Merge branch 'firewire-kernel-streaming' of git://git.alsa-project.org/alsa-kprivate
[firewire-audio.git] / kernel / time / timekeeping.c
blobd27c7562902cbe3aa2472292bd813c1eee8c1ecb
1 /*
2 * linux/kernel/time/timekeeping.c
4 * Kernel timekeeping code and accessor functions
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
9 */
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/sysdev.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 /* Current clocksource used for timekeeping. */
27 struct clocksource *clock;
28 /* The shift value of the current clocksource. */
29 int shift;
31 /* Number of clock cycles in one NTP interval. */
32 cycle_t cycle_interval;
33 /* Number of clock shifted nano seconds in one NTP interval. */
34 u64 xtime_interval;
35 /* shifted nano seconds left over when rounding cycle_interval */
36 s64 xtime_remainder;
37 /* Raw nano seconds accumulated per NTP interval. */
38 u32 raw_interval;
40 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
41 u64 xtime_nsec;
42 /* Difference between accumulated time and NTP time in ntp
43 * shifted nano seconds. */
44 s64 ntp_error;
45 /* Shift conversion between clock shifted nano seconds and
46 * ntp shifted nano seconds. */
47 int ntp_error_shift;
48 /* NTP adjusted clock multiplier */
49 u32 mult;
52 static struct timekeeper timekeeper;
54 /**
55 * timekeeper_setup_internals - Set up internals to use clocksource clock.
57 * @clock: Pointer to clocksource.
59 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
60 * pair and interval request.
62 * Unless you're the timekeeping code, you should not be using this!
64 static void timekeeper_setup_internals(struct clocksource *clock)
66 cycle_t interval;
67 u64 tmp, ntpinterval;
69 timekeeper.clock = clock;
70 clock->cycle_last = clock->read(clock);
72 /* Do the ns -> cycle conversion first, using original mult */
73 tmp = NTP_INTERVAL_LENGTH;
74 tmp <<= clock->shift;
75 ntpinterval = tmp;
76 tmp += clock->mult/2;
77 do_div(tmp, clock->mult);
78 if (tmp == 0)
79 tmp = 1;
81 interval = (cycle_t) tmp;
82 timekeeper.cycle_interval = interval;
84 /* Go back from cycles -> shifted ns */
85 timekeeper.xtime_interval = (u64) interval * clock->mult;
86 timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
87 timekeeper.raw_interval =
88 ((u64) interval * clock->mult) >> clock->shift;
90 timekeeper.xtime_nsec = 0;
91 timekeeper.shift = clock->shift;
93 timekeeper.ntp_error = 0;
94 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
97 * The timekeeper keeps its own mult values for the currently
98 * active clocksource. These value will be adjusted via NTP
99 * to counteract clock drifting.
101 timekeeper.mult = clock->mult;
104 /* Timekeeper helper functions. */
105 static inline s64 timekeeping_get_ns(void)
107 cycle_t cycle_now, cycle_delta;
108 struct clocksource *clock;
110 /* read clocksource: */
111 clock = timekeeper.clock;
112 cycle_now = clock->read(clock);
114 /* calculate the delta since the last update_wall_time: */
115 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
117 /* return delta convert to nanoseconds using ntp adjusted mult. */
118 return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
119 timekeeper.shift);
122 static inline s64 timekeeping_get_ns_raw(void)
124 cycle_t cycle_now, cycle_delta;
125 struct clocksource *clock;
127 /* read clocksource: */
128 clock = timekeeper.clock;
129 cycle_now = clock->read(clock);
131 /* calculate the delta since the last update_wall_time: */
132 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
134 /* return delta convert to nanoseconds using ntp adjusted mult. */
135 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
139 * This read-write spinlock protects us from races in SMP while
140 * playing with xtime.
142 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
146 * The current time
147 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
148 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
149 * at zero at system boot time, so wall_to_monotonic will be negative,
150 * however, we will ALWAYS keep the tv_nsec part positive so we can use
151 * the usual normalization.
153 * wall_to_monotonic is moved after resume from suspend for the monotonic
154 * time not to jump. We need to add total_sleep_time to wall_to_monotonic
155 * to get the real boot based time offset.
