avformat/mpeg: demux ivtv captions
[ffmpeg.git] / libavcodec / twinvq.c
blob69d8f5536a2759b84e15f9ba93edad90e2c46e92
1 /*
2 * TwinVQ decoder
3 * Copyright (c) 2009 Vitor Sessak
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 #include <math.h>
23 #include <stdint.h>
25 #include "libavutil/channel_layout.h"
26 #include "libavutil/float_dsp.h"
27 #include "libavutil/mem.h"
28 #include "avcodec.h"
29 #include "decode.h"
30 #include "lsp.h"
31 #include "metasound_twinvq_data.h"
32 #include "sinewin.h"
33 #include "twinvq.h"
35 /**
36 * Evaluate a single LPC amplitude spectrum envelope coefficient from the line
37 * spectrum pairs.
39 * @param lsp a vector of the cosine of the LSP values
40 * @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude
41 * @param order the order of the LSP (and the size of the *lsp buffer). Must
42 * be a multiple of four.
43 * @return the LPC value
45 * @todo reuse code from Vorbis decoder: vorbis_floor0_decode
47 static float eval_lpc_spectrum(const float *lsp, float cos_val, int order)
49 int j;
50 float p = 0.5f;
51 float q = 0.5f;
52 float two_cos_w = 2.0f * cos_val;
54 for (j = 0; j + 1 < order; j += 2 * 2) {
55 // Unroll the loop once since order is a multiple of four
56 q *= lsp[j] - two_cos_w;
57 p *= lsp[j + 1] - two_cos_w;
59 q *= lsp[j + 2] - two_cos_w;
60 p *= lsp[j + 3] - two_cos_w;
63 p *= p * (2.0f - two_cos_w);
64 q *= q * (2.0f + two_cos_w);
66 return 0.5 / (p + q);
69 /**
70 * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
72 static void eval_lpcenv(TwinVQContext *tctx, const float *cos_vals, float *lpc)
74 int i;
75 const TwinVQModeTab *mtab = tctx->mtab;
76 int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub;
78 for (i = 0; i < size_s / 2; i++) {
79 float cos_i = tctx->cos_tabs[0][i];
80 lpc[i] = eval_lpc_spectrum(cos_vals, cos_i, mtab->n_lsp);
81 lpc[size_s - i - 1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp);
85 static void interpolate(float *out, float v1, float v2, int size)
87 int i;
88 float step = (v1 - v2) / (size + 1);
90 for (i = 0; i < size; i++) {
91 v2 += step;
92 out[i] = v2;
96 static inline float get_cos(int idx, int part, const float *cos_tab, int size)
98 return part ? -cos_tab[size - idx - 1]
99 : cos_tab[idx];
103 * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
104 * Probably for speed reasons, the coefficients are evaluated as
105 * siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ...
106 * where s is an evaluated value, i is a value interpolated from the others
107 * and b might be either calculated or interpolated, depending on an
108 * unexplained condition.
110 * @param step the size of a block "siiiibiiii"
111 * @param in the cosine of the LSP data
112 * @param part is 0 for 0...PI (positive cosine values) and 1 for PI...2PI
113 * (negative cosine values)
114 * @param size the size of the whole output
116 static inline void eval_lpcenv_or_interp(TwinVQContext *tctx,
117 enum TwinVQFrameType ftype,
118 float *out, const float *in,
119 int size, int step, int part)
121 int i;
122 const TwinVQModeTab *mtab = tctx->mtab;
123 const float *cos_tab = tctx->cos_tabs[ftype];
125 // Fill the 's'
126 for (i = 0; i < size; i += step)
127 out[i] =
128 eval_lpc_spectrum(in,
129 get_cos(i, part, cos_tab, size),
130 mtab->n_lsp);
132 // Fill the 'iiiibiiii'
133 for (i = step; i <= size - 2 * step; i += step) {
134 if (out[i + step] + out[i - step] > 1.95 * out[i] ||
135 out[i + step] >= out[i - step]) {
136 interpolate(out + i - step + 1, out[i], out[i - step], step - 1);
137 } else {
138 out[i - step / 2] =
139 eval_lpc_spectrum(in,
140 get_cos(i - step / 2, part, cos_tab, size),
141 mtab->n_lsp);
142 interpolate(out + i - step + 1, out[i - step / 2],
143 out[i - step], step / 2 - 1);
144 interpolate(out + i - step / 2 + 1, out[i],
145 out[i - step / 2], step / 2 - 1);
149 interpolate(out + size - 2 * step + 1, out[size - step],
150 out[size - 2 * step], step - 1);
153 static void eval_lpcenv_2parts(TwinVQContext *tctx, enum TwinVQFrameType ftype,
154 const float *buf, float *lpc,
155 int size, int step)
157 eval_lpcenv_or_interp(tctx, ftype, lpc, buf, size / 2, step, 0);
158 eval_lpcenv_or_interp(tctx, ftype, lpc + size / 2, buf, size / 2,
159 2 * step, 1);
161 interpolate(lpc + size / 2 - step + 1, lpc[size / 2],
162 lpc[size / 2 - step], step);
164 twinvq_memset_float(lpc + size - 2 * step + 1, lpc[size - 2 * step],
165 2 * step - 1);
169 * Inverse quantization. Read CB coefficients for cb1 and cb2 from the
170 * bitstream, sum the corresponding vectors and write the result to *out
171 * after permutation.
