avformat/mpeg: demux ivtv captions
[ffmpeg.git] / libavcodec / ra144enc.c
blob92c35ac12c81d5b4c00f1a5baf8716de77c2c517
1 /*
2 * Real Audio 1.0 (14.4K) encoder
3 * Copyright (c) 2010 Francesco Lavra <francescolavra@interfree.it>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 /**
23 * @file
24 * Real Audio 1.0 (14.4K) encoder
25 * @author Francesco Lavra <francescolavra@interfree.it>
28 #include <float.h>
30 #include "libavutil/channel_layout.h"
31 #include "avcodec.h"
32 #include "audio_frame_queue.h"
33 #include "celp_filters.h"
34 #include "codec_internal.h"
35 #include "encode.h"
36 #include "mathops.h"
37 #include "put_bits.h"
38 #include "ra144.h"
40 static av_cold int ra144_encode_close(AVCodecContext *avctx)
42 RA144Context *ractx = avctx->priv_data;
43 ff_lpc_end(&ractx->lpc_ctx);
44 ff_af_queue_close(&ractx->afq);
45 return 0;
49 static av_cold int ra144_encode_init(AVCodecContext * avctx)
51 RA144Context *ractx;
52 int ret;
54 avctx->frame_size = NBLOCKS * BLOCKSIZE;
55 avctx->initial_padding = avctx->frame_size;
56 avctx->bit_rate = 8000;
57 ractx = avctx->priv_data;
58 ractx->lpc_coef[0] = ractx->lpc_tables[0];
59 ractx->lpc_coef[1] = ractx->lpc_tables[1];
60 ractx->avctx = avctx;
61 ff_audiodsp_init(&ractx->adsp);
62 ret = ff_lpc_init(&ractx->lpc_ctx, avctx->frame_size, LPC_ORDER,
63 FF_LPC_TYPE_LEVINSON);
64 if (ret < 0)
65 return ret;
67 ff_af_queue_init(avctx, &ractx->afq);
69 return 0;
73 /**
74 * Quantize a value by searching a sorted table for the element with the
75 * nearest value
77 * @param value value to quantize
78 * @param table array containing the quantization table
79 * @param size size of the quantization table
80 * @return index of the quantization table corresponding to the element with the
81 * nearest value
83 static int quantize(int value, const int16_t *table, unsigned int size)
85 unsigned int low = 0, high = size - 1;
87 while (1) {
88 int index = (low + high) >> 1;
89 int error = table[index] - value;
91 if (index == low)
92 return table[high] + error > value ? low : high;
93 if (error > 0) {
94 high = index;
95 } else {
96 low = index;
103 * Orthogonalize a vector to another vector
105 * @param v vector to orthogonalize
106 * @param u vector against which orthogonalization is performed
108 static void orthogonalize(float *v, const float *u)
110 int i;
111 float num = 0, den = 0;
113 for (i = 0; i < BLOCKSIZE; i++) {
114 num += v[i] * u[i];
115 den += u[i] * u[i];
117 num /= den;
118 for (i = 0; i < BLOCKSIZE; i++)
119 v[i] -= num * u[i];
124 * Calculate match score and gain of an LPC-filtered vector with respect to
125 * input data, possibly orthogonalizing it to up to two other vectors.