157 * - wall_to_monotonic is no longer the boot time, getboottime must be
158 * used instead.
160 static struct timespec xtime __attribute__ ((aligned (16)));
161 static struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
162 static struct timespec total_sleep_time;
165 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
167 static struct timespec raw_time;
169 /* flag for if timekeeping is suspended */
170 int __read_mostly timekeeping_suspended;
172 /* must hold xtime_lock */
173 void timekeeping_leap_insert(int leapsecond)
175 xtime.tv_sec += leapsecond;
176 wall_to_monotonic.tv_sec -= leapsecond;
177 update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
178 timekeeper.mult);
182 * timekeeping_forward_now - update clock to the current time
184 * Forward the current clock to update its state since the last call to
185 * update_wall_time(). This is useful before significant clock changes,
186 * as it avoids having to deal with this time offset explicitly.
188 static void timekeeping_forward_now(void)
190 cycle_t cycle_now, cycle_delta;
191 struct clocksource *clock;
192 s64 nsec;
194 clock = timekeeper.clock;
195 cycle_now = clock->read(clock);
196 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
197 clock->cycle_last = cycle_now;
199 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
200 timekeeper.shift);
202 /* If arch requires, add in gettimeoffset() */
203 nsec += arch_gettimeoffset();
205 timespec_add_ns(&xtime, nsec);
207 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
208 timespec_add_ns(&raw_time, nsec);
212 * getnstimeofday - Returns the time of day in a timespec
213 * @ts: pointer to the timespec to be set
215 * Returns the time of day in a timespec.
217 void getnstimeofday(struct timespec *ts)
219 unsigned long seq;
220 s64 nsecs;
222 WARN_ON(timekeeping_suspended);
224 do {
225 seq = read_seqbegin(&xtime_lock);
227 *ts = xtime;
228 nsecs = timekeeping_get_ns();
230 /* If arch requires, add in gettimeoffset() */
231 nsecs += arch_gettimeoffset();
233 } while (read_seqretry(&xtime_lock, seq));
235 timespec_add_ns(ts, nsecs);
238 EXPORT_SYMBOL(getnstimeofday);
240 ktime_t ktime_get(void)
242 unsigned int seq;
243 s64 secs, nsecs;
245 WARN_ON(timekeeping_suspended);
247 do {
248 seq = read_seqbegin(&xtime_lock);
249 secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
250 nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
251 nsecs += timekeeping_get_ns();
253 } while (read_seqretry(&xtime_lock, seq));
255 * Use ktime_set/ktime_add_ns to create a proper ktime on
256 * 32-bit architectures without CONFIG_KTIME_SCALAR.
258 return ktime_add_ns(ktime_set(secs, 0), nsecs);
260 EXPORT_SYMBOL_GPL(ktime_get);
263 * ktime_get_ts - get the monotonic clock in timespec format
264 * @ts: pointer to timespec variable
266 * The function calculates the monotonic clock from the realtime
267 * clock and the wall_to_monotonic offset and stores the result
268 * in normalized timespec format in the variable pointed to by @ts.
270 void ktime_get_ts(struct timespec *ts)
272 struct timespec tomono;
273 unsigned int seq;
274 s64 nsecs;
276 WARN_ON(timekeeping_suspended);
278 do {
279 seq = read_seqbegin(&xtime_lock);
280 *ts = xtime;
281 tomono = wall_to_monotonic;
282 nsecs = timekeeping_get_ns();
284 } while (read_seqretry(&xtime_lock, seq));
286 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
287 ts->tv_nsec + tomono.tv_nsec + nsecs);
289 EXPORT_SYMBOL_GPL(ktime_get_ts);
291 #ifdef CONFIG_NTP_PPS
294 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
295 * @ts_raw: pointer to the timespec to be set to raw monotonic time
296 * @ts_real: pointer to the timespec to be set to the time of day
298 * This function reads both the time of day and raw monotonic time at the
299 * same time atomically and stores the resulting timestamps in timespec
300 * format.
