avformat/mpeg: demux ivtv captions
[ffmpeg.git] / libavcodec / rpzaenc.c
blob3a1924d385176023e324b94575737c0279765e42
1 /*
2 * QuickTime RPZA Video Encoder
4 * This file is part of FFmpeg.
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 /**
22 * @file rpzaenc.c
23 * QT RPZA Video Encoder by Todd Kirby <doubleshot@pacbell.net> and David Adler
26 #include "libavutil/avassert.h"
27 #include "libavutil/common.h"
28 #include "libavutil/opt.h"
30 #include "avcodec.h"
31 #include "codec_internal.h"
32 #include "encode.h"
33 #include "mathops.h"
34 #include "put_bits.h"
36 typedef struct RpzaContext {
37 AVClass *avclass;
39 int skip_frame_thresh;
40 int start_one_color_thresh;
41 int continue_one_color_thresh;
42 int sixteen_color_thresh;
44 AVFrame *prev_frame; // buffer for previous source frame
45 PutBitContext pb; // buffer for encoded frame data.
47 int frame_width; // width in pixels of source frame
48 int frame_height; // height in pixesl of source frame
50 int first_frame; // flag set to one when the first frame is being processed
51 // so that comparisons with previous frame data in not attempted
52 } RpzaContext;
54 typedef enum channel_offset {
55 RED = 2,
56 GREEN = 1,
57 BLUE = 0,
58 } channel_offset;
60 typedef struct rgb {
61 uint8_t r;
62 uint8_t g;
63 uint8_t b;
64 } rgb;
66 #define SQR(x) ((x) * (x))
68 /* 15 bit components */
69 #define GET_CHAN(color, chan) (((color) >> ((chan) * 5) & 0x1F))
70 #define R(color) GET_CHAN(color, RED)
71 #define G(color) GET_CHAN(color, GREEN)
72 #define B(color) GET_CHAN(color, BLUE)
74 typedef struct BlockInfo {
75 int row;
76 int col;
77 int block_width;
78 int block_height;
79 int image_width;
80 int image_height;
81 int block_index;
82 uint16_t start;
83 int rowstride;
84 int prev_rowstride;
85 int blocks_per_row;
86 int total_blocks;
87 } BlockInfo;
89 static void get_colors(const uint8_t *min, const uint8_t *max, uint8_t color4[4][3])
91 uint8_t step;
93 color4[0][0] = min[0];
94 color4[0][1] = min[1];
95 color4[0][2] = min[2];
97 color4[3][0] = max[0];
98 color4[3][1] = max[1];
99 color4[3][2] = max[2];
101 // red components
102 step = (color4[3][0] - color4[0][0] + 1) / 3;
103 color4[1][0] = color4[0][0] + step;
104 color4[2][0] = color4[3][0] - step;
106 // green components
107 step = (color4[3][1] - color4[0][1] + 1) / 3;
108 color4[1][1] = color4[0][1] + step;
109 color4[2][1] = color4[3][1] - step;
111 // blue components
112 step = (color4[3][2] - color4[0][2] + 1) / 3;
113 color4[1][2] = color4[0][2] + step;
114 color4[2][2] = color4[3][2] - step;
117 /* Fill BlockInfo struct with information about a 4x4 block of the image */
118 static int get_block_info(BlockInfo *bi, int block, int prev_frame)
120 bi->row = block / bi->blocks_per_row;
121 bi->col = block % bi->blocks_per_row;
123 // test for right edge block
124 if (bi->col == bi->blocks_per_row - 1 && (bi->image_width % 4) != 0) {
125 bi->block_width = bi->image_width % 4;
126 } else {
127 bi->block_width = 4;
130 // test for bottom edge block
131 if (bi->row == (bi->image_height / 4) && (bi->image_height % 4) != 0) {
132 bi->block_height = bi->image_height % 4;
133 } else {
134 bi->block_height = 4;
137 return block ? (bi->col * 4) + (bi->row * (prev_frame ? bi->prev_rowstride : bi->rowstride) * 4) : 0;
140 static uint16_t rgb24_to_rgb555(const uint8_t *rgb24)
142 uint16_t rgb555 = 0;
143 uint32_t r, g, b;
145 r = rgb24[0];
146 g = rgb24[1];
147 b = rgb24[2];
149 rgb555 |= (r << 10);
150 rgb555 |= (g << 5);
151 rgb555 |= (b << 0);
153 return rgb555;
157 * Returns the total difference between two 24 bit color values
159 static int diff_colors(const uint8_t *colorA, const uint8_t *colorB)
161 int tot;
163 tot = SQR(colorA[0] - colorB[0]);
164 tot += SQR(colorA[1] - colorB[1]);
165 tot += SQR(colorA[2] - colorB[2]);
167 return tot;
171 * Returns the maximum channel difference
173 static int max_component_diff(const uint16_t *colorA, const uint16_t *colorB)
175 int diff, max = 0;
177 diff = FFABS(R(colorA[0]) - R(colorB[0]));
178 if (diff > max) {
179 max = diff;
181 diff = FFABS(G(colorA[0]) - G(colorB[0]));
182 if (diff > max) {
183 max = diff;
185 diff = FFABS(B(colorA[0]) - B(colorB[0]));
186 if (diff > max) {
187 max = diff;
189 return max;
193 * Find the channel that has the largest difference between minimum and maximum
194 * color values. Put the minimum value in min, maximum in max and the channel
195 * in chan.
