cxgbe/t4_tom: Read the chip's DDP page sizes and save them in a
[freebsd-src.git] / sbin / fsck_ffs / suj.c
blobb265dfcd17435424c66c2ab8b86372f62e033daa
1 /*-
2 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
30 #include <sys/param.h>
31 #include <sys/disk.h>
32 #include <sys/disklabel.h>
33 #include <sys/mount.h>
34 #include <sys/stat.h>
36 #include <ufs/ufs/ufsmount.h>
37 #include <ufs/ufs/dinode.h>
38 #include <ufs/ufs/dir.h>
39 #include <ufs/ffs/fs.h>
41 #include <assert.h>
42 #include <err.h>
43 #include <setjmp.h>
44 #include <stdarg.h>
45 #include <stdio.h>
46 #include <stdlib.h>
47 #include <stdint.h>
48 #include <libufs.h>
49 #include <string.h>
50 #include <strings.h>
51 #include <sysexits.h>
52 #include <time.h>
54 #include "fsck.h"
56 #define DOTDOT_OFFSET DIRECTSIZ(1)
57 #define SUJ_HASHSIZE 2048
58 #define SUJ_HASHMASK (SUJ_HASHSIZE - 1)
59 #define SUJ_HASH(x) ((x * 2654435761) & SUJ_HASHMASK)
61 struct suj_seg {
62 TAILQ_ENTRY(suj_seg) ss_next;
63 struct jsegrec ss_rec;
64 uint8_t *ss_blk;
67 struct suj_rec {
68 TAILQ_ENTRY(suj_rec) sr_next;
69 union jrec *sr_rec;
71 TAILQ_HEAD(srechd, suj_rec);
73 struct suj_ino {
74 LIST_ENTRY(suj_ino) si_next;
75 struct srechd si_recs;
76 struct srechd si_newrecs;
77 struct srechd si_movs;
78 struct jtrncrec *si_trunc;
79 ino_t si_ino;
80 char si_skipparent;
81 char si_hasrecs;
82 char si_blkadj;
83 char si_linkadj;
84 int si_mode;
85 nlink_t si_nlinkadj;
86 nlink_t si_nlink;
87 nlink_t si_dotlinks;
89 LIST_HEAD(inohd, suj_ino);
91 struct suj_blk {
92 LIST_ENTRY(suj_blk) sb_next;
93 struct srechd sb_recs;
94 ufs2_daddr_t sb_blk;
96 LIST_HEAD(blkhd, suj_blk);
98 struct data_blk {
99 LIST_ENTRY(data_blk) db_next;
100 uint8_t *db_buf;
101 ufs2_daddr_t db_blk;
102 int db_size;
103 int db_dirty;
106 struct ino_blk {
107 LIST_ENTRY(ino_blk) ib_next;
108 uint8_t *ib_buf;
109 int ib_dirty;
110 ufs2_daddr_t ib_blk;
112 LIST_HEAD(iblkhd, ino_blk);
114 struct suj_cg {
115 LIST_ENTRY(suj_cg) sc_next;
116 struct blkhd sc_blkhash[SUJ_HASHSIZE];
117 struct inohd sc_inohash[SUJ_HASHSIZE];
118 struct iblkhd sc_iblkhash[SUJ_HASHSIZE];
119 struct ino_blk *sc_lastiblk;
120 struct suj_ino *sc_lastino;
121 struct suj_blk *sc_lastblk;
122 uint8_t *sc_cgbuf;
123 struct cg *sc_cgp;
124 int sc_dirty;
125 int sc_cgx;
128 static LIST_HEAD(cghd, suj_cg) cghash[SUJ_HASHSIZE];
129 static LIST_HEAD(dblkhd, data_blk) dbhash[SUJ_HASHSIZE];
130 static struct suj_cg *lastcg;
131 static struct data_blk *lastblk;
133 static TAILQ_HEAD(seghd, suj_seg) allsegs;
134 static uint64_t oldseq;
135 static struct uufsd *disk = NULL;
136 static struct fs *fs = NULL;
137 static ino_t sujino;
140 * Summary statistics.
142 static uint64_t freefrags;
143 static uint64_t freeblocks;
144 static uint64_t freeinos;
145 static uint64_t freedir;
146 static uint64_t jbytes;
147 static uint64_t jrecs;
149 static jmp_buf jmpbuf;
151 typedef void (*ino_visitor)(ino_t, ufs_lbn_t, ufs2_daddr_t, int);
152 static void err_suj(const char *, ...) __dead2;
153 static void ino_trunc(ino_t, off_t);
154 static void ino_decr(ino_t);
155 static void ino_adjust(struct suj_ino *);
156 static void ino_build(struct suj_ino *);
157 static int blk_isfree(ufs2_daddr_t);
158 static void initsuj(void);
160 static void *
161 errmalloc(size_t n)
163 void *a;
165 a = Malloc(n);
166 if (a == NULL)
167 err(EX_OSERR, "malloc(%zu)", n);
168 return (a);
172 * When hit a fatal error in journalling check, print out
173 * the error and then offer to fallback to normal fsck.
175 static void
176 err_suj(const char * restrict fmt, ...)
178 va_list ap;
180 if (preen)
181 (void)fprintf(stdout, "%s: ", cdevname);
183 va_start(ap, fmt);
184 (void)vfprintf(stdout, fmt, ap);
185 va_end(ap);
187 longjmp(jmpbuf, -1);
191 * Open the given provider, load superblock.