302 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
304 unsigned long seq;
305 s64 nsecs_raw, nsecs_real;
307 WARN_ON_ONCE(timekeeping_suspended);
309 do {
310 u32 arch_offset;
312 seq = read_seqbegin(&xtime_lock);
314 *ts_raw = raw_time;
315 *ts_real = xtime;
317 nsecs_raw = timekeeping_get_ns_raw();
318 nsecs_real = timekeeping_get_ns();
320 /* If arch requires, add in gettimeoffset() */
321 arch_offset = arch_gettimeoffset();
322 nsecs_raw += arch_offset;
323 nsecs_real += arch_offset;
325 } while (read_seqretry(&xtime_lock, seq));
327 timespec_add_ns(ts_raw, nsecs_raw);
328 timespec_add_ns(ts_real, nsecs_real);
330 EXPORT_SYMBOL(getnstime_raw_and_real);
332 #endif /* CONFIG_NTP_PPS */
335 * do_gettimeofday - Returns the time of day in a timeval
336 * @tv: pointer to the timeval to be set
338 * NOTE: Users should be converted to using getnstimeofday()
340 void do_gettimeofday(struct timeval *tv)
342 struct timespec now;
344 getnstimeofday(&now);
345 tv->tv_sec = now.tv_sec;
346 tv->tv_usec = now.tv_nsec/1000;
349 EXPORT_SYMBOL(do_gettimeofday);
351 * do_settimeofday - Sets the time of day
352 * @tv: pointer to the timespec variable containing the new time
354 * Sets the time of day to the new time and update NTP and notify hrtimers
356 int do_settimeofday(struct timespec *tv)
358 struct timespec ts_delta;
359 unsigned long flags;
361 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
362 return -EINVAL;
364 write_seqlock_irqsave(&xtime_lock, flags);
366 timekeeping_forward_now();
368 ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
369 ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
370 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
372 xtime = *tv;
374 timekeeper.ntp_error = 0;
375 ntp_clear();
377 update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
378 timekeeper.mult);
380 write_sequnlock_irqrestore(&xtime_lock, flags);
382 /* signal hrtimers about time change */
383 clock_was_set();
385 return 0;
388 EXPORT_SYMBOL(do_settimeofday);
391 * change_clocksource - Swaps clocksources if a new one is available
393 * Accumulates current time interval and initializes new clocksource
395 static int change_clocksource(void *data)
397 struct clocksource *new, *old;
399 new = (struct clocksource *) data;
401 timekeeping_forward_now();
402 if (!new->enable || new->enable(new) == 0) {
403 old = timekeeper.clock;
404 timekeeper_setup_internals(new);
405 if (old->disable)
406 old->disable(old);
408 return 0;
412 * timekeeping_notify - Install a new clock source
413 * @clock: pointer to the clock source
415 * This function is called from clocksource.c after a new, better clock
416 * source has been registered. The caller holds the clocksource_mutex.
418 void timekeeping_notify(struct clocksource *clock)
420 if (timekeeper.clock == clock)
421 return;
422 stop_machine(change_clocksource, clock, NULL);
423 tick_clock_notify();
427 * ktime_get_real - get the real (wall-) time in ktime_t format
429 * returns the time in ktime_t format
431 ktime_t ktime_get_real(void)
433 struct timespec now;
435 getnstimeofday(&now);
437 return timespec_to_ktime(now);
439 EXPORT_SYMBOL_GPL(ktime_get_real);
442 * getrawmonotonic - Returns the raw monotonic time in a timespec
443 * @ts: pointer to the timespec to be set
445 * Returns the raw monotonic time (completely un-modified by ntp)
447 void getrawmonotonic(struct timespec *ts)
449 unsigned long seq;
450 s64 nsecs;
452 do {
453 seq = read_seqbegin(&xtime_lock);
454 nsecs = timekeeping_get_ns_raw();
455 *ts = raw_time;
457 } while (read_seqretry(&xtime_lock, seq));
459 timespec_add_ns(ts, nsecs);
461 EXPORT_SYMBOL(getrawmonotonic);
465 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
467 int timekeeping_valid_for_hres(void)
469 unsigned long seq;
470 int ret;
472 do {
473 seq = read_seqbegin(&xtime_lock);
475 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
477 } while (read_seqretry(&xtime_lock, seq));
479 return ret;
483 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
485 * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
486 * ensure that the clocksource does not change!