173 static void dequant(TwinVQContext *tctx, const uint8_t *cb_bits, float *out,
174 enum TwinVQFrameType ftype,
175 const int16_t *cb0, const int16_t *cb1, int cb_len)
177 int pos = 0;
178 int i, j;
180 for (i = 0; i < tctx->n_div[ftype]; i++) {
181 int tmp0, tmp1;
182 int sign0 = 1;
183 int sign1 = 1;
184 const int16_t *tab0, *tab1;
185 int length = tctx->length[ftype][i >= tctx->length_change[ftype]];
186 int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]);
188 int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part];
189 tmp0 = *cb_bits++;
190 if (bits == 7) {
191 if (tmp0 & 0x40)
192 sign0 = -1;
193 tmp0 &= 0x3F;
196 bits = tctx->bits_main_spec[1][ftype][bitstream_second_part];
197 tmp1 = *cb_bits++;
198 if (bits == 7) {
199 if (tmp1 & 0x40)
200 sign1 = -1;
201 tmp1 &= 0x3F;
204 tab0 = cb0 + tmp0 * cb_len;
205 tab1 = cb1 + tmp1 * cb_len;
207 for (j = 0; j < length; j++)
208 out[tctx->permut[ftype][pos + j]] = sign0 * tab0[j] +
209 sign1 * tab1[j];
211 pos += length;
215 static void dec_gain(TwinVQContext *tctx,
216 enum TwinVQFrameType ftype, float *out)
218 const TwinVQModeTab *mtab = tctx->mtab;
219 const TwinVQFrameData *bits = &tctx->bits[tctx->cur_frame];
220 int i, j;
221 int channels = tctx->avctx->ch_layout.nb_channels;
222 int sub = mtab->fmode[ftype].sub;
223 float step = TWINVQ_AMP_MAX / ((1 << TWINVQ_GAIN_BITS) - 1);
224 float sub_step = TWINVQ_SUB_AMP_MAX / ((1 << TWINVQ_SUB_GAIN_BITS) - 1);
226 if (ftype == TWINVQ_FT_LONG) {
227 for (i = 0; i < channels; i++)
228 out[i] = (1.0 / (1 << 13)) *
229 twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i],
230 TWINVQ_AMP_MAX, TWINVQ_MULAW_MU);
231 } else {
232 for (i = 0; i < channels; i++) {
233 float val = (1.0 / (1 << 23)) *
234 twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i],
235 TWINVQ_AMP_MAX, TWINVQ_MULAW_MU);
237 for (j = 0; j < sub; j++)
238 out[i * sub + j] =
239 val * twinvq_mulawinv(sub_step * 0.5 +
240 sub_step * bits->sub_gain_bits[i * sub + j],
241 TWINVQ_SUB_AMP_MAX, TWINVQ_MULAW_MU);
247 * Rearrange the LSP coefficients so that they have a minimum distance of
248 * min_dist. This function does it exactly as described in section of 3.2.4
249 * of the G.729 specification (but interestingly is different from what the
250 * reference decoder actually does).
