compatibility with the Intel's binary decoders */
149 requant_tab[1][7] = 10;
150 requant_tab[4][8] = 10;
154 static av_cold void free_frame_buffers(Indeo3DecodeContext *ctx)
156 int p;
158 ctx->width = ctx->height = 0;
160 for (p = 0; p < 3; p++) {
161 av_freep(&ctx->planes[p].buffers[0]);
162 av_freep(&ctx->planes[p].buffers[1]);
163 ctx->planes[p].pixels[0] = ctx->planes[p].pixels[1] = 0;
168 static av_cold int allocate_frame_buffers(Indeo3DecodeContext *ctx,
169 AVCodecContext *avctx, int luma_width, int luma_height)
171 int p, chroma_width, chroma_height;
172 int luma_size, chroma_size;
173 ptrdiff_t luma_pitch, chroma_pitch;
175 luma_width = FFALIGN(luma_width , 2);
176 luma_height = FFALIGN(luma_height, 2);
178 if (luma_width < 16 || luma_width > 640 ||
179 luma_height < 16 || luma_height > 480 ||
180 luma_width & 1 || luma_height & 1) {
181 av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
182 luma_width, luma_height);
183 return AVERROR_INVALIDDATA;
186 ctx->width = luma_width ;
187 ctx->height = luma_height;
189 chroma_width = FFALIGN(luma_width >> 2, 4);
190 chroma_height = FFALIGN(luma_height >> 2, 4);
192 luma_pitch = FFALIGN(luma_width, 16);
193 chroma_pitch = FFALIGN(chroma_width, 16);
195 /* Calculate size of the luminance plane. */
196 /* Add one line more for INTRA prediction. */
197 luma_size = luma_pitch * (luma_height + 1);
199 /* Calculate size of a chrominance planes. */
200 /* Add one line more for INTRA prediction. */
201 chroma_size = chroma_pitch * (chroma_height + 1);
203 /* allocate frame buffers */
204 for (p = 0; p < 3; p++) {
205 ctx->planes[p].pitch = !p ? luma_pitch : chroma_pitch;
206 ctx->planes[p].width = !p ? luma_width : chroma_width;
207 ctx->planes[p].height = !p ? luma_height : chroma_height;
209 ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
210 ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);
212 if (!ctx->planes[p].buffers[0] || !ctx->planes[p].buffers[1])
213 return AVERROR(ENOMEM);
215 /* fill the INTRA prediction lines with the middle pixel value = 64 */
216 memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
217 memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);
219 /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
220 ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
221 ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
222 memset(ctx->planes[p].pixels[0], 0, ctx->planes[p].pitch * ctx->planes[p].height);
223 memset(ctx->planes[p].pixels[1], 0, ctx->planes[p].pitch * ctx->planes[p].height);
226 return 0;
230 * Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into
231 * the cell(x, y) in the current frame.
233 * @param ctx pointer to the decoder context
234 * @param plane pointer to the plane descriptor
235 * @param cell pointer to the cell descriptor
237 static int copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
239 int h, w, mv_x, mv_y, offset, offset_dst;
240 uint8_t *src, *dst;
242 /* setup output and reference pointers */
243 offset_dst = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
244 dst = plane->pixels[ctx->buf_sel] + offset_dst;
245 if(cell->mv_ptr){
246 mv_y = cell->mv_ptr[0];
247 mv_x = cell->mv_ptr[1];
248 }else
249 mv_x= mv_y= 0;
251 /* -1 because there is an extra line on top for prediction */
252 if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 ||
253 ((cell->ypos + cell->height) << 2) + mv_y > plane->height ||
254 ((cell->xpos + cell->width) << 2) + mv_x > plane->width) {
255 av_log(ctx->avctx, AV_LOG_ERROR,
256 "Motion vectors point out of the frame.\n");
257 return AVERROR_INVALIDDATA;
260 offset = offset_dst + mv_y * plane->pitch + mv_x;
261 src = plane->pixels[ctx->buf_sel ^ 1] + offset;
263 h = cell->height << 2;
265 for (w = cell->width; w > 0;) {
