Merge branch 'firewire-kernel-streaming' of git://git.alsa-project.org/alsa-kprivate
[firewire-audio.git] / drivers / net / tile / tilepro.c
blob7cb301da747440dd9d14d8e68aced335450b2be0
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/moduleparam.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h> /* printk() */
20 #include <linux/slab.h> /* kmalloc() */
21 #include <linux/errno.h> /* error codes */
22 #include <linux/types.h> /* size_t */
23 #include <linux/interrupt.h>
24 #include <linux/in.h>
25 #include <linux/netdevice.h> /* struct device, and other headers */
26 #include <linux/etherdevice.h> /* eth_type_trans */
27 #include <linux/skbuff.h>
28 #include <linux/ioctl.h>
29 #include <linux/cdev.h>
30 #include <linux/hugetlb.h>
31 #include <linux/in6.h>
32 #include <linux/timer.h>
33 #include <linux/io.h>
34 #include <asm/checksum.h>
35 #include <asm/homecache.h>
37 #include <hv/drv_xgbe_intf.h>
38 #include <hv/drv_xgbe_impl.h>
39 #include <hv/hypervisor.h>
40 #include <hv/netio_intf.h>
42 /* For TSO */
43 #include <linux/ip.h>
44 #include <linux/tcp.h>
47 /* There is no singlethread_cpu, so schedule work on the current cpu. */
48 #define singlethread_cpu -1
52 * First, "tile_net_init_module()" initializes all four "devices" which
53 * can be used by linux.
55 * Then, "ifconfig DEVICE up" calls "tile_net_open()", which analyzes
56 * the network cpus, then uses "tile_net_open_aux()" to initialize
57 * LIPP/LEPP, and then uses "tile_net_open_inner()" to register all
58 * the tiles, provide buffers to LIPP, allow ingress to start, and
59 * turn on hypervisor interrupt handling (and NAPI) on all tiles.
61 * If registration fails due to the link being down, then "retry_work"
62 * is used to keep calling "tile_net_open_inner()" until it succeeds.
64 * If "ifconfig DEVICE down" is called, it uses "tile_net_stop()" to
65 * stop egress, drain the LIPP buffers, unregister all the tiles, stop
66 * LIPP/LEPP, and wipe the LEPP queue.
68 * We start out with the ingress interrupt enabled on each CPU. When
69 * this interrupt fires, we disable it, and call "napi_schedule()".
70 * This will cause "tile_net_poll()" to be called, which will pull
71 * packets from the netio queue, filtering them out, or passing them
72 * to "netif_receive_skb()". If our budget is exhausted, we will
73 * return, knowing we will be called again later. Otherwise, we
74 * reenable the ingress interrupt, and call "napi_complete()".
77 * NOTE: The use of "native_driver" ensures that EPP exists, and that
78 * "epp_sendv" is legal, and that "LIPP" is being used.
80 * NOTE: Failing to free completions for an arbitrarily long time
81 * (which is defined to be illegal) does in fact cause bizarre
82 * problems. The "egress_timer" helps prevent this from happening.
84 * NOTE: The egress code can be interrupted by the interrupt handler.
88 /* HACK: Allow use of "jumbo" packets. */
89 /* This should be 1500 if "jumbo" is not set in LIPP. */
90 /* This should be at most 10226 (10240 - 14) if "jumbo" is set in LIPP. */
91 /* ISSUE: This has not been thoroughly tested (except at 1500). */
92 #define TILE_NET_MTU 1500
94 /* HACK: Define to support GSO. */
95 /* ISSUE: This may actually hurt performance of the TCP blaster. */
96 /* #define TILE_NET_GSO */
98 /* Define this to collapse "duplicate" acks. */
99 /* #define IGNORE_DUP_ACKS */
101 /* HACK: Define this to verify incoming packets. */
102 /* #define TILE_NET_VERIFY_INGRESS */
104 /* Use 3000 to enable the Linux Traffic Control (QoS) layer, else 0. */
105 #define TILE_NET_TX_QUEUE_LEN 0
107 /* Define to dump packets (prints out the whole packet on tx and rx). */
108 /* #define TILE_NET_DUMP_PACKETS */
110 /* Define to enable debug spew (all PDEBUG's are enabled). */
111 /* #define TILE_NET_DEBUG */
114 /* Define to activate paranoia checks. */
115 /* #define TILE_NET_PARANOIA */
117 /* Default transmit lockup timeout period, in jiffies. */
118 #define TILE_NET_TIMEOUT (5 * HZ)
120 /* Default retry interval for bringing up the NetIO interface, in jiffies. */
121 #define TILE_NET_RETRY_INTERVAL (5 * HZ)
123 /* Number of ports (xgbe0, xgbe1, gbe0, gbe1). */
124 #define TILE_NET_DEVS 4
128 /* Paranoia. */
129 #if NET_IP_ALIGN != LIPP_PACKET_PADDING
130 #error "NET_IP_ALIGN must match LIPP_PACKET_PADDING."
131 #endif
134 /* Debug print. */
135 #ifdef TILE_NET_DEBUG
136 #define PDEBUG(fmt, args...) net_printk(fmt, ## args)
137 #else
138 #define PDEBUG(fmt, args...)
139 #endif
142 MODULE_AUTHOR("Tilera");
143 MODULE_LICENSE("GPL");
146 * Queue of incoming packets for a specific cpu and device.
148 * Includes a pointer to the "system" data, and the actual "user" data.
150 struct tile_netio_queue {
151 netio_queue_impl_t *__system_part;
152 netio_queue_user_impl_t __user_part;
158 * Statistics counters for a specific cpu and device.
160 struct tile_net_stats_t {
161 u32 rx_packets;
162 u32 rx_bytes;
163 u32 tx_packets;
164 u32 tx_bytes;
169 * Info for a specific cpu and device.
171 * ISSUE: There is a "dev" pointer in "napi" as well.
173 struct tile_net_cpu {
174 /* The NAPI struct. */
175 struct napi_struct napi;
176 /* Packet queue. */
177 struct tile_netio_queue queue;
178 /* Statistics. */
179 struct tile_net_stats_t stats;
180 /* ISSUE: Is this needed? */
181 bool napi_enabled;
182 /* True if this tile has succcessfully registered with the IPP. */
183 bool registered;
184 /* True if the link was down last time we tried to register. */
185 bool link_down;
186 /* True if "egress_timer" is scheduled. */
187 bool egress_timer_scheduled;
188 /* Number of small sk_buffs which must still be provided. */
189 unsigned int num_needed_small_buffers;
190 /* Number of large sk_buffs which must still be provided. */
191 unsigned int num_needed_large_buffers;
192 /* A timer for handling egress completions. */
193 struct timer_list egress_timer;
198 * Info for a specific device.
200 struct tile_net_priv {
201 /* Our network device. */
202 struct net_device *dev;
203 /* The actual egress queue. */
204 lepp_queue_t *epp_queue;
205 /* Protects "epp_queue->cmd_tail" and "epp_queue->comp_tail" */
206 spinlock_t cmd_lock;
207 /* Protects "epp_queue->comp_head". */
208 spinlock_t comp_lock;
209 /* The hypervisor handle for this interface. */
210 int hv_devhdl;
211 /* The intr bit mask that IDs this device. */
212 u32 intr_id;
213 /* True iff "tile_net_open_aux()" has succeeded. */
214 int partly_opened;
215 /* True iff "tile_net_open_inner()" has succeeded. */
216 int fully_opened;
217 /* Effective network cpus. */
218 struct cpumask network_cpus_map;
219 /* Number of network cpus. */
220 int network_cpus_count;
221 /* Credits per network cpu. */
222 int network_cpus_credits;
223 /* Network stats. */
224 struct net_device_stats stats;
225 /* For NetIO bringup retries. */
226 struct delayed_work retry_work;
227 /* Quick access to per cpu data. */
228 struct tile_net_cpu *cpu[NR_CPUS];
233 * The actual devices (xgbe0, xgbe1, gbe0, gbe1).
235 static struct net_device *tile_net_devs[TILE_NET_DEVS];
238 * The "tile_net_cpu" structures for each device.
240 static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe0);
241 static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe1);
242 static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe0);
243 static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe1);
247 * True if "network_cpus" was specified.
249 static bool network_cpus_used;
252 * The actual cpus in "network_cpus".
254 static struct cpumask network_cpus_map;
258 #ifdef TILE_NET_DEBUG
260 * printk with extra stuff.
262 * We print the CPU we're running in brackets.
264 static void net_printk(char *fmt, ...)
266 int i;
267 int len;
268 va_list args;
269 static char buf[256];
271 len = sprintf(buf, "tile_net[%2.2d]: ", smp_processor_id());
272 va_start(args, fmt);
273 i = vscnprintf(buf + len, sizeof(buf) - len - 1, fmt, args);
274 va_end(args);
275 buf[255] = '\0';
276 pr_notice(buf);
278 #endif
281 #ifdef TILE_NET_DUMP_PACKETS
283 * Dump a packet.
285 static void dump_packet(unsigned char *data, unsigned long length, char *s)
287 unsigned long i;
288 static unsigned int count;
290 pr_info("dump_packet(data %p, length 0x%lx s %s count 0x%x)\n",
291 data, length, s, count++);
293 pr_info("\n");
295 for (i = 0; i < length; i++) {
296 if ((i & 0xf) == 0)
297 sprintf(buf, "%8.8lx:", i);
298 sprintf(buf + strlen(buf), " %2.2x", data[i]);
299 if ((i & 0xf) == 0xf || i == length - 1)
300 pr_info("%s\n", buf);
303 #endif
307 * Provide support for the __netio_fastio1() swint
308 * (see <hv/drv_xgbe_intf.h> for how it is used).