193 static void
194 opendisk(const char *devnam)
196 if (disk != NULL)
197 return;
198 disk = Malloc(sizeof(*disk));
199 if (disk == NULL)
200 err(EX_OSERR, "malloc(%zu)", sizeof(*disk));
201 if (ufs_disk_fillout(disk, devnam) == -1) {
202 err(EX_OSERR, "ufs_disk_fillout(%s) failed: %s", devnam,
203 disk->d_error);
205 fs = &disk->d_fs;
206 if (real_dev_bsize == 0 && ioctl(disk->d_fd, DIOCGSECTORSIZE,
207 &real_dev_bsize) == -1)
208 real_dev_bsize = secsize;
209 if (debug)
210 printf("dev_bsize %u\n", real_dev_bsize);
214 * Mark file system as clean, write the super-block back, close the disk.
216 static void
217 closedisk(const char *devnam)
219 struct csum *cgsum;
220 uint32_t i;
223 * Recompute the fs summary info from correct cs summaries.
225 bzero(&fs->fs_cstotal, sizeof(struct csum_total));
226 for (i = 0; i < fs->fs_ncg; i++) {
227 cgsum = &fs->fs_cs(fs, i);
228 fs->fs_cstotal.cs_nffree += cgsum->cs_nffree;
229 fs->fs_cstotal.cs_nbfree += cgsum->cs_nbfree;
230 fs->fs_cstotal.cs_nifree += cgsum->cs_nifree;
231 fs->fs_cstotal.cs_ndir += cgsum->cs_ndir;
233 fs->fs_pendinginodes = 0;
234 fs->fs_pendingblocks = 0;
235 fs->fs_clean = 1;
236 fs->fs_time = time(NULL);
237 fs->fs_mtime = time(NULL);
238 if (sbwrite(disk, 0) == -1)
239 err(EX_OSERR, "sbwrite(%s)", devnam);
240 if (ufs_disk_close(disk) == -1)
241 err(EX_OSERR, "ufs_disk_close(%s)", devnam);
242 free(disk);
243 disk = NULL;
244 fs = NULL;
248 * Lookup a cg by number in the hash so we can keep track of which cgs
249 * need stats rebuilt.
251 static struct suj_cg *
252 cg_lookup(int cgx)
254 struct cghd *hd;
255 struct suj_cg *sc;
257 if (cgx < 0 || cgx >= fs->fs_ncg)
258 err_suj("Bad cg number %d\n", cgx);
259 if (lastcg && lastcg->sc_cgx == cgx)
260 return (lastcg);
261 hd = &cghash[SUJ_HASH(cgx)];
262 LIST_FOREACH(sc, hd, sc_next)
263 if (sc->sc_cgx == cgx) {
264 lastcg = sc;
265 return (sc);
267 sc = errmalloc(sizeof(*sc));
268 bzero(sc, sizeof(*sc));
269 sc->sc_cgbuf = errmalloc(fs->fs_bsize);
270 sc->sc_cgp = (struct cg *)sc->sc_cgbuf;
271 sc->sc_cgx = cgx;
272 LIST_INSERT_HEAD(hd, sc, sc_next);
273 if (bread(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf,
274 fs->fs_bsize) == -1)
275 err_suj("Unable to read cylinder group %d\n", sc->sc_cgx);
277 return (sc);
281 * Lookup an inode number in the hash and allocate a suj_ino if it does
282 * not exist.
284 static struct suj_ino *
285 ino_lookup(ino_t ino, int creat)
287 struct suj_ino *sino;
288 struct inohd *hd;
289 struct suj_cg *sc;
291 sc = cg_lookup(ino_to_cg(fs, ino));
292 if (sc->sc_lastino && sc->sc_lastino->si_ino == ino)
293 return (sc->sc_lastino);
294 hd = &sc->sc_inohash[SUJ_HASH(ino)];
295 LIST_FOREACH(sino, hd, si_next)
296 if (sino->si_ino == ino)
297 return (sino);
298 if (creat == 0)
299 return (NULL);
300 sino = errmalloc(sizeof(*sino));
301 bzero(sino, sizeof(*sino));
302 sino->si_ino = ino;
303 TAILQ_INIT(&sino->si_recs);
304 TAILQ_INIT(&sino->si_newrecs);
305 TAILQ_INIT(&sino->si_movs);
306 LIST_INSERT_HEAD(hd, sino, si_next);
308 return (sino);
312 * Lookup a block number in the hash and allocate a suj_blk if it does
313 * not exist.
315 static struct suj_blk *
316 blk_lookup(ufs2_daddr_t blk, int creat)
318 struct suj_blk *sblk;
319 struct suj_cg *sc;
320 struct blkhd *hd;
322 sc = cg_lookup(dtog(fs, blk));
323 if (sc->sc_lastblk && sc->sc_lastblk->sb_blk == blk)
324 return (sc->sc_lastblk);
325 hd = &sc->sc_blkhash[SUJ_HASH(fragstoblks(fs, blk))];
326 LIST_FOREACH(sblk, hd, sb_next)
327 if (sblk->sb_blk == blk)
328 return (sblk);
329 if (creat == 0)
330 return (NULL);
331 sblk = errmalloc(sizeof(*sblk));
332 bzero(sblk, sizeof(*sblk));
333 sblk->sb_blk = blk;
334 TAILQ_INIT(&sblk->sb_recs);
335 LIST_INSERT_HEAD(hd, sblk, sb_next);
337 return (sblk);
340 static struct data_blk *
341 dblk_lookup(ufs2_daddr_t blk)
343 struct data_blk *dblk;
344 struct dblkhd *hd;
346 hd = &dbhash[SUJ_HASH(fragstoblks(fs, blk))];
347 if (lastblk && lastblk->db_blk == blk)
348 return (lastblk);
349 LIST_FOREACH(dblk, hd, db_next)
350 if (dblk->db_blk == blk)
351 return (dblk);
353 * The inode block wasn't located, allocate a new one.