266 /* copy using 16xH blocks */
267 if (!((cell->xpos << 2) & 15) && w >= 4) {
268 for (; w >= 4; src += 16, dst += 16, w -= 4)
269 ctx->hdsp.put_pixels_tab[0][0](dst, src, plane->pitch, h);
272 /* copy using 8xH blocks */
273 if (!((cell->xpos << 2) & 7) && w >= 2) {
274 ctx->hdsp.put_pixels_tab[1][0](dst, src, plane->pitch, h);
275 w -= 2;
276 src += 8;
277 dst += 8;
278 } else if (w >= 1) {
279 ctx->hdsp.put_pixels_tab[2][0](dst, src, plane->pitch, h);
280 w--;
281 src += 4;
282 dst += 4;
286 return 0;
290 /* Average 4/8 pixels at once without rounding using SWAR */
291 #define AVG_32(dst, src, ref) \
292 AV_WN32A(dst, ((AV_RN32(src) + AV_RN32(ref)) >> 1) & 0x7F7F7F7FUL)
294 #define AVG_64(dst, src, ref) \
295 AV_WN64A(dst, ((AV_RN64(src) + AV_RN64(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL)
299 * Replicate each even pixel as follows:
300 * ABCDEFGH -> AACCEEGG
302 static inline uint64_t replicate64(uint64_t a) {
303 #if HAVE_BIGENDIAN
304 a &= 0xFF00FF00FF00FF00ULL;
305 a |= a >> 8;
306 #else
307 a &= 0x00FF00FF00FF00FFULL;
308 a |= a << 8;
309 #endif
310 return a;
313 static inline uint32_t replicate32(uint32_t a) {
314 #if HAVE_BIGENDIAN
315 a &= 0xFF00FF00UL;
316 a |= a >> 8;
317 #else
318 a &= 0x00FF00FFUL;
319 a |= a << 8;
320 #endif
321 return a;
325 /* Fill n lines with 64-bit pixel value pix */
326 static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n,
327 int32_t row_offset)
329 for (; n > 0; dst += row_offset, n--)
330 AV_WN64A(dst, pix);
334 /* Error codes for cell decoding. */
335 enum {
336 IV3_NOERR = 0,
337 IV3_BAD_RLE = 1,
338 IV3_BAD_DATA = 2,
339 IV3_BAD_COUNTER = 3,
340 IV3_UNSUPPORTED = 4,
341 IV3_OUT_OF_DATA = 5
345 #define BUFFER_PRECHECK \
346 if (*data_ptr >= last_ptr) \
347 return IV3_OUT_OF_DATA; \
349 #define RLE_BLOCK_COPY \
350 if (cell->mv_ptr || !skip_flag) \
351 copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom)
353 #define RLE_BLOCK_COPY_8 \
354 pix64 = AV_RN64(ref);\
355 if (is_first_row) {/* special prediction case: top line of a cell */\
356 pix64 = replicate64(pix64);\
357 fill_64(dst + row_offset, pix64, 7, row_offset);\
358 AVG_64(dst, ref, dst + row_offset);\
359 } else \
360 fill_64(dst, pix64, 8, row_offset)
362 #define RLE_LINES_COPY \
363 copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom)
365 #define RLE_LINES_COPY_M10 \
366 pix64 = AV_RN64(ref);\
367 if (is_top_of_cell) {\
368 pix64 = replicate64(pix64);\
369 fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
370 AVG_64(dst, ref, dst + row_offset);\
371 } else \
372 fill_64(dst, pix64, num_lines << 1, row_offset)
374 #define APPLY_DELTA_4 \
375 AV_WN16A(dst + line_offset ,\
376 (AV_RN16(ref ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
377 AV_WN16A(dst + line_offset + 2,\
378 (AV_RN16(ref + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
379 if (mode >= 3) {\
380 if (is_top_of_cell && !cell->ypos) {\
381 AV_COPY32U(dst, dst + row_offset);\
382 } else {\
383 AVG_32(dst, ref, dst + row_offset);\
387 #define APPLY_DELTA_8 \
388 /* apply two 32-bit VQ deltas to next even line */\
389 if (is_top_of_cell) { \
390 AV_WN32A(dst + row_offset , \
391 (replicate32(AV_RN32(ref )) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
392 AV_WN32A(dst + row_offset + 4, \
393 (replicate32(AV_RN32(ref + 4)) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
394 } else { \
395 AV_WN32A(dst + row_offset , \
396 (AV_RN32(ref ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
397 AV_WN32A(dst + row_offset + 4, \
398 (AV_RN32(ref + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
400 /* odd lines are not coded but rather interpolated/replicated */\
401 /* first line of the cell on the top of image? - replicate */\
402 /* otherwise - interpolate */\
