2 * LSP routines for ACELP-based codecs
4 * Copyright (c) 2007 Reynaldo H. Verdejo Pinochet (QCELP decoder)
5 * Copyright (c) 2008 Vladimir Voroshilov
7 * This file is part of FFmpeg.
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
29 #include "libavutil/macros.h"
33 #include "libavcodec/mips/lsp_mips.h"
34 #endif /* ARCH_MIPS */
35 #include "libavutil/avassert.h"
37 void ff_acelp_reorder_lsf(int16_t* lsfq
, int lsfq_min_distance
, int lsfq_min
, int lsfq_max
, int lp_order
)
41 /* sort lsfq in ascending order. float bubble algorithm,
42 O(n) if data already sorted, O(n^2) - otherwise */
43 for(i
=0; i
<lp_order
-1; i
++)
44 for(j
=i
; j
>=0 && lsfq
[j
] > lsfq
[j
+1]; j
--)
45 FFSWAP(int16_t, lsfq
[j
], lsfq
[j
+1]);
47 for(i
=0; i
<lp_order
; i
++)
49 lsfq
[i
] = FFMAX(lsfq
[i
], lsfq_min
);
50 lsfq_min
= lsfq
[i
] + lsfq_min_distance
;
52 lsfq
[lp_order
-1] = FFMIN(lsfq
[lp_order
-1], lsfq_max
);//Is warning required ?
55 void ff_set_min_dist_lsf(float *lsf
, double min_spacing
, int size
)
59 for (i
= 0; i
< size
; i
++)
60 prev
= lsf
[i
] = FFMAX(lsf
[i
], prev
+ min_spacing
);
64 /* Cosine table: base_cos[i] = (1 << 15) * cos(i * PI / 64) */
65 static const int16_t tab_cos
[65] =
67 32767, 32738, 32617, 32421, 32145, 31793, 31364, 30860,
68 30280, 29629, 28905, 28113, 27252, 26326, 25336, 24285,
69 23176, 22011, 20793, 19525, 18210, 16851, 15451, 14014,
70 12543, 11043, 9515, 7965, 6395, 4810, 3214, 1609,
71 1, -1607, -3211, -4808, -6393, -7962, -9513, -11040,
72 -12541, -14012, -15449, -16848, -18207, -19523, -20791, -22009,
73 -23174, -24283, -25334, -26324, -27250, -28111, -28904, -29627,
74 -30279, -30858, -31363, -31792, -32144, -32419, -32616, -32736, -32768,
77 static int16_t ff_cos(uint16_t arg
)
80 uint8_t ind
= arg
>> 8;
82 av_assert2(arg
<= 0x3fff);
84 return tab_cos
[ind
] + (offset
* (tab_cos
[ind
+1] - tab_cos
[ind
]) >> 8);
87 void ff_acelp_lsf2lsp(int16_t *lsp
, const int16_t *lsf
, int lp_order
)
91 /* Convert LSF to LSP, lsp=cos(lsf) */
92 for(i
=0; i
<lp_order
; i
++)
93 // 20861 = 2.0 / PI in (0.15)
94 lsp
[i
] = ff_cos(lsf
[i
] * 20861 >> 15); // divide by PI and (0,13) -> (0,14)
97 void ff_acelp_lsf2lspd(double *lsp
, const float *lsf
, int lp_order
)
101 for(i
= 0; i
< lp_order
; i
++)
102 lsp
[i
] = cos(2.0 * M_PI
* lsf
[i
]);
106 * @brief decodes polynomial coefficients from LSP
107 * @param[out] f decoded polynomial coefficients (-0x20000000 <= (3.22) <= 0x1fffffff)
108 * @param lsp LSP coefficients (-0x8000 <= (0.15) <= 0x7fff)
110 static void lsp2poly(int* f
, const int16_t* lsp
, int lp_half_order
)
114 f
[0] = 0x400000; // 1.0 in (3.22)
115 f
[1] = -lsp
[0] * 256; // *2 and (0.15) -> (3.22)
117 for(i
=2; i
<=lp_half_order
; i
++)
121 f
[j
] -= MULL(f
[j
-1], lsp
[2*i
-2], FRAC_BITS
) - f
[j
-2];
123 f
[1] -= lsp
[2*i
-2] * 256;
129 * Compute the Pa / (1 + z(-1)) or Qa / (1 - z(-1)) coefficients
130 * needed for LSP to LPC conversion.
131 * We only need to calculate the 6 first elements of the polynomial.