355 dblk = errmalloc(sizeof(*dblk));
356 bzero(dblk, sizeof(*dblk));
357 LIST_INSERT_HEAD(hd, dblk, db_next);
358 dblk->db_blk = blk;
359 return (dblk);
362 static uint8_t *
363 dblk_read(ufs2_daddr_t blk, int size)
365 struct data_blk *dblk;
367 dblk = dblk_lookup(blk);
369 * I doubt size mismatches can happen in practice but it is trivial
370 * to handle.
372 if (size != dblk->db_size) {
373 if (dblk->db_buf)
374 free(dblk->db_buf);
375 dblk->db_buf = errmalloc(size);
376 dblk->db_size = size;
377 if (bread(disk, fsbtodb(fs, blk), dblk->db_buf, size) == -1)
378 err_suj("Failed to read data block %jd\n", blk);
380 return (dblk->db_buf);
383 static void
384 dblk_dirty(ufs2_daddr_t blk)
386 struct data_blk *dblk;
388 dblk = dblk_lookup(blk);
389 dblk->db_dirty = 1;
392 static void
393 dblk_write(void)
395 struct data_blk *dblk;
396 int i;
398 for (i = 0; i < SUJ_HASHSIZE; i++) {
399 LIST_FOREACH(dblk, &dbhash[i], db_next) {
400 if (dblk->db_dirty == 0 || dblk->db_size == 0)
401 continue;
402 if (bwrite(disk, fsbtodb(fs, dblk->db_blk),
403 dblk->db_buf, dblk->db_size) == -1)
404 err_suj("Unable to write block %jd\n",
405 dblk->db_blk);
410 static union dinode *
411 ino_read(ino_t ino)
413 struct ino_blk *iblk;
414 struct iblkhd *hd;
415 struct suj_cg *sc;
416 ufs2_daddr_t blk;
417 int off;
419 blk = ino_to_fsba(fs, ino);
420 sc = cg_lookup(ino_to_cg(fs, ino));
421 iblk = sc->sc_lastiblk;
422 if (iblk && iblk->ib_blk == blk)
423 goto found;
424 hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))];
425 LIST_FOREACH(iblk, hd, ib_next)
426 if (iblk->ib_blk == blk)
427 goto found;
429 * The inode block wasn't located, allocate a new one.
431 iblk = errmalloc(sizeof(*iblk));
432 bzero(iblk, sizeof(*iblk));
433 iblk->ib_buf = errmalloc(fs->fs_bsize);
434 iblk->ib_blk = blk;
435 LIST_INSERT_HEAD(hd, iblk, ib_next);
436 if (bread(disk, fsbtodb(fs, blk), iblk->ib_buf, fs->fs_bsize) == -1)
437 err_suj("Failed to read inode block %jd\n", blk);
438 found:
439 sc->sc_lastiblk = iblk;
440 off = ino_to_fsbo(fs, ino);
441 if (fs->fs_magic == FS_UFS1_MAGIC)
442 return (union dinode *)&((struct ufs1_dinode *)iblk->ib_buf)[off];
443 else
444 return (union dinode *)&((struct ufs2_dinode *)iblk->ib_buf)[off];
447 static void
448 ino_dirty(ino_t ino)
450 struct ino_blk *iblk;
451 struct iblkhd *hd;
452 struct suj_cg *sc;
453 ufs2_daddr_t blk;
455 blk = ino_to_fsba(fs, ino);
456 sc = cg_lookup(ino_to_cg(fs, ino));
457 iblk = sc->sc_lastiblk;
458 if (iblk && iblk->ib_blk == blk) {
459 iblk->ib_dirty = 1;
460 return;
462 hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))];
463 LIST_FOREACH(iblk, hd, ib_next) {
464 if (iblk->ib_blk == blk) {
465 iblk->ib_dirty = 1;
466 return;
469 ino_read(ino);
470 ino_dirty(ino);
473 static void
474 iblk_write(struct ino_blk *iblk)
477 if (iblk->ib_dirty == 0)
478 return;
479 if (bwrite(disk, fsbtodb(fs, iblk->ib_blk), iblk->ib_buf,
480 fs->fs_bsize) == -1)
481 err_suj("Failed to write inode block %jd\n", iblk->ib_blk);
484 static int
485 blk_overlaps(struct jblkrec *brec, ufs2_daddr_t start, int frags)
487 ufs2_daddr_t bstart;
488 ufs2_daddr_t bend;
489 ufs2_daddr_t end;
491 end = start + frags;
492 bstart = brec->jb_blkno + brec->jb_oldfrags;
493 bend = bstart + brec->jb_frags;
494 if (start < bend && end > bstart)
495 return (1);
496 return (0);
499 static int
500 blk_equals(struct jblkrec *brec, ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t start,
501 int frags)
504 if (brec->jb_ino != ino || brec->jb_lbn != lbn)
505 return (0);
506 if (brec->jb_blkno + brec->jb_oldfrags != start)
507 return (0);
508 if (brec->jb_frags < frags)
509 return (0);
510 return (1);
513 static void
514 blk_setmask(struct jblkrec *brec, int *mask)
516 int i;
518 for (i = brec->jb_oldfrags; i < brec->jb_oldfrags + brec->jb_frags; i++)
519 *mask |= 1 << i;
523 * Determine whether a given block has been reallocated to a new location.