403 if (is_top_of_cell && !cell->ypos) {\
404 AV_COPY64U(dst, dst + row_offset);\
405 } else \
406 AVG_64(dst, ref, dst + row_offset);
409 #define APPLY_DELTA_1011_INTER \
410 if (mode == 10) { \
411 AV_WN32A(dst , \
412 (AV_RN32(dst ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
413 AV_WN32A(dst + 4 , \
414 (AV_RN32(dst + 4 ) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
415 AV_WN32A(dst + row_offset , \
416 (AV_RN32(dst + row_offset ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
417 AV_WN32A(dst + row_offset + 4, \
418 (AV_RN32(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
419 } else { \
420 AV_WN16A(dst , \
421 (AV_RN16(dst ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
422 AV_WN16A(dst + 2 , \
423 (AV_RN16(dst + 2 ) + delta_tab->deltas[dyad2]) & 0x7F7F);\
424 AV_WN16A(dst + row_offset , \
425 (AV_RN16(dst + row_offset ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
426 AV_WN16A(dst + row_offset + 2, \
427 (AV_RN16(dst + row_offset + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
431 static int decode_cell_data(Indeo3DecodeContext *ctx, Cell *cell,
432 uint8_t *block, uint8_t *ref_block,
433 ptrdiff_t row_offset, int h_zoom, int v_zoom, int mode,
434 const vqEntry *delta[2], int swap_quads[2],
435 const uint8_t **data_ptr, const uint8_t *last_ptr)
437 int x, y, line, num_lines;
438 int rle_blocks = 0;
439 uint8_t code, *dst, *ref;
440 const vqEntry *delta_tab;
441 unsigned int dyad1, dyad2;
442 uint64_t pix64;
443 int skip_flag = 0, is_top_of_cell, is_first_row = 1;
444 int blk_row_offset, line_offset;
446 blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2);
447 line_offset = v_zoom ? row_offset : 0;
449 if (cell->height & v_zoom || cell->width & h_zoom)
450 return IV3_BAD_DATA;
452 for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) {
453 for (x = 0; x < cell->width; x += 1 + h_zoom) {
454 ref = ref_block;
455 dst = block;
457 if (rle_blocks > 0) {
458 if (mode <= 4) {
459 RLE_BLOCK_COPY;
460 } else if (mode == 10 && !cell->mv_ptr) {
461 RLE_BLOCK_COPY_8;
463 rle_blocks--;
464 } else {
465 for (line = 0; line < 4;) {
466 num_lines = 1;
467 is_top_of_cell = is_first_row && !line;
469 /* select primary VQ table for odd, secondary for even lines */
470 if (mode <= 4)
471 delta_tab = delta[line & 1];
472 else
473 delta_tab = delta[1];
474 BUFFER_PRECHECK;
475 code = bytestream_get_byte(data_ptr);
476 if (code < 248) {
477 if (code < delta_tab->num_dyads) {
478 BUFFER_PRECHECK;
479 dyad1 = bytestream_get_byte(data_ptr);
480 dyad2 = code;
481 if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248)
482 return IV3_BAD_DATA;
483 } else {
484 /* process QUADS */
485 code -= delta_tab->num_dyads;
486 dyad1 = code / delta_tab->quad_exp;
487 dyad2 = code % delta_tab->quad_exp;
488 if (swap_quads[line & 1])
489 FFSWAP(unsigned int, dyad1, dyad2);
491 if (mode <= 4) {
492 APPLY_DELTA_4;
493 } else if (mode == 10 && !cell->mv_ptr) {
494 APPLY_DELTA_8;
495 } else {
496 APPLY_DELTA_1011_INTER;
498 } else {
499 /* process RLE codes */
500 switch (code) {
501 case RLE_ESC_FC:
502 skip_flag = 0;
503 rle_blocks = 1;
504 code = 253;
505 /* FALLTHROUGH */
506 case RLE_ESC_FF:
507 case RLE_ESC_FE:
508 case RLE_ESC_FD:
509 num_lines = 257 - code - line;
510 if (num_lines <= 0)
511 return IV3_BAD_RLE;
512 if (mode <= 4) {
513 RLE_LINES_COPY;
514 } else if (mode == 10 && !cell->mv_ptr) {
515 RLE_LINES_COPY_M10;
517 break;
518 case RLE_ESC_FB:
519 BUFFER_PRECHECK;
520 code = bytestream_get_byte(data_ptr);
521 rle_blocks = (code & 0x1F) - 1; /* set block counter */
522 if (code >= 64 || rle_blocks < 0)
523 return IV3_BAD_COUNTER;
524 skip_flag = code & 0x20;
525 num_lines = 4 - line; /* enforce next block processing */
