avformat/mpeg: demux ivtv captions
[ffmpeg.git] / libavcodec / vc2enc.c
blobb82370a753244c42f0abd648ed3cec20a289e399
1 /*
2 * Copyright (C) 2016 Open Broadcast Systems Ltd.
3 * Author 2016 Rostislav Pehlivanov <atomnuker@gmail.com>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 #include "libavutil/mem.h"
23 #include "libavutil/pixdesc.h"
24 #include "libavutil/opt.h"
25 #include "libavutil/version.h"
26 #include "codec_internal.h"
27 #include "dirac.h"
28 #include "encode.h"
29 #include "put_bits.h"
30 #include "version.h"
32 #include "vc2enc_dwt.h"
33 #include "diractab.h"
35 /* The limited size resolution of each slice forces us to do this */
36 #define SSIZE_ROUND(b) (FFALIGN((b), s->size_scaler) + 4 + s->prefix_bytes)
38 /* Decides the cutoff point in # of slices to distribute the leftover bytes */
39 #define SLICE_REDIST_TOTAL 150
41 typedef struct VC2BaseVideoFormat {
42 enum AVPixelFormat pix_fmt;
43 AVRational time_base;
44 int width, height;
45 uint8_t interlaced, level;
46 char name[13];
47 } VC2BaseVideoFormat;
49 static const VC2BaseVideoFormat base_video_fmts[] = {
50 { 0 }, /* Custom format, here just to make indexing equal to base_vf */
51 { AV_PIX_FMT_YUV420P, { 1001, 15000 }, 176, 120, 0, 1, "QSIF525" },
52 { AV_PIX_FMT_YUV420P, { 2, 25 }, 176, 144, 0, 1, "QCIF" },
53 { AV_PIX_FMT_YUV420P, { 1001, 15000 }, 352, 240, 0, 1, "SIF525" },
54 { AV_PIX_FMT_YUV420P, { 2, 25 }, 352, 288, 0, 1, "CIF" },
55 { AV_PIX_FMT_YUV420P, { 1001, 15000 }, 704, 480, 0, 1, "4SIF525" },
56 { AV_PIX_FMT_YUV420P, { 2, 25 }, 704, 576, 0, 1, "4CIF" },
58 { AV_PIX_FMT_YUV422P10, { 1001, 30000 }, 720, 480, 1, 2, "SD480I-60" },
59 { AV_PIX_FMT_YUV422P10, { 1, 25 }, 720, 576, 1, 2, "SD576I-50" },
61 { AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 1280, 720, 0, 3, "HD720P-60" },
62 { AV_PIX_FMT_YUV422P10, { 1, 50 }, 1280, 720, 0, 3, "HD720P-50" },
63 { AV_PIX_FMT_YUV422P10, { 1001, 30000 }, 1920, 1080, 1, 3, "HD1080I-60" },
64 { AV_PIX_FMT_YUV422P10, { 1, 25 }, 1920, 1080, 1, 3, "HD1080I-50" },
65 { AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 1920, 1080, 0, 3, "HD1080P-60" },
66 { AV_PIX_FMT_YUV422P10, { 1, 50 }, 1920, 1080, 0, 3, "HD1080P-50" },
68 { AV_PIX_FMT_YUV444P12, { 1, 24 }, 2048, 1080, 0, 4, "DC2K" },
69 { AV_PIX_FMT_YUV444P12, { 1, 24 }, 4096, 2160, 0, 5, "DC4K" },
71 { AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 3840, 2160, 0, 6, "UHDTV 4K-60" },
72 { AV_PIX_FMT_YUV422P10, { 1, 50 }, 3840, 2160, 0, 6, "UHDTV 4K-50" },
74 { AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 7680, 4320, 0, 7, "UHDTV 8K-60" },
75 { AV_PIX_FMT_YUV422P10, { 1, 50 }, 7680, 4320, 0, 7, "UHDTV 8K-50" },
77 { AV_PIX_FMT_YUV422P10, { 1001, 24000 }, 1920, 1080, 0, 3, "HD1080P-24" },
78 { AV_PIX_FMT_YUV422P10, { 1001, 30000 }, 720, 486, 1, 2, "SD Pro486" },
80 static const int base_video_fmts_len = FF_ARRAY_ELEMS(base_video_fmts);
82 enum VC2_QM {
83 VC2_QM_DEF = 0,
84 VC2_QM_COL,
85 VC2_QM_FLAT,
87 VC2_QM_NB
90 typedef struct SubBand {
91 dwtcoef *buf;
92 ptrdiff_t stride;
93 int width;
94 int height;
95 } SubBand;
97 typedef struct Plane {
98 SubBand band[MAX_DWT_LEVELS][4];
99 dwtcoef *coef_buf;
100 int width;
101 int height;
102 int dwt_width;
103 int dwt_height;
104 ptrdiff_t coef_stride;
105 } Plane;
107 typedef struct SliceArgs {
108 const struct VC2EncContext *ctx;
109 union {
110 int cache[DIRAC_MAX_QUANT_INDEX];
111 uint8_t *buf;
113 int x;
114 int y;
115 int quant_idx;
116 int bits_ceil;
117 int bits_floor;
118 int bytes;
119 } SliceArgs;
121 typedef struct TransformArgs {
122 const struct VC2EncContext *ctx;
123 Plane *plane;
124 const void *idata;
125 ptrdiff_t istride;
126 int field;
127 VC2TransformContext t;
128 } TransformArgs;
130 typedef struct VC2EncContext {
131 AVClass *av_class;
132 PutBitContext pb;
133 Plane plane[3];
134 AVCodecContext *avctx;
135 DiracVersionInfo ver;
137 SliceArgs *slice_args;
138 TransformArgs transform_args[3];
140 /* For conversion from unsigned pixel values to signed */
141 int diff_offset;
142 int bpp;
143 int bpp_idx;
145 /* Picture number */
146 uint32_t picture_number;
148 /* Base video format */
149 int base_vf;
150 int level;
151 int profile;
153 /* Quantization matrix */
154 uint8_t quant[MAX_DWT_LEVELS][4];
155 int custom_quant_matrix;
157 /* Division LUT */
158 uint32_t qmagic_lut[116][2];
160 int num_x; /* #slices horizontally */
161 int num_y; /* #slices vertically */
162 int prefix_bytes;
163 int size_scaler;
164 int chroma_x_shift;
165 int chroma_y_shift;
167 /* Rate control stuff */
168 int frame_max_bytes;
169 int slice_max_bytes;
170 int slice_min_bytes;
171 int q_ceil;
172 int q_avg;
174 /* Options */
175 double tolerance;
176 int wavelet_idx;
177 int wavelet_depth;