197 static void get_max_component_diff(const BlockInfo *bi, const uint16_t *block_ptr,
198 uint8_t *min, uint8_t *max, channel_offset *chan)
200 int x, y;
201 uint8_t min_r, max_r, min_g, max_g, min_b, max_b;
202 uint8_t r, g, b;
204 // fix warning about uninitialized vars
205 min_r = min_g = min_b = UINT8_MAX;
206 max_r = max_g = max_b = 0;
208 // loop thru and compare pixels
209 for (y = 0; y < bi->block_height; y++) {
210 for (x = 0; x < bi->block_width; x++) {
211 // TODO: optimize
212 min_r = FFMIN(R(block_ptr[x]), min_r);
213 min_g = FFMIN(G(block_ptr[x]), min_g);
214 min_b = FFMIN(B(block_ptr[x]), min_b);
216 max_r = FFMAX(R(block_ptr[x]), max_r);
217 max_g = FFMAX(G(block_ptr[x]), max_g);
218 max_b = FFMAX(B(block_ptr[x]), max_b);
220 block_ptr += bi->rowstride;
223 r = max_r - min_r;
224 g = max_g - min_g;
225 b = max_b - min_b;
227 if (r > g && r > b) {
228 *max = max_r;
229 *min = min_r;
230 *chan = RED;
231 } else if (g > b && g >= r) {
232 *max = max_g;
233 *min = min_g;
234 *chan = GREEN;
235 } else {
236 *max = max_b;
237 *min = min_b;
238 *chan = BLUE;
243 * Compare two 4x4 blocks to determine if the total difference between the
244 * blocks is greater than the thresh parameter. Returns -1 if difference
245 * exceeds threshold or zero otherwise.
247 static int compare_blocks(const uint16_t *block1, const uint16_t *block2,
248 const BlockInfo *bi, int thresh)
250 int x, y, diff = 0;
251 for (y = 0; y < bi->block_height; y++) {
252 for (x = 0; x < bi->block_width; x++) {
253 diff = max_component_diff(&block1[x], &block2[x]);
254 if (diff >= thresh) {
255 return -1;
258 block1 += bi->prev_rowstride;
259 block2 += bi->rowstride;
261 return 0;
265 * Determine the fit of one channel to another within a 4x4 block. This
266 * is used to determine the best palette choices for 4-color encoding.