310 * The fastio swint2 call may clobber all the caller-saved registers.
311 * It rarely clobbers memory, but we allow for the possibility in
312 * the signature just to be on the safe side.
314 * Also, gcc doesn't seem to allow an input operand to be
315 * clobbered, so we fake it with dummy outputs.
317 * This function can't be static because of the way it is declared
318 * in the netio header.
320 inline int __netio_fastio1(u32 fastio_index, u32 arg0)
322 long result, clobber_r1, clobber_r10;
323 asm volatile("swint2"
324 : "=R00" (result),
325 "=R01" (clobber_r1), "=R10" (clobber_r10)
326 : "R10" (fastio_index), "R01" (arg0)
327 : "memory", "r2", "r3", "r4",
328 "r5", "r6", "r7", "r8", "r9",
329 "r11", "r12", "r13", "r14",
330 "r15", "r16", "r17", "r18", "r19",
331 "r20", "r21", "r22", "r23", "r24",
332 "r25", "r26", "r27", "r28", "r29");
333 return result;
338 * Provide a linux buffer to LIPP.
340 static void tile_net_provide_linux_buffer(struct tile_net_cpu *info,
341 void *va, bool small)
343 struct tile_netio_queue *queue = &info->queue;
345 /* Convert "va" and "small" to "linux_buffer_t". */
346 unsigned int buffer = ((unsigned int)(__pa(va) >> 7) << 1) + small;
348 __netio_fastio_free_buffer(queue->__user_part.__fastio_index, buffer);
353 * Provide a linux buffer for LIPP.
355 static bool tile_net_provide_needed_buffer(struct tile_net_cpu *info,
356 bool small)
358 /* ISSUE: What should we use here? */
359 unsigned int large_size = NET_IP_ALIGN + TILE_NET_MTU + 100;
361 /* Round up to ensure to avoid "false sharing" with last cache line. */
362 unsigned int buffer_size =
363 (((small ? LIPP_SMALL_PACKET_SIZE : large_size) +
364 CHIP_L2_LINE_SIZE() - 1) & -CHIP_L2_LINE_SIZE());
367 * ISSUE: Since CPAs are 38 bits, and we can only encode the
368 * high 31 bits in a "linux_buffer_t", the low 7 bits must be
369 * zero, and thus, we must align the actual "va" mod 128.
371 const unsigned long align = 128;
373 struct sk_buff *skb;
374 void *va;
376 struct sk_buff **skb_ptr;
378 /* Note that "dev_alloc_skb()" adds NET_SKB_PAD more bytes, */
379 /* and also "reserves" that many bytes. */
380 /* ISSUE: Can we "share" the NET_SKB_PAD bytes with "skb_ptr"? */
381 int len = sizeof(*skb_ptr) + align + buffer_size;
383 while (1) {
385 /* Allocate (or fail). */
386 skb = dev_alloc_skb(len);
387 if (skb == NULL)
388 return false;
390 /* Make room for a back-pointer to 'skb'. */
391 skb_reserve(skb, sizeof(*skb_ptr));
393 /* Make sure we are aligned. */
394 skb_reserve(skb, -(long)skb->data & (align - 1));
396 /* This address is given to IPP. */
397 va = skb->data;
399 if (small)
400 break;
402 /* ISSUE: This has never been observed! */
403 /* Large buffers must not span a huge page. */
404 if (((((long)va & ~HPAGE_MASK) + 1535) & HPAGE_MASK) == 0)
405 break;
406 pr_err("Leaking unaligned linux buffer at %p.\n", va);
409 /* Skip two bytes to satisfy LIPP assumptions. */
410 /* Note that this aligns IP on a 16 byte boundary. */
411 /* ISSUE: Do this when the packet arrives? */
412 skb_reserve(skb, NET_IP_ALIGN);
414 /* Save a back-pointer to 'skb'. */
415 skb_ptr = va - sizeof(*skb_ptr);
416 *skb_ptr = skb;
418 /* Invalidate the packet buffer. */
419 if (!hash_default)
420 __inv_buffer(skb->data, buffer_size);
422 /* Make sure "skb_ptr" has been flushed. */
423 __insn_mf();
425 #ifdef TILE_NET_PARANOIA
426 #if CHIP_HAS_CBOX_HOME_MAP()
427 if (hash_default) {
428 HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)va);
429 if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3)
430 panic("Non-coherent ingress buffer!");
432 #endif
433 #endif
435 /* Provide the new buffer. */
436 tile_net_provide_linux_buffer(info, va, small);
438 return true;
443 * Provide linux buffers for LIPP.
445 static void tile_net_provide_needed_buffers(struct tile_net_cpu *info)
447 while (info->num_needed_small_buffers != 0) {
448 if (!tile_net_provide_needed_buffer(info, true))
449 goto oops;
450 info->num_needed_small_buffers--;
453 while (info->num_needed_large_buffers != 0) {
454 if (!tile_net_provide_needed_buffer(info, false))
455 goto oops;
456 info->num_needed_large_buffers--;
459 return;
461 oops:
463 /* Add a description to the page allocation failure dump. */
464 pr_notice("Could not provide a linux buffer to LIPP.\n");
469 * Grab some LEPP completions, and store them in "comps", of size
470 * "comps_size", and return the number of completions which were
471 * stored, so the caller can free them.
473 * If "pending" is not NULL, it will be set to true if there might
474 * still be some pending completions caused by this tile, else false.
476 static unsigned int tile_net_lepp_grab_comps(struct net_device *dev,
477 struct sk_buff *comps[],
478 unsigned int comps_size,
479 bool *pending)
481 struct tile_net_priv *priv = netdev_priv(dev);
483 lepp_queue_t *eq = priv->epp_queue;
485 unsigned int n = 0;
487 unsigned int comp_head;
488 unsigned int comp_busy;
489 unsigned int comp_tail;
491 spin_lock(&priv->comp_lock);
493 comp_head = eq->comp_head;
494 comp_busy = eq->comp_busy;
495 comp_tail = eq->comp_tail;
497 while (comp_head != comp_busy && n < comps_size) {
498 comps[n++] = eq->comps[comp_head];
499 LEPP_QINC(comp_head);
502 if (pending != NULL)
503 *pending = (comp_head != comp_tail);
505 eq->comp_head = comp_head;
507 spin_unlock(&priv->comp_lock);
509 return n;
514 * Make sure the egress timer is scheduled.
516 * Note that we use "schedule if not scheduled" logic instead of the more
517 * obvious "reschedule" logic, because "reschedule" is fairly expensive.
519 static void tile_net_schedule_egress_timer(struct tile_net_cpu *info)
521 if (!info->egress_timer_scheduled) {
522 mod_timer_pinned(&info->egress_timer, jiffies + 1);
523 info->egress_timer_scheduled = true;
529 * The "function" for "info->egress_timer".
531 * This timer will reschedule itself as long as there are any pending
532 * completions expected (on behalf of any tile).
534 * ISSUE: Realistically, will the timer ever stop scheduling itself?
536 * ISSUE: This timer is almost never actually needed, so just use a global
537 * timer that can run on any tile.
539 * ISSUE: Maybe instead track number of expected completions, and free
540 * only that many, resetting to zero if "pending" is ever false.
542 static void tile_net_handle_egress_timer(unsigned long arg)
544 struct tile_net_cpu *info = (struct tile_net_cpu *)arg;
545 struct net_device *dev = info->napi.dev;
547 struct sk_buff *olds[32];
548 unsigned int wanted = 32;
549 unsigned int i, nolds = 0;
550 bool pending;
552 /* The timer is no longer scheduled. */
553 info->egress_timer_scheduled = false;
555 nolds = tile_net_lepp_grab_comps(dev, olds, wanted, &pending);
557 for (i = 0; i < nolds; i++)
558 kfree_skb(olds[i]);
560 /* Reschedule timer if needed. */
561 if (pending)
562 tile_net_schedule_egress_timer(info);
566 #ifdef IGNORE_DUP_ACKS
569 * Help detect "duplicate" ACKs. These are sequential packets (for a
570 * given flow) which are exactly 66 bytes long, sharing everything but
571 * ID=2@0x12, Hsum=2@0x18, Ack=4@0x2a, WinSize=2@0x30, Csum=2@0x32,
572 * Tstamps=10@0x38. The ID's are +1, the Hsum's are -1, the Ack's are
573 * +N, and the Tstamps are usually identical.
575 * NOTE: Apparently truly duplicate acks (with identical "ack" values),
576 * should not be collapsed, as they are used for some kind of flow control.
578 static bool is_dup_ack(char *s1, char *s2, unsigned int len)
580 int i;
582 unsigned long long ignorable = 0;
584 /* Identification. */
585 ignorable |= (1ULL << 0x12);
586 ignorable |= (1ULL << 0x13);
588 /* Header checksum. */
589 ignorable |= (1ULL << 0x18);
590 ignorable |= (1ULL << 0x19);
592 /* ACK. */
593 ignorable |= (1ULL << 0x2a);
594 ignorable |= (1ULL << 0x2b);
595 ignorable |= (1ULL << 0x2c);
596 ignorable |= (1ULL << 0x2d);
598 /* WinSize. */
599 ignorable |= (1ULL << 0x30);
600 ignorable |= (1ULL << 0x31);
602 /* Checksum. */
603 ignorable |= (1ULL << 0x32);
604 ignorable |= (1ULL << 0x33);
606 for (i = 0; i < len; i++, ignorable >>= 1) {
608 if ((ignorable & 1) || (s1[i] == s2[i]))
609 continue;
611 #ifdef TILE_NET_DEBUG
612 /* HACK: Mention non-timestamp diffs. */
613 if (i < 0x38 && i != 0x2f &&
614 net_ratelimit())
615 pr_info("Diff at 0x%x\n", i);
616 #endif
618 return false;
621 #ifdef TILE_NET_NO_SUPPRESS_DUP_ACKS
622 /* HACK: Do not suppress truly duplicate ACKs. */
623 /* ISSUE: Is this actually necessary or helpful? */
624 if (s1[0x2a] == s2[0x2a] &&
625 s1[0x2b] == s2[0x2b] &&
626 s1[0x2c] == s2[0x2c] &&
627 s1[0x2d] == s2[0x2d]) {
628 return false;
630 #endif
632 return true;
635 #endif
640 * Like "tile_net_handle_packets()", but just discard packets.