524 * Returns a mask of overlapping bits if any frags have been reused or
525 * zero if the block has not been re-used and the contents can be trusted.
527 * This is used to ensure that an orphaned pointer due to truncate is safe
528 * to be freed. The mask value can be used to free partial blocks.
530 static int
531 blk_freemask(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags)
533 struct suj_blk *sblk;
534 struct suj_rec *srec;
535 struct jblkrec *brec;
536 int mask;
537 int off;
540 * To be certain we're not freeing a reallocated block we lookup
541 * this block in the blk hash and see if there is an allocation
542 * journal record that overlaps with any fragments in the block
543 * we're concerned with. If any fragments have ben reallocated
544 * the block has already been freed and re-used for another purpose.
546 mask = 0;
547 sblk = blk_lookup(blknum(fs, blk), 0);
548 if (sblk == NULL)
549 return (0);
550 off = blk - sblk->sb_blk;
551 TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
552 brec = (struct jblkrec *)srec->sr_rec;
554 * If the block overlaps but does not match
555 * exactly this record refers to the current
556 * location.
558 if (blk_overlaps(brec, blk, frags) == 0)
559 continue;
560 if (blk_equals(brec, ino, lbn, blk, frags) == 1)
561 mask = 0;
562 else
563 blk_setmask(brec, &mask);
565 if (debug)
566 printf("blk_freemask: blk %jd sblk %jd off %d mask 0x%X\n",
567 blk, sblk->sb_blk, off, mask);
568 return (mask >> off);
572 * Determine whether it is safe to follow an indirect. It is not safe
573 * if any part of the indirect has been reallocated or the last journal
574 * entry was an allocation. Just allocated indirects may not have valid
575 * pointers yet and all of their children will have their own records.
576 * It is also not safe to follow an indirect if the cg bitmap has been
577 * cleared as a new allocation may write to the block prior to the journal
578 * being written.
580 * Returns 1 if it's safe to follow the indirect and 0 otherwise.
582 static int
583 blk_isindir(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn)
585 struct suj_blk *sblk;
586 struct jblkrec *brec;
588 sblk = blk_lookup(blk, 0);
589 if (sblk == NULL)
590 return (1);
591 if (TAILQ_EMPTY(&sblk->sb_recs))
592 return (1);
593 brec = (struct jblkrec *)TAILQ_LAST(&sblk->sb_recs, srechd)->sr_rec;
594 if (blk_equals(brec, ino, lbn, blk, fs->fs_frag))
595 if (brec->jb_op == JOP_FREEBLK)
596 return (!blk_isfree(blk));
597 return (0);
601 * Clear an inode from the cg bitmap. If the inode was already clear return
602 * 0 so the caller knows it does not have to check the inode contents.
604 static int
605 ino_free(ino_t ino, int mode)
607 struct suj_cg *sc;
608 uint8_t *inosused;
609 struct cg *cgp;
610 int cg;
612 cg = ino_to_cg(fs, ino);
613 ino = ino % fs->fs_ipg;
614 sc = cg_lookup(cg);
615 cgp = sc->sc_cgp;
616 inosused = cg_inosused(cgp);
618 * The bitmap may never have made it to the disk so we have to
619 * conditionally clear. We can avoid writing the cg in this case.
621 if (isclr(inosused, ino))
622 return (0);
623 freeinos++;
624 clrbit(inosused, ino);
625 if (ino < cgp->cg_irotor)
626 cgp->cg_irotor = ino;
627 cgp->cg_cs.cs_nifree++;
628 if ((mode & IFMT) == IFDIR) {
629 freedir++;
630 cgp->cg_cs.cs_ndir--;
632 sc->sc_dirty = 1;
634 return (1);
638 * Free 'frags' frags starting at filesystem block 'bno' skipping any frags
639 * set in the mask.
641 static void
642 blk_free(ufs2_daddr_t bno, int mask, int frags)
644 ufs1_daddr_t fragno, cgbno;
645 struct suj_cg *sc;
646 struct cg *cgp;
647 int i, cg;
648 uint8_t *blksfree;
650 if (debug)
651 printf("Freeing %d frags at blk %jd mask 0x%x\n",
652 frags, bno, mask);
653 cg = dtog(fs, bno);
654 sc = cg_lookup(cg);
655 cgp = sc->sc_cgp;
656 cgbno = dtogd(fs, bno);
657 blksfree = cg_blksfree(cgp);
660 * If it's not allocated we only wrote the journal entry
661 * and never the bitmaps. Here we unconditionally clear and
662 * resolve the cg summary later.
664 if (frags == fs->fs_frag && mask == 0) {
665 fragno = fragstoblks(fs, cgbno);
666 ffs_setblock(fs, blksfree, fragno);
667 freeblocks++;
668 } else {
670 * deallocate the fragment
672 for (i = 0; i < frags; i++)
673 if ((mask & (1 << i)) == 0 && isclr(blksfree, cgbno +i)) {
674 freefrags++;
675 setbit(blksfree, cgbno + i);
678 sc->sc_dirty = 1;
682 * Returns 1 if the whole block starting at 'bno' is marked free and 0
683 * otherwise.
685 static int
686 blk_isfree(ufs2_daddr_t bno)
688 struct suj_cg *sc;
690 sc = cg_lookup(dtog(fs, bno));
691 return ffs_isblock(fs, cg_blksfree(sc->sc_cgp), dtogd(fs, bno));
695 * Fetch an indirect block to find the block at a given lbn. The lbn
696 * may be negative to fetch a specific indirect block pointer or positive
697 * to fetch a specific block.