252 static void rearrange_lsp(int order, float *lsp, float min_dist)
254 int i;
255 float min_dist2 = min_dist * 0.5;
256 for (i = 1; i < order; i++)
257 if (lsp[i] - lsp[i - 1] < min_dist) {
258 float avg = (lsp[i] + lsp[i - 1]) * 0.5;
260 lsp[i - 1] = avg - min_dist2;
261 lsp[i] = avg + min_dist2;
265 static void decode_lsp(TwinVQContext *tctx, int lpc_idx1, uint8_t *lpc_idx2,
266 int lpc_hist_idx, float *lsp, float *hist)
268 const TwinVQModeTab *mtab = tctx->mtab;
269 int i, j;
271 const float *cb = mtab->lspcodebook;
272 const float *cb2 = cb + (1 << mtab->lsp_bit1) * mtab->n_lsp;
273 const float *cb3 = cb2 + (1 << mtab->lsp_bit2) * mtab->n_lsp;
275 const int8_t funny_rounding[4] = {
277 mtab->lsp_split == 4 ? -2 : 1,
278 mtab->lsp_split == 4 ? -2 : 1,
282 j = 0;
283 for (i = 0; i < mtab->lsp_split; i++) {
284 int chunk_end = ((i + 1) * mtab->n_lsp + funny_rounding[i]) /
285 mtab->lsp_split;
286 for (; j < chunk_end; j++)
287 lsp[j] = cb[lpc_idx1 * mtab->n_lsp + j] +
288 cb2[lpc_idx2[i] * mtab->n_lsp + j];
291 rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
293 for (i = 0; i < mtab->n_lsp; i++) {
294 float tmp1 = 1.0 - cb3[lpc_hist_idx * mtab->n_lsp + i];
295 float tmp2 = hist[i] * cb3[lpc_hist_idx * mtab->n_lsp + i];
296 hist[i] = lsp[i];
297 lsp[i] = lsp[i] * tmp1 + tmp2;
300 rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
301 rearrange_lsp(mtab->n_lsp, lsp, 0.000095);
302 ff_sort_nearly_sorted_floats(lsp, mtab->n_lsp);
305 static void dec_lpc_spectrum_inv(TwinVQContext *tctx, float *lsp,
306 enum TwinVQFrameType ftype, float *lpc)
308 int i;
309 int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub;
311 for (i = 0; i < tctx->mtab->n_lsp; i++)
312 lsp[i] = 2 * cos(lsp[i]);
314 switch (ftype) {
315 case TWINVQ_FT_LONG:
316 eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8);
317 break;
318 case TWINVQ_FT_MEDIUM:
319 eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2);
320 break;
321 case TWINVQ_FT_SHORT:
322 eval_lpcenv(tctx, lsp, lpc);
323 break;
327 static const uint8_t wtype_to_wsize[] = { 0, 0, 2, 2, 2, 1, 0, 1, 1 };
329 static void imdct_and_window(TwinVQContext *tctx, enum TwinVQFrameType ftype,
330 int wtype, float *in, float *prev, int ch)
332 AVTXContext *tx = tctx->tx[ftype];
333 av_tx_fn tx_fn = tctx->tx_fn[ftype];
334 const TwinVQModeTab *mtab = tctx->mtab;
335 int bsize = mtab->size / mtab->fmode[ftype].sub;
336 int size = mtab->size;
337 float *buf1 = tctx->tmp_buf;
338 int j, first_wsize, wsize; // Window size
339 float *out = tctx->curr_frame + 2 * ch * mtab->size;
340 float *out2 = out;
341 float *prev_buf;
342 int types_sizes[] = {
343 mtab->size / mtab->fmode[TWINVQ_FT_LONG].sub,
344 mtab->size / mtab->fmode[TWINVQ_FT_MEDIUM].sub,
345 mtab->size / (mtab->fmode[TWINVQ_FT_SHORT].sub * 2),
348 wsize = types_sizes[wtype_to_wsize[wtype]];
349 first_wsize = wsize;
350 prev_buf = prev + (size - bsize) / 2;
352 for (j = 0; j < mtab->fmode[ftype].sub; j++) {
353 int sub_wtype = ftype == TWINVQ_FT_MEDIUM ? 8 : wtype;
355 if (!j && wtype == 4)
356 sub_wtype = 4;
357 else if (j == mtab->fmode[ftype].sub - 1 && wtype == 7)
358 sub_wtype = 7;
360 wsize = types_sizes[wtype_to_wsize[sub_wtype]];
362 tx_fn(tx, buf1 + bsize * j, in + bsize * j, sizeof(float));