178 int strict_compliance;
179 int slice_height;
180 int slice_width;
181 int interlaced;
182 enum VC2_QM quant_matrix;
184 /* Parse code state */
185 uint32_t next_parse_offset;
186 enum DiracParseCodes last_parse_code;
187 } VC2EncContext;
189 static av_always_inline void put_vc2_ue_uint(PutBitContext *pb, uint32_t val)
191 int i;
192 int bits = 0;
193 unsigned topbit = 1, maxval = 1;
194 uint64_t pbits = 0;
196 if (!val++) {
197 put_bits(pb, 1, 1);
198 return;
201 while (val > maxval) {
202 topbit <<= 1;
203 maxval <<= 1;
204 maxval |= 1;
207 bits = ff_log2(topbit);
209 for (i = 0; i < bits; i++) {
210 topbit >>= 1;
211 av_assert2(pbits <= UINT64_MAX>>3);
212 pbits <<= 2;
213 if (val & topbit)
214 pbits |= 0x1;
217 put_bits64(pb, bits*2 + 1, (pbits << 1) | 1);
220 static av_always_inline int count_vc2_ue_uint(uint32_t val)
222 int topbit = 1, maxval = 1;
224 if (!val++)
225 return 1;
227 while (val > maxval) {
228 topbit <<= 1;
229 maxval <<= 1;
230 maxval |= 1;
233 return ff_log2(topbit)*2 + 1;
236 /* VC-2 10.4 - parse_info() */
237 static void encode_parse_info(VC2EncContext *s, enum DiracParseCodes pcode)
239 uint32_t cur_pos, dist;
241 align_put_bits(&s->pb);
243 cur_pos = put_bytes_count(&s->pb, 0);
245 /* Magic string */
246 ff_put_string(&s->pb, "BBCD", 0);
248 /* Parse code */
249 put_bits(&s->pb, 8, pcode);
251 /* Next parse offset */
252 dist = cur_pos - s->next_parse_offset;
253 AV_WB32(s->pb.buf + s->next_parse_offset + 5, dist);
254 s->next_parse_offset = cur_pos;
255 put_bits32(&s->pb, pcode == DIRAC_PCODE_END_SEQ ? 13 : 0);
257 /* Last parse offset */
258 put_bits32(&s->pb, s->last_parse_code == DIRAC_PCODE_END_SEQ ? 13 : dist);
260 s->last_parse_code = pcode;
263 /* VC-2 11.1 - parse_parameters()
264 * The level dictates what the decoder should expect in terms of resolution
265 * and allows it to quickly reject whatever it can't support. Remember,
266 * this codec kinda targets cheapo FPGAs without much memory. Unfortunately
267 * it also limits us greatly in our choice of formats, hence the flag to disable
268 * strict_compliance */
269 static void encode_parse_params(VC2EncContext *s)
271 put_vc2_ue_uint(&s->pb, s->ver.major); /* VC-2 demands this to be 2 */
272 put_vc2_ue_uint(&s->pb, s->ver.minor); /* ^^ and this to be 0 */
273 put_vc2_ue_uint(&s->pb, s->profile); /* 3 to signal HQ profile */
274 put_vc2_ue_uint(&s->pb, s->level); /* 3 - 1080/720, 6 - 4K */
277 /* VC-2 11.3 - frame_size() */
278 static void encode_frame_size(VC2EncContext *s)
280 put_bits(&s->pb, 1, !s->strict_compliance);
281 if (!s->strict_compliance) {
282 AVCodecContext *avctx = s->avctx;
283 put_vc2_ue_uint(&s->pb, avctx->width);
284 put_vc2_ue_uint(&s->pb, avctx->height);
288 /* VC-2 11.3.3 - color_diff_sampling_format() */
289 static void encode_sample_fmt(VC2EncContext *s)
291 put_bits(&s->pb, 1, !s->strict_compliance);
292 if (!s->strict_compliance) {
293 int idx;
294 if (s->chroma_x_shift == 1 && s->chroma_y_shift == 0)
295 idx = 1; /* 422 */
296 else if (s->chroma_x_shift == 1 && s->chroma_y_shift == 1)
297 idx = 2; /* 420 */
298 else
299 idx = 0; /* 444 */
300 put_vc2_ue_uint(&s->pb, idx);
304 /* VC-2 11.3.4 - scan_format() */
305 static void encode_scan_format(VC2EncContext *s)
307 put_bits(&s->pb, 1, !s->strict_compliance);
308 if (!s->strict_compliance)
309 put_vc2_ue_uint(&s->pb, s->interlaced);
312 /* VC-2 11.3.5 - frame_rate() */
313 static void encode_frame_rate(VC2EncContext *s)
315 put_bits(&s->pb, 1, !s->strict_compliance);
316 if (!s->strict_compliance) {
317 AVCodecContext *avctx = s->avctx;
318 put_vc2_ue_uint(&s->pb, 0);
319 put_vc2_ue_uint(&s->pb, avctx->time_base.den);
320 put_vc2_ue_uint(&s->pb, avctx->time_base.num);
324 /* VC-2 11.3.6 - aspect_ratio() */
325 static void encode_aspect_ratio(VC2EncContext *s)
327 put_bits(&s->pb, 1, !s->strict_compliance);
328 if (!s->strict_compliance) {
329 AVCodecContext *avctx = s->avctx;
330 put_vc2_ue_uint(&s->pb, 0);
331 put_vc2_ue_uint(&s->pb, avctx->sample_aspect_ratio.num);
332 put_vc2_ue_uint(&s->pb, avctx->sample_aspect_ratio.den);
336 /* VC-2 11.3.7 - clean_area() */
337 static void encode_clean_area(VC2EncContext *s)
339 put_bits(&s->pb, 1, 0);
342 /* VC-2 11.3.8 - signal_range() */
343 static void encode_signal_range(VC2EncContext *s)
345 put_bits(&s->pb, 1, !s->strict_compliance);
346 if (!s->strict_compliance)
347 put_vc2_ue_uint(&s->pb, s->bpp_idx);
350 /* VC-2 11.3.9 - color_spec() */
351 static void encode_color_spec(VC2EncContext *s)
353 AVCodecContext *avctx = s->avctx;
354 put_bits(&s->pb, 1, !s->strict_compliance);
355 if (!s->strict_compliance) {
356 int val;
357 put_vc2_ue_uint(&s->pb, 0);
359 /* primaries */
360 put_bits(&s->pb, 1, 1);