488 u64 timekeeping_max_deferment(void)
490 return timekeeper.clock->max_idle_ns;
494 * read_persistent_clock - Return time from the persistent clock.
496 * Weak dummy function for arches that do not yet support it.
497 * Reads the time from the battery backed persistent clock.
498 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
500 * XXX - Do be sure to remove it once all arches implement it.
502 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
504 ts->tv_sec = 0;
505 ts->tv_nsec = 0;
509 * read_boot_clock - Return time of the system start.
511 * Weak dummy function for arches that do not yet support it.
512 * Function to read the exact time the system has been started.
513 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
515 * XXX - Do be sure to remove it once all arches implement it.
517 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
519 ts->tv_sec = 0;
520 ts->tv_nsec = 0;
524 * timekeeping_init - Initializes the clocksource and common timekeeping values
526 void __init timekeeping_init(void)
528 struct clocksource *clock;
529 unsigned long flags;
530 struct timespec now, boot;
532 read_persistent_clock(&now);
533 read_boot_clock(&boot);
535 write_seqlock_irqsave(&xtime_lock, flags);
537 ntp_init();
539 clock = clocksource_default_clock();
540 if (clock->enable)
541 clock->enable(clock);
542 timekeeper_setup_internals(clock);
544 xtime.tv_sec = now.tv_sec;
545 xtime.tv_nsec = now.tv_nsec;
546 raw_time.tv_sec = 0;
547 raw_time.tv_nsec = 0;
548 if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
549 boot.tv_sec = xtime.tv_sec;
550 boot.tv_nsec = xtime.tv_nsec;
552 set_normalized_timespec(&wall_to_monotonic,
553 -boot.tv_sec, -boot.tv_nsec);
554 total_sleep_time.tv_sec = 0;
555 total_sleep_time.tv_nsec = 0;
556 write_sequnlock_irqrestore(&xtime_lock, flags);
559 /* time in seconds when suspend began */
560 static struct timespec timekeeping_suspend_time;
563 * timekeeping_resume - Resumes the generic timekeeping subsystem.
564 * @dev: unused
566 * This is for the generic clocksource timekeeping.
567 * xtime/wall_to_monotonic/jiffies/etc are
568 * still managed by arch specific suspend/resume code.
570 static int timekeeping_resume(struct sys_device *dev)
572 unsigned long flags;
573 struct timespec ts;
575 read_persistent_clock(&ts);
577 clocksource_resume();
579 write_seqlock_irqsave(&xtime_lock, flags);
581 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
582 ts = timespec_sub(ts, timekeeping_suspend_time);
583 xtime = timespec_add(xtime, ts);
584 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
585 total_sleep_time = timespec_add(total_sleep_time, ts);
587 /* re-base the last cycle value */
588 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
589 timekeeper.ntp_error = 0;
590 timekeeping_suspended = 0;
591 write_sequnlock_irqrestore(&xtime_lock, flags);
593 touch_softlockup_watchdog();
595 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
597 /* Resume hrtimers */
598 hres_timers_resume();
600 return 0;
603 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
605 unsigned long flags;
607 read_persistent_clock(&timekeeping_suspend_time);
609 write_seqlock_irqsave(&xtime_lock, flags);
610 timekeeping_forward_now();
611 timekeeping_suspended = 1;
612 write_sequnlock_irqrestore(&xtime_lock, flags);
614 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
615 clocksource_suspend();
617 return 0;
620 /* sysfs resume/suspend bits for timekeeping */
621 static struct sysdev_class timekeeping_sysclass = {
622 .name = "timekeeping",
623 .resume = timekeeping_resume,
624 .suspend = timekeeping_suspend,
627 static struct sys_device device_timer = {
628 .id = 0,
629 .cls = &timekeeping_sysclass,
632 static int __init timekeeping_init_device(void)
634 int error = sysdev_class_register(&timekeeping_sysclass);
635 if (!error)
636 error = sysdev_register(&device_timer);
637 return error;
640 device_initcall(timekeeping_init_device);
643 * If the error is already larger, we look ahead even further
644 * to compensate for late or lost adjustments.
