Forward compatibility: flex
[foam-extend-3.2.git] / applications / solvers / multiphase / compressibleInterDyMFoam / alphaEqns.H
blobdd704c0693c45b5cd7ded0bd48b378cd42802210
2     word alphaScheme("div(phi,alpha)");
3     word alpharScheme("div(phirb,alpha)");
5     surfaceScalarField phir = phic*interface.nHatf();
7     for (int gCorr=0; gCorr<nAlphaCorr; gCorr++)
8     {
9         volScalarField::DimensionedInternalField Sp
10         (
11             IOobject
12             (
13                 "Sp",
14                 runTime.timeName(),
15                 mesh
16             ),
17             mesh,
18             dimensionedScalar("Sp", dgdt.dimensions(), 0.0)
19         );
21         volScalarField::DimensionedInternalField Su
22         (
23             IOobject
24             (
25                 "Su",
26                 runTime.timeName(),
27                 mesh
28             ),
29             // Divergence term is handled explicitly to be
30             // consistent with the explicit transport solution
31             divU*min(alpha1, scalar(1))
32         );
34         forAll(dgdt, celli)
35         {
36             if (dgdt[celli] > 0.0 && alpha1[celli] > 0.0)
37             {
38                 Sp[celli] -= dgdt[celli]*alpha1[celli];
39                 Su[celli] += dgdt[celli]*alpha1[celli];
40             }
41             else if (dgdt[celli] < 0.0 && alpha1[celli] < 1.0)
42             {
43                 Sp[celli] += dgdt[celli]*(1.0 - alpha1[celli]);
44             }
45         }
48         surfaceScalarField phiAlpha1 =
49             fvc::flux
50             (
51                 phi,
52                 alpha1,
53                 alphaScheme
54             )
55           + fvc::flux
56             (
57                 -fvc::flux(-phir, alpha2, alpharScheme),
58                 alpha1,
59                 alpharScheme
60             );
62         MULES::explicitSolve(geometricOneField(), alpha1, phi, phiAlpha1, Sp, Su, 1, 0);
64         surfaceScalarField rho1f = fvc::interpolate(rho1);
65         surfaceScalarField rho2f = fvc::interpolate(rho2);
66         rhoPhi = phiAlpha1*(rho1f - rho2f) + phi*rho2f;
68         alpha2 = scalar(1) - alpha1;
69     }
71     Info<< "Liquid phase volume fraction = "
72         << alpha1.weightedAverage(mesh.V()).value()
73         << "  Min(alpha1) = " << min(alpha1).value()
74         << "  Min(alpha2) = " << min(alpha2).value()
75         << endl;