699 static ufs2_daddr_t
700 indir_blkatoff(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t cur, ufs_lbn_t lbn)
702 ufs2_daddr_t *bap2;
703 ufs2_daddr_t *bap1;
704 ufs_lbn_t lbnadd;
705 ufs_lbn_t base;
706 int level;
707 int i;
709 if (blk == 0)
710 return (0);
711 level = lbn_level(cur);
712 if (level == -1)
713 err_suj("Invalid indir lbn %jd\n", lbn);
714 if (level == 0 && lbn < 0)
715 err_suj("Invalid lbn %jd\n", lbn);
716 bap2 = (void *)dblk_read(blk, fs->fs_bsize);
717 bap1 = (void *)bap2;
718 lbnadd = 1;
719 base = -(cur + level);
720 for (i = level; i > 0; i--)
721 lbnadd *= NINDIR(fs);
722 if (lbn > 0)
723 i = (lbn - base) / lbnadd;
724 else
725 i = (-lbn - base) / lbnadd;
726 if (i < 0 || i >= NINDIR(fs))
727 err_suj("Invalid indirect index %d produced by lbn %jd\n",
728 i, lbn);
729 if (level == 0)
730 cur = base + (i * lbnadd);
731 else
732 cur = -(base + (i * lbnadd)) - (level - 1);
733 if (fs->fs_magic == FS_UFS1_MAGIC)
734 blk = bap1[i];
735 else
736 blk = bap2[i];
737 if (cur == lbn)
738 return (blk);
739 if (level == 0)
740 err_suj("Invalid lbn %jd at level 0\n", lbn);
741 return indir_blkatoff(blk, ino, cur, lbn);
745 * Finds the disk block address at the specified lbn within the inode
746 * specified by ip. This follows the whole tree and honors di_size and
747 * di_extsize so it is a true test of reachability. The lbn may be
748 * negative if an extattr or indirect block is requested.
750 static ufs2_daddr_t
751 ino_blkatoff(union dinode *ip, ino_t ino, ufs_lbn_t lbn, int *frags)
753 ufs_lbn_t tmpval;
754 ufs_lbn_t cur;
755 ufs_lbn_t next;
756 int i;
759 * Handle extattr blocks first.
761 if (lbn < 0 && lbn >= -NXADDR) {
762 lbn = -1 - lbn;
763 if (lbn > lblkno(fs, ip->dp2.di_extsize - 1))
764 return (0);
765 *frags = numfrags(fs, sblksize(fs, ip->dp2.di_extsize, lbn));
766 return (ip->dp2.di_extb[lbn]);
769 * Now direct and indirect.
771 if (DIP(ip, di_mode) == IFLNK &&
772 DIP(ip, di_size) < fs->fs_maxsymlinklen)
773 return (0);
774 if (lbn >= 0 && lbn < NDADDR) {
775 *frags = numfrags(fs, sblksize(fs, DIP(ip, di_size), lbn));
776 return (DIP(ip, di_db[lbn]));
778 *frags = fs->fs_frag;
780 for (i = 0, tmpval = NINDIR(fs), cur = NDADDR; i < NIADDR; i++,
781 tmpval *= NINDIR(fs), cur = next) {
782 next = cur + tmpval;
783 if (lbn == -cur - i)
784 return (DIP(ip, di_ib[i]));
786 * Determine whether the lbn in question is within this tree.
788 if (lbn < 0 && -lbn >= next)
789 continue;
790 if (lbn > 0 && lbn >= next)
791 continue;
792 return indir_blkatoff(DIP(ip, di_ib[i]), ino, -cur - i, lbn);
794 err_suj("lbn %jd not in ino\n", lbn);
795 /* NOTREACHED */
799 * Determine whether a block exists at a particular lbn in an inode.
800 * Returns 1 if found, 0 if not. lbn may be negative for indirects
801 * or ext blocks.
803 static int
804 blk_isat(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int *frags)
806 union dinode *ip;
807 ufs2_daddr_t nblk;
809 ip = ino_read(ino);
811 if (DIP(ip, di_nlink) == 0 || DIP(ip, di_mode) == 0)
812 return (0);
813 nblk = ino_blkatoff(ip, ino, lbn, frags);
815 return (nblk == blk);
819 * Clear the directory entry at diroff that should point to child. Minimal
820 * checking is done and it is assumed that this path was verified with isat.
822 static void
823 ino_clrat(ino_t parent, off_t diroff, ino_t child)
825 union dinode *dip;
826 struct direct *dp;
827 ufs2_daddr_t blk;
828 uint8_t *block;
829 ufs_lbn_t lbn;
830 int blksize;
831 int frags;
832 int doff;
834 if (debug)
835 printf("Clearing inode %ju from parent %ju at offset %jd\n",
836 (uintmax_t)child, (uintmax_t)parent, diroff);
838 lbn = lblkno(fs, diroff);
839 doff = blkoff(fs, diroff);
840 dip = ino_read(parent);
841 blk = ino_blkatoff(dip, parent, lbn, &frags);
842 blksize = sblksize(fs, DIP(dip, di_size), lbn);
843 block = dblk_read(blk, blksize);
844 dp = (struct direct *)&block[doff];
845 if (dp->d_ino != child)
846 errx(1, "Inode %ju does not exist in %ju at %jd",
847 (uintmax_t)child, (uintmax_t)parent, diroff);
848 dp->d_ino = 0;
849 dblk_dirty(blk);
851 * The actual .. reference count will already have been removed
852 * from the parent by the .. remref record.
857 * Determines whether a pointer to an inode exists within a directory
858 * at a specified offset. Returns the mode of the found entry.