646 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
647 s64 *offset)
649 s64 tick_error, i;
650 u32 look_ahead, adj;
651 s32 error2, mult;
654 * Use the current error value to determine how much to look ahead.
655 * The larger the error the slower we adjust for it to avoid problems
656 * with losing too many ticks, otherwise we would overadjust and
657 * produce an even larger error. The smaller the adjustment the
658 * faster we try to adjust for it, as lost ticks can do less harm
659 * here. This is tuned so that an error of about 1 msec is adjusted
660 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
662 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
663 error2 = abs(error2);
664 for (look_ahead = 0; error2 > 0; look_ahead++)
665 error2 >>= 2;
668 * Now calculate the error in (1 << look_ahead) ticks, but first
669 * remove the single look ahead already included in the error.
671 tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
672 tick_error -= timekeeper.xtime_interval >> 1;
673 error = ((error - tick_error) >> look_ahead) + tick_error;
675 /* Finally calculate the adjustment shift value. */
676 i = *interval;
677 mult = 1;
678 if (error < 0) {
679 error = -error;
680 *interval = -*interval;
681 *offset = -*offset;
682 mult = -1;
684 for (adj = 0; error > i; adj++)
685 error >>= 1;
687 *interval <<= adj;
688 *offset <<= adj;
689 return mult << adj;
693 * Adjust the multiplier to reduce the error value,
694 * this is optimized for the most common adjustments of -1,0,1,
695 * for other values we can do a bit more work.
697 static void timekeeping_adjust(s64 offset)
699 s64 error, interval = timekeeper.cycle_interval;
700 int adj;
702 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
703 if (error > interval) {
704 error >>= 2;
705 if (likely(error <= interval))
706 adj = 1;
707 else
708 adj = timekeeping_bigadjust(error, &interval, &offset);
709 } else if (error < -interval) {
710 error >>= 2;
711 if (likely(error >= -interval)) {
712 adj = -1;
713 interval = -interval;
714 offset = -offset;
715 } else
716 adj = timekeeping_bigadjust(error, &interval, &offset);
717 } else
718 return;
720 timekeeper.mult += adj;
721 timekeeper.xtime_interval += interval;
722 timekeeper.xtime_nsec -= offset;
723 timekeeper.ntp_error -= (interval - offset) <<
724 timekeeper.ntp_error_shift;
729 * logarithmic_accumulation - shifted accumulation of cycles
731 * This functions accumulates a shifted interval of cycles into
732 * into a shifted interval nanoseconds. Allows for O(log) accumulation
733 * loop.
735 * Returns the unconsumed cycles.
737 static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
739 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
740 u64 raw_nsecs;
742 /* If the offset is smaller then a shifted interval, do nothing */
743 if (offset < timekeeper.cycle_interval<<shift)
744 return offset;
746 /* Accumulate one shifted interval */
747 offset -= timekeeper.cycle_interval << shift;
748 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
750 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
751 while (timekeeper.xtime_nsec >= nsecps) {
752 timekeeper.xtime_nsec -= nsecps;
753 xtime.tv_sec++;
754 second_overflow();
757 /* Accumulate raw time */
758 raw_nsecs = timekeeper.raw_interval << shift;
759 raw_nsecs += raw_time.tv_nsec;
760 if (raw_nsecs >= NSEC_PER_SEC) {
761 u64 raw_secs = raw_nsecs;
762 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
763 raw_time.tv_sec += raw_secs;
765 raw_time.tv_nsec = raw_nsecs;
767 /* Accumulate error between NTP and clock interval */
768 timekeeper.ntp_error += tick_length << shift;
769 timekeeper.ntp_error -=
770 (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
771 (timekeeper.ntp_error_shift + shift);
773 return offset;
778 * update_wall_time - Uses the current clocksource to increment the wall time
780 * Called from the timer interrupt, must hold a write on xtime_lock.