133 * @param lsp line spectral pairs in cosine domain
134 * @param[out] f polynomial input/output as a vector
136 * TIA/EIA/IS-733 2.4.3.3.5-1/2
138 static void lsp2polyf(const double *lsp
, double *f
, int lp_half_order
)
143 for (int i
= 2; i
<= lp_half_order
; i
++) {
144 double val
= -2 * lsp
[2*i
];
145 f
[i
] = val
* f
[i
-1] + 2*f
[i
-2];
146 for (int j
= i
-1; j
> 1; j
--)
147 f
[j
] += f
[j
-1] * val
+ f
[j
-2];
151 #endif /* lsp2polyf */
153 void ff_acelp_lsp2lpc(int16_t* lp
, const int16_t* lsp
, int lp_half_order
)
156 int f1
[MAX_LP_HALF_ORDER
+1]; // (3.22)
157 int f2
[MAX_LP_HALF_ORDER
+1]; // (3.22)
159 lsp2poly(f1
, lsp
, lp_half_order
);
160 lsp2poly(f2
, lsp
+1, lp_half_order
);
162 /* 3.2.6 of G.729, Equations 25 and 26*/
164 for(i
=1; i
<lp_half_order
+1; i
++)
166 int ff1
= f1
[i
] + f1
[i
-1]; // (3.22)
167 int ff2
= f2
[i
] - f2
[i
-1]; // (3.22)
169 ff1
+= 1 << 10; // for rounding
170 lp
[i
] = (ff1
+ ff2
) >> 11; // divide by 2 and (3.22) -> (3.12)
171 lp
[(lp_half_order
<< 1) + 1 - i
] = (ff1
- ff2
) >> 11; // divide by 2 and (3.22) -> (3.12)
175 void ff_amrwb_lsp2lpc(const double *lsp
, float *lp
, int lp_order
)
177 int lp_half_order
= lp_order
>> 1;
178 double buf
[MAX_LP_HALF_ORDER
+ 1];
179 double pa
[MAX_LP_HALF_ORDER
+ 1];
180 double *qa
= buf
+ 1;
185 lsp2polyf(lsp
, pa
, lp_half_order
);
186 lsp2polyf(lsp
+ 1, qa
, lp_half_order
- 1);
188 for (i
= 1, j
= lp_order
- 1; i
< lp_half_order
; i
++, j
--) {
189 double paf
= pa
[i
] * (1 + lsp
[lp_order
- 1]);
190 double qaf
= (qa
[i
] - qa
[i
-2]) * (1 - lsp
[lp_order
- 1]);
191 lp
[i
-1] = (paf
+ qaf
) * 0.5;
192 lp
[j
-1] = (paf
- qaf
) * 0.5;
195 lp
[lp_half_order
- 1] = (1.0 + lsp
[lp_order
- 1]) *
196 pa
[lp_half_order
] * 0.5;
198 lp
[lp_order
- 1] = lsp
[lp_order
- 1];
201 void ff_acelp_lp_decode(int16_t* lp_1st
, int16_t* lp_2nd
, const int16_t* lsp_2nd
, const int16_t* lsp_prev
, int lp_order
)
203 int16_t lsp_1st
[MAX_LP_ORDER
]; // (0.15)
206 /* LSP values for first subframe (3.2.5 of G.729, Equation 24)*/
207 for(i
=0; i
<lp_order
; i
++)
209 lsp_1st
[i
] = (lsp_2nd
[i
] >> 1) + (lsp_prev
[i
] >> 1);
211 lsp_1st
[i
] = (lsp_2nd
[i
] + lsp_prev
[i
]) >> 1;
214 ff_acelp_lsp2lpc(lp_1st
, lsp_1st
, lp_order
>> 1);
216 /* LSP values for second subframe (3.2.5 of G.729)*/
217 ff_acelp_lsp2lpc(lp_2nd
, lsp_2nd
, lp_order
>> 1);
220 void ff_acelp_lspd2lpc(const double *lsp
, float *lpc
, int lp_half_order
)
222 double pa
[MAX_LP_HALF_ORDER
+1], qa
[MAX_LP_HALF_ORDER
+1];
223 float *lpc2
= lpc
+ (lp_half_order
<< 1) - 1;
225 av_assert2(lp_half_order
<= MAX_LP_HALF_ORDER
);
227 lsp2polyf(lsp
, pa
, lp_half_order
);
228 lsp2polyf(lsp
+ 1, qa
, lp_half_order
);
230 while (lp_half_order
--) {
231 double paf
= pa
[lp_half_order
+1] + pa
[lp_half_order
];
232 double qaf
= qa
[lp_half_order
+1] - qa
[lp_half_order
];
234 lpc
[ lp_half_order
] = 0.5*(paf
+qaf
);
235 lpc2
[-lp_half_order
] = 0.5*(paf
-qaf
);
239 void ff_sort_nearly_sorted_floats(float *vals
, int len
)
243 for (i
= 0; i
< len
- 1; i
++)
244 for (j
= i
; j
>= 0 && vals
[j
] > vals
[j
+1]; j
--)
245 FFSWAP(float, vals
[j
], vals
[j
+1]);