526 if (mode >= 10 || (cell->mv_ptr || !skip_flag)) {
527 if (mode <= 4) {
528 RLE_LINES_COPY;
529 } else if (mode == 10 && !cell->mv_ptr) {
530 RLE_LINES_COPY_M10;
533 break;
534 case RLE_ESC_F9:
535 skip_flag = 1;
536 rle_blocks = 1;
537 /* FALLTHROUGH */
538 case RLE_ESC_FA:
539 if (line)
540 return IV3_BAD_RLE;
541 num_lines = 4; /* enforce next block processing */
542 if (cell->mv_ptr) {
543 if (mode <= 4) {
544 RLE_LINES_COPY;
545 } else if (mode == 10 && !cell->mv_ptr) {
546 RLE_LINES_COPY_M10;
549 break;
550 default:
551 return IV3_UNSUPPORTED;
555 line += num_lines;
556 ref += row_offset * (num_lines << v_zoom);
557 dst += row_offset * (num_lines << v_zoom);
561 /* move to next horizontal block */
562 block += 4 << h_zoom;
563 ref_block += 4 << h_zoom;
566 /* move to next line of blocks */
567 ref_block += blk_row_offset;
568 block += blk_row_offset;
570 return IV3_NOERR;
575 * Decode a vector-quantized cell.
576 * It consists of several routines, each of which handles one or more "modes"
577 * with which a cell can be encoded.
579 * @param ctx pointer to the decoder context
580 * @param avctx ptr to the AVCodecContext
581 * @param plane pointer to the plane descriptor
582 * @param cell pointer to the cell descriptor
583 * @param data_ptr pointer to the compressed data
584 * @param last_ptr pointer to the last byte to catch reads past end of buffer
585 * @return number of consumed bytes or negative number in case of error
587 static int decode_cell(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
588 Plane *plane, Cell *cell, const uint8_t *data_ptr,
589 const uint8_t *last_ptr)
591 int x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
592 int zoom_fac;
593 int offset, error = 0, swap_quads[2];
594 uint8_t code, *block, *ref_block = 0;
595 const vqEntry *delta[2];
596 const uint8_t *data_start = data_ptr;
598 /* get coding mode and VQ table index from the VQ descriptor byte */
599 code = *data_ptr++;
600 mode = code >> 4;
601 vq_index = code & 0xF;
603 /* setup output and reference pointers */
604 offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
605 block = plane->pixels[ctx->buf_sel] + offset;
607 if (!cell->mv_ptr) {
608 /* use previous line as reference for INTRA cells */
609 ref_block = block - plane->pitch;
610 } else if (mode >= 10) {
611 /* for mode 10 and 11 INTER first copy the predicted cell into the current one */
612 /* so we don't need to do data copying for each RLE code later */
613 int ret = copy_cell(ctx, plane, cell);
614 if (ret < 0)
615 return ret;
616 } else {
617 /* set the pointer to the reference pixels for modes 0-4 INTER */
618 mv_y = cell->mv_ptr[0];
619 mv_x = cell->mv_ptr[1];
621 /* -1 because there is an extra line on top for prediction */
622 if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 ||
623 ((cell->ypos + cell->height) << 2) + mv_y > plane->height ||
624 ((cell->xpos + cell->width) << 2) + mv_x > plane->width) {
625 av_log(ctx->avctx, AV_LOG_ERROR,
626 "Motion vectors point out of the frame.\n");
627 return AVERROR_INVALIDDATA;
630 offset += mv_y * plane->pitch + mv_x;
631 ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
634 /* select VQ tables as follows: */
635 /* modes 0 and 3 use only the primary table for all lines in a block */
636 /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
637 if (mode == 1 || mode == 4) {
638 code = ctx->alt_quant[vq_index];
639 prim_indx = (code >> 4) + ctx->cb_offset;
640 second_indx = (code & 0xF) + ctx->cb_offset;
641 } else {
642 vq_index += ctx->cb_offset;
643 prim_indx = second_indx = vq_index;
646 if (prim_indx >= 24 || second_indx >= 24) {
647 av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
648 prim_indx, second_indx);
649 return AVERROR_INVALIDDATA;
652 delta[0] = &vq_tab[second_indx];