364 tctx->fdsp->vector_fmul_window(out2, prev_buf + (bsize - wsize) / 2,
365 buf1 + bsize * j,
366 ff_sine_windows[av_log2(wsize)],
367 wsize / 2);
368 out2 += wsize;
370 memcpy(out2, buf1 + bsize * j + wsize / 2,
371 (bsize - wsize / 2) * sizeof(float));
373 out2 += ftype == TWINVQ_FT_MEDIUM ? (bsize - wsize) / 2 : bsize - wsize;
375 prev_buf = buf1 + bsize * j + bsize / 2;
378 tctx->last_block_pos[ch] = (size + first_wsize) / 2;
381 static void imdct_output(TwinVQContext *tctx, enum TwinVQFrameType ftype,
382 int wtype, float **out, int offset)
384 const TwinVQModeTab *mtab = tctx->mtab;
385 float *prev_buf = tctx->prev_frame + tctx->last_block_pos[0];
386 int channels = tctx->avctx->ch_layout.nb_channels;
387 int size1, size2, i;
388 float *out1, *out2;
390 for (i = 0; i < channels; i++)
391 imdct_and_window(tctx, ftype, wtype,
392 tctx->spectrum + i * mtab->size,
393 prev_buf + 2 * i * mtab->size,
396 if (!out)
397 return;
399 size2 = tctx->last_block_pos[0];
400 size1 = mtab->size - size2;
402 out1 = &out[0][0] + offset;
403 memcpy(out1, prev_buf, size1 * sizeof(*out1));
404 memcpy(out1 + size1, tctx->curr_frame, size2 * sizeof(*out1));
406 if (channels == 2) {
407 out2 = &out[1][0] + offset;
408 memcpy(out2, &prev_buf[2 * mtab->size],
409 size1 * sizeof(*out2));
410 memcpy(out2 + size1, &tctx->curr_frame[2 * mtab->size],
411 size2 * sizeof(*out2));
412 tctx->fdsp->butterflies_float(out1, out2, mtab->size);
416 static void read_and_decode_spectrum(TwinVQContext *tctx, float *out,
417 enum TwinVQFrameType ftype)
419 const TwinVQModeTab *mtab = tctx->mtab;
420 TwinVQFrameData *bits = &tctx->bits[tctx->cur_frame];
421 int channels = tctx->avctx->ch_layout.nb_channels;
422 int sub = mtab->fmode[ftype].sub;
423 int block_size = mtab->size / sub;
424 float gain[TWINVQ_CHANNELS_MAX * TWINVQ_SUBBLOCKS_MAX];
425 float ppc_shape[TWINVQ_PPC_SHAPE_LEN_MAX * TWINVQ_CHANNELS_MAX * 4];
427 int i, j;
429 dequant(tctx, bits->main_coeffs, out, ftype,
430 mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1,
431 mtab->fmode[ftype].cb_len_read);
433 dec_gain(tctx, ftype, gain);
435 if (ftype == TWINVQ_FT_LONG) {
436 int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len * channels - 1) /
437 tctx->n_div[3];
438 dequant(tctx, bits->ppc_coeffs, ppc_shape,
439 TWINVQ_FT_PPC, mtab->ppc_shape_cb,
440 mtab->ppc_shape_cb + cb_len_p * TWINVQ_PPC_SHAPE_CB_SIZE,
441 cb_len_p);
444 for (i = 0; i < channels; i++) {
445 float *chunk = out + mtab->size * i;
446 float lsp[TWINVQ_LSP_COEFS_MAX];
448 for (j = 0; j < sub; j++) {
449 tctx->dec_bark_env(tctx, bits->bark1[i][j],
450 bits->bark_use_hist[i][j], i,
451 tctx->tmp_buf, gain[sub * i + j], ftype);
453 tctx->fdsp->vector_fmul(chunk + block_size * j,
454 chunk + block_size * j,
455 tctx->tmp_buf, block_size);
458 if (ftype == TWINVQ_FT_LONG)
459 tctx->decode_ppc(tctx, bits->p_coef[i], bits->g_coef[i],
460 ppc_shape + i * mtab->ppc_shape_len, chunk);
462 decode_lsp(tctx, bits->lpc_idx1[i], bits->lpc_idx2[i],
463 bits->lpc_hist_idx[i], lsp, tctx->lsp_hist[i]);
465 dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf);
467 for (j = 0; j < mtab->fmode[ftype].sub; j++) {
468 tctx->fdsp->vector_fmul(chunk, chunk, tctx->tmp_buf, block_size);
469 chunk += block_size;
474 const enum TwinVQFrameType ff_twinvq_wtype_to_ftype_table[] = {