860 static int
861 ino_isat(ino_t parent, off_t diroff, ino_t child, int *mode, int *isdot)
863 union dinode *dip;
864 struct direct *dp;
865 ufs2_daddr_t blk;
866 uint8_t *block;
867 ufs_lbn_t lbn;
868 int blksize;
869 int frags;
870 int dpoff;
871 int doff;
873 *isdot = 0;
874 dip = ino_read(parent);
875 *mode = DIP(dip, di_mode);
876 if ((*mode & IFMT) != IFDIR) {
877 if (debug) {
879 * This can happen if the parent inode
880 * was reallocated.
882 if (*mode != 0)
883 printf("Directory %ju has bad mode %o\n",
884 (uintmax_t)parent, *mode);
885 else
886 printf("Directory %ju has zero mode\n",
887 (uintmax_t)parent);
889 return (0);
891 lbn = lblkno(fs, diroff);
892 doff = blkoff(fs, diroff);
893 blksize = sblksize(fs, DIP(dip, di_size), lbn);
894 if (diroff + DIRECTSIZ(1) > DIP(dip, di_size) || doff >= blksize) {
895 if (debug)
896 printf("ino %ju absent from %ju due to offset %jd"
897 " exceeding size %jd\n",
898 (uintmax_t)child, (uintmax_t)parent, diroff,
899 DIP(dip, di_size));
900 return (0);
902 blk = ino_blkatoff(dip, parent, lbn, &frags);
903 if (blk <= 0) {
904 if (debug)
905 printf("Sparse directory %ju", (uintmax_t)parent);
906 return (0);
908 block = dblk_read(blk, blksize);
910 * Walk through the records from the start of the block to be
911 * certain we hit a valid record and not some junk in the middle
912 * of a file name. Stop when we reach or pass the expected offset.
914 dpoff = rounddown(doff, DIRBLKSIZ);
915 do {
916 dp = (struct direct *)&block[dpoff];
917 if (dpoff == doff)
918 break;
919 if (dp->d_reclen == 0)
920 break;
921 dpoff += dp->d_reclen;
922 } while (dpoff <= doff);
923 if (dpoff > fs->fs_bsize)
924 err_suj("Corrupt directory block in dir ino %ju\n",
925 (uintmax_t)parent);
926 /* Not found. */
927 if (dpoff != doff) {
928 if (debug)
929 printf("ino %ju not found in %ju, lbn %jd, dpoff %d\n",
930 (uintmax_t)child, (uintmax_t)parent, lbn, dpoff);
931 return (0);
934 * We found the item in question. Record the mode and whether it's
935 * a . or .. link for the caller.
937 if (dp->d_ino == child) {
938 if (child == parent)
939 *isdot = 1;
940 else if (dp->d_namlen == 2 &&
941 dp->d_name[0] == '.' && dp->d_name[1] == '.')
942 *isdot = 1;
943 *mode = DTTOIF(dp->d_type);
944 return (1);
946 if (debug)
947 printf("ino %ju doesn't match dirent ino %ju in parent %ju\n",
948 (uintmax_t)child, (uintmax_t)dp->d_ino, (uintmax_t)parent);
949 return (0);
952 #define VISIT_INDIR 0x0001
953 #define VISIT_EXT 0x0002
954 #define VISIT_ROOT 0x0004 /* Operation came via root & valid pointers. */
957 * Read an indirect level which may or may not be linked into an inode.
959 static void
960 indir_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, uint64_t *frags,
961 ino_visitor visitor, int flags)
963 ufs2_daddr_t *bap2;
964 ufs1_daddr_t *bap1;
965 ufs_lbn_t lbnadd;
966 ufs2_daddr_t nblk;
967 ufs_lbn_t nlbn;
968 int level;
969 int i;
972 * Don't visit indirect blocks with contents we can't trust. This
973 * should only happen when indir_visit() is called to complete a
974 * truncate that never finished and not when a pointer is found via
975 * an inode.
977 if (blk == 0)
978 return;
979 level = lbn_level(lbn);
980 if (level == -1)
981 err_suj("Invalid level for lbn %jd\n", lbn);
982 if ((flags & VISIT_ROOT) == 0 && blk_isindir(blk, ino, lbn) == 0) {
983 if (debug)
984 printf("blk %jd ino %ju lbn %jd(%d) is not indir.\n",
985 blk, (uintmax_t)ino, lbn, level);
986 goto out;
988 lbnadd = 1;
989 for (i = level; i > 0; i--)
990 lbnadd *= NINDIR(fs);
991 bap1 = (void *)dblk_read(blk, fs->fs_bsize);
992 bap2 = (void *)bap1;
993 for (i = 0; i < NINDIR(fs); i++) {
994 if (fs->fs_magic == FS_UFS1_MAGIC)
995 nblk = *bap1++;
996 else
997 nblk = *bap2++;
998 if (nblk == 0)
999 continue;
1000 if (level == 0) {
1001 nlbn = -lbn + i * lbnadd;
1002 (*frags) += fs->fs_frag;
1003 visitor(ino, nlbn, nblk, fs->fs_frag);
1004 } else {
1005 nlbn = (lbn + 1) - (i * lbnadd);
1006 indir_visit(ino, nlbn, nblk, frags, visitor, flags);
1009 out:
1010 if (flags & VISIT_INDIR) {
1011 (*frags) += fs->fs_frag;
1012 visitor(ino, lbn, blk, fs->fs_frag);
1017 * Visit each block in an inode as specified by 'flags' and call a
1018 * callback function. The callback may inspect or free blocks. The
1019 * count of frags found according to the size in the file is returned.