361 if (avctx->color_primaries == AVCOL_PRI_BT470BG)
362 val = 2;
363 else if (avctx->color_primaries == AVCOL_PRI_SMPTE170M)
364 val = 1;
365 else if (avctx->color_primaries == AVCOL_PRI_SMPTE240M)
366 val = 1;
367 else
368 val = 0;
369 put_vc2_ue_uint(&s->pb, val);
371 /* color matrix */
372 put_bits(&s->pb, 1, 1);
373 if (avctx->colorspace == AVCOL_SPC_RGB)
374 val = 3;
375 else if (avctx->colorspace == AVCOL_SPC_YCOCG)
376 val = 2;
377 else if (avctx->colorspace == AVCOL_SPC_BT470BG)
378 val = 1;
379 else
380 val = 0;
381 put_vc2_ue_uint(&s->pb, val);
383 /* transfer function */
384 put_bits(&s->pb, 1, 1);
385 if (avctx->color_trc == AVCOL_TRC_LINEAR)
386 val = 2;
387 else if (avctx->color_trc == AVCOL_TRC_BT1361_ECG)
388 val = 1;
389 else
390 val = 0;
391 put_vc2_ue_uint(&s->pb, val);
395 /* VC-2 11.3 - source_parameters() */
396 static void encode_source_params(VC2EncContext *s)
398 encode_frame_size(s);
399 encode_sample_fmt(s);
400 encode_scan_format(s);
401 encode_frame_rate(s);
402 encode_aspect_ratio(s);
403 encode_clean_area(s);
404 encode_signal_range(s);
405 encode_color_spec(s);
408 /* VC-2 11 - sequence_header() */
409 static void encode_seq_header(VC2EncContext *s)
411 align_put_bits(&s->pb);
412 encode_parse_params(s);
413 put_vc2_ue_uint(&s->pb, s->base_vf);
414 encode_source_params(s);
415 put_vc2_ue_uint(&s->pb, s->interlaced); /* Frames or fields coding */
418 /* VC-2 12.1 - picture_header() */
419 static void encode_picture_header(VC2EncContext *s)
421 align_put_bits(&s->pb);
422 put_bits32(&s->pb, s->picture_number++);
425 /* VC-2 12.3.4.1 - slice_parameters() */
426 static void encode_slice_params(VC2EncContext *s)
428 put_vc2_ue_uint(&s->pb, s->num_x);
429 put_vc2_ue_uint(&s->pb, s->num_y);
430 put_vc2_ue_uint(&s->pb, s->prefix_bytes);
431 put_vc2_ue_uint(&s->pb, s->size_scaler);
434 /* 1st idx = LL, second - vertical, third - horizontal, fourth - total */
435 static const uint8_t vc2_qm_col_tab[][4] = {
436 {20, 9, 15, 4},
437 { 0, 6, 6, 4},
438 { 0, 3, 3, 5},
439 { 0, 3, 5, 1},
440 { 0, 11, 10, 11}
443 static const uint8_t vc2_qm_flat_tab[][4] = {
444 { 0, 0, 0, 0},
445 { 0, 0, 0, 0},
446 { 0, 0, 0, 0},
447 { 0, 0, 0, 0},
448 { 0, 0, 0, 0}
451 static void init_quant_matrix(VC2EncContext *s)
453 int level, orientation;
455 if (s->wavelet_depth <= 4 && s->quant_matrix == VC2_QM_DEF) {
456 s->custom_quant_matrix = 0;
457 for (level = 0; level < s->wavelet_depth; level++) {
458 s->quant[level][0] = ff_dirac_default_qmat[s->wavelet_idx][level][0];
459 s->quant[level][1] = ff_dirac_default_qmat[s->wavelet_idx][level][1];
460 s->quant[level][2] = ff_dirac_default_qmat[s->wavelet_idx][level][2];
461 s->quant[level][3] = ff_dirac_default_qmat[s->wavelet_idx][level][3];
463 return;
466 s->custom_quant_matrix = 1;
468 if (s->quant_matrix == VC2_QM_DEF) {
469 for (level = 0; level < s->wavelet_depth; level++) {
470 for (orientation = 0; orientation < 4; orientation++) {
471 if (level <= 3)
472 s->quant[level][orientation] = ff_dirac_default_qmat[s->wavelet_idx][level][orientation];
473 else
474 s->quant[level][orientation] = vc2_qm_col_tab[level][orientation];
477 } else if (s->quant_matrix == VC2_QM_COL) {
478 for (level = 0; level < s->wavelet_depth; level++) {
479 for (orientation = 0; orientation < 4; orientation++) {
480 s->quant[level][orientation] = vc2_qm_col_tab[level][orientation];
483 } else {
484 for (level = 0; level < s->wavelet_depth; level++) {
485 for (orientation = 0; orientation < 4; orientation++) {
486 s->quant[level][orientation] = vc2_qm_flat_tab[level][orientation];
492 /* VC-2 12.3.4.2 - quant_matrix() */
493 static void encode_quant_matrix(VC2EncContext *s)
495 int level;
496 put_bits(&s->pb, 1, s->custom_quant_matrix);
497 if (s->custom_quant_matrix) {
498 put_vc2_ue_uint(&s->pb, s->quant[0][0]);
499 for (level = 0; level < s->wavelet_depth; level++) {
500 put_vc2_ue_uint(&s->pb, s->quant[level][1]);
501 put_vc2_ue_uint(&s->pb, s->quant[level][2]);
502 put_vc2_ue_uint(&s->pb, s->quant[level][3]);
507 /* VC-2 12.3 - transform_parameters() */
508 static void encode_transform_params(VC2EncContext *s)
510 put_vc2_ue_uint(&s->pb, s->wavelet_idx);
511 put_vc2_ue_uint(&s->pb, s->wavelet_depth);
513 encode_slice_params(s);
514 encode_quant_matrix(s);
517 /* VC-2 12.2 - wavelet_transform() */
518 static void encode_wavelet_transform(VC2EncContext *s)
520 encode_transform_params(s);
521 align_put_bits(&s->pb);
524 /* VC-2 12 - picture_parse() */
525 static void encode_picture_start(VC2EncContext *s)
527 align_put_bits(&s->pb);
528 encode_picture_header(s);
529 align_put_bits(&s->pb);
530 encode_wavelet_transform(s);
533 #define QUANT(c, mul, add, shift) (((mul) * (c) + (add)) >> (shift))
535 /* VC-2 13.5.5.2 - slice_band() */