127 * @param work array used to calculate the filtered vector
128 * @param coefs coefficients of the LPC filter
129 * @param vect original vector
130 * @param ortho1 first vector against which orthogonalization is performed
131 * @param ortho2 second vector against which orthogonalization is performed
132 * @param data input data
133 * @param score pointer to variable where match score is returned
134 * @param gain pointer to variable where gain is returned
136 static void get_match_score(float *work, const float *coefs, float *vect,
137 const float *ortho1, const float *ortho2,
138 const float *data, float *score, float *gain)
140 float c, g;
141 int i;
143 ff_celp_lp_synthesis_filterf(work, coefs, vect, BLOCKSIZE, LPC_ORDER);
144 if (ortho1)
145 orthogonalize(work, ortho1);
146 if (ortho2)
147 orthogonalize(work, ortho2);
148 c = g = 0;
149 for (i = 0; i < BLOCKSIZE; i++) {
150 g += work[i] * work[i];
151 c += data[i] * work[i];
153 if (c <= 0) {
154 *score = 0;
155 return;
157 *gain = c / g;
158 *score = *gain * c;
163 * Create a vector from the adaptive codebook at a given lag value
165 * @param vect array where vector is stored
166 * @param cb adaptive codebook
167 * @param lag lag value
169 static void create_adapt_vect(float *vect, const int16_t *cb, int lag)
171 int i;
173 cb += BUFFERSIZE - lag;
174 for (i = 0; i < FFMIN(BLOCKSIZE, lag); i++)
175 vect[i] = cb[i];
176 if (lag < BLOCKSIZE)
177 for (i = 0; i < BLOCKSIZE - lag; i++)
178 vect[lag + i] = cb[i];
183 * Search the adaptive codebook for the best entry and gain and remove its
184 * contribution from input data
186 * @param adapt_cb array from which the adaptive codebook is extracted
187 * @param work array used to calculate LPC-filtered vectors
188 * @param coefs coefficients of the LPC filter
189 * @param data input data
190 * @return index of the best entry of the adaptive codebook
192 static int adaptive_cb_search(const int16_t *adapt_cb, float *work,
193 const float *coefs, float *data)
195 int i, av_uninit(best_vect);
196 float score, gain, best_score, av_uninit(best_gain);
197 float exc[BLOCKSIZE];
199 gain = best_score = 0;
200 for (i = BLOCKSIZE / 2; i <= BUFFERSIZE; i++) {
201 create_adapt_vect(exc, adapt_cb, i);
202 get_match_score(work, coefs, exc, NULL, NULL, data, &score, &gain);
203 if (score > best_score) {
204 best_score = score;
205 best_vect = i;
206 best_gain = gain;
209 if (!best_score)
210 return 0;
213 * Re-calculate the filtered vector from the vector with maximum match score
214 * and remove its contribution from input data.
216 create_adapt_vect(exc, adapt_cb, best_vect);
217 ff_celp_lp_synthesis_filterf(work, coefs, exc, BLOCKSIZE, LPC_ORDER);
218 for (i = 0; i < BLOCKSIZE; i++)
219 data[i] -= best_gain * work[i];
220 return best_vect - BLOCKSIZE / 2 + 1;
225 * Find the best vector of a fixed codebook by applying an LPC filter to
226 * codebook entries, possibly orthogonalizing them to up to two other vectors
227 * and matching the results with input data.
229 * @param work array used to calculate the filtered vectors
230 * @param coefs coefficients of the LPC filter
231 * @param cb fixed codebook
232 * @param ortho1 first vector against which orthogonalization is performed
233 * @param ortho2 second vector against which orthogonalization is performed
234 * @param data input data
235 * @param idx pointer to variable where the index of the best codebook entry is
236 * returned
237 * @param gain pointer to variable where the gain of the best codebook entry is
238 * returned
240 static void find_best_vect(float *work, const float *coefs,
241 const int8_t cb[][BLOCKSIZE], const float *ortho1,
242 const float *ortho2, float *data, int *idx,
243 float *gain)
245 int i, j;
246 float g, score, best_score;
247 float vect[BLOCKSIZE];
249 *idx = *gain = best_score = 0;
250 for (i = 0; i < FIXED_CB_SIZE; i++) {
251 for (j = 0; j < BLOCKSIZE; j++)
252 vect[j] = cb[i][j];
253 get_match_score(work, coefs, vect, ortho1, ortho2, data, &score, &g);
254 if (score > best_score) {
255 best_score = score;
256 *idx = i;
257 *gain = g;
264 * Search the two fixed codebooks for the best entry and gain
266 * @param work array used to calculate LPC-filtered vectors
267 * @param coefs coefficients of the LPC filter
268 * @param data input data
269 * @param cba_idx index of the best entry of the adaptive codebook
270 * @param cb1_idx pointer to variable where the index of the best entry of the
271 * first fixed codebook is returned
272 * @param cb2_idx pointer to variable where the index of the best entry of the
273 * second fixed codebook is returned
275 static void fixed_cb_search(float *work, const float *coefs, float *data,
276 int cba_idx, int *cb1_idx, int *cb2_idx)
278 int i, ortho_cb1;
279 float gain;
280 float cba_vect[BLOCKSIZE], cb1_vect[BLOCKSIZE];
281 float vect[BLOCKSIZE];
284 * The filtered vector from the adaptive codebook can be retrieved from
285 * work, because this function is called just after adaptive_cb_search().