268 static int leastsquares(const uint16_t *block_ptr, const BlockInfo *bi,
269 channel_offset xchannel, channel_offset ychannel,
270 int *slope, int *y_intercept, int *correlation_coef)
272 int sumx = 0, sumy = 0, sumx2 = 0, sumy2 = 0, sumxy = 0,
273 sumx_sq = 0, sumy_sq = 0, tmp, tmp2;
274 int i, j, count;
275 uint8_t x, y;
277 count = bi->block_height * bi->block_width;
279 if (count < 2)
280 return -1;
282 for (i = 0; i < bi->block_height; i++) {
283 for (j = 0; j < bi->block_width; j++) {
284 x = GET_CHAN(block_ptr[j], xchannel);
285 y = GET_CHAN(block_ptr[j], ychannel);
286 sumx += x;
287 sumy += y;
288 sumx2 += x * x;
289 sumy2 += y * y;
290 sumxy += x * y;
292 block_ptr += bi->rowstride;
295 sumx_sq = sumx * sumx;
296 tmp = (count * sumx2 - sumx_sq);
298 // guard against div/0
299 if (tmp == 0)
300 return -2;
302 sumy_sq = sumy * sumy;
304 *slope = (sumx * sumy - sumxy) / tmp;
305 *y_intercept = (sumy - (*slope) * sumx) / count;
307 tmp2 = count * sumy2 - sumy_sq;
308 if (tmp2 == 0) {
309 *correlation_coef = 0;
310 } else {
311 *correlation_coef = (count * sumxy - sumx * sumy) /
312 ff_sqrt((unsigned)tmp * tmp2);
315 return 0; // success
319 * Determine the amount of error in the leastsquares fit.
321 static int calc_lsq_max_fit_error(const uint16_t *block_ptr, const BlockInfo *bi,
322 int min, int max, int tmp_min, int tmp_max,
323 channel_offset xchannel, channel_offset ychannel)
325 int i, j, x, y;
326 int err;
327 int max_err = 0;
329 for (i = 0; i < bi->block_height; i++) {
330 for (j = 0; j < bi->block_width; j++) {
331 int x_inc, lin_y, lin_x;
332 x = GET_CHAN(block_ptr[j], xchannel);
333 y = GET_CHAN(block_ptr[j], ychannel);
335 /* calculate x_inc as the 4-color index (0..3) */
336 x_inc = (x - min) * 3 / (max - min) + 1;
337 x_inc = FFMAX(FFMIN(3, x_inc), 0);
339 /* calculate lin_y corresponding to x_inc */
340 lin_y = tmp_min + (tmp_max - tmp_min) * x_inc / 3 + 1;
342 err = FFABS(lin_y - y);
343 if (err > max_err)
344 max_err = err;
346 /* calculate lin_x corresponding to x_inc */
347 lin_x = min + (max - min) * x_inc / 3 + 1;
349 err = FFABS(lin_x - x);
350 if (err > max_err)
351 max_err += err;
353 block_ptr += bi->rowstride;
356 return max_err;
360 * Find the closest match to a color within the 4-color palette
362 static int match_color(const uint16_t *color, uint8_t colors[4][3])
364 int ret = 0;
365 int smallest_variance = INT_MAX;
366 uint8_t dithered_color[3];
368 for (int channel = 0; channel < 3; channel++) {
369 dithered_color[channel] = GET_CHAN(color[0], channel);
372 for (int palette_entry = 0; palette_entry < 4; palette_entry++) {
373 int variance = diff_colors(dithered_color, colors[palette_entry]);
375 if (variance < smallest_variance) {
376 smallest_variance = variance;
377 ret = palette_entry;
381 return ret;
385 * Encode a block using the 4-color opcode and palette. return number of
386 * blocks encoded (until we implement multi-block 4 color runs this will
387 * always be 1)
389 static int encode_four_color_block(const uint8_t *min_color, const uint8_t *max_color,
390 PutBitContext *pb, const uint16_t *block_ptr, const BlockInfo *bi)
392 const int y_size = FFMIN(4, bi->image_height - bi->row * 4);
393 const int x_size = FFMIN(4, bi->image_width - bi->col * 4);
394 uint8_t color4[4][3];
395 uint16_t rounded_max, rounded_min;
396 int idx;
398 // round min and max wider
399 rounded_min = rgb24_to_rgb555(min_color);
400 rounded_max = rgb24_to_rgb555(max_color);
402 // put a and b colors
403 // encode 4 colors = first 16 bit color with MSB zeroed and...
404 put_bits(pb, 16, rounded_max & ~0x8000);
405 // ...second 16 bit color with MSB on.
406 put_bits(pb, 16, rounded_min | 0x8000);
408 get_colors(min_color, max_color, color4);
410 for (int y = 0; y < y_size; y++) {
411 for (int x = 0; x < x_size; x++) {
412 idx = match_color(&block_ptr[x], color4);
413 put_bits(pb, 2, idx);
416 for (int x = x_size; x < 4; x++)
417 put_bits(pb, 2, idx);
418 block_ptr += bi->rowstride;
421 for (int y = y_size; y < 4; y++) {
422 for (int x = 0; x < 4; x++)
423 put_bits(pb, 2, 0);
425 return 1; // num blocks encoded
429 * Copy a 4x4 block from the current frame buffer to the previous frame buffer.