475 TWINVQ_FT_LONG, TWINVQ_FT_LONG, TWINVQ_FT_SHORT, TWINVQ_FT_LONG,
476 TWINVQ_FT_MEDIUM, TWINVQ_FT_LONG, TWINVQ_FT_LONG, TWINVQ_FT_MEDIUM,
477 TWINVQ_FT_MEDIUM
480 int ff_twinvq_decode_frame(AVCodecContext *avctx, AVFrame *frame,
481 int *got_frame_ptr, AVPacket *avpkt)
483 const uint8_t *buf = avpkt->data;
484 int buf_size = avpkt->size;
485 TwinVQContext *tctx = avctx->priv_data;
486 const TwinVQModeTab *mtab = tctx->mtab;
487 float **out = NULL;
488 int ret;
490 /* get output buffer */
491 if (tctx->discarded_packets >= 2) {
492 frame->nb_samples = mtab->size * tctx->frames_per_packet;
493 if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
494 return ret;
495 out = (float **)frame->extended_data;
498 if (buf_size < avctx->block_align) {
499 av_log(avctx, AV_LOG_ERROR,
500 "Frame too small (%d bytes). Truncated file?\n", buf_size);
501 return AVERROR(EINVAL);
504 if ((ret = tctx->read_bitstream(avctx, tctx, buf, buf_size)) < 0)
505 return ret;
507 for (tctx->cur_frame = 0; tctx->cur_frame < tctx->frames_per_packet;
508 tctx->cur_frame++) {
509 read_and_decode_spectrum(tctx, tctx->spectrum,
510 tctx->bits[tctx->cur_frame].ftype);
512 imdct_output(tctx, tctx->bits[tctx->cur_frame].ftype,
513 tctx->bits[tctx->cur_frame].window_type, out,
514 tctx->cur_frame * mtab->size);
516 FFSWAP(float *, tctx->curr_frame, tctx->prev_frame);
519 if (tctx->discarded_packets < 2) {
520 tctx->discarded_packets++;
521 *got_frame_ptr = 0;
522 return buf_size;
525 *got_frame_ptr = 1;
527 // VQF can deliver packets 1 byte greater than block align
528 if (buf_size == avctx->block_align + 1)
529 return buf_size;
530 return avctx->block_align;
534 * Init IMDCT and windowing tables
536 static av_cold int init_mdct_win(TwinVQContext *tctx)
538 int i, j, ret;
539 const TwinVQModeTab *mtab = tctx->mtab;
540 int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub;
541 int size_m = mtab->size / mtab->fmode[TWINVQ_FT_MEDIUM].sub;
542 int channels = tctx->avctx->ch_layout.nb_channels;
543 float norm = channels == 1 ? 2.0 : 1.0;
544 int table_size = 2 * mtab->size * channels;
546 for (i = 0; i < 3; i++) {
547 int bsize = tctx->mtab->size / tctx->mtab->fmode[i].sub;
548 const float scale = -sqrt(norm / bsize) / (1 << 15);
549 if ((ret = av_tx_init(&tctx->tx[i], &tctx->tx_fn[i], AV_TX_FLOAT_MDCT,
550 1, bsize, &scale, 0)))
551 return ret;
554 if (!FF_ALLOC_TYPED_ARRAY(tctx->tmp_buf, mtab->size) ||
555 !FF_ALLOC_TYPED_ARRAY(tctx->spectrum, table_size) ||
556 !FF_ALLOC_TYPED_ARRAY(tctx->curr_frame, table_size) ||
557 !FF_ALLOC_TYPED_ARRAY(tctx->prev_frame, table_size))
558 return AVERROR(ENOMEM);
560 for (i = 0; i < 3; i++) {
561 int m = 4 * mtab->size / mtab->fmode[i].sub;
562 double freq = 2 * M_PI / m;
563 if (!FF_ALLOC_TYPED_ARRAY(tctx->cos_tabs[i], m / 4))
564 return AVERROR(ENOMEM);
565 for (j = 0; j <= m / 8; j++)
566 tctx->cos_tabs[i][j] = cos((2 * j + 1) * freq);
567 for (j = 1; j < m / 8; j++)
568 tctx->cos_tabs[i][m / 4 - j] = tctx->cos_tabs[i][j];
571 ff_init_ff_sine_windows(av_log2(size_m));
572 ff_init_ff_sine_windows(av_log2(size_s / 2));
573 ff_init_ff_sine_windows(av_log2(mtab->size));
575 return 0;
579 * Interpret the data as if it were a num_blocks x line_len[0] matrix and for
580 * each line do a cyclic permutation, i.e.