642 static void tile_net_discard_packets(struct net_device *dev)
644 struct tile_net_priv *priv = netdev_priv(dev);
645 int my_cpu = smp_processor_id();
646 struct tile_net_cpu *info = priv->cpu[my_cpu];
647 struct tile_netio_queue *queue = &info->queue;
648 netio_queue_impl_t *qsp = queue->__system_part;
649 netio_queue_user_impl_t *qup = &queue->__user_part;
651 while (qup->__packet_receive_read !=
652 qsp->__packet_receive_queue.__packet_write) {
654 int index = qup->__packet_receive_read;
656 int index2_aux = index + sizeof(netio_pkt_t);
657 int index2 =
658 ((index2_aux ==
659 qsp->__packet_receive_queue.__last_packet_plus_one) ?
660 0 : index2_aux);
662 netio_pkt_t *pkt = (netio_pkt_t *)
663 ((unsigned long) &qsp[1] + index);
665 /* Extract the "linux_buffer_t". */
666 unsigned int buffer = pkt->__packet.word;
668 /* Convert "linux_buffer_t" to "va". */
669 void *va = __va((phys_addr_t)(buffer >> 1) << 7);
671 /* Acquire the associated "skb". */
672 struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
673 struct sk_buff *skb = *skb_ptr;
675 kfree_skb(skb);
677 /* Consume this packet. */
678 qup->__packet_receive_read = index2;
684 * Handle the next packet. Return true if "processed", false if "filtered".
686 static bool tile_net_poll_aux(struct tile_net_cpu *info, int index)
688 struct net_device *dev = info->napi.dev;
690 struct tile_netio_queue *queue = &info->queue;
691 netio_queue_impl_t *qsp = queue->__system_part;
692 netio_queue_user_impl_t *qup = &queue->__user_part;
693 struct tile_net_stats_t *stats = &info->stats;
695 int filter;
697 int index2_aux = index + sizeof(netio_pkt_t);
698 int index2 =
699 ((index2_aux ==
700 qsp->__packet_receive_queue.__last_packet_plus_one) ?
701 0 : index2_aux);
703 netio_pkt_t *pkt = (netio_pkt_t *)((unsigned long) &qsp[1] + index);
705 netio_pkt_metadata_t *metadata = NETIO_PKT_METADATA(pkt);
707 /* Extract the packet size. */
708 unsigned long len =
709 (NETIO_PKT_CUSTOM_LENGTH(pkt) +
710 NET_IP_ALIGN - NETIO_PACKET_PADDING);
712 /* Extract the "linux_buffer_t". */
713 unsigned int buffer = pkt->__packet.word;
715 /* Extract "small" (vs "large"). */
716 bool small = ((buffer & 1) != 0);
718 /* Convert "linux_buffer_t" to "va". */
719 void *va = __va((phys_addr_t)(buffer >> 1) << 7);
721 /* Extract the packet data pointer. */
722 /* Compare to "NETIO_PKT_CUSTOM_DATA(pkt)". */
723 unsigned char *buf = va + NET_IP_ALIGN;
725 #ifdef IGNORE_DUP_ACKS
727 static int other;
728 static int final;
729 static int keep;
730 static int skip;
732 #endif
734 /* Invalidate the packet buffer. */
735 if (!hash_default)
736 __inv_buffer(buf, len);
738 /* ISSUE: Is this needed? */
739 dev->last_rx = jiffies;
741 #ifdef TILE_NET_DUMP_PACKETS
742 dump_packet(buf, len, "rx");
743 #endif /* TILE_NET_DUMP_PACKETS */
745 #ifdef TILE_NET_VERIFY_INGRESS
746 if (!NETIO_PKT_L4_CSUM_CORRECT_M(metadata, pkt) &&
747 NETIO_PKT_L4_CSUM_CALCULATED_M(metadata, pkt)) {
749 * FIXME: This complains about UDP packets
750 * with a "zero" checksum (bug 6624).
752 #ifdef TILE_NET_PANIC_ON_BAD
753 dump_packet(buf, len, "rx");
754 panic("Bad L4 checksum.");
755 #else
756 pr_warning("Bad L4 checksum on %d byte packet.\n", len);
757 #endif
759 if (!NETIO_PKT_L3_CSUM_CORRECT_M(metadata, pkt) &&
760 NETIO_PKT_L3_CSUM_CALCULATED_M(metadata, pkt)) {
761 dump_packet(buf, len, "rx");
762 panic("Bad L3 checksum.");
764 switch (NETIO_PKT_STATUS_M(metadata, pkt)) {
765 case NETIO_PKT_STATUS_OVERSIZE:
766 if (len >= 64) {
767 dump_packet(buf, len, "rx");
768 panic("Unexpected OVERSIZE.");
770 break;
771 case NETIO_PKT_STATUS_BAD:
772 #ifdef TILE_NET_PANIC_ON_BAD
773 dump_packet(buf, len, "rx");
774 panic("Unexpected BAD packet.");
775 #else
776 pr_warning("Unexpected BAD %d byte packet.\n", len);
777 #endif
779 #endif
781 filter = 0;
783 if (!(dev->flags & IFF_UP)) {
784 /* Filter packets received before we're up. */
785 filter = 1;
786 } else if (!(dev->flags & IFF_PROMISC)) {
788 * FIXME: Implement HW multicast filter.
790 if (is_unicast_ether_addr(buf)) {
791 /* Filter packets not for our address. */
792 const u8 *mine = dev->dev_addr;
793 filter = compare_ether_addr(mine, buf);
797 #ifdef IGNORE_DUP_ACKS
799 if (len != 66) {
800 /* FIXME: Must check "is_tcp_ack(buf, len)" somehow. */
802 other++;
804 } else if (index2 ==
805 qsp->__packet_receive_queue.__packet_write) {
807 final++;
809 } else {
811 netio_pkt_t *pkt2 = (netio_pkt_t *)
812 ((unsigned long) &qsp[1] + index2);
814 netio_pkt_metadata_t *metadata2 =
815 NETIO_PKT_METADATA(pkt2);
817 /* Extract the packet size. */
818 unsigned long len2 =
819 (NETIO_PKT_CUSTOM_LENGTH(pkt2) +
820 NET_IP_ALIGN - NETIO_PACKET_PADDING);
822 if (len2 == 66 &&
823 NETIO_PKT_FLOW_HASH_M(metadata, pkt) ==
824 NETIO_PKT_FLOW_HASH_M(metadata2, pkt2)) {
826 /* Extract the "linux_buffer_t". */
827 unsigned int buffer2 = pkt2->__packet.word;
829 /* Convert "linux_buffer_t" to "va". */
830 void *va2 =
831 __va((phys_addr_t)(buffer2 >> 1) << 7);
833 /* Extract the packet data pointer. */
834 /* Compare to "NETIO_PKT_CUSTOM_DATA(pkt)". */
835 unsigned char *buf2 = va2 + NET_IP_ALIGN;
837 /* Invalidate the packet buffer. */
838 if (!hash_default)
839 __inv_buffer(buf2, len2);
841 if (is_dup_ack(buf, buf2, len)) {
842 skip++;
843 filter = 1;
844 } else {
845 keep++;
850 if (net_ratelimit())
851 pr_info("Other %d Final %d Keep %d Skip %d.\n",
852 other, final, keep, skip);
854 #endif
856 if (filter) {
858 /* ISSUE: Update "drop" statistics? */
860 tile_net_provide_linux_buffer(info, va, small);
862 } else {
864 /* Acquire the associated "skb". */
865 struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
866 struct sk_buff *skb = *skb_ptr;
868 /* Paranoia. */
869 if (skb->data != buf)
870 panic("Corrupt linux buffer from LIPP! "
871 "VA=%p, skb=%p, skb->data=%p\n",
872 va, skb, skb->data);
874 /* Encode the actual packet length. */
875 skb_put(skb, len);
877 /* NOTE: This call also sets "skb->dev = dev". */
878 skb->protocol = eth_type_trans(skb, dev);
880 /* ISSUE: Discard corrupt packets? */
881 /* ISSUE: Discard packets with bad checksums? */
883 /* Avoid recomputing TCP/UDP checksums. */
884 if (NETIO_PKT_L4_CSUM_CORRECT_M(metadata, pkt))
885 skb->ip_summed = CHECKSUM_UNNECESSARY;
887 netif_receive_skb(skb);
889 stats->rx_packets++;
890 stats->rx_bytes += len;
892 if (small)
893 info->num_needed_small_buffers++;
894 else
895 info->num_needed_large_buffers++;
898 /* Return four credits after every fourth packet. */
899 if (--qup->__receive_credit_remaining == 0) {
900 u32 interval = qup->__receive_credit_interval;
901 qup->__receive_credit_remaining = interval;
902 __netio_fastio_return_credits(qup->__fastio_index, interval);
905 /* Consume this packet. */
906 qup->__packet_receive_read = index2;
908 return !filter;
913 * Handle some packets for the given device on the current CPU.