431 static void update_block_in_prev_frame(const uint16_t *src_pixels,
432 uint16_t *dest_pixels,
433 const BlockInfo *bi, int block_counter)
435 const int y_size = FFMIN(4, bi->image_height - bi->row * 4);
436 const int x_size = FFMIN(4, bi->image_width - bi->col * 4) * 2;
438 for (int y = 0; y < y_size; y++) {
439 memcpy(dest_pixels, src_pixels, x_size);
440 dest_pixels += bi->prev_rowstride;
441 src_pixels += bi->rowstride;
446 * update statistics for the specified block. If first_block,
447 * it initializes the statistics. Otherwise it updates the statistics IF THIS
448 * BLOCK IS SUITABLE TO CONTINUE A 1-COLOR RUN. That is, it checks whether
449 * the range of colors (since the routine was called first_block != 0) are
450 * all close enough intensities to be represented by a single color.
452 * The routine returns 0 if this block is too different to be part of
453 * the same run of 1-color blocks. The routine returns 1 if this
454 * block can be part of the same 1-color block run.
456 * If the routine returns 1, it also updates its arguments to include
457 * the statistics of this block. Otherwise, the stats are unchanged
458 * and don't include the current block.
460 static int update_block_stats(RpzaContext *s, const BlockInfo *bi, const uint16_t *block,
461 uint8_t min_color[3], uint8_t max_color[3],
462 int *total_rgb, int *total_pixels,
463 uint8_t avg_color[3], int first_block)
465 int x, y;
466 int is_in_range;
467 int total_pixels_blk;
468 int threshold;
470 uint8_t min_color_blk[3], max_color_blk[3];
471 int total_rgb_blk[3];
472 uint8_t avg_color_blk[3];
474 if (first_block) {
475 min_color[0] = UINT8_MAX;
476 min_color[1] = UINT8_MAX;
477 min_color[2] = UINT8_MAX;
478 max_color[0] = 0;
479 max_color[1] = 0;
480 max_color[2] = 0;
481 total_rgb[0] = 0;
482 total_rgb[1] = 0;
483 total_rgb[2] = 0;
484 *total_pixels = 0;
485 threshold = s->start_one_color_thresh;
486 } else {
487 threshold = s->continue_one_color_thresh;
491 The *_blk variables will include the current block.
492 Initialize them based on the blocks so far.
494 min_color_blk[0] = min_color[0];
495 min_color_blk[1] = min_color[1];
496 min_color_blk[2] = min_color[2];
497 max_color_blk[0] = max_color[0];
498 max_color_blk[1] = max_color[1];
499 max_color_blk[2] = max_color[2];
500 total_rgb_blk[0] = total_rgb[0];
501 total_rgb_blk[1] = total_rgb[1];
502 total_rgb_blk[2] = total_rgb[2];
503 total_pixels_blk = *total_pixels + bi->block_height * bi->block_width;
506 Update stats for this block's pixels
508 for (y = 0; y < bi->block_height; y++) {
509 for (x = 0; x < bi->block_width; x++) {
510 total_rgb_blk[0] += R(block[x]);
511 total_rgb_blk[1] += G(block[x]);
512 total_rgb_blk[2] += B(block[x]);
514 min_color_blk[0] = FFMIN(R(block[x]), min_color_blk[0]);
515 min_color_blk[1] = FFMIN(G(block[x]), min_color_blk[1]);
516 min_color_blk[2] = FFMIN(B(block[x]), min_color_blk[2]);
518 max_color_blk[0] = FFMAX(R(block[x]), max_color_blk[0]);
519 max_color_blk[1] = FFMAX(G(block[x]), max_color_blk[1]);
520 max_color_blk[2] = FFMAX(B(block[x]), max_color_blk[2]);
522 block += bi->rowstride;