1020 * This is not valid for sparse files but may be used to determine
1021 * the correct di_blocks for a file.
1023 static uint64_t
1024 ino_visit(union dinode *ip, ino_t ino, ino_visitor visitor, int flags)
1026 ufs_lbn_t nextlbn;
1027 ufs_lbn_t tmpval;
1028 ufs_lbn_t lbn;
1029 uint64_t size;
1030 uint64_t fragcnt;
1031 int mode;
1032 int frags;
1033 int i;
1035 size = DIP(ip, di_size);
1036 mode = DIP(ip, di_mode) & IFMT;
1037 fragcnt = 0;
1038 if ((flags & VISIT_EXT) &&
1039 fs->fs_magic == FS_UFS2_MAGIC && ip->dp2.di_extsize) {
1040 for (i = 0; i < NXADDR; i++) {
1041 if (ip->dp2.di_extb[i] == 0)
1042 continue;
1043 frags = sblksize(fs, ip->dp2.di_extsize, i);
1044 frags = numfrags(fs, frags);
1045 fragcnt += frags;
1046 visitor(ino, -1 - i, ip->dp2.di_extb[i], frags);
1049 /* Skip datablocks for short links and devices. */
1050 if (mode == IFBLK || mode == IFCHR ||
1051 (mode == IFLNK && size < fs->fs_maxsymlinklen))
1052 return (fragcnt);
1053 for (i = 0; i < NDADDR; i++) {
1054 if (DIP(ip, di_db[i]) == 0)
1055 continue;
1056 frags = sblksize(fs, size, i);
1057 frags = numfrags(fs, frags);
1058 fragcnt += frags;
1059 visitor(ino, i, DIP(ip, di_db[i]), frags);
1062 * We know the following indirects are real as we're following
1063 * real pointers to them.
1065 flags |= VISIT_ROOT;
1066 for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++,
1067 lbn = nextlbn) {
1068 nextlbn = lbn + tmpval;
1069 tmpval *= NINDIR(fs);
1070 if (DIP(ip, di_ib[i]) == 0)
1071 continue;
1072 indir_visit(ino, -lbn - i, DIP(ip, di_ib[i]), &fragcnt, visitor,
1073 flags);
1075 return (fragcnt);
1079 * Null visitor function used when we just want to count blocks and
1080 * record the lbn.
1082 ufs_lbn_t visitlbn;
1083 static void
1084 null_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1086 if (lbn > 0)
1087 visitlbn = lbn;
1091 * Recalculate di_blocks when we discover that a block allocation or
1092 * free was not successfully completed. The kernel does not roll this back
1093 * because it would be too expensive to compute which indirects were
1094 * reachable at the time the inode was written.
1096 static void
1097 ino_adjblks(struct suj_ino *sino)
1099 union dinode *ip;
1100 uint64_t blocks;
1101 uint64_t frags;
1102 off_t isize;
1103 off_t size;
1104 ino_t ino;
1106 ino = sino->si_ino;
1107 ip = ino_read(ino);
1108 /* No need to adjust zero'd inodes. */
1109 if (DIP(ip, di_mode) == 0)
1110 return;
1112 * Visit all blocks and count them as well as recording the last
1113 * valid lbn in the file. If the file size doesn't agree with the
1114 * last lbn we need to truncate to fix it. Otherwise just adjust
1115 * the blocks count.
1117 visitlbn = 0;
1118 frags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT);
1119 blocks = fsbtodb(fs, frags);
1121 * We assume the size and direct block list is kept coherent by
1122 * softdep. For files that have extended into indirects we truncate
1123 * to the size in the inode or the maximum size permitted by
1124 * populated indirects.
1126 if (visitlbn >= NDADDR) {
1127 isize = DIP(ip, di_size);
1128 size = lblktosize(fs, visitlbn + 1);
1129 if (isize > size)
1130 isize = size;
1131 /* Always truncate to free any unpopulated indirects. */
1132 ino_trunc(sino->si_ino, isize);
1133 return;
1135 if (blocks == DIP(ip, di_blocks))
1136 return;
1137 if (debug)
1138 printf("ino %ju adjusting block count from %jd to %jd\n",
1139 (uintmax_t)ino, DIP(ip, di_blocks), blocks);
1140 DIP_SET(ip, di_blocks, blocks);
1141 ino_dirty(ino);
1144 static void
1145 blk_free_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1148 blk_free(blk, blk_freemask(blk, ino, lbn, frags), frags);
1152 * Free a block or tree of blocks that was previously rooted in ino at
1153 * the given lbn. If the lbn is an indirect all children are freed
1154 * recursively.
1156 static void
1157 blk_free_lbn(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags, int follow)
1159 uint64_t resid;
1160 int mask;
1162 mask = blk_freemask(blk, ino, lbn, frags);
1163 resid = 0;
1164 if (lbn <= -NDADDR && follow && mask == 0)
1165 indir_visit(ino, lbn, blk, &resid, blk_free_visit, VISIT_INDIR);
1166 else
1167 blk_free(blk, mask, frags);
1170 static void
1171 ino_setskip(struct suj_ino *sino, ino_t parent)
1173 int isdot;
1174 int mode;
1176 if (ino_isat(sino->si_ino, DOTDOT_OFFSET, parent, &mode, &isdot))
1177 sino->si_skipparent = 1;
1180 static void
1181 ino_remref(ino_t parent, ino_t child, uint64_t diroff, int isdotdot)
1183 struct suj_ino *sino;
1184 struct suj_rec *srec;
1185 struct jrefrec *rrec;
1188 * Lookup this inode to see if we have a record for it.