653 delta[1] = &vq_tab[prim_indx];
654 swap_quads[0] = second_indx >= 16;
655 swap_quads[1] = prim_indx >= 16;
657 /* requantize the prediction if VQ index of this cell differs from VQ index */
658 /* of the predicted cell in order to avoid overflows. */
659 if (vq_index >= 8 && ref_block) {
660 for (x = 0; x < cell->width << 2; x++)
661 ref_block[x] = requant_tab[vq_index & 7][ref_block[x] & 127];
664 error = IV3_NOERR;
666 switch (mode) {
667 case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
668 case 1:
669 case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
670 case 4:
671 if (mode >= 3 && cell->mv_ptr) {
672 av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
673 return AVERROR_INVALIDDATA;
676 zoom_fac = mode >= 3;
677 error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
678 0, zoom_fac, mode, delta, swap_quads,
679 &data_ptr, last_ptr);
680 break;
681 case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
682 case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
683 if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
684 error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
685 1, 1, mode, delta, swap_quads,
686 &data_ptr, last_ptr);
687 } else { /* mode 10 and 11 INTER processing */
688 if (mode == 11 && !cell->mv_ptr) {
689 av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
690 return AVERROR_INVALIDDATA;
693 zoom_fac = mode == 10;
694 error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
695 zoom_fac, 1, mode, delta, swap_quads,
696 &data_ptr, last_ptr);
698 break;
699 default:
700 av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
701 return AVERROR_INVALIDDATA;
702 }//switch mode
704 switch (error) {
705 case IV3_BAD_RLE:
706 av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n",
707 mode, data_ptr[-1]);
708 return AVERROR_INVALIDDATA;
709 case IV3_BAD_DATA:
710 av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
711 return AVERROR_INVALIDDATA;
712 case IV3_BAD_COUNTER:
713 av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
714 return AVERROR_INVALIDDATA;
715 case IV3_UNSUPPORTED:
716 av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
717 return AVERROR_INVALIDDATA;
718 case IV3_OUT_OF_DATA:
719 av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
720 return AVERROR_INVALIDDATA;
723 return data_ptr - data_start; /* report number of bytes consumed from the input buffer */
727 /* Binary tree codes. */
728 enum {
729 H_SPLIT = 0,
730 V_SPLIT = 1,
731 INTRA_NULL = 2,
732 INTER_DATA = 3
736 #define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1
738 #define UPDATE_BITPOS(n) \
739 ctx->skip_bits += (n); \
740 ctx->need_resync = 1
742 #define RESYNC_BITSTREAM \
743 if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
744 skip_bits_long(&ctx->gb, ctx->skip_bits); \
745 ctx->skip_bits = 0; \
746 ctx->need_resync = 0; \
749 #define CHECK_CELL \
750 if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) || \
751 curr_cell.ypos + curr_cell.height > (plane->height >> 2)) { \
752 av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n", \
753 curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
754 return AVERROR_INVALIDDATA; \
758 static int parse_bintree(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
759 Plane *plane, int code, Cell *ref_cell,
760 const int depth, const int strip_width)
762 Cell curr_cell;
763 int bytes_used, ret;
765 if (depth <= 0) {
766 av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
767 return AVERROR_INVALIDDATA; // unwind recursion
770 curr_cell = *ref_cell; // clone parent cell
771 if (code == H_SPLIT) {
772 SPLIT_CELL(ref_cell->height, curr_cell.height);
773 ref_cell->ypos += curr_cell.height;
774 ref_cell->height -= curr_cell.height;