526 Calculate average color including current block.
528 avg_color_blk[0] = total_rgb_blk[0] / total_pixels_blk;
529 avg_color_blk[1] = total_rgb_blk[1] / total_pixels_blk;
530 avg_color_blk[2] = total_rgb_blk[2] / total_pixels_blk;
533 Are all the pixels within threshold of the average color?
535 is_in_range = (max_color_blk[0] - avg_color_blk[0] <= threshold &&
536 max_color_blk[1] - avg_color_blk[1] <= threshold &&
537 max_color_blk[2] - avg_color_blk[2] <= threshold &&
538 avg_color_blk[0] - min_color_blk[0] <= threshold &&
539 avg_color_blk[1] - min_color_blk[1] <= threshold &&
540 avg_color_blk[2] - min_color_blk[2] <= threshold);
542 if (is_in_range) {
544 Set the output variables to include this block.
546 min_color[0] = min_color_blk[0];
547 min_color[1] = min_color_blk[1];
548 min_color[2] = min_color_blk[2];
549 max_color[0] = max_color_blk[0];
550 max_color[1] = max_color_blk[1];
551 max_color[2] = max_color_blk[2];
552 total_rgb[0] = total_rgb_blk[0];
553 total_rgb[1] = total_rgb_blk[1];
554 total_rgb[2] = total_rgb_blk[2];
555 *total_pixels = total_pixels_blk;
556 avg_color[0] = avg_color_blk[0];
557 avg_color[1] = avg_color_blk[1];
558 avg_color[2] = avg_color_blk[2];
561 return is_in_range;
564 static void rpza_encode_stream(RpzaContext *s, const AVFrame *pict)
566 BlockInfo bi;
567 int block_counter = 0;
568 int n_blocks;
569 int total_blocks;
570 int prev_block_offset;
571 int block_offset = 0;
572 int pblock_offset = 0;
573 uint8_t min = 0, max = 0;
574 channel_offset chan;
575 int i;
576 int tmp_min, tmp_max;
577 int total_rgb[3];
578 uint8_t avg_color[3];
579 int pixel_count;
580 uint8_t min_color[3], max_color[3];
581 int slope, y_intercept, correlation_coef;
582 const uint16_t *src_pixels = (const uint16_t *)pict->data[0];
583 uint16_t *prev_pixels = (uint16_t *)s->prev_frame->data[0];
585 /* Number of 4x4 blocks in frame. */
586 total_blocks = ((s->frame_width + 3) / 4) * ((s->frame_height + 3) / 4);
588 bi.image_width = s->frame_width;
589 bi.image_height = s->frame_height;
590 bi.rowstride = pict->linesize[0] / 2;
591 bi.prev_rowstride = s->prev_frame->linesize[0] / 2;
593 bi.blocks_per_row = (s->frame_width + 3) / 4;
595 while (block_counter < total_blocks) {
596 // SKIP CHECK
597 // make sure we have a valid previous frame and we're not writing
598 // a key frame
599 if (!s->first_frame) {
600 n_blocks = 0;
601 prev_block_offset = 0;
603 while (n_blocks < 32 && block_counter + n_blocks < total_blocks) {
604 block_offset = get_block_info(&bi, block_counter + n_blocks, 0);
605 pblock_offset = get_block_info(&bi, block_counter + n_blocks, 1);
607 // multi-block opcodes cannot span multiple rows.
608 // If we're starting a new row, break out and write the opcode
609 /* TODO: Should eventually use bi.row here to determine when a
610 row break occurs, but that is currently breaking the
611 quicktime player. This is probably due to a bug in the
612 way I'm calculating the current row.
614 if (prev_block_offset && block_offset - prev_block_offset > 12) {
615 break;
618 prev_block_offset = block_offset;
620 if (compare_blocks(&prev_pixels[pblock_offset],
621 &src_pixels[block_offset], &bi, s->skip_frame_thresh) != 0) {
622 // write out skipable blocks
623 if (n_blocks) {
625 // write skip opcode
626 put_bits(&s->pb, 8, 0x80 | (n_blocks - 1));
627 block_counter += n_blocks;
629 goto post_skip;
631 break;
635 * NOTE: we don't update skipped blocks in the previous frame buffer
636 * since skipped needs always to be compared against the first skipped
637 * block to avoid artifacts during gradual fade in/outs.