581 * abcdefghijklm -> defghijklmabc
582 * where the amount to be shifted is evaluated depending on the column.
584 static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks,
585 int block_size,
586 const uint8_t line_len[2], int length_div,
587 enum TwinVQFrameType ftype)
589 int i, j;
591 for (i = 0; i < line_len[0]; i++) {
592 int shift;
594 if (num_blocks == 1 ||
595 (ftype == TWINVQ_FT_LONG && num_vect % num_blocks) ||
596 (ftype != TWINVQ_FT_LONG && num_vect & 1) ||
597 i == line_len[1]) {
598 shift = 0;
599 } else if (ftype == TWINVQ_FT_LONG) {
600 shift = i;
601 } else
602 shift = i * i;
604 for (j = 0; j < num_vect && (j + num_vect * i < block_size * num_blocks); j++)
605 tab[i * num_vect + j] = i * num_vect + (j + shift) % num_vect;
610 * Interpret the input data as in the following table:
612 * @verbatim
614 * abcdefgh
615 * ijklmnop
616 * qrstuvw
617 * x123456
619 * @endverbatim
621 * and transpose it, giving the output
622 * aiqxbjr1cks2dlt3emu4fvn5gow6hp
624 static void transpose_perm(int16_t *out, int16_t *in, int num_vect,
625 const uint8_t line_len[2], int length_div)
627 int i, j;
628 int cont = 0;
630 for (i = 0; i < num_vect; i++)
631 for (j = 0; j < line_len[i >= length_div]; j++)
632 out[cont++] = in[j * num_vect + i];
635 static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size)
637 int block_size = size / n_blocks;
638 int i;
640 for (i = 0; i < size; i++)
641 out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks;
644 static av_cold void construct_perm_table(TwinVQContext *tctx,
645 enum TwinVQFrameType ftype)
647 int block_size, size;
648 const TwinVQModeTab *mtab = tctx->mtab;
649 int16_t *tmp_perm = (int16_t *)tctx->tmp_buf;
651 if (ftype == TWINVQ_FT_PPC) {
652 size = tctx->avctx->ch_layout.nb_channels;
653 block_size = mtab->ppc_shape_len;
654 } else {
655 size = tctx->avctx->ch_layout.nb_channels * mtab->fmode[ftype].sub;
656 block_size = mtab->size / mtab->fmode[ftype].sub;
659 permutate_in_line(tmp_perm, tctx->n_div[ftype], size,
660 block_size, tctx->length[ftype],
661 tctx->length_change[ftype], ftype);
663 transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype],
664 tctx->length[ftype], tctx->length_change[ftype]);
666 linear_perm(tctx->permut[ftype], tctx->permut[ftype], size,
667 size * block_size);
670 static av_cold void init_bitstream_params(TwinVQContext *tctx)
672 const TwinVQModeTab *mtab = tctx->mtab;
673 int n_ch = tctx->avctx->ch_layout.nb_channels;
674 int total_fr_bits = tctx->avctx->bit_rate * mtab->size /
675 tctx->avctx->sample_rate;
677 int lsp_bits_per_block = n_ch * (mtab->lsp_bit0 + mtab->lsp_bit1 +
678 mtab->lsp_split * mtab->lsp_bit2);
680 int ppc_bits = n_ch * (mtab->pgain_bit + mtab->ppc_shape_bit +
681 mtab->ppc_period_bit);
683 int bsize_no_main_cb[3], bse_bits[3], i;
684 enum TwinVQFrameType frametype;
686 for (i = 0; i < 3; i++)
687 // +1 for history usage switch
688 bse_bits[i] = n_ch *
689 (mtab->fmode[i].bark_n_coef *
690 mtab->fmode[i].bark_n_bit + 1);
692 bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits +
693 TWINVQ_WINDOW_TYPE_BITS + n_ch * TWINVQ_GAIN_BITS;
695 for (i = 0; i < 2; i++)
696 bsize_no_main_cb[i] =
697 lsp_bits_per_block + n_ch * TWINVQ_GAIN_BITS +
698 TWINVQ_WINDOW_TYPE_BITS +