775 if (ref_cell->height <= 0 || curr_cell.height <= 0)
776 return AVERROR_INVALIDDATA;
777 } else if (code == V_SPLIT) {
778 if (curr_cell.width > strip_width) {
779 /* split strip */
780 curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
781 } else
782 SPLIT_CELL(ref_cell->width, curr_cell.width);
783 ref_cell->xpos += curr_cell.width;
784 ref_cell->width -= curr_cell.width;
785 if (ref_cell->width <= 0 || curr_cell.width <= 0)
786 return AVERROR_INVALIDDATA;
789 while (get_bits_left(&ctx->gb) >= 2) { /* loop until return */
790 RESYNC_BITSTREAM;
791 switch (code = get_bits(&ctx->gb, 2)) {
792 case H_SPLIT:
793 case V_SPLIT:
794 if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width))
795 return AVERROR_INVALIDDATA;
796 break;
797 case INTRA_NULL:
798 if (!curr_cell.tree) { /* MC tree INTRA code */
799 curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
800 curr_cell.tree = 1; /* enter the VQ tree */
801 } else { /* VQ tree NULL code */
802 RESYNC_BITSTREAM;
803 code = get_bits(&ctx->gb, 2);
804 if (code >= 2) {
805 av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
806 return AVERROR_INVALIDDATA;
808 if (code == 1)
809 av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");
811 CHECK_CELL
812 if (!curr_cell.mv_ptr)
813 return AVERROR_INVALIDDATA;
815 ret = copy_cell(ctx, plane, &curr_cell);
816 return ret;
818 break;
819 case INTER_DATA:
820 if (!curr_cell.tree) { /* MC tree INTER code */
821 unsigned mv_idx;
822 /* get motion vector index and setup the pointer to the mv set */
823 if (!ctx->need_resync)
824 ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
825 if (ctx->next_cell_data >= ctx->last_byte) {
826 av_log(avctx, AV_LOG_ERROR, "motion vector out of array\n");
827 return AVERROR_INVALIDDATA;
829 mv_idx = *(ctx->next_cell_data++);
830 if (mv_idx >= ctx->num_vectors) {
831 av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n");
832 return AVERROR_INVALIDDATA;
834 curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx << 1];
835 curr_cell.tree = 1; /* enter the VQ tree */
836 UPDATE_BITPOS(8);
837 } else { /* VQ tree DATA code */
838 if (!ctx->need_resync)
839 ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
841 CHECK_CELL
842 bytes_used = decode_cell(ctx, avctx, plane, &curr_cell,
843 ctx->next_cell_data, ctx->last_byte);
844 if (bytes_used < 0)
845 return AVERROR_INVALIDDATA;
847 UPDATE_BITPOS(bytes_used << 3);
848 ctx->next_cell_data += bytes_used;
849 return 0;
851 break;
853 }//while
855 return AVERROR_INVALIDDATA;
859 static int decode_plane(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
860 Plane *plane, const uint8_t *data, int32_t data_size,
861 int32_t strip_width)
863 Cell curr_cell;
864 unsigned num_vectors;
866 /* each plane data starts with mc_vector_count field, */
867 /* an optional array of motion vectors followed by the vq data */
868 num_vectors = bytestream_get_le32(&data); data_size -= 4;
869 if (num_vectors > 256) {
870 av_log(ctx->avctx, AV_LOG_ERROR,
871 "Read invalid number of motion vectors %d\n", num_vectors);
872 return AVERROR_INVALIDDATA;
874 if (num_vectors * 2 > data_size)
875 return AVERROR_INVALIDDATA;
877 ctx->num_vectors = num_vectors;
878 ctx->mc_vectors = num_vectors ? data : 0;
880 /* init the bitreader */
881 init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3);
882 ctx->skip_bits = 0;
883 ctx->need_resync = 0;
885 ctx->last_byte = data + data_size;
887 /* initialize the 1st cell and set its dimensions to whole plane */
888 curr_cell.xpos = curr_cell.ypos = 0;
889 curr_cell.width = plane->width >> 2;
890 curr_cell.height = plane->height >> 2;
891 curr_cell.tree = 0; // we are in the MC tree now
892 curr_cell.mv_ptr = 0; // no motion vector = INTRA cell