640 // update_block_in_prev_frame(&src_pixels[block_offset],
641 // &prev_pixels[pblock_offset], &bi, block_counter + n_blocks);
643 n_blocks++;
646 // we're either at the end of the frame or we've reached the maximum
647 // of 32 blocks in a run. Write out the run.
648 if (n_blocks) {
649 // write skip opcode
650 put_bits(&s->pb, 8, 0x80 | (n_blocks - 1));
651 block_counter += n_blocks;
653 continue;
656 } else {
657 block_offset = get_block_info(&bi, block_counter, 0);
658 pblock_offset = get_block_info(&bi, block_counter, 1);
660 post_skip :
662 // ONE COLOR CHECK
663 if (update_block_stats(s, &bi, &src_pixels[block_offset],
664 min_color, max_color,
665 total_rgb, &pixel_count, avg_color, 1)) {
666 prev_block_offset = block_offset;
668 n_blocks = 1;
670 /* update this block in the previous frame buffer */
671 update_block_in_prev_frame(&src_pixels[block_offset],
672 &prev_pixels[pblock_offset], &bi, block_counter + n_blocks);
674 // check for subsequent blocks with the same color
675 while (n_blocks < 32 && block_counter + n_blocks < total_blocks) {
676 block_offset = get_block_info(&bi, block_counter + n_blocks, 0);
677 pblock_offset = get_block_info(&bi, block_counter + n_blocks, 1);
679 // multi-block opcodes cannot span multiple rows.
680 // If we've hit end of a row, break out and write the opcode
681 if (block_offset - prev_block_offset > 12) {
682 break;
685 if (!update_block_stats(s, &bi, &src_pixels[block_offset],
686 min_color, max_color,
687 total_rgb, &pixel_count, avg_color, 0)) {
688 break;
691 prev_block_offset = block_offset;
693 /* update this block in the previous frame buffer */
694 update_block_in_prev_frame(&src_pixels[block_offset],
695 &prev_pixels[pblock_offset], &bi, block_counter + n_blocks);
697 n_blocks++;
700 // write one color opcode.
701 put_bits(&s->pb, 8, 0xa0 | (n_blocks - 1));
702 // write color to encode.
703 put_bits(&s->pb, 16, rgb24_to_rgb555(avg_color));
704 // skip past the blocks we've just encoded.
705 block_counter += n_blocks;
706 } else { // FOUR COLOR CHECK
707 int err = 0;
709 // get max component diff for block
710 get_max_component_diff(&bi, &src_pixels[block_offset], &min, &max, &chan);
712 min_color[0] = 0;
713 max_color[0] = 0;
714 min_color[1] = 0;
715 max_color[1] = 0;
716 min_color[2] = 0;
717 max_color[2] = 0;
719 // run least squares against other two components
720 for (i = 0; i < 3; i++) {
721 if (i == chan) {
722 min_color[i] = min;
723 max_color[i] = max;
724 continue;
727 slope = y_intercept = correlation_coef = 0;
729 if (leastsquares(&src_pixels[block_offset], &bi, chan, i,
730 &slope, &y_intercept, &correlation_coef)) {
731 min_color[i] = GET_CHAN(src_pixels[block_offset], i);
732 max_color[i] = GET_CHAN(src_pixels[block_offset], i);
733 } else {
734 tmp_min = 1 + min * slope + y_intercept;
735 tmp_max = 1 + max * slope + y_intercept;
737 av_assert0(tmp_min <= tmp_max);
738 // clamp min and max color values
739 tmp_min = av_clip_uint8(tmp_min);
740 tmp_max = av_clip_uint8(tmp_max);
742 err = FFMAX(calc_lsq_max_fit_error(&src_pixels[block_offset], &bi,
743 min, max, tmp_min, tmp_max, chan, i), err);
745 min_color[i] = tmp_min;
746 max_color[i] = tmp_max;
750 if (err > s->sixteen_color_thresh) { // DO SIXTEEN COLOR BLOCK
751 const uint16_t *row_ptr;
752 int y_size, x_size, rgb555;
754 block_offset = get_block_info(&bi, block_counter, 0);
755 pblock_offset = get_block_info(&bi, block_counter, 1);
757 row_ptr = &src_pixels[block_offset];
758 y_size = FFMIN(4, bi.image_height - bi.row * 4);