536 static void encode_subband(const VC2EncContext *s, PutBitContext *pb,
537 int sx, int sy, const SubBand *b, int quant)
539 int x, y;
541 const int left = b->width * (sx+0) / s->num_x;
542 const int right = b->width * (sx+1) / s->num_x;
543 const int top = b->height * (sy+0) / s->num_y;
544 const int bottom = b->height * (sy+1) / s->num_y;
546 dwtcoef *coeff = b->buf + top * b->stride;
547 const uint64_t q_m = ((uint64_t)(s->qmagic_lut[quant][0])) << 2;
548 const uint64_t q_a = s->qmagic_lut[quant][1];
549 const int q_s = av_log2(ff_dirac_qscale_tab[quant]) + 32;
551 for (y = top; y < bottom; y++) {
552 for (x = left; x < right; x++) {
553 uint32_t c_abs = QUANT(FFABS(coeff[x]), q_m, q_a, q_s);
554 put_vc2_ue_uint(pb, c_abs);
555 if (c_abs)
556 put_bits(pb, 1, coeff[x] < 0);
558 coeff += b->stride;
562 static int count_hq_slice(SliceArgs *slice, int quant_idx)
564 int x, y;
565 uint8_t quants[MAX_DWT_LEVELS][4];
566 int bits = 0, p, level, orientation;
567 const VC2EncContext *s = slice->ctx;
569 if (slice->cache[quant_idx])
570 return slice->cache[quant_idx];
572 bits += 8*s->prefix_bytes;
573 bits += 8; /* quant_idx */
575 for (level = 0; level < s->wavelet_depth; level++)
576 for (orientation = !!level; orientation < 4; orientation++)
577 quants[level][orientation] = FFMAX(quant_idx - s->quant[level][orientation], 0);
579 for (p = 0; p < 3; p++) {
580 int bytes_start, bytes_len, pad_s, pad_c;
581 bytes_start = bits >> 3;
582 bits += 8;
583 for (level = 0; level < s->wavelet_depth; level++) {
584 for (orientation = !!level; orientation < 4; orientation++) {
585 const SubBand *b = &s->plane[p].band[level][orientation];
587 const int q_idx = quants[level][orientation];
588 const uint64_t q_m = ((uint64_t)s->qmagic_lut[q_idx][0]) << 2;
589 const uint64_t q_a = s->qmagic_lut[q_idx][1];
590 const int q_s = av_log2(ff_dirac_qscale_tab[q_idx]) + 32;
592 const int left = b->width * slice->x / s->num_x;
593 const int right = b->width *(slice->x+1) / s->num_x;
594 const int top = b->height * slice->y / s->num_y;
595 const int bottom = b->height *(slice->y+1) / s->num_y;
597 dwtcoef *buf = b->buf + top * b->stride;
599 for (y = top; y < bottom; y++) {
600 for (x = left; x < right; x++) {
601 uint32_t c_abs = QUANT(FFABS(buf[x]), q_m, q_a, q_s);
602 bits += count_vc2_ue_uint(c_abs);
603 bits += !!c_abs;
605 buf += b->stride;
609 bits += FFALIGN(bits, 8) - bits;
610 bytes_len = (bits >> 3) - bytes_start - 1;
611 pad_s = FFALIGN(bytes_len, s->size_scaler)/s->size_scaler;
612 pad_c = (pad_s*s->size_scaler) - bytes_len;
613 bits += pad_c*8;
616 slice->cache[quant_idx] = bits;
618 return bits;
621 /* Approaches the best possible quantizer asymptotically, its kinda exaustive
622 * but we have a LUT to get the coefficient size in bits. Guaranteed to never
623 * overshoot, which is apparently very important when streaming */
624 static int rate_control(AVCodecContext *avctx, void *arg)
626 SliceArgs *slice_dat = arg;
627 const VC2EncContext *s = slice_dat->ctx;
628 const int top = slice_dat->bits_ceil;
629 const int bottom = slice_dat->bits_floor;
630 int quant_buf[2] = {-1, -1};
631 int quant = slice_dat->quant_idx, step = 1;
632 int bits_last, bits = count_hq_slice(slice_dat, quant);
633 while ((bits > top) || (bits < bottom)) {
634 const int signed_step = bits > top ? +step : -step;
635 quant = av_clip(quant + signed_step, 0, s->q_ceil-1);
636 bits = count_hq_slice(slice_dat, quant);
637 if (quant_buf[1] == quant) {
638 quant = FFMAX(quant_buf[0], quant);
639 bits = quant == quant_buf[0] ? bits_last : bits;
640 break;
642 step = av_clip(step/2, 1, (s->q_ceil-1)/2);
643 quant_buf[1] = quant_buf[0];
644 quant_buf[0] = quant;
645 bits_last = bits;
647 slice_dat->quant_idx = av_clip(quant, 0, s->q_ceil-1);
648 slice_dat->bytes = SSIZE_ROUND(bits >> 3);
649 return 0;
652 static int calc_slice_sizes(VC2EncContext *s)
654 int i, j, slice_x, slice_y, bytes_left = 0;
655 int bytes_top[SLICE_REDIST_TOTAL] = {0};
656 int64_t total_bytes_needed = 0;
657 int slice_redist_range = FFMIN(SLICE_REDIST_TOTAL, s->num_x*s->num_y);
658 SliceArgs *enc_args = s->slice_args;
659 SliceArgs *top_loc[SLICE_REDIST_TOTAL] = {NULL};
661 init_quant_matrix(s);
663 for (slice_y = 0; slice_y < s->num_y; slice_y++) {
664 for (slice_x = 0; slice_x < s->num_x; slice_x++) {
665 SliceArgs *args = &enc_args[s->num_x*slice_y + slice_x];
666 args->ctx = s;
667 args->x = slice_x;
668 args->y = slice_y;
669 args->bits_ceil = s->slice_max_bytes << 3;
670 args->bits_floor = s->slice_min_bytes << 3;
671 memset(args->cache, 0, s->q_ceil*sizeof(*args->cache));
675 /* First pass - determine baseline slice sizes w.r.t. max_slice_size */