894 return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
898 #define OS_HDR_ID MKBETAG('F', 'R', 'M', 'H')
900 static int decode_frame_headers(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
901 const uint8_t *buf, int buf_size)
903 GetByteContext gb;
904 const uint8_t *bs_hdr;
905 uint32_t frame_num, word2, check_sum, data_size;
906 int y_offset, u_offset, v_offset;
907 uint32_t starts[3], ends[3];
908 uint16_t height, width;
909 int i, j;
911 bytestream2_init(&gb, buf, buf_size);
913 /* parse and check the OS header */
914 frame_num = bytestream2_get_le32(&gb);
915 word2 = bytestream2_get_le32(&gb);
916 check_sum = bytestream2_get_le32(&gb);
917 data_size = bytestream2_get_le32(&gb);
919 if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
920 av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
921 return AVERROR_INVALIDDATA;
924 /* parse the bitstream header */
925 bs_hdr = gb.buffer;
927 if (bytestream2_get_le16(&gb) != 32) {
928 av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n");
929 return AVERROR_INVALIDDATA;
932 ctx->frame_num = frame_num;
933 ctx->frame_flags = bytestream2_get_le16(&gb);
934 ctx->data_size = (bytestream2_get_le32(&gb) + 7) >> 3;
935 ctx->cb_offset = bytestream2_get_byte(&gb);
937 if (ctx->data_size == 16)
938 return 4;
939 ctx->data_size = FFMIN(ctx->data_size, buf_size - 16);
941 bytestream2_skip(&gb, 3); // skip reserved byte and checksum
943 /* check frame dimensions */
944 height = bytestream2_get_le16(&gb);
945 width = bytestream2_get_le16(&gb);
946 if (av_image_check_size(width, height, 0, avctx))
947 return AVERROR_INVALIDDATA;
949 if (width != ctx->width || height != ctx->height) {
950 int res;
952 ff_dlog(avctx, "Frame dimensions changed!\n");
954 if (width < 16 || width > 640 ||
955 height < 16 || height > 480 ||
956 width & 3 || height & 3) {
957 av_log(avctx, AV_LOG_ERROR,
958 "Invalid picture dimensions: %d x %d!\n", width, height);
959 return AVERROR_INVALIDDATA;
961 free_frame_buffers(ctx);
962 if ((res = allocate_frame_buffers(ctx, avctx, width, height)) < 0)
963 return res;
964 if ((res = ff_set_dimensions(avctx, width, height)) < 0)
965 return res;
968 y_offset = bytestream2_get_le32(&gb);
969 v_offset = bytestream2_get_le32(&gb);
970 u_offset = bytestream2_get_le32(&gb);
971 bytestream2_skip(&gb, 4);
973 /* unfortunately there is no common order of planes in the buffer */
974 /* so we use that sorting algo for determining planes data sizes */
975 starts[0] = y_offset;
976 starts[1] = v_offset;
977 starts[2] = u_offset;
979 for (j = 0; j < 3; j++) {
980 ends[j] = ctx->data_size;
981 for (i = 2; i >= 0; i--)
982 if (starts[i] < ends[j] && starts[i] > starts[j])
983 ends[j] = starts[i];
986 ctx->y_data_size = ends[0] - starts[0];
987 ctx->v_data_size = ends[1] - starts[1];
988 ctx->u_data_size = ends[2] - starts[2];
989 if (FFMIN3(y_offset, v_offset, u_offset) < 0 ||
990 FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
991 FFMIN3(y_offset, v_offset, u_offset) < gb.buffer - bs_hdr + 16 ||
992 FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
993 av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
994 return AVERROR_INVALIDDATA;
997 ctx->y_data_ptr = bs_hdr + y_offset;
998 ctx->v_data_ptr = bs_hdr + v_offset;
999 ctx->u_data_ptr = bs_hdr + u_offset;
1000 ctx->alt_quant = gb.buffer;
1002 if (ctx->data_size == 16) {
1003 av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
1004 return 16;
1007 if (ctx->frame_flags & BS_8BIT_PEL) {
1008 avpriv_request_sample(avctx, "8-bit pixel format");
1009 return AVERROR_PATCHWELCOME;
1012 if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
1013 avpriv_request_sample(avctx, "Halfpel motion vectors");
1014 return AVERROR_PATCHWELCOME;
1017 return 0;
1022 * Convert and output the current plane.