759 x_size = FFMIN(4, bi.image_width - bi.col * 4);
761 for (int y = 0; y < y_size; y++) {
762 for (int x = 0; x < x_size; x++) {
763 rgb555 = row_ptr[x] & ~0x8000;
765 put_bits(&s->pb, 16, rgb555);
767 for (int x = x_size; x < 4; x++)
768 put_bits(&s->pb, 16, 0);
770 row_ptr += bi.rowstride;
773 for (int y = y_size; y < 4; y++) {
774 for (int x = 0; x < 4; x++)
775 put_bits(&s->pb, 16, 0);
778 block_counter++;
779 } else { // FOUR COLOR BLOCK
780 block_counter += encode_four_color_block(min_color, max_color,
781 &s->pb, &src_pixels[block_offset], &bi);
784 /* update this block in the previous frame buffer */
785 update_block_in_prev_frame(&src_pixels[block_offset],
786 &prev_pixels[pblock_offset], &bi, block_counter);
791 static int rpza_encode_init(AVCodecContext *avctx)
793 RpzaContext *s = avctx->priv_data;
795 s->frame_width = avctx->width;
796 s->frame_height = avctx->height;
798 s->prev_frame = av_frame_alloc();
799 if (!s->prev_frame)
800 return AVERROR(ENOMEM);
802 return 0;
805 static int rpza_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
806 const AVFrame *pict, int *got_packet)
808 RpzaContext *s = avctx->priv_data;
809 uint8_t *buf;
810 int ret = ff_alloc_packet(avctx, pkt, 4LL + 6LL * FFMAX(avctx->height, 4) * FFMAX(avctx->width, 4));
812 if (ret < 0)
813 return ret;
815 init_put_bits(&s->pb, pkt->data, pkt->size);
817 // skip 4 byte header, write it later once the size of the chunk is known
818 put_bits32(&s->pb, 0x00);
820 if (!s->prev_frame->data[0]) {
821 s->first_frame = 1;
822 s->prev_frame->format = pict->format;
823 s->prev_frame->width = pict->width;
824 s->prev_frame->height = pict->height;
825 ret = av_frame_get_buffer(s->prev_frame, 0);
826 if (ret < 0)
827 return ret;
828 } else {
829 s->first_frame = 0;
832 rpza_encode_stream(s, pict);
834 flush_put_bits(&s->pb);
836 av_shrink_packet(pkt, put_bytes_output(&s->pb));
837 buf = pkt->data;
839 // write header opcode
840 buf[0] = 0xe1; // chunk opcode
842 // write chunk length
843 AV_WB24(buf + 1, pkt->size);
845 *got_packet = 1;
847 return 0;
850 static int rpza_encode_end(AVCodecContext *avctx)
852 RpzaContext *s = (RpzaContext *)avctx->priv_data;
854 av_frame_free(&s->prev_frame);
856 return 0;
859 #define OFFSET(x) offsetof(RpzaContext, x)
860 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
861 static const AVOption options[] = {
862 { "skip_frame_thresh", NULL, OFFSET(skip_frame_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE},
863 { "start_one_color_thresh", NULL, OFFSET(start_one_color_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE},
864 { "continue_one_color_thresh", NULL, OFFSET(continue_one_color_thresh), AV_OPT_TYPE_INT, {.i64=0}, 0, 24, VE},
865 { "sixteen_color_thresh", NULL, OFFSET(sixteen_color_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE},
866 { NULL },
869 static const AVClass rpza_class = {
870 .class_name = "rpza",
871 .item_name = av_default_item_name,
872 .option = options,
873 .version = LIBAVUTIL_VERSION_INT,
876 const FFCodec ff_rpza_encoder = {
877 .p.name = "rpza",
878 CODEC_LONG_NAME("QuickTime video (RPZA)"),
879 .p.type = AVMEDIA_TYPE_VIDEO,
880 .p.id = AV_CODEC_ID_RPZA,
881 .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE,
882 .priv_data_size = sizeof(RpzaContext),
883 .p.priv_class = &rpza_class,
884 .init = rpza_encode_init,
885 FF_CODEC_ENCODE_CB(rpza_encode_frame),
886 .close = rpza_encode_end,
887 .p.pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_RGB555,
888 AV_PIX_FMT_NONE},