676 s->avctx->execute(s->avctx, rate_control, enc_args, NULL, s->num_x*s->num_y,
677 sizeof(SliceArgs));
679 for (i = 0; i < s->num_x*s->num_y; i++) {
680 SliceArgs *args = &enc_args[i];
681 bytes_left += args->bytes;
682 for (j = 0; j < slice_redist_range; j++) {
683 if (args->bytes > bytes_top[j]) {
684 bytes_top[j] = args->bytes;
685 top_loc[j] = args;
686 break;
691 bytes_left = s->frame_max_bytes - bytes_left;
693 /* Second pass - distribute leftover bytes */
694 while (bytes_left > 0) {
695 int distributed = 0;
696 for (i = 0; i < slice_redist_range; i++) {
697 SliceArgs *args;
698 int bits, bytes, diff, prev_bytes, new_idx;
699 if (bytes_left <= 0)
700 break;
701 if (!top_loc[i] || !top_loc[i]->quant_idx)
702 break;
703 args = top_loc[i];
704 prev_bytes = args->bytes;
705 new_idx = FFMAX(args->quant_idx - 1, 0);
706 bits = count_hq_slice(args, new_idx);
707 bytes = SSIZE_ROUND(bits >> 3);
708 diff = bytes - prev_bytes;
709 if ((bytes_left - diff) > 0) {
710 args->quant_idx = new_idx;
711 args->bytes = bytes;
712 bytes_left -= diff;
713 distributed++;
716 if (!distributed)
717 break;
720 for (i = 0; i < s->num_x*s->num_y; i++) {
721 SliceArgs *args = &enc_args[i];
722 total_bytes_needed += args->bytes;
723 s->q_avg = (s->q_avg + args->quant_idx)/2;
726 return total_bytes_needed;
729 /* VC-2 13.5.3 - hq_slice */
730 static int encode_hq_slice(AVCodecContext *avctx, void *arg)
732 const SliceArgs *slice_dat = arg;
733 const VC2EncContext *s = slice_dat->ctx;
734 PutBitContext pb0, *const pb = &pb0;
735 const int slice_x = slice_dat->x;
736 const int slice_y = slice_dat->y;
737 const int quant_idx = slice_dat->quant_idx;
738 const int slice_bytes_max = slice_dat->bytes;
739 uint8_t quants[MAX_DWT_LEVELS][4];
740 int p, level, orientation;
742 /* The reference decoder ignores it, and its typical length is 0 */
743 memset(slice_dat->buf, 0, s->prefix_bytes);
745 init_put_bits(pb, slice_dat->buf + s->prefix_bytes, slice_dat->bytes - s->prefix_bytes);
747 put_bits(pb, 8, quant_idx);
749 /* Slice quantization (slice_quantizers() in the specs) */
750 for (level = 0; level < s->wavelet_depth; level++)
751 for (orientation = !!level; orientation < 4; orientation++)
752 quants[level][orientation] = FFMAX(quant_idx - s->quant[level][orientation], 0);
754 /* Luma + 2 Chroma planes */
755 for (p = 0; p < 3; p++) {
756 int bytes_start, bytes_len, pad_s, pad_c;
757 bytes_start = put_bytes_count(pb, 0);
758 put_bits(pb, 8, 0);
759 for (level = 0; level < s->wavelet_depth; level++) {
760 for (orientation = !!level; orientation < 4; orientation++) {
761 encode_subband(s, pb, slice_x, slice_y,
762 &s->plane[p].band[level][orientation],
763 quants[level][orientation]);
766 flush_put_bits(pb);
767 bytes_len = put_bytes_output(pb) - bytes_start - 1;
768 if (p == 2) {
769 int len_diff = slice_bytes_max - put_bytes_output(pb);
770 pad_s = FFALIGN((bytes_len + len_diff), s->size_scaler)/s->size_scaler;
771 pad_c = (pad_s*s->size_scaler) - bytes_len;
772 } else {
773 pad_s = FFALIGN(bytes_len, s->size_scaler)/s->size_scaler;
774 pad_c = (pad_s*s->size_scaler) - bytes_len;
776 pb->buf[bytes_start] = pad_s;
777 /* vc2-reference uses that padding that decodes to '0' coeffs */
778 memset(put_bits_ptr(pb), 0xFF, pad_c);
779 skip_put_bytes(pb, pad_c);
782 return 0;
785 /* VC-2 13.5.1 - low_delay_transform_data() */
786 static int encode_slices(VC2EncContext *s)
788 uint8_t *buf;
789 int slice_x, slice_y, skip = 0;
790 SliceArgs *enc_args = s->slice_args;
792 flush_put_bits(&s->pb);
793 buf = put_bits_ptr(&s->pb);
795 for (slice_y = 0; slice_y < s->num_y; slice_y++) {
796 for (slice_x = 0; slice_x < s->num_x; slice_x++) {
797 SliceArgs *args = &enc_args[s->num_x*slice_y + slice_x];
798 args->buf = buf + skip;
799 skip += args->bytes;
803 s->avctx->execute(s->avctx, encode_hq_slice, enc_args, NULL, s->num_x*s->num_y,
804 sizeof(SliceArgs));
806 skip_put_bytes(&s->pb, skip);
808 return 0;
812 * Transform basics for a 3 level transform
813 * |---------------------------------------------------------------------|
814 * | LL-0 | HL-0 | | |
815 * |--------|-------| HL-1 | |
816 * | LH-0 | HH-0 | | |
817 * |----------------|-----------------| HL-2 |
818 * | | | |
819 * | LH-1 | HH-1 | |
820 * | | | |
821 * |----------------------------------|----------------------------------|
822 * | | |
823 * | | |
824 * | | |
825 * | LH-2 | HH-2 |
826 * | | |
827 * | | |
828 * | | |
829 * |---------------------------------------------------------------------|
831 * DWT transforms are generally applied by splitting the image in two vertically
832 * and applying a low pass transform on the left part and a corresponding high
833 * pass transform on the right hand side. This is known as the horizontal filter
834 * stage.