915 * ISSUE: The "rotting packet" race condition occurs if a packet
916 * arrives after the queue appears to be empty, and before the
917 * hypervisor interrupt is re-enabled.
919 static int tile_net_poll(struct napi_struct *napi, int budget)
921 struct net_device *dev = napi->dev;
922 struct tile_net_priv *priv = netdev_priv(dev);
923 int my_cpu = smp_processor_id();
924 struct tile_net_cpu *info = priv->cpu[my_cpu];
925 struct tile_netio_queue *queue = &info->queue;
926 netio_queue_impl_t *qsp = queue->__system_part;
927 netio_queue_user_impl_t *qup = &queue->__user_part;
929 unsigned int work = 0;
931 while (1) {
932 int index = qup->__packet_receive_read;
933 if (index == qsp->__packet_receive_queue.__packet_write)
934 break;
936 if (tile_net_poll_aux(info, index)) {
937 if (++work >= budget)
938 goto done;
942 napi_complete(&info->napi);
944 /* Re-enable hypervisor interrupts. */
945 enable_percpu_irq(priv->intr_id);
947 /* HACK: Avoid the "rotting packet" problem. */
948 if (qup->__packet_receive_read !=
949 qsp->__packet_receive_queue.__packet_write)
950 napi_schedule(&info->napi);
952 /* ISSUE: Handle completions? */
954 done:
956 tile_net_provide_needed_buffers(info);
958 return work;
963 * Handle an ingress interrupt for the given device on the current cpu.
965 static irqreturn_t tile_net_handle_ingress_interrupt(int irq, void *dev_ptr)
967 struct net_device *dev = (struct net_device *)dev_ptr;
968 struct tile_net_priv *priv = netdev_priv(dev);
969 int my_cpu = smp_processor_id();
970 struct tile_net_cpu *info = priv->cpu[my_cpu];
972 /* Disable hypervisor interrupt. */
973 disable_percpu_irq(priv->intr_id);
975 napi_schedule(&info->napi);
977 return IRQ_HANDLED;
982 * One time initialization per interface.
984 static int tile_net_open_aux(struct net_device *dev)
986 struct tile_net_priv *priv = netdev_priv(dev);
988 int ret;
989 int dummy;
990 unsigned int epp_lotar;
993 * Find out where EPP memory should be homed.
995 ret = hv_dev_pread(priv->hv_devhdl, 0,
996 (HV_VirtAddr)&epp_lotar, sizeof(epp_lotar),
997 NETIO_EPP_SHM_OFF);
998 if (ret < 0) {
999 pr_err("could not read epp_shm_queue lotar.\n");
1000 return -EIO;
1004 * Home the page on the EPP.
1007 int epp_home = hv_lotar_to_cpu(epp_lotar);
1008 struct page *page = virt_to_page(priv->epp_queue);
1009 homecache_change_page_home(page, 0, epp_home);
1013 * Register the EPP shared memory queue.
1016 netio_ipp_address_t ea = {
1017 .va = 0,
1018 .pa = __pa(priv->epp_queue),
1019 .pte = hv_pte(0),
1020 .size = PAGE_SIZE,
1022 ea.pte = hv_pte_set_lotar(ea.pte, epp_lotar);
1023 ea.pte = hv_pte_set_mode(ea.pte, HV_PTE_MODE_CACHE_TILE_L3);
1024 ret = hv_dev_pwrite(priv->hv_devhdl, 0,
1025 (HV_VirtAddr)&ea,
1026 sizeof(ea),
1027 NETIO_EPP_SHM_OFF);
1028 if (ret < 0)
1029 return -EIO;
1033 * Start LIPP/LEPP.
1035 if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1036 sizeof(dummy), NETIO_IPP_START_SHIM_OFF) < 0) {
1037 pr_warning("Failed to start LIPP/LEPP.\n");
1038 return -EIO;
1041 return 0;
1046 * Register with hypervisor on each CPU.
1048 * Strangely, this function does important things even if it "fails",
1049 * which is especially common if the link is not up yet. Hopefully
1050 * these things are all "harmless" if done twice!
1052 static void tile_net_register(void *dev_ptr)
1054 struct net_device *dev = (struct net_device *)dev_ptr;
1055 struct tile_net_priv *priv = netdev_priv(dev);
1056 int my_cpu = smp_processor_id();
1057 struct tile_net_cpu *info;
1059 struct tile_netio_queue *queue;
1061 /* Only network cpus can receive packets. */
1062 int queue_id =
1063 cpumask_test_cpu(my_cpu, &priv->network_cpus_map) ? 0 : 255;
1065 netio_input_config_t config = {
1066 .flags = 0,
1067 .num_receive_packets = priv->network_cpus_credits,
1068 .queue_id = queue_id
1071 int ret = 0;
1072 netio_queue_impl_t *queuep;
1074 PDEBUG("tile_net_register(queue_id %d)\n", queue_id);
1076 if (!strcmp(dev->name, "xgbe0"))
1077 info = &__get_cpu_var(hv_xgbe0);
1078 else if (!strcmp(dev->name, "xgbe1"))
1079 info = &__get_cpu_var(hv_xgbe1);
1080 else if (!strcmp(dev->name, "gbe0"))
1081 info = &__get_cpu_var(hv_gbe0);
1082 else if (!strcmp(dev->name, "gbe1"))
1083 info = &__get_cpu_var(hv_gbe1);
1084 else
1085 BUG();
1087 /* Initialize the egress timer. */
1088 init_timer(&info->egress_timer);
1089 info->egress_timer.data = (long)info;
1090 info->egress_timer.function = tile_net_handle_egress_timer;
1092 priv->cpu[my_cpu] = info;
1095 * Register ourselves with the IPP.
1097 ret = hv_dev_pwrite(priv->hv_devhdl, 0,
1098 (HV_VirtAddr)&config,
1099 sizeof(netio_input_config_t),
1100 NETIO_IPP_INPUT_REGISTER_OFF);
1101 PDEBUG("hv_dev_pwrite(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n",
1102 ret);
1103 if (ret < 0) {
1104 printk(KERN_DEBUG "hv_dev_pwrite NETIO_IPP_INPUT_REGISTER_OFF"
1105 " failure %d\n", ret);
1106 info->link_down = (ret == NETIO_LINK_DOWN);
1107 return;
1111 * Get the pointer to our queue's system part.
1114 ret = hv_dev_pread(priv->hv_devhdl, 0,
1115 (HV_VirtAddr)&queuep,
1116 sizeof(netio_queue_impl_t *),
1117 NETIO_IPP_INPUT_REGISTER_OFF);
1118 PDEBUG("hv_dev_pread(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n",
1119 ret);
1120 PDEBUG("queuep %p\n", queuep);
1121 if (ret <= 0) {
1122 /* ISSUE: Shouldn't this be a fatal error? */
1123 pr_err("hv_dev_pread NETIO_IPP_INPUT_REGISTER_OFF failure\n");
1124 return;
1127 queue = &info->queue;
1129 queue->__system_part = queuep;
1131 memset(&queue->__user_part, 0, sizeof(netio_queue_user_impl_t));
1133 /* This is traditionally "config.num_receive_packets / 2". */
1134 queue->__user_part.__receive_credit_interval = 4;
1135 queue->__user_part.__receive_credit_remaining =
1136 queue->__user_part.__receive_credit_interval;
1139 * Get a fastio index from the hypervisor.
1140 * ISSUE: Shouldn't this check the result?
1142 ret = hv_dev_pread(priv->hv_devhdl, 0,
1143 (HV_VirtAddr)&queue->__user_part.__fastio_index,
1144 sizeof(queue->__user_part.__fastio_index),
1145 NETIO_IPP_GET_FASTIO_OFF);
1146 PDEBUG("hv_dev_pread(NETIO_IPP_GET_FASTIO_OFF) returned %d\n", ret);
1148 netif_napi_add(dev, &info->napi, tile_net_poll, 64);
1150 /* Now we are registered. */
1151 info->registered = true;
1156 * Unregister with hypervisor on each CPU.
1158 static void tile_net_unregister(void *dev_ptr)
1160 struct net_device *dev = (struct net_device *)dev_ptr;
1161 struct tile_net_priv *priv = netdev_priv(dev);
1162 int my_cpu = smp_processor_id();
1163 struct tile_net_cpu *info = priv->cpu[my_cpu];
1165 int ret = 0;
1166 int dummy = 0;
1168 /* Do nothing if never registered. */
1169 if (info == NULL)
1170 return;
1172 /* Do nothing if already unregistered. */
1173 if (!info->registered)
1174 return;
1177 * Unregister ourselves with LIPP.
1179 ret = hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1180 sizeof(dummy), NETIO_IPP_INPUT_UNREGISTER_OFF);
1181 PDEBUG("hv_dev_pwrite(NETIO_IPP_INPUT_UNREGISTER_OFF) returned %d\n",
1182 ret);
1183 if (ret < 0) {
1184 /* FIXME: Just panic? */
1185 pr_err("hv_dev_pwrite NETIO_IPP_INPUT_UNREGISTER_OFF"
1186 " failure %d\n", ret);
1190 * Discard all packets still in our NetIO queue. Hopefully,
1191 * once the unregister call is complete, there will be no
1192 * packets still in flight on the IDN.