287 if (cba_idx)
288 memcpy(cba_vect, work, sizeof(cba_vect));
290 find_best_vect(work, coefs, ff_cb1_vects, cba_idx ? cba_vect : NULL, NULL,
291 data, cb1_idx, &gain);
294 * Re-calculate the filtered vector from the vector with maximum match score
295 * and remove its contribution from input data.
297 if (gain) {
298 for (i = 0; i < BLOCKSIZE; i++)
299 vect[i] = ff_cb1_vects[*cb1_idx][i];
300 ff_celp_lp_synthesis_filterf(work, coefs, vect, BLOCKSIZE, LPC_ORDER);
301 if (cba_idx)
302 orthogonalize(work, cba_vect);
303 for (i = 0; i < BLOCKSIZE; i++)
304 data[i] -= gain * work[i];
305 memcpy(cb1_vect, work, sizeof(cb1_vect));
306 ortho_cb1 = 1;
307 } else
308 ortho_cb1 = 0;
310 find_best_vect(work, coefs, ff_cb2_vects, cba_idx ? cba_vect : NULL,
311 ortho_cb1 ? cb1_vect : NULL, data, cb2_idx, &gain);
316 * Encode a subblock of the current frame
318 * @param ractx encoder context
319 * @param sblock_data input data of the subblock
320 * @param lpc_coefs coefficients of the LPC filter
321 * @param rms RMS of the reflection coefficients
322 * @param pb pointer to PutBitContext of the current frame
324 static void ra144_encode_subblock(RA144Context *ractx,
325 const int16_t *sblock_data,
326 const int16_t *lpc_coefs, unsigned int rms,
327 PutBitContext *pb)
329 float data[BLOCKSIZE] = { 0 }, work[LPC_ORDER + BLOCKSIZE];
330 float coefs[LPC_ORDER];
331 float zero[BLOCKSIZE], cba[BLOCKSIZE], cb1[BLOCKSIZE], cb2[BLOCKSIZE];
332 int cba_idx, cb1_idx, cb2_idx, gain;
333 int i, n;
334 unsigned m[3];
335 float g[3];
336 float error, best_error;
338 for (i = 0; i < LPC_ORDER; i++) {
339 work[i] = ractx->curr_sblock[BLOCKSIZE + i];
340 coefs[i] = lpc_coefs[i] * (1/4096.0);
344 * Calculate the zero-input response of the LPC filter and subtract it from
345 * input data.
347 ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, data, BLOCKSIZE,
348 LPC_ORDER);
349 for (i = 0; i < BLOCKSIZE; i++) {
350 zero[i] = work[LPC_ORDER + i];
351 data[i] = sblock_data[i] - zero[i];
355 * Codebook search is performed without taking into account the contribution
356 * of the previous subblock, since it has been just subtracted from input
357 * data.
359 memset(work, 0, LPC_ORDER * sizeof(*work));
361 cba_idx = adaptive_cb_search(ractx->adapt_cb, work + LPC_ORDER, coefs,
362 data);
363 if (cba_idx) {
365 * The filtered vector from the adaptive codebook can be retrieved from
366 * work, see implementation of adaptive_cb_search().