835 * After that, the same operation is performed except the image is divided
836 * horizontally, with the high pass on the lower and the low pass on the higher
837 * side.
838 * Therefore, you're left with 4 subdivisions - known as low-low, low-high,
839 * high-low and high-high. They're referred to as orientations in the decoder
840 * and encoder.
842 * The LL (low-low) area contains the original image downsampled by the amount
843 * of levels. The rest of the areas can be thought as the details needed
844 * to restore the image perfectly to its original size.
846 static int dwt_plane(AVCodecContext *avctx, void *arg)
848 TransformArgs *transform_dat = arg;
849 const VC2EncContext *s = transform_dat->ctx;
850 const void *frame_data = transform_dat->idata;
851 const ptrdiff_t linesize = transform_dat->istride;
852 const int field = transform_dat->field;
853 const Plane *p = transform_dat->plane;
854 VC2TransformContext *t = &transform_dat->t;
855 dwtcoef *buf = p->coef_buf;
856 const int idx = s->wavelet_idx;
857 const int skip = 1 + s->interlaced;
859 int x, y, level, offset;
860 ptrdiff_t pix_stride = linesize >> (s->bpp - 1);
862 if (field == 1) {
863 offset = 0;
864 pix_stride <<= 1;
865 } else if (field == 2) {
866 offset = pix_stride;
867 pix_stride <<= 1;
868 } else {
869 offset = 0;
872 if (s->bpp == 1) {
873 const uint8_t *pix = (const uint8_t *)frame_data + offset;
874 for (y = 0; y < p->height*skip; y+=skip) {
875 for (x = 0; x < p->width; x++) {
876 buf[x] = pix[x] - s->diff_offset;
878 memset(&buf[x], 0, (p->coef_stride - p->width)*sizeof(dwtcoef));
879 buf += p->coef_stride;
880 pix += pix_stride;
882 } else {
883 const uint16_t *pix = (const uint16_t *)frame_data + offset;
884 for (y = 0; y < p->height*skip; y+=skip) {
885 for (x = 0; x < p->width; x++) {
886 buf[x] = pix[x] - s->diff_offset;
888 memset(&buf[x], 0, (p->coef_stride - p->width)*sizeof(dwtcoef));
889 buf += p->coef_stride;
890 pix += pix_stride;
894 memset(buf, 0, p->coef_stride * (p->dwt_height - p->height) * sizeof(dwtcoef));
896 for (level = s->wavelet_depth-1; level >= 0; level--) {
897 const SubBand *b = &p->band[level][0];
898 t->vc2_subband_dwt[idx](t, p->coef_buf, p->coef_stride,
899 b->width, b->height);
902 return 0;
905 static int encode_frame(VC2EncContext *s, AVPacket *avpkt, const AVFrame *frame,
906 const char *aux_data, const int header_size, int field)
908 int i, ret;
909 int64_t max_frame_bytes;
911 /* Threaded DWT transform */
912 for (i = 0; i < 3; i++) {
913 s->transform_args[i].ctx = s;
914 s->transform_args[i].field = field;
915 s->transform_args[i].plane = &s->plane[i];
916 s->transform_args[i].idata = frame->data[i];
917 s->transform_args[i].istride = frame->linesize[i];
919 s->avctx->execute(s->avctx, dwt_plane, s->transform_args, NULL, 3,
920 sizeof(TransformArgs));
922 /* Calculate per-slice quantizers and sizes */
923 max_frame_bytes = header_size + calc_slice_sizes(s);
925 if (field < 2) {
926 ret = ff_get_encode_buffer(s->avctx, avpkt,
927 max_frame_bytes << s->interlaced, 0);
928 if (ret < 0)
929 return ret;
930 init_put_bits(&s->pb, avpkt->data, avpkt->size);
933 /* Sequence header */
934 encode_parse_info(s, DIRAC_PCODE_SEQ_HEADER);
935 encode_seq_header(s);
937 /* Encoder version */
938 if (aux_data) {
939 encode_parse_info(s, DIRAC_PCODE_AUX);
940 ff_put_string(&s->pb, aux_data, 1);
943 /* Picture header */
944 encode_parse_info(s, DIRAC_PCODE_PICTURE_HQ);
945 encode_picture_start(s);
947 /* Encode slices */
948 encode_slices(s);
950 /* End sequence */
951 encode_parse_info(s, DIRAC_PCODE_END_SEQ);
953 return 0;
956 static av_cold int vc2_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
957 const AVFrame *frame, int *got_packet)
959 int ret = 0;
960 int slice_ceil, sig_size = 256;
961 VC2EncContext *s = avctx->priv_data;
962 const int bitexact = avctx->flags & AV_CODEC_FLAG_BITEXACT;
963 const char *aux_data = bitexact ? "Lavc" : LIBAVCODEC_IDENT;
964 const int aux_data_size = bitexact ? sizeof("Lavc") : sizeof(LIBAVCODEC_IDENT);
965 const int header_size = 100 + aux_data_size;
966 int64_t r_bitrate = avctx->bit_rate >> (s->interlaced);
968 s->avctx = avctx;
969 s->size_scaler = 2;
970 s->prefix_bytes = 0;
971 s->last_parse_code = 0;
972 s->next_parse_offset = 0;
974 /* Rate control */
975 s->frame_max_bytes = (av_rescale(r_bitrate, s->avctx->time_base.num,
976 s->avctx->time_base.den) >> 3) - header_size;
977 s->slice_max_bytes = slice_ceil = av_rescale(s->frame_max_bytes, 1, s->num_x*s->num_y);
979 /* Find an appropriate size scaler */
980 while (sig_size > 255) {
981 int r_size = SSIZE_ROUND(s->slice_max_bytes);
982 if (r_size > slice_ceil) {
983 s->slice_max_bytes -= r_size - slice_ceil;