1194 tile_net_discard_packets(dev);
1196 /* Reset state. */
1197 info->num_needed_small_buffers = 0;
1198 info->num_needed_large_buffers = 0;
1200 /* Cancel egress timer. */
1201 del_timer(&info->egress_timer);
1202 info->egress_timer_scheduled = false;
1204 netif_napi_del(&info->napi);
1206 /* Now we are unregistered. */
1207 info->registered = false;
1212 * Helper function for "tile_net_stop()".
1214 * Also used to handle registration failure in "tile_net_open_inner()",
1215 * when "fully_opened" is known to be false, and the various extra
1216 * steps in "tile_net_stop()" are not necessary. ISSUE: It might be
1217 * simpler if we could just call "tile_net_stop()" anyway.
1219 static void tile_net_stop_aux(struct net_device *dev)
1221 struct tile_net_priv *priv = netdev_priv(dev);
1223 int dummy = 0;
1225 /* Unregister all tiles, so LIPP will stop delivering packets. */
1226 on_each_cpu(tile_net_unregister, (void *)dev, 1);
1228 /* Stop LIPP/LEPP. */
1229 if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1230 sizeof(dummy), NETIO_IPP_STOP_SHIM_OFF) < 0)
1231 panic("Failed to stop LIPP/LEPP!\n");
1233 priv->partly_opened = 0;
1238 * Disable ingress interrupts for the given device on the current cpu.
1240 static void tile_net_disable_intr(void *dev_ptr)
1242 struct net_device *dev = (struct net_device *)dev_ptr;
1243 struct tile_net_priv *priv = netdev_priv(dev);
1244 int my_cpu = smp_processor_id();
1245 struct tile_net_cpu *info = priv->cpu[my_cpu];
1247 /* Disable hypervisor interrupt. */
1248 disable_percpu_irq(priv->intr_id);
1250 /* Disable NAPI if needed. */
1251 if (info != NULL && info->napi_enabled) {
1252 napi_disable(&info->napi);
1253 info->napi_enabled = false;
1259 * Enable ingress interrupts for the given device on the current cpu.
1261 static void tile_net_enable_intr(void *dev_ptr)
1263 struct net_device *dev = (struct net_device *)dev_ptr;
1264 struct tile_net_priv *priv = netdev_priv(dev);
1265 int my_cpu = smp_processor_id();
1266 struct tile_net_cpu *info = priv->cpu[my_cpu];
1268 /* Enable hypervisor interrupt. */
1269 enable_percpu_irq(priv->intr_id);
1271 /* Enable NAPI. */
1272 napi_enable(&info->napi);
1273 info->napi_enabled = true;
1278 * tile_net_open_inner does most of the work of bringing up the interface.
1279 * It's called from tile_net_open(), and also from tile_net_retry_open().
1280 * The return value is 0 if the interface was brought up, < 0 if
1281 * tile_net_open() should return the return value as an error, and > 0 if
1282 * tile_net_open() should return success and schedule a work item to
1283 * periodically retry the bringup.
1285 static int tile_net_open_inner(struct net_device *dev)
1287 struct tile_net_priv *priv = netdev_priv(dev);
1288 int my_cpu = smp_processor_id();
1289 struct tile_net_cpu *info;
1290 struct tile_netio_queue *queue;
1291 unsigned int irq;
1292 int i;
1295 * First try to register just on the local CPU, and handle any
1296 * semi-expected "link down" failure specially. Note that we
1297 * do NOT call "tile_net_stop_aux()", unlike below.
1299 tile_net_register(dev);
1300 info = priv->cpu[my_cpu];
1301 if (!info->registered) {
1302 if (info->link_down)
1303 return 1;
1304 return -EAGAIN;
1308 * Now register everywhere else. If any registration fails,
1309 * even for "link down" (which might not be possible), we
1310 * clean up using "tile_net_stop_aux()".
1312 smp_call_function(tile_net_register, (void *)dev, 1);
1313 for_each_online_cpu(i) {
1314 if (!priv->cpu[i]->registered) {
1315 tile_net_stop_aux(dev);
1316 return -EAGAIN;
1320 queue = &info->queue;
1323 * Set the device intr bit mask.
1324 * The tile_net_register above sets per tile __intr_id.
1326 priv->intr_id = queue->__system_part->__intr_id;
1327 BUG_ON(!priv->intr_id);
1330 * Register the device interrupt handler.
1331 * The __ffs() function returns the index into the interrupt handler
1332 * table from the interrupt bit mask which should have one bit
1333 * and one bit only set.
1335 irq = __ffs(priv->intr_id);
1336 tile_irq_activate(irq, TILE_IRQ_PERCPU);
1337 BUG_ON(request_irq(irq, tile_net_handle_ingress_interrupt,
1338 0, dev->name, (void *)dev) != 0);
1340 /* ISSUE: How could "priv->fully_opened" ever be "true" here? */
1342 if (!priv->fully_opened) {
1344 int dummy = 0;
1346 /* Allocate initial buffers. */
1348 int max_buffers =
1349 priv->network_cpus_count * priv->network_cpus_credits;
1351 info->num_needed_small_buffers =
1352 min(LIPP_SMALL_BUFFERS, max_buffers);
1354 info->num_needed_large_buffers =
1355 min(LIPP_LARGE_BUFFERS, max_buffers);
1357 tile_net_provide_needed_buffers(info);
1359 if (info->num_needed_small_buffers != 0 ||
1360 info->num_needed_large_buffers != 0)
1361 panic("Insufficient memory for buffer stack!");
1363 /* Start LIPP/LEPP and activate "ingress" at the shim. */
1364 if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1365 sizeof(dummy), NETIO_IPP_INPUT_INIT_OFF) < 0)
1366 panic("Failed to activate the LIPP Shim!\n");
1368 priv->fully_opened = 1;
1371 /* On each tile, enable the hypervisor to trigger interrupts. */
1372 /* ISSUE: Do this before starting LIPP/LEPP? */
1373 on_each_cpu(tile_net_enable_intr, (void *)dev, 1);
1375 /* Start our transmit queue. */
1376 netif_start_queue(dev);
1378 return 0;
1383 * Called periodically to retry bringing up the NetIO interface,
1384 * if it doesn't come up cleanly during tile_net_open().
1386 static void tile_net_open_retry(struct work_struct *w)
1388 struct delayed_work *dw =
1389 container_of(w, struct delayed_work, work);
1391 struct tile_net_priv *priv =
1392 container_of(dw, struct tile_net_priv, retry_work);
1395 * Try to bring the NetIO interface up. If it fails, reschedule
1396 * ourselves to try again later; otherwise, tell Linux we now have
1397 * a working link. ISSUE: What if the return value is negative?
1399 if (tile_net_open_inner(priv->dev))
1400 schedule_delayed_work_on(singlethread_cpu, &priv->retry_work,
1401 TILE_NET_RETRY_INTERVAL);
1402 else
1403 netif_carrier_on(priv->dev);
1408 * Called when a network interface is made active.
1410 * Returns 0 on success, negative value on failure.
1412 * The open entry point is called when a network interface is made
1413 * active by the system (IFF_UP). At this point all resources needed
1414 * for transmit and receive operations are allocated, the interrupt
1415 * handler is registered with the OS, the watchdog timer is started,
1416 * and the stack is notified that the interface is ready.
1418 * If the actual link is not available yet, then we tell Linux that
1419 * we have no carrier, and we keep checking until the link comes up.
1421 static int tile_net_open(struct net_device *dev)
1423 int ret = 0;
1424 struct tile_net_priv *priv = netdev_priv(dev);
1427 * We rely on priv->partly_opened to tell us if this is the
1428 * first time this interface is being brought up. If it is
1429 * set, the IPP was already initialized and should not be
1430 * initialized again.
1432 if (!priv->partly_opened) {
1434 int count;
1435 int credits;
1437 /* Initialize LIPP/LEPP, and start the Shim. */
1438 ret = tile_net_open_aux(dev);
1439 if (ret < 0) {
1440 pr_err("tile_net_open_aux failed: %d\n", ret);
1441 return ret;
1444 /* Analyze the network cpus. */
1446 if (network_cpus_used)
1447 cpumask_copy(&priv->network_cpus_map,
1448 &network_cpus_map);
1449 else
1450 cpumask_copy(&priv->network_cpus_map, cpu_online_mask);
1453 count = cpumask_weight(&priv->network_cpus_map);
1455 /* Limit credits to available buffers, and apply min. */
1456 credits = max(16, (LIPP_LARGE_BUFFERS / count) & ~1);
1458 /* Apply "GBE" max limit. */
1459 /* ISSUE: Use higher limit for XGBE? */
1460 credits = min(NETIO_MAX_RECEIVE_PKTS, credits);
1462 priv->network_cpus_count = count;
1463 priv->network_cpus_credits = credits;
1465 #ifdef TILE_NET_DEBUG
1466 pr_info("Using %d network cpus, with %d credits each\n",
1467 priv->network_cpus_count, priv->network_cpus_credits);
1468 #endif
1470 priv->partly_opened = 1;
1474 * Attempt to bring up the link.
1476 ret = tile_net_open_inner(dev);
1477 if (ret <= 0) {
1478 if (ret == 0)
1479 netif_carrier_on(dev);
1480 return ret;
1484 * We were unable to bring up the NetIO interface, but we want to
1485 * try again in a little bit. Tell Linux that we have no carrier
1486 * so it doesn't try to use the interface before the link comes up
1487 * and then remember to try again later.
1489 netif_carrier_off(dev);
1490 schedule_delayed_work_on(singlethread_cpu, &priv->retry_work,
1491 TILE_NET_RETRY_INTERVAL);
1493 return 0;
1498 * Disables a network interface.