368 memcpy(cba, work + LPC_ORDER, sizeof(cba));
370 ff_copy_and_dup(ractx->buffer_a, ractx->adapt_cb, cba_idx + BLOCKSIZE / 2 - 1);
371 m[0] = (ff_irms(&ractx->adsp, ractx->buffer_a) * rms) >> 12;
373 fixed_cb_search(work + LPC_ORDER, coefs, data, cba_idx, &cb1_idx, &cb2_idx);
374 for (i = 0; i < BLOCKSIZE; i++) {
375 cb1[i] = ff_cb1_vects[cb1_idx][i];
376 cb2[i] = ff_cb2_vects[cb2_idx][i];
378 ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, cb1, BLOCKSIZE,
379 LPC_ORDER);
380 memcpy(cb1, work + LPC_ORDER, sizeof(cb1));
381 m[1] = (ff_cb1_base[cb1_idx] * rms) >> 8;
382 ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, cb2, BLOCKSIZE,
383 LPC_ORDER);
384 memcpy(cb2, work + LPC_ORDER, sizeof(cb2));
385 m[2] = (ff_cb2_base[cb2_idx] * rms) >> 8;
386 best_error = FLT_MAX;
387 gain = 0;
388 for (n = 0; n < 256; n++) {
389 g[1] = ((ff_gain_val_tab[n][1] * m[1]) >> ff_gain_exp_tab[n]) *
390 (1/4096.0);
391 g[2] = ((ff_gain_val_tab[n][2] * m[2]) >> ff_gain_exp_tab[n]) *
392 (1/4096.0);
393 error = 0;
394 if (cba_idx) {
395 g[0] = ((ff_gain_val_tab[n][0] * m[0]) >> ff_gain_exp_tab[n]) *
396 (1/4096.0);
397 for (i = 0; i < BLOCKSIZE; i++) {
398 data[i] = zero[i] + g[0] * cba[i] + g[1] * cb1[i] +
399 g[2] * cb2[i];
400 error += (data[i] - sblock_data[i]) *
401 (data[i] - sblock_data[i]);
403 } else {
404 for (i = 0; i < BLOCKSIZE; i++) {
405 data[i] = zero[i] + g[1] * cb1[i] + g[2] * cb2[i];
406 error += (data[i] - sblock_data[i]) *
407 (data[i] - sblock_data[i]);
410 if (error < best_error) {
411 best_error = error;
412 gain = n;
415 put_bits(pb, 7, cba_idx);
416 put_bits(pb, 8, gain);
417 put_bits(pb, 7, cb1_idx);
418 put_bits(pb, 7, cb2_idx);
419 ff_subblock_synthesis(ractx, lpc_coefs, cba_idx, cb1_idx, cb2_idx, rms,
420 gain);
424 static int ra144_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
425 const AVFrame *frame, int *got_packet_ptr)
427 static const uint8_t sizes[LPC_ORDER] = {64, 32, 32, 16, 16, 8, 8, 8, 8, 4};
428 static const uint8_t bit_sizes[LPC_ORDER] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2};
429 RA144Context *ractx = avctx->priv_data;
430 PutBitContext pb;
431 int32_t lpc_data[NBLOCKS * BLOCKSIZE];
432 int32_t lpc_coefs[LPC_ORDER][MAX_LPC_ORDER];
433 int shift[LPC_ORDER];
434 int16_t block_coefs[NBLOCKS][LPC_ORDER];
435 int lpc_refl[LPC_ORDER]; /**< reflection coefficients of the frame */
436 unsigned int refl_rms[NBLOCKS]; /**< RMS of the reflection coefficients */
437 const int16_t *samples = frame ? (const int16_t *)frame->data[0] : NULL;
438 int energy = 0;
439 int i, idx, ret;
441 if (ractx->last_frame)
442 return 0;
444 if ((ret = ff_get_encode_buffer(avctx, avpkt, FRAME_SIZE, 0)) < 0)
445 return ret;
448 * Since the LPC coefficients are calculated on a frame centered over the
449 * fourth subframe, to encode a given frame, data from the next frame is
450 * needed. In each call to this function, the previous frame (whose data are
451 * saved in the encoder context) is encoded, and data from the current frame
452 * are saved in the encoder context to be used in the next function call.
454 for (i = 0; i < (2 * BLOCKSIZE + BLOCKSIZE / 2); i++) {
455 lpc_data[i] = ractx->curr_block[BLOCKSIZE + BLOCKSIZE / 2 + i];
456 energy += (lpc_data[i] * lpc_data[i]) >> 4;
458 if (frame) {
459 int j;
460 for (j = 0; j < frame->nb_samples && i < NBLOCKS * BLOCKSIZE; i++, j++) {
461 lpc_data[i] = samples[j] >> 2;
462 energy += (lpc_data[i] * lpc_data[i]) >> 4;
465 if (i < NBLOCKS * BLOCKSIZE)
466 memset(&lpc_data[i], 0, (NBLOCKS * BLOCKSIZE - i) * sizeof(*lpc_data));
467 energy = ff_energy_tab[quantize(ff_t_sqrt(energy >> 5) >> 10, ff_energy_tab,
468 32)];
470 ff_lpc_calc_coefs(&ractx->lpc_ctx, lpc_data, NBLOCKS * BLOCKSIZE, LPC_ORDER,
471 LPC_ORDER, 16, lpc_coefs, shift, FF_LPC_TYPE_LEVINSON,
472 0, ORDER_METHOD_EST, 0, 12, 0);
473 for (i = 0; i < LPC_ORDER; i++)
474 block_coefs[NBLOCKS - 1][i] = -lpc_coefs[LPC_ORDER - 1][i]
475 * (1 << (12 - shift[LPC_ORDER - 1]));
478 * TODO: apply perceptual weighting of the input speech through bandwidth
479 * expansion of the LPC filter.
