1 /*---------------------------------------------------------------------------*\
3 \\ / F ield | foam-extend: Open Source CFD
4 \\ / O peration | Version: 3.2
5 \\ / A nd | Web: http://www.foam-extend.org
6 \\/ M anipulation | For copyright notice see file Copyright
7 -------------------------------------------------------------------------------
9 This file is part of foam-extend.
11 foam-extend is free software: you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation, either version 3 of the License, or (at your
14 option) any later version.
16 foam-extend is distributed in the hope that it will be useful, but
17 WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
25 calculateCourantNumber
28 Simple utility which calculate the Courant number for solid mechanics
34 \*---------------------------------------------------------------------------*/
37 #include "constitutiveModel.H"
39 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
41 int main(int argc, char *argv[])
43 # include "setRootCase.H"
44 # include "createTime.H"
45 # include "createMesh.H"
47 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
49 Info<< "\nCalculating Courant number\n" << endl;
51 // Calculate Courant number for every face
53 // Mechanical properties
65 dimensionedVector("zero", dimLength, vector::zero)
67 volSymmTensorField sigma
78 dimensionedSymmTensor("zero", dimForce/dimArea, symmTensor::zero)
80 constitutiveModel rheology(sigma, U);
81 volScalarField mu = rheology.mu();
82 volScalarField lambda = rheology.lambda();
83 volScalarField rho = rheology.rho();
84 surfaceScalarField Ef =
85 fvc::interpolate(mu*(3*lambda + 2*mu)/(lambda+mu), "E");
86 surfaceScalarField nuf = fvc::interpolate(lambda/(2*(lambda+mu)), "nu");
87 surfaceScalarField rhof = fvc::interpolate(rho);
89 surfaceScalarField waveVelocity =
90 Foam::sqrt(Ef*(1 - nuf)/(rhof*(1 + nuf)*(1 - 2*nuf)));
94 waveVelocity.internalField()*runTime.deltaT().value()
95 *mesh.surfaceInterpolation::deltaCoeffs().internalField();
97 // Calculate required time-step for a Courant number of 1.0
98 scalar requiredDeltaT = 1.0 /
101 mesh.surfaceInterpolation::deltaCoeffs().internalField()
102 *waveVelocity.internalField()
105 scalar averageCo = gAverage(Co);
106 scalar maxCo = gMax(Co);
107 scalar averageWaveVel = gAverage(waveVelocity);
108 scalar maxWaveVel = gMax(waveVelocity);
110 Info<< "\nCourant Number\n\tmean: " << averageCo
111 << "\n\tmax: " << maxCo << nl
112 << "Wave velocity magnitude\n\tmean " << averageWaveVel
113 << "\n\tmax: " << maxWaveVel << nl
114 << "Time step required for a maximum Courant number of 1.0 is "
115 << requiredDeltaT << endl;
117 Info<< "\nEnd\n" << endl;
123 // ************************************************************************* //