1500 * Returns 0, this is not allowed to fail.
1502 * The close entry point is called when an interface is de-activated
1503 * by the OS. The hardware is still under the drivers control, but
1504 * needs to be disabled. A global MAC reset is issued to stop the
1505 * hardware, and all transmit and receive resources are freed.
1507 * ISSUE: Can this can be called while "tile_net_poll()" is running?
1509 static int tile_net_stop(struct net_device *dev)
1511 struct tile_net_priv *priv = netdev_priv(dev);
1513 bool pending = true;
1515 PDEBUG("tile_net_stop()\n");
1517 /* ISSUE: Only needed if not yet fully open. */
1518 cancel_delayed_work_sync(&priv->retry_work);
1520 /* Can't transmit any more. */
1521 netif_stop_queue(dev);
1524 * Disable hypervisor interrupts on each tile.
1526 on_each_cpu(tile_net_disable_intr, (void *)dev, 1);
1529 * Unregister the interrupt handler.
1530 * The __ffs() function returns the index into the interrupt handler
1531 * table from the interrupt bit mask which should have one bit
1532 * and one bit only set.
1534 if (priv->intr_id)
1535 free_irq(__ffs(priv->intr_id), dev);
1538 * Drain all the LIPP buffers.
1541 while (true) {
1542 int buffer;
1544 /* NOTE: This should never fail. */
1545 if (hv_dev_pread(priv->hv_devhdl, 0, (HV_VirtAddr)&buffer,
1546 sizeof(buffer), NETIO_IPP_DRAIN_OFF) < 0)
1547 break;
1549 /* Stop when done. */
1550 if (buffer == 0)
1551 break;
1554 /* Convert "linux_buffer_t" to "va". */
1555 void *va = __va((phys_addr_t)(buffer >> 1) << 7);
1557 /* Acquire the associated "skb". */
1558 struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
1559 struct sk_buff *skb = *skb_ptr;
1561 kfree_skb(skb);
1565 /* Stop LIPP/LEPP. */
1566 tile_net_stop_aux(dev);
1569 priv->fully_opened = 0;
1573 * XXX: ISSUE: It appears that, in practice anyway, by the
1574 * time we get here, there are no pending completions.
1576 while (pending) {
1578 struct sk_buff *olds[32];
1579 unsigned int wanted = 32;
1580 unsigned int i, nolds = 0;
1582 nolds = tile_net_lepp_grab_comps(dev, olds,
1583 wanted, &pending);
1585 /* ISSUE: We have never actually seen this debug spew. */
1586 if (nolds != 0)
1587 pr_info("During tile_net_stop(), grabbed %d comps.\n",
1588 nolds);
1590 for (i = 0; i < nolds; i++)
1591 kfree_skb(olds[i]);
1595 /* Wipe the EPP queue. */
1596 memset(priv->epp_queue, 0, sizeof(lepp_queue_t));
1598 /* Evict the EPP queue. */
1599 finv_buffer(priv->epp_queue, PAGE_SIZE);
1601 return 0;
1606 * Prepare the "frags" info for the resulting LEPP command.
1608 * If needed, flush the memory used by the frags.
1610 static unsigned int tile_net_tx_frags(lepp_frag_t *frags,
1611 struct sk_buff *skb,
1612 void *b_data, unsigned int b_len)
1614 unsigned int i, n = 0;
1616 struct skb_shared_info *sh = skb_shinfo(skb);
1618 phys_addr_t cpa;
1620 if (b_len != 0) {
1622 if (!hash_default)
1623 finv_buffer_remote(b_data, b_len);
1625 cpa = __pa(b_data);
1626 frags[n].cpa_lo = cpa;
1627 frags[n].cpa_hi = cpa >> 32;
1628 frags[n].length = b_len;
1629 frags[n].hash_for_home = hash_default;
1630 n++;
1633 for (i = 0; i < sh->nr_frags; i++) {
1635 skb_frag_t *f = &sh->frags[i];
1636 unsigned long pfn = page_to_pfn(f->page);
1638 /* FIXME: Compute "hash_for_home" properly. */
1639 /* ISSUE: The hypervisor checks CHIP_HAS_REV1_DMA_PACKETS(). */
1640 int hash_for_home = hash_default;
1642 /* FIXME: Hmmm. */
1643 if (!hash_default) {
1644 void *va = pfn_to_kaddr(pfn) + f->page_offset;
1645 BUG_ON(PageHighMem(f->page));
1646 finv_buffer_remote(va, f->size);
1649 cpa = ((phys_addr_t)pfn << PAGE_SHIFT) + f->page_offset;
1650 frags[n].cpa_lo = cpa;
1651 frags[n].cpa_hi = cpa >> 32;
1652 frags[n].length = f->size;
1653 frags[n].hash_for_home = hash_for_home;
1654 n++;
1657 return n;
1662 * This function takes "skb", consisting of a header template and a
1663 * payload, and hands it to LEPP, to emit as one or more segments,
1664 * each consisting of a possibly modified header, plus a piece of the
1665 * payload, via a process known as "tcp segmentation offload".
1667 * Usually, "data" will contain the header template, of size "sh_len",
1668 * and "sh->frags" will contain "skb->data_len" bytes of payload, and
1669 * there will be "sh->gso_segs" segments.
1671 * Sometimes, if "sendfile()" requires copying, we will be called with
1672 * "data" containing the header and payload, with "frags" being empty.
1674 * In theory, "sh->nr_frags" could be 3, but in practice, it seems
1675 * that this will never actually happen.
1677 * See "emulate_large_send_offload()" for some reference code, which
1678 * does not handle checksumming.
1680 * ISSUE: How do we make sure that high memory DMA does not migrate?
1682 static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev)
1684 struct tile_net_priv *priv = netdev_priv(dev);
1685 int my_cpu = smp_processor_id();
1686 struct tile_net_cpu *info = priv->cpu[my_cpu];
1687 struct tile_net_stats_t *stats = &info->stats;
1689 struct skb_shared_info *sh = skb_shinfo(skb);
1691 unsigned char *data = skb->data;
1693 /* The ip header follows the ethernet header. */
1694 struct iphdr *ih = ip_hdr(skb);
1695 unsigned int ih_len = ih->ihl * 4;
1697 /* Note that "nh == ih", by definition. */
1698 unsigned char *nh = skb_network_header(skb);
1699 unsigned int eh_len = nh - data;
1701 /* The tcp header follows the ip header. */
1702 struct tcphdr *th = (struct tcphdr *)(nh + ih_len);
1703 unsigned int th_len = th->doff * 4;
1705 /* The total number of header bytes. */
1706 /* NOTE: This may be less than skb_headlen(skb). */
1707 unsigned int sh_len = eh_len + ih_len + th_len;
1709 /* The number of payload bytes at "skb->data + sh_len". */
1710 /* This is non-zero for sendfile() without HIGHDMA. */
1711 unsigned int b_len = skb_headlen(skb) - sh_len;
1713 /* The total number of payload bytes. */
1714 unsigned int d_len = b_len + skb->data_len;
1716 /* The maximum payload size. */
1717 unsigned int p_len = sh->gso_size;
1719 /* The total number of segments. */
1720 unsigned int num_segs = sh->gso_segs;
1722 /* The temporary copy of the command. */
1723 u32 cmd_body[(LEPP_MAX_CMD_SIZE + 3) / 4];
1724 lepp_tso_cmd_t *cmd = (lepp_tso_cmd_t *)cmd_body;
1726 /* Analyze the "frags". */
1727 unsigned int num_frags =
1728 tile_net_tx_frags(cmd->frags, skb, data + sh_len, b_len);
1730 /* The size of the command, including frags and header. */
1731 size_t cmd_size = LEPP_TSO_CMD_SIZE(num_frags, sh_len);
1733 /* The command header. */
1734 lepp_tso_cmd_t cmd_init = {
1735 .tso = true,
1736 .header_size = sh_len,
1737 .ip_offset = eh_len,
1738 .tcp_offset = eh_len + ih_len,
1739 .payload_size = p_len,
1740 .num_frags = num_frags,
1743 unsigned long irqflags;
1745 lepp_queue_t *eq = priv->epp_queue;
1747 struct sk_buff *olds[4];
1748 unsigned int wanted = 4;
1749 unsigned int i, nolds = 0;
1751 unsigned int cmd_head, cmd_tail, cmd_next;
1752 unsigned int comp_tail;
1754 unsigned int free_slots;
1757 /* Paranoia. */
1758 BUG_ON(skb->protocol != htons(ETH_P_IP));
1759 BUG_ON(ih->protocol != IPPROTO_TCP);
1760 BUG_ON(skb->ip_summed != CHECKSUM_PARTIAL);
1761 BUG_ON(num_frags > LEPP_MAX_FRAGS);
1762 /*--BUG_ON(num_segs != (d_len + (p_len - 1)) / p_len); */
1763 BUG_ON(num_segs <= 1);
1766 /* Finish preparing the command. */
1768 /* Copy the command header. */
1769 *cmd = cmd_init;
1771 /* Copy the "header". */
1772 memcpy(&cmd->frags[num_frags], data, sh_len);
1775 /* Prefetch and wait, to minimize time spent holding the spinlock. */
1776 prefetch_L1(&eq->comp_tail);
1777 prefetch_L1(&eq->cmd_tail);
1778 mb();
1781 /* Enqueue the command. */
1783 spin_lock_irqsave(&priv->cmd_lock, irqflags);
1786 * Handle completions if needed to make room.
1787 * HACK: Spin until there is sufficient room.