482 if (ff_eval_refl(lpc_refl, block_coefs[NBLOCKS - 1], avctx)) {
484 * The filter is unstable: use the coefficients of the previous frame.
486 ff_int_to_int16(block_coefs[NBLOCKS - 1], ractx->lpc_coef[1]);
487 if (ff_eval_refl(lpc_refl, block_coefs[NBLOCKS - 1], avctx)) {
488 /* the filter is still unstable. set reflection coeffs to zero. */
489 memset(lpc_refl, 0, sizeof(lpc_refl));
492 init_put_bits(&pb, avpkt->data, avpkt->size);
493 for (i = 0; i < LPC_ORDER; i++) {
494 idx = quantize(lpc_refl[i], ff_lpc_refl_cb[i], sizes[i]);
495 put_bits(&pb, bit_sizes[i], idx);
496 lpc_refl[i] = ff_lpc_refl_cb[i][idx];
498 ractx->lpc_refl_rms[0] = ff_rms(lpc_refl);
499 ff_eval_coefs(ractx->lpc_coef[0], lpc_refl);
500 refl_rms[0] = ff_interp(ractx, block_coefs[0], 1, 1, ractx->old_energy);
501 refl_rms[1] = ff_interp(ractx, block_coefs[1], 2,
502 energy <= ractx->old_energy,
503 ff_t_sqrt(energy * ractx->old_energy) >> 12);
504 refl_rms[2] = ff_interp(ractx, block_coefs[2], 3, 0, energy);
505 refl_rms[3] = ff_rescale_rms(ractx->lpc_refl_rms[0], energy);
506 ff_int_to_int16(block_coefs[NBLOCKS - 1], ractx->lpc_coef[0]);
507 put_bits(&pb, 5, quantize(energy, ff_energy_tab, 32));
508 for (i = 0; i < NBLOCKS; i++)
509 ra144_encode_subblock(ractx, ractx->curr_block + i * BLOCKSIZE,
510 block_coefs[i], refl_rms[i], &pb);
511 flush_put_bits(&pb);
512 ractx->old_energy = energy;
513 ractx->lpc_refl_rms[1] = ractx->lpc_refl_rms[0];
514 FFSWAP(unsigned int *, ractx->lpc_coef[0], ractx->lpc_coef[1]);
516 /* copy input samples to current block for processing in next call */
517 i = 0;
518 if (frame) {
519 for (; i < frame->nb_samples; i++)
520 ractx->curr_block[i] = samples[i] >> 2;
522 if ((ret = ff_af_queue_add(&ractx->afq, frame)) < 0)
523 return ret;
524 } else
525 ractx->last_frame = 1;
526 memset(&ractx->curr_block[i], 0,
527 (NBLOCKS * BLOCKSIZE - i) * sizeof(*ractx->curr_block));
529 /* Get the next frame pts/duration */
530 ff_af_queue_remove(&ractx->afq, avctx->frame_size, &avpkt->pts,
531 &avpkt->duration);
533 *got_packet_ptr = 1;
534 return 0;
538 const FFCodec ff_ra_144_encoder = {
539 .p.name = "real_144",
540 CODEC_LONG_NAME("RealAudio 1.0 (14.4K)"),
541 .p.type = AVMEDIA_TYPE_AUDIO,
542 .p.id = AV_CODEC_ID_RA_144,
543 .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
544 AV_CODEC_CAP_SMALL_LAST_FRAME,
545 .priv_data_size = sizeof(RA144Context),
546 .init = ra144_encode_init,
547 FF_CODEC_ENCODE_CB(ra144_encode_frame),
548 .close = ra144_encode_close,
549 .p.sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
550 AV_SAMPLE_FMT_NONE },
551 .p.supported_samplerates = (const int[]){ 8000, 0 },
552 .p.ch_layouts = (const AVChannelLayout[]){ AV_CHANNEL_LAYOUT_MONO, { 0 } },