782 void update_wall_time(void)
784 struct clocksource *clock;
785 cycle_t offset;
786 int shift = 0, maxshift;
788 /* Make sure we're fully resumed: */
789 if (unlikely(timekeeping_suspended))
790 return;
792 clock = timekeeper.clock;
794 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
795 offset = timekeeper.cycle_interval;
796 #else
797 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
798 #endif
799 timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
802 * With NO_HZ we may have to accumulate many cycle_intervals
803 * (think "ticks") worth of time at once. To do this efficiently,
804 * we calculate the largest doubling multiple of cycle_intervals
805 * that is smaller then the offset. We then accumulate that
806 * chunk in one go, and then try to consume the next smaller
807 * doubled multiple.
809 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
810 shift = max(0, shift);
811 /* Bound shift to one less then what overflows tick_length */
812 maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
813 shift = min(shift, maxshift);
814 while (offset >= timekeeper.cycle_interval) {
815 offset = logarithmic_accumulation(offset, shift);
816 if(offset < timekeeper.cycle_interval<<shift)
817 shift--;
820 /* correct the clock when NTP error is too big */
821 timekeeping_adjust(offset);
824 * Since in the loop above, we accumulate any amount of time
825 * in xtime_nsec over a second into xtime.tv_sec, its possible for
826 * xtime_nsec to be fairly small after the loop. Further, if we're
827 * slightly speeding the clocksource up in timekeeping_adjust(),
828 * its possible the required corrective factor to xtime_nsec could
829 * cause it to underflow.
831 * Now, we cannot simply roll the accumulated second back, since
832 * the NTP subsystem has been notified via second_overflow. So
833 * instead we push xtime_nsec forward by the amount we underflowed,
834 * and add that amount into the error.
836 * We'll correct this error next time through this function, when
837 * xtime_nsec is not as small.
839 if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
840 s64 neg = -(s64)timekeeper.xtime_nsec;
841 timekeeper.xtime_nsec = 0;
842 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
847 * Store full nanoseconds into xtime after rounding it up and
848 * add the remainder to the error difference.
850 xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
851 timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
852 timekeeper.ntp_error += timekeeper.xtime_nsec <<
853 timekeeper.ntp_error_shift;
856 * Finally, make sure that after the rounding
857 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
859 if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
860 xtime.tv_nsec -= NSEC_PER_SEC;
861 xtime.tv_sec++;
862 second_overflow();
865 /* check to see if there is a new clocksource to use */
866 update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
867 timekeeper.mult);
871 * getboottime - Return the real time of system boot.
872 * @ts: pointer to the timespec to be set
874 * Returns the time of day in a timespec.
876 * This is based on the wall_to_monotonic offset and the total suspend
877 * time. Calls to settimeofday will affect the value returned (which
878 * basically means that however wrong your real time clock is at boot time,
879 * you get the right time here).
881 void getboottime(struct timespec *ts)
883 struct timespec boottime = {
884 .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
885 .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
888 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
890 EXPORT_SYMBOL_GPL(getboottime);
893 * monotonic_to_bootbased - Convert the monotonic time to boot based.
894 * @ts: pointer to the timespec to be converted
896 void monotonic_to_bootbased(struct timespec *ts)
898 *ts = timespec_add(*ts, total_sleep_time);
900 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
902 unsigned long get_seconds(void)
904 return xtime.tv_sec;
906 EXPORT_SYMBOL(get_seconds);
908 struct timespec __current_kernel_time(void)
910 return xtime;
913 struct timespec __get_wall_to_monotonic(void)
915 return wall_to_monotonic;
918 struct timespec current_kernel_time(void)
920 struct timespec now;
921 unsigned long seq;
923 do {
924 seq = read_seqbegin(&xtime_lock);
926 now = xtime;
927 } while (read_seqretry(&xtime_lock, seq));
929 return now;
931 EXPORT_SYMBOL(current_kernel_time);
933 struct timespec get_monotonic_coarse(void)
935 struct timespec now, mono;
936 unsigned long seq;
938 do {
939 seq = read_seqbegin(&xtime_lock);
941 now = xtime;
942 mono = wall_to_monotonic;
943 } while (read_seqretry(&xtime_lock, seq));
945 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
946 now.tv_nsec + mono.tv_nsec);
947 return now;