1789 free_slots = lepp_num_free_comp_slots(eq);
1790 if (free_slots < 1) {
1791 spin:
1792 nolds += tile_net_lepp_grab_comps(dev, olds + nolds,
1793 wanted - nolds, NULL);
1794 if (lepp_num_free_comp_slots(eq) < 1)
1795 goto spin;
1798 cmd_head = eq->cmd_head;
1799 cmd_tail = eq->cmd_tail;
1801 /* NOTE: The "gotos" below are untested. */
1803 /* Prepare to advance, detecting full queue. */
1804 cmd_next = cmd_tail + cmd_size;
1805 if (cmd_tail < cmd_head && cmd_next >= cmd_head)
1806 goto spin;
1807 if (cmd_next > LEPP_CMD_LIMIT) {
1808 cmd_next = 0;
1809 if (cmd_next == cmd_head)
1810 goto spin;
1813 /* Copy the command. */
1814 memcpy(&eq->cmds[cmd_tail], cmd, cmd_size);
1816 /* Advance. */
1817 cmd_tail = cmd_next;
1819 /* Record "skb" for eventual freeing. */
1820 comp_tail = eq->comp_tail;
1821 eq->comps[comp_tail] = skb;
1822 LEPP_QINC(comp_tail);
1823 eq->comp_tail = comp_tail;
1825 /* Flush before allowing LEPP to handle the command. */
1826 __insn_mf();
1828 eq->cmd_tail = cmd_tail;
1830 spin_unlock_irqrestore(&priv->cmd_lock, irqflags);
1832 if (nolds == 0)
1833 nolds = tile_net_lepp_grab_comps(dev, olds, wanted, NULL);
1835 /* Handle completions. */
1836 for (i = 0; i < nolds; i++)
1837 kfree_skb(olds[i]);
1839 /* Update stats. */
1840 stats->tx_packets += num_segs;
1841 stats->tx_bytes += (num_segs * sh_len) + d_len;
1843 /* Make sure the egress timer is scheduled. */
1844 tile_net_schedule_egress_timer(info);
1846 return NETDEV_TX_OK;
1851 * Transmit a packet (called by the kernel via "hard_start_xmit" hook).
1853 static int tile_net_tx(struct sk_buff *skb, struct net_device *dev)
1855 struct tile_net_priv *priv = netdev_priv(dev);
1856 int my_cpu = smp_processor_id();
1857 struct tile_net_cpu *info = priv->cpu[my_cpu];
1858 struct tile_net_stats_t *stats = &info->stats;
1860 unsigned long irqflags;
1862 struct skb_shared_info *sh = skb_shinfo(skb);
1864 unsigned int len = skb->len;
1865 unsigned char *data = skb->data;
1867 unsigned int csum_start = skb->csum_start - skb_headroom(skb);
1869 lepp_frag_t frags[LEPP_MAX_FRAGS];
1871 unsigned int num_frags;
1873 lepp_queue_t *eq = priv->epp_queue;
1875 struct sk_buff *olds[4];
1876 unsigned int wanted = 4;
1877 unsigned int i, nolds = 0;
1879 unsigned int cmd_size = sizeof(lepp_cmd_t);
1881 unsigned int cmd_head, cmd_tail, cmd_next;
1882 unsigned int comp_tail;
1884 lepp_cmd_t cmds[LEPP_MAX_FRAGS];
1886 unsigned int free_slots;
1890 * This is paranoia, since we think that if the link doesn't come
1891 * up, telling Linux we have no carrier will keep it from trying
1892 * to transmit. If it does, though, we can't execute this routine,
1893 * since data structures we depend on aren't set up yet.
1895 if (!info->registered)
1896 return NETDEV_TX_BUSY;
1899 /* Save the timestamp. */
1900 dev->trans_start = jiffies;
1903 #ifdef TILE_NET_PARANOIA
1904 #if CHIP_HAS_CBOX_HOME_MAP()
1905 if (hash_default) {
1906 HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)data);
1907 if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3)
1908 panic("Non-coherent egress buffer!");
1910 #endif
1911 #endif
1914 #ifdef TILE_NET_DUMP_PACKETS
1915 /* ISSUE: Does not dump the "frags". */
1916 dump_packet(data, skb_headlen(skb), "tx");
1917 #endif /* TILE_NET_DUMP_PACKETS */
1920 if (sh->gso_size != 0)
1921 return tile_net_tx_tso(skb, dev);
1924 /* Prepare the commands. */
1926 num_frags = tile_net_tx_frags(frags, skb, data, skb_headlen(skb));
1928 for (i = 0; i < num_frags; i++) {
1930 bool final = (i == num_frags - 1);
1932 lepp_cmd_t cmd = {
1933 .cpa_lo = frags[i].cpa_lo,
1934 .cpa_hi = frags[i].cpa_hi,
1935 .length = frags[i].length,
1936 .hash_for_home = frags[i].hash_for_home,
1937 .send_completion = final,
1938 .end_of_packet = final
1941 if (i == 0 && skb->ip_summed == CHECKSUM_PARTIAL) {
1942 cmd.compute_checksum = 1;
1943 cmd.checksum_data.bits.start_byte = csum_start;
1944 cmd.checksum_data.bits.count = len - csum_start;
1945 cmd.checksum_data.bits.destination_byte =
1946 csum_start + skb->csum_offset;
1949 cmds[i] = cmd;
1953 /* Prefetch and wait, to minimize time spent holding the spinlock. */
1954 prefetch_L1(&eq->comp_tail);
1955 prefetch_L1(&eq->cmd_tail);
1956 mb();
1959 /* Enqueue the commands. */
1961 spin_lock_irqsave(&priv->cmd_lock, irqflags);
1964 * Handle completions if needed to make room.
1965 * HACK: Spin until there is sufficient room.
1967 free_slots = lepp_num_free_comp_slots(eq);
1968 if (free_slots < 1) {
1969 spin:
1970 nolds += tile_net_lepp_grab_comps(dev, olds + nolds,
1971 wanted - nolds, NULL);
1972 if (lepp_num_free_comp_slots(eq) < 1)
1973 goto spin;
1976 cmd_head = eq->cmd_head;
1977 cmd_tail = eq->cmd_tail;
1979 /* NOTE: The "gotos" below are untested. */
1981 /* Copy the commands, or fail. */
1982 for (i = 0; i < num_frags; i++) {
1984 /* Prepare to advance, detecting full queue. */
1985 cmd_next = cmd_tail + cmd_size;
1986 if (cmd_tail < cmd_head && cmd_next >= cmd_head)
1987 goto spin;
1988 if (cmd_next > LEPP_CMD_LIMIT) {
1989 cmd_next = 0;
1990 if (cmd_next == cmd_head)
1991 goto spin;
1994 /* Copy the command. */
1995 *(lepp_cmd_t *)&eq->cmds[cmd_tail] = cmds[i];
1997 /* Advance. */
1998 cmd_tail = cmd_next;
2001 /* Record "skb" for eventual freeing. */
2002 comp_tail = eq->comp_tail;
2003 eq->comps[comp_tail] = skb;
2004 LEPP_QINC(comp_tail);
2005 eq->comp_tail = comp_tail;
2007 /* Flush before allowing LEPP to handle the command. */
2008 __insn_mf();
2010 eq->cmd_tail = cmd_tail;
2012 spin_unlock_irqrestore(&priv->cmd_lock, irqflags);
2014 if (nolds == 0)
2015 nolds = tile_net_lepp_grab_comps(dev, olds, wanted, NULL);
2017 /* Handle completions. */
2018 for (i = 0; i < nolds; i++)
2019 kfree_skb(olds[i]);
2021 /* HACK: Track "expanded" size for short packets (e.g. 42 < 60). */
2022 stats->tx_packets++;
2023 stats->tx_bytes += ((len >= ETH_ZLEN) ? len : ETH_ZLEN);
2025 /* Make sure the egress timer is scheduled. */
2026 tile_net_schedule_egress_timer(info);
2028 return NETDEV_TX_OK;
2033 * Deal with a transmit timeout.
2035 static void tile_net_tx_timeout(struct net_device *dev)
2037 PDEBUG("tile_net_tx_timeout()\n");
2038 PDEBUG("Transmit timeout at %ld, latency %ld\n", jiffies,
2039 jiffies - dev->trans_start);
2041 /* XXX: ISSUE: This doesn't seem useful for us. */
2042 netif_wake_queue(dev);
2047 * Ioctl commands.
2049 static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2051 return -EOPNOTSUPP;
2056 * Get System Network Statistics.
2058 * Returns the address of the device statistics structure.
2060 static struct net_device_stats *tile_net_get_stats(struct net_device *dev)
2062 struct tile_net_priv *priv = netdev_priv(dev);
2063 u32 rx_packets = 0;
2064 u32 tx_packets = 0;
2065 u32 rx_bytes = 0;
2066 u32 tx_bytes = 0;
2067 int i;
2069 for_each_online_cpu(i) {
2070 if (priv->cpu[i]) {
2071 rx_packets += priv->cpu[i]->stats.rx_packets;
2072 rx_bytes += priv->cpu[i]->stats.rx_bytes;
2073 tx_packets += priv->cpu[i]->stats.tx_packets;
2074 tx_bytes += priv->cpu[i]->stats.tx_bytes;
2078 priv->stats.rx_packets = rx_packets;
2079 priv->stats.rx_bytes = rx_bytes;
2080 priv->stats.tx_packets = tx_packets;
2081 priv->stats.tx_bytes = tx_bytes;
2083 return &priv->stats;
2088 * Change the "mtu".
2090 * The "change_mtu" method is usually not needed.
2091 * If you need it, it must be like this.