984 r_size = SSIZE_ROUND(s->slice_max_bytes);
986 sig_size = r_size/s->size_scaler; /* Signalled slize size */
987 s->size_scaler <<= 1;
990 s->slice_min_bytes = s->slice_max_bytes - s->slice_max_bytes*(s->tolerance/100.0f);
991 if (s->slice_min_bytes < 0 || s->slice_max_bytes > INT_MAX >> 3)
992 return AVERROR(EINVAL);
994 ret = encode_frame(s, avpkt, frame, aux_data, header_size, s->interlaced);
995 if (ret)
996 return ret;
997 if (s->interlaced) {
998 ret = encode_frame(s, avpkt, frame, aux_data, header_size, 2);
999 if (ret)
1000 return ret;
1003 flush_put_bits(&s->pb);
1004 av_shrink_packet(avpkt, put_bytes_output(&s->pb));
1006 *got_packet = 1;
1008 return 0;
1011 static av_cold int vc2_encode_end(AVCodecContext *avctx)
1013 int i;
1014 VC2EncContext *s = avctx->priv_data;
1016 av_log(avctx, AV_LOG_INFO, "Qavg: %i\n", s->q_avg);
1018 for (i = 0; i < 3; i++) {
1019 ff_vc2enc_free_transforms(&s->transform_args[i].t);
1020 av_freep(&s->plane[i].coef_buf);
1023 av_freep(&s->slice_args);
1025 return 0;
1028 static av_cold int vc2_encode_init(AVCodecContext *avctx)
1030 Plane *p;
1031 SubBand *b;
1032 int i, level, o, shift;
1033 const AVPixFmtDescriptor *pixdesc;
1034 int depth;
1035 VC2EncContext *s = avctx->priv_data;
1037 s->picture_number = 0;
1039 /* Total allowed quantization range */
1040 s->q_ceil = DIRAC_MAX_QUANT_INDEX;
1042 s->ver.major = 2;
1043 s->ver.minor = 0;
1044 s->profile = 3;
1045 s->level = 3;
1047 s->base_vf = -1;
1048 s->strict_compliance = 1;
1050 s->q_avg = 0;
1051 s->slice_max_bytes = 0;
1052 s->slice_min_bytes = 0;
1054 /* Mark unknown as progressive */
1055 s->interlaced = !((avctx->field_order == AV_FIELD_UNKNOWN) ||
1056 (avctx->field_order == AV_FIELD_PROGRESSIVE));
1058 for (i = 0; i < base_video_fmts_len; i++) {
1059 const VC2BaseVideoFormat *fmt = &base_video_fmts[i];
1060 if (avctx->pix_fmt != fmt->pix_fmt)
1061 continue;
1062 if (avctx->time_base.num != fmt->time_base.num)
1063 continue;
1064 if (avctx->time_base.den != fmt->time_base.den)
1065 continue;
1066 if (avctx->width != fmt->width)
1067 continue;
1068 if (avctx->height != fmt->height)
1069 continue;
1070 if (s->interlaced != fmt->interlaced)
1071 continue;
1072 s->base_vf = i;
1073 s->level = base_video_fmts[i].level;
1074 break;
1077 if (s->interlaced)
1078 av_log(avctx, AV_LOG_WARNING, "Interlacing enabled!\n");
1080 if ((s->slice_width & (s->slice_width - 1)) ||
1081 (s->slice_height & (s->slice_height - 1))) {
1082 av_log(avctx, AV_LOG_ERROR, "Slice size is not a power of two!\n");
1083 return AVERROR_UNKNOWN;
1086 if ((s->slice_width > avctx->width) ||
1087 (s->slice_height > avctx->height)) {
1088 av_log(avctx, AV_LOG_ERROR, "Slice size is bigger than the image!\n");
1089 return AVERROR_UNKNOWN;
1092 if (s->base_vf <= 0) {
1093 if (avctx->strict_std_compliance < FF_COMPLIANCE_STRICT) {
1094 s->strict_compliance = s->base_vf = 0;
1095 av_log(avctx, AV_LOG_WARNING, "Format does not strictly comply with VC2 specs\n");
1096 } else {
1097 av_log(avctx, AV_LOG_WARNING, "Given format does not strictly comply with "
1098 "the specifications, decrease strictness to use it.\n");
1099 return AVERROR_UNKNOWN;
1101 } else {
1102 av_log(avctx, AV_LOG_INFO, "Selected base video format = %i (%s)\n",
1103 s->base_vf, base_video_fmts[s->base_vf].name);
1106 pixdesc = av_pix_fmt_desc_get(avctx->pix_fmt);
1107 /* Chroma subsampling */
1108 s->chroma_x_shift = pixdesc->log2_chroma_w;
1109 s->chroma_y_shift = pixdesc->log2_chroma_h;
1111 /* Bit depth and color range index */
1112 depth = pixdesc->comp[0].depth;
1113 if (depth == 8 && avctx->color_range == AVCOL_RANGE_JPEG) {
1114 s->bpp = 1;
1115 s->bpp_idx = 1;
1116 s->diff_offset = 128;
1117 } else if (depth == 8 && (avctx->color_range == AVCOL_RANGE_MPEG ||
1118 avctx->color_range == AVCOL_RANGE_UNSPECIFIED)) {
1119 s->bpp = 1;
1120 s->bpp_idx = 2;
1121 s->diff_offset = 128;
1122 } else if (depth == 10) {
1123 s->bpp = 2;
1124 s->bpp_idx = 3;
1125 s->diff_offset = 512;
1126 } else {
1127 s->bpp = 2;
1128 s->bpp_idx = 4;
1129 s->diff_offset = 2048;
1132 /* Planes initialization */
1133 for (i = 0; i < 3; i++) {
1134 int w, h;
1135 p = &s->plane[i];
1136 p->width = avctx->width >> (i ? s->chroma_x_shift : 0);
1137 p->height = avctx->height >> (i ? s->chroma_y_shift : 0);
1138 if (s->interlaced)
1139 p->height >>= 1;
1140 p->dwt_width = w = FFALIGN(p->width, (1 << s->wavelet_depth));
1141 p->dwt_height = h = FFALIGN(p->height, (1 << s->wavelet_depth));
1142 p->coef_stride = FFALIGN(p->dwt_width, 32);
1143 p->coef_buf = av_mallocz(p->coef_stride*p->dwt_height*sizeof(dwtcoef));
1144 if (!p->coef_buf)
1145 return AVERROR(ENOMEM);
1146 for (level = s->wavelet_depth-1; level >= 0; level--) {
1147 w = w >> 1;
1148 h = h >> 1;