1023 * All pixel values will be upsampled by shifting right by one bit.
1025 * @param[in] plane pointer to the descriptor of the plane being processed
1026 * @param[in] buf_sel indicates which frame buffer the input data stored in
1027 * @param[out] dst pointer to the buffer receiving converted pixels
1028 * @param[in] dst_pitch pitch for moving to the next y line
1029 * @param[in] dst_height output plane height
1031 static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst,
1032 ptrdiff_t dst_pitch, int dst_height)
1034 int x,y;
1035 const uint8_t *src = plane->pixels[buf_sel];
1036 ptrdiff_t pitch = plane->pitch;
1038 dst_height = FFMIN(dst_height, plane->height);
1039 for (y = 0; y < dst_height; y++) {
1040 /* convert four pixels at once using SWAR */
1041 for (x = 0; x < plane->width >> 2; x++) {
1042 AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1);
1043 src += 4;
1044 dst += 4;
1047 for (x <<= 2; x < plane->width; x++)
1048 *dst++ = *src++ << 1;
1050 src += pitch - plane->width;
1051 dst += dst_pitch - plane->width;
1056 static av_cold int decode_init(AVCodecContext *avctx)
1058 static AVOnce init_static_once = AV_ONCE_INIT;
1059 Indeo3DecodeContext *ctx = avctx->priv_data;
1061 ctx->avctx = avctx;
1062 avctx->pix_fmt = AV_PIX_FMT_YUV410P;
1064 ff_thread_once(&init_static_once, build_requant_tab);
1066 ff_hpeldsp_init(&ctx->hdsp, avctx->flags);
1068 return allocate_frame_buffers(ctx, avctx, avctx->width, avctx->height);
1072 static int decode_frame(AVCodecContext *avctx, AVFrame *frame,
1073 int *got_frame, AVPacket *avpkt)
1075 Indeo3DecodeContext *ctx = avctx->priv_data;
1076 const uint8_t *buf = avpkt->data;
1077 int buf_size = avpkt->size;
1078 int res;
1080 res = decode_frame_headers(ctx, avctx, buf, buf_size);
1081 if (res < 0)
1082 return res;
1084 /* skip sync(null) frames */
1085 if (res) {
1086 // we have processed 16 bytes but no data was decoded
1087 *got_frame = 0;
1088 return buf_size;
1091 /* skip droppable INTER frames if requested */
1092 if (ctx->frame_flags & BS_NONREF &&
1093 (avctx->skip_frame >= AVDISCARD_NONREF))
1094 return 0;
1096 /* skip INTER frames if requested */
1097 if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
1098 return 0;
1100 /* use BS_BUFFER flag for buffer switching */
1101 ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;
1103 if ((res = ff_get_buffer(avctx, frame, 0)) < 0)
1104 return res;
1106 /* decode luma plane */
1107 if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40)))
1108 return res;
1110 /* decode chroma planes */
1111 if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10)))
1112 return res;
1114 if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10)))
1115 return res;
1117 output_plane(&ctx->planes[0], ctx->buf_sel,
1118 frame->data[0], frame->linesize[0],
1119 avctx->height);
1120 output_plane(&ctx->planes[1], ctx->buf_sel,
1121 frame->data[1], frame->linesize[1],
1122 (avctx->height + 3) >> 2);
1123 output_plane(&ctx->planes[2], ctx->buf_sel,
1124 frame->data[2], frame->linesize[2],
1125 (avctx->height + 3) >> 2);
1127 *got_frame = 1;
1129 return buf_size;
1133 static av_cold int decode_close(AVCodecContext *avctx)
1135 free_frame_buffers(avctx->priv_data);
1137 return 0;
1140 const FFCodec ff_indeo3_decoder = {
1141 .p.name = "indeo3",
1142 CODEC_LONG_NAME("Intel Indeo 3"),
1143 .p.type = AVMEDIA_TYPE_VIDEO,
1144 .p.id = AV_CODEC_ID_INDEO3,
1145 .priv_data_size = sizeof(Indeo3DecodeContext),
1146 .init = decode_init,
1147 .close = decode_close,
1148 FF_CODEC_DECODE_CB(decode_frame),
1149 .p.capabilities = AV_CODEC_CAP_DR1,
1150 .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,