2093 static int tile_net_change_mtu(struct net_device *dev, int new_mtu)
2095 PDEBUG("tile_net_change_mtu()\n");
2097 /* Check ranges. */
2098 if ((new_mtu < 68) || (new_mtu > 1500))
2099 return -EINVAL;
2101 /* Accept the value. */
2102 dev->mtu = new_mtu;
2104 return 0;
2109 * Change the Ethernet Address of the NIC.
2111 * The hypervisor driver does not support changing MAC address. However,
2112 * the IPP does not do anything with the MAC address, so the address which
2113 * gets used on outgoing packets, and which is accepted on incoming packets,
2114 * is completely up to the NetIO program or kernel driver which is actually
2115 * handling them.
2117 * Returns 0 on success, negative on failure.
2119 static int tile_net_set_mac_address(struct net_device *dev, void *p)
2121 struct sockaddr *addr = p;
2123 if (!is_valid_ether_addr(addr->sa_data))
2124 return -EINVAL;
2126 /* ISSUE: Note that "dev_addr" is now a pointer. */
2127 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2129 return 0;
2134 * Obtain the MAC address from the hypervisor.
2135 * This must be done before opening the device.
2137 static int tile_net_get_mac(struct net_device *dev)
2139 struct tile_net_priv *priv = netdev_priv(dev);
2141 char hv_dev_name[32];
2142 int len;
2144 __netio_getset_offset_t offset = { .word = NETIO_IPP_PARAM_OFF };
2146 int ret;
2148 /* For example, "xgbe0". */
2149 strcpy(hv_dev_name, dev->name);
2150 len = strlen(hv_dev_name);
2152 /* For example, "xgbe/0". */
2153 hv_dev_name[len] = hv_dev_name[len - 1];
2154 hv_dev_name[len - 1] = '/';
2155 len++;
2157 /* For example, "xgbe/0/native_hash". */
2158 strcpy(hv_dev_name + len, hash_default ? "/native_hash" : "/native");
2160 /* Get the hypervisor handle for this device. */
2161 priv->hv_devhdl = hv_dev_open((HV_VirtAddr)hv_dev_name, 0);
2162 PDEBUG("hv_dev_open(%s) returned %d %p\n",
2163 hv_dev_name, priv->hv_devhdl, &priv->hv_devhdl);
2164 if (priv->hv_devhdl < 0) {
2165 if (priv->hv_devhdl == HV_ENODEV)
2166 printk(KERN_DEBUG "Ignoring unconfigured device %s\n",
2167 hv_dev_name);
2168 else
2169 printk(KERN_DEBUG "hv_dev_open(%s) returned %d\n",
2170 hv_dev_name, priv->hv_devhdl);
2171 return -1;
2175 * Read the hardware address from the hypervisor.
2176 * ISSUE: Note that "dev_addr" is now a pointer.
2178 offset.bits.class = NETIO_PARAM;
2179 offset.bits.addr = NETIO_PARAM_MAC;
2180 ret = hv_dev_pread(priv->hv_devhdl, 0,
2181 (HV_VirtAddr)dev->dev_addr, dev->addr_len,
2182 offset.word);
2183 PDEBUG("hv_dev_pread(NETIO_PARAM_MAC) returned %d\n", ret);
2184 if (ret <= 0) {
2185 printk(KERN_DEBUG "hv_dev_pread(NETIO_PARAM_MAC) %s failed\n",
2186 dev->name);
2188 * Since the device is configured by the hypervisor but we
2189 * can't get its MAC address, we are most likely running
2190 * the simulator, so let's generate a random MAC address.
2192 random_ether_addr(dev->dev_addr);
2195 return 0;
2199 static struct net_device_ops tile_net_ops = {
2200 .ndo_open = tile_net_open,
2201 .ndo_stop = tile_net_stop,
2202 .ndo_start_xmit = tile_net_tx,
2203 .ndo_do_ioctl = tile_net_ioctl,
2204 .ndo_get_stats = tile_net_get_stats,
2205 .ndo_change_mtu = tile_net_change_mtu,
2206 .ndo_tx_timeout = tile_net_tx_timeout,
2207 .ndo_set_mac_address = tile_net_set_mac_address
2212 * The setup function.
2214 * This uses ether_setup() to assign various fields in dev, including
2215 * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields.
2217 static void tile_net_setup(struct net_device *dev)
2219 PDEBUG("tile_net_setup()\n");
2221 ether_setup(dev);
2223 dev->netdev_ops = &tile_net_ops;
2225 dev->watchdog_timeo = TILE_NET_TIMEOUT;
2227 /* We want lockless xmit. */
2228 dev->features |= NETIF_F_LLTX;
2230 /* We support hardware tx checksums. */
2231 dev->features |= NETIF_F_HW_CSUM;
2233 /* We support scatter/gather. */
2234 dev->features |= NETIF_F_SG;
2236 /* We support TSO. */
2237 dev->features |= NETIF_F_TSO;
2239 #ifdef TILE_NET_GSO
2240 /* We support GSO. */
2241 dev->features |= NETIF_F_GSO;
2242 #endif
2244 if (hash_default)
2245 dev->features |= NETIF_F_HIGHDMA;
2247 /* ISSUE: We should support NETIF_F_UFO. */
2249 dev->tx_queue_len = TILE_NET_TX_QUEUE_LEN;
2251 dev->mtu = TILE_NET_MTU;
2256 * Allocate the device structure, register the device, and obtain the
2257 * MAC address from the hypervisor.
2259 static struct net_device *tile_net_dev_init(const char *name)
2261 int ret;
2262 struct net_device *dev;
2263 struct tile_net_priv *priv;
2264 struct page *page;
2267 * Allocate the device structure. This allocates "priv", calls
2268 * tile_net_setup(), and saves "name". Normally, "name" is a
2269 * template, instantiated by register_netdev(), but not for us.
2271 dev = alloc_netdev(sizeof(*priv), name, tile_net_setup);
2272 if (!dev) {
2273 pr_err("alloc_netdev(%s) failed\n", name);
2274 return NULL;
2277 priv = netdev_priv(dev);
2279 /* Initialize "priv". */
2281 memset(priv, 0, sizeof(*priv));
2283 /* Save "dev" for "tile_net_open_retry()". */
2284 priv->dev = dev;
2286 INIT_DELAYED_WORK(&priv->retry_work, tile_net_open_retry);
2288 spin_lock_init(&priv->cmd_lock);
2289 spin_lock_init(&priv->comp_lock);
2291 /* Allocate "epp_queue". */
2292 BUG_ON(get_order(sizeof(lepp_queue_t)) != 0);
2293 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, 0);
2294 if (!page) {
2295 free_netdev(dev);
2296 return NULL;
2298 priv->epp_queue = page_address(page);
2300 /* Register the network device. */
2301 ret = register_netdev(dev);
2302 if (ret) {
2303 pr_err("register_netdev %s failed %d\n", dev->name, ret);
2304 free_page((unsigned long)priv->epp_queue);
2305 free_netdev(dev);
2306 return NULL;
2309 /* Get the MAC address. */
2310 ret = tile_net_get_mac(dev);
2311 if (ret < 0) {
2312 unregister_netdev(dev);
2313 free_page((unsigned long)priv->epp_queue);
2314 free_netdev(dev);
2315 return NULL;
2318 return dev;
2323 * Module cleanup.
2325 static void tile_net_cleanup(void)
2327 int i;
2329 for (i = 0; i < TILE_NET_DEVS; i++) {
2330 if (tile_net_devs[i]) {
2331 struct net_device *dev = tile_net_devs[i];
2332 struct tile_net_priv *priv = netdev_priv(dev);
2333 unregister_netdev(dev);
2334 finv_buffer(priv->epp_queue, PAGE_SIZE);
2335 free_page((unsigned long)priv->epp_queue);
2336 free_netdev(dev);
2343 * Module initialization.
2345 static int tile_net_init_module(void)
2347 pr_info("Tilera IPP Net Driver\n");
2349 tile_net_devs[0] = tile_net_dev_init("xgbe0");
2350 tile_net_devs[1] = tile_net_dev_init("xgbe1");
2351 tile_net_devs[2] = tile_net_dev_init("gbe0");
2352 tile_net_devs[3] = tile_net_dev_init("gbe1");
2354 return 0;
2358 #ifndef MODULE
2360 * The "network_cpus" boot argument specifies the cpus that are dedicated
2361 * to handle ingress packets.
2363 * The parameter should be in the form "network_cpus=m-n[,x-y]", where
2364 * m, n, x, y are integer numbers that represent the cpus that can be
2365 * neither a dedicated cpu nor a dataplane cpu.
2367 static int __init network_cpus_setup(char *str)
2369 int rc = cpulist_parse_crop(str, &network_cpus_map);
2370 if (rc != 0) {
2371 pr_warning("network_cpus=%s: malformed cpu list\n",
2372 str);
2373 } else {
2375 /* Remove dedicated cpus. */
2376 cpumask_and(&network_cpus_map, &network_cpus_map,
2377 cpu_possible_mask);
2380 if (cpumask_empty(&network_cpus_map)) {
2381 pr_warning("Ignoring network_cpus='%s'.\n",
2382 str);
2383 } else {
2384 char buf[1024];
2385 cpulist_scnprintf(buf, sizeof(buf), &network_cpus_map);
2386 pr_info("Linux network CPUs: %s\n", buf);
2387 network_cpus_used = true;
2391 return 0;
2393 __setup("network_cpus=", network_cpus_setup);
2394 #endif
2397 module_init(tile_net_init_module);
2398 module_exit(tile_net_cleanup);