699 mtab->fmode[i].sub * (bse_bits[i] + n_ch * TWINVQ_SUB_GAIN_BITS);
701 if (tctx->codec == TWINVQ_CODEC_METASOUND && !tctx->is_6kbps) {
702 bsize_no_main_cb[1] += 2;
703 bsize_no_main_cb[2] += 2;
706 // The remaining bits are all used for the main spectrum coefficients
707 for (i = 0; i < 4; i++) {
708 int bit_size, vect_size;
709 int rounded_up, rounded_down, num_rounded_down, num_rounded_up;
710 if (i == 3) {
711 bit_size = n_ch * mtab->ppc_shape_bit;
712 vect_size = n_ch * mtab->ppc_shape_len;
713 } else {
714 bit_size = total_fr_bits - bsize_no_main_cb[i];
715 vect_size = n_ch * mtab->size;
718 tctx->n_div[i] = (bit_size + 13) / 14;
720 rounded_up = (bit_size + tctx->n_div[i] - 1) /
721 tctx->n_div[i];
722 rounded_down = (bit_size) / tctx->n_div[i];
723 num_rounded_down = rounded_up * tctx->n_div[i] - bit_size;
724 num_rounded_up = tctx->n_div[i] - num_rounded_down;
725 tctx->bits_main_spec[0][i][0] = (rounded_up + 1) / 2;
726 tctx->bits_main_spec[1][i][0] = rounded_up / 2;
727 tctx->bits_main_spec[0][i][1] = (rounded_down + 1) / 2;
728 tctx->bits_main_spec[1][i][1] = rounded_down / 2;
729 tctx->bits_main_spec_change[i] = num_rounded_up;
731 rounded_up = (vect_size + tctx->n_div[i] - 1) /
732 tctx->n_div[i];
733 rounded_down = (vect_size) / tctx->n_div[i];
734 num_rounded_down = rounded_up * tctx->n_div[i] - vect_size;
735 num_rounded_up = tctx->n_div[i] - num_rounded_down;
736 tctx->length[i][0] = rounded_up;
737 tctx->length[i][1] = rounded_down;
738 tctx->length_change[i] = num_rounded_up;
741 for (frametype = TWINVQ_FT_SHORT; frametype <= TWINVQ_FT_PPC; frametype++)
742 construct_perm_table(tctx, frametype);
745 av_cold int ff_twinvq_decode_close(AVCodecContext *avctx)
747 TwinVQContext *tctx = avctx->priv_data;
748 int i;
750 for (i = 0; i < 3; i++) {
751 av_tx_uninit(&tctx->tx[i]);
752 av_freep(&tctx->cos_tabs[i]);
755 av_freep(&tctx->curr_frame);
756 av_freep(&tctx->spectrum);
757 av_freep(&tctx->prev_frame);
758 av_freep(&tctx->tmp_buf);
759 av_freep(&tctx->fdsp);
761 return 0;
764 av_cold int ff_twinvq_decode_init(AVCodecContext *avctx)
766 int ret;
767 TwinVQContext *tctx = avctx->priv_data;
768 int64_t frames_per_packet;
770 tctx->avctx = avctx;
771 avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
773 if (!avctx->block_align) {
774 avctx->block_align = tctx->frame_size + 7 >> 3;
776 frames_per_packet = avctx->block_align * 8LL / tctx->frame_size;
777 if (frames_per_packet <= 0) {
778 av_log(avctx, AV_LOG_ERROR, "Block align is %"PRId64" bits, expected %d\n",
779 avctx->block_align * (int64_t)8, tctx->frame_size);
780 return AVERROR_INVALIDDATA;
782 if (frames_per_packet > TWINVQ_MAX_FRAMES_PER_PACKET) {
783 av_log(avctx, AV_LOG_ERROR, "Too many frames per packet (%"PRId64")\n",
784 frames_per_packet);
785 return AVERROR_INVALIDDATA;
787 tctx->frames_per_packet = frames_per_packet;
789 tctx->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
790 if (!tctx->fdsp)
791 return AVERROR(ENOMEM);
792 if ((ret = init_mdct_win(tctx))) {
793 av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
794 return ret;
796 init_bitstream_params(tctx);
798 twinvq_memset_float(tctx->bark_hist[0][0], 0.1,
799 FF_ARRAY_ELEMS(tctx->bark_hist));
801 return 0;