1149 for (o = 0; o < 4; o++) {
1150 b = &p->band[level][o];
1151 b->width = w;
1152 b->height = h;
1153 b->stride = p->coef_stride;
1154 shift = (o > 1)*b->height*b->stride + (o & 1)*b->width;
1155 b->buf = p->coef_buf + shift;
1159 /* DWT init */
1160 if (ff_vc2enc_init_transforms(&s->transform_args[i].t,
1161 s->plane[i].coef_stride,
1162 s->plane[i].dwt_height,
1163 s->slice_width, s->slice_height))
1164 return AVERROR(ENOMEM);
1167 /* Slices */
1168 s->num_x = s->plane[0].dwt_width/s->slice_width;
1169 s->num_y = s->plane[0].dwt_height/s->slice_height;
1171 s->slice_args = av_calloc(s->num_x*s->num_y, sizeof(SliceArgs));
1172 if (!s->slice_args)
1173 return AVERROR(ENOMEM);
1175 for (i = 0; i < 116; i++) {
1176 const uint64_t qf = ff_dirac_qscale_tab[i];
1177 const uint32_t m = av_log2(qf);
1178 const uint32_t t = (1ULL << (m + 32)) / qf;
1179 const uint32_t r = (t*qf + qf) & UINT32_MAX;
1180 if (!(qf & (qf - 1))) {
1181 s->qmagic_lut[i][0] = 0xFFFFFFFF;
1182 s->qmagic_lut[i][1] = 0xFFFFFFFF;
1183 } else if (r <= 1 << m) {
1184 s->qmagic_lut[i][0] = t + 1;
1185 s->qmagic_lut[i][1] = 0;
1186 } else {
1187 s->qmagic_lut[i][0] = t;
1188 s->qmagic_lut[i][1] = t;
1192 return 0;
1195 #define VC2ENC_FLAGS (AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
1196 static const AVOption vc2enc_options[] = {
1197 {"tolerance", "Max undershoot in percent", offsetof(VC2EncContext, tolerance), AV_OPT_TYPE_DOUBLE, {.dbl = 5.0f}, 0.0f, 45.0f, VC2ENC_FLAGS, .unit = "tolerance"},
1198 {"slice_width", "Slice width", offsetof(VC2EncContext, slice_width), AV_OPT_TYPE_INT, {.i64 = 32}, 32, 1024, VC2ENC_FLAGS, .unit = "slice_width"},
1199 {"slice_height", "Slice height", offsetof(VC2EncContext, slice_height), AV_OPT_TYPE_INT, {.i64 = 16}, 8, 1024, VC2ENC_FLAGS, .unit = "slice_height"},
1200 {"wavelet_depth", "Transform depth", offsetof(VC2EncContext, wavelet_depth), AV_OPT_TYPE_INT, {.i64 = 4}, 1, 5, VC2ENC_FLAGS, .unit = "wavelet_depth"},
1201 {"wavelet_type", "Transform type", offsetof(VC2EncContext, wavelet_idx), AV_OPT_TYPE_INT, {.i64 = VC2_TRANSFORM_9_7}, 0, VC2_TRANSFORMS_NB, VC2ENC_FLAGS, .unit = "wavelet_idx"},
1202 {"9_7", "Deslauriers-Dubuc (9,7)", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_9_7}, INT_MIN, INT_MAX, VC2ENC_FLAGS, .unit = "wavelet_idx"},
1203 {"5_3", "LeGall (5,3)", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_5_3}, INT_MIN, INT_MAX, VC2ENC_FLAGS, .unit = "wavelet_idx"},
1204 {"haar", "Haar (with shift)", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_HAAR_S}, INT_MIN, INT_MAX, VC2ENC_FLAGS, .unit = "wavelet_idx"},
1205 {"haar_noshift", "Haar (without shift)", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_HAAR}, INT_MIN, INT_MAX, VC2ENC_FLAGS, .unit = "wavelet_idx"},
1206 {"qm", "Custom quantization matrix", offsetof(VC2EncContext, quant_matrix), AV_OPT_TYPE_INT, {.i64 = VC2_QM_DEF}, 0, VC2_QM_NB, VC2ENC_FLAGS, .unit = "quant_matrix"},
1207 {"default", "Default from the specifications", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_QM_DEF}, INT_MIN, INT_MAX, VC2ENC_FLAGS, .unit = "quant_matrix"},
1208 {"color", "Prevents low bitrate discoloration", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_QM_COL}, INT_MIN, INT_MAX, VC2ENC_FLAGS, .unit = "quant_matrix"},
1209 {"flat", "Optimize for PSNR", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_QM_FLAT}, INT_MIN, INT_MAX, VC2ENC_FLAGS, .unit = "quant_matrix"},
1210 {NULL}
1213 static const AVClass vc2enc_class = {
1214 .class_name = "SMPTE VC-2 encoder",
1215 .category = AV_CLASS_CATEGORY_ENCODER,
1216 .option = vc2enc_options,
1217 .item_name = av_default_item_name,
1218 .version = LIBAVUTIL_VERSION_INT
1221 static const FFCodecDefault vc2enc_defaults[] = {
1222 { "b", "600000000" },
1223 { NULL },
1226 static const enum AVPixelFormat allowed_pix_fmts[] = {
1227 AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P,
1228 AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
1229 AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12,
1230 AV_PIX_FMT_NONE
1233 const FFCodec ff_vc2_encoder = {
1234 .p.name = "vc2",
1235 CODEC_LONG_NAME("SMPTE VC-2"),
1236 .p.type = AVMEDIA_TYPE_VIDEO,
1237 .p.id = AV_CODEC_ID_DIRAC,
1238 .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_SLICE_THREADS |
1239 AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE,
1240 .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
1241 .priv_data_size = sizeof(VC2EncContext),
1242 .init = vc2_encode_init,
1243 .close = vc2_encode_end,
1244 FF_CODEC_ENCODE_CB(vc2_encode_frame),
1245 .p.priv_class = &vc2enc_class,
1246 .defaults = vc2enc_defaults,
1247 .p.pix_fmts = allowed_pix_fmts,
1248 .color_ranges = AVCOL_RANGE_MPEG | AVCOL_RANGE_JPEG,