1190 sino = ino_lookup(child, 0);
1192 * Tell any child directories we've already removed their
1193 * parent link cnt. Don't try to adjust our link down again.
1195 if (sino != NULL && isdotdot == 0)
1196 ino_setskip(sino, parent);
1198 * No valid record for this inode. Just drop the on-disk
1199 * link by one.
1201 if (sino == NULL || sino->si_hasrecs == 0) {
1202 ino_decr(child);
1203 return;
1206 * Use ino_adjust() if ino_check() has already processed this
1207 * child. If we lose the last non-dot reference to a
1208 * directory it will be discarded.
1210 if (sino->si_linkadj) {
1211 sino->si_nlink--;
1212 if (isdotdot)
1213 sino->si_dotlinks--;
1214 ino_adjust(sino);
1215 return;
1218 * If we haven't yet processed this inode we need to make
1219 * sure we will successfully discover the lost path. If not
1220 * use nlinkadj to remember.
1222 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1223 rrec = (struct jrefrec *)srec->sr_rec;
1224 if (rrec->jr_parent == parent &&
1225 rrec->jr_diroff == diroff)
1226 return;
1228 sino->si_nlinkadj++;
1232 * Free the children of a directory when the directory is discarded.
1234 static void
1235 ino_free_children(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1237 struct suj_ino *sino;
1238 struct direct *dp;
1239 off_t diroff;
1240 uint8_t *block;
1241 int skipparent;
1242 int isdotdot;
1243 int dpoff;
1244 int size;
1246 sino = ino_lookup(ino, 0);
1247 if (sino)
1248 skipparent = sino->si_skipparent;
1249 else
1250 skipparent = 0;
1251 size = lfragtosize(fs, frags);
1252 block = dblk_read(blk, size);
1253 dp = (struct direct *)&block[0];
1254 for (dpoff = 0; dpoff < size && dp->d_reclen; dpoff += dp->d_reclen) {
1255 dp = (struct direct *)&block[dpoff];
1256 if (dp->d_ino == 0 || dp->d_ino == WINO)
1257 continue;
1258 if (dp->d_namlen == 1 && dp->d_name[0] == '.')
1259 continue;
1260 isdotdot = dp->d_namlen == 2 && dp->d_name[0] == '.' &&
1261 dp->d_name[1] == '.';
1262 if (isdotdot && skipparent == 1)
1263 continue;
1264 if (debug)
1265 printf("Directory %ju removing ino %ju name %s\n",
1266 (uintmax_t)ino, (uintmax_t)dp->d_ino, dp->d_name);
1267 diroff = lblktosize(fs, lbn) + dpoff;
1268 ino_remref(ino, dp->d_ino, diroff, isdotdot);
1273 * Reclaim an inode, freeing all blocks and decrementing all children's
1274 * link counts. Free the inode back to the cg.
1276 static void
1277 ino_reclaim(union dinode *ip, ino_t ino, int mode)
1279 uint32_t gen;
1281 if (ino == ROOTINO)
1282 err_suj("Attempting to free ROOTINO\n");
1283 if (debug)
1284 printf("Truncating and freeing ino %ju, nlink %d, mode %o\n",
1285 (uintmax_t)ino, DIP(ip, di_nlink), DIP(ip, di_mode));
1287 /* We are freeing an inode or directory. */
1288 if ((DIP(ip, di_mode) & IFMT) == IFDIR)
1289 ino_visit(ip, ino, ino_free_children, 0);
1290 DIP_SET(ip, di_nlink, 0);
1291 ino_visit(ip, ino, blk_free_visit, VISIT_EXT | VISIT_INDIR);
1292 /* Here we have to clear the inode and release any blocks it holds. */
1293 gen = DIP(ip, di_gen);
1294 if (fs->fs_magic == FS_UFS1_MAGIC)
1295 bzero(ip, sizeof(struct ufs1_dinode));
1296 else
1297 bzero(ip, sizeof(struct ufs2_dinode));
1298 DIP_SET(ip, di_gen, gen);
1299 ino_dirty(ino);
1300 ino_free(ino, mode);
1301 return;
1305 * Adjust an inode's link count down by one when a directory goes away.
1307 static void
1308 ino_decr(ino_t ino)
1310 union dinode *ip;
1311 int reqlink;
1312 int nlink;
1313 int mode;
1315 ip = ino_read(ino);
1316 nlink = DIP(ip, di_nlink);
1317 mode = DIP(ip, di_mode);
1318 if (nlink < 1)
1319 err_suj("Inode %d link count %d invalid\n", ino, nlink);
1320 if (mode == 0)
1321 err_suj("Inode %d has a link of %d with 0 mode\n", ino, nlink);
1322 nlink--;
1323 if ((mode & IFMT) == IFDIR)
1324 reqlink = 2;
1325 else
1326 reqlink = 1;
1327 if (nlink < reqlink) {
1328 if (debug)
1329 printf("ino %ju not enough links to live %d < %d\n",
1330 (uintmax_t)ino, nlink, reqlink);
1331 ino_reclaim(ip, ino, mode);
1332 return;
1334 DIP_SET(ip, di_nlink, nlink);
1335 ino_dirty(ino);
1339 * Adjust the inode link count to 'nlink'. If the count reaches zero
1340 * free it.
1342 static void
1343 ino_adjust(struct suj_ino *sino)
1345 struct jrefrec *rrec;
1346 struct suj_rec *srec;
1347 struct suj_ino *stmp;
1348 union dinode *ip;
1349 nlink_t nlink;
1350 int recmode;
1351 int reqlink;
1352 int isdot;
1353 int mode;
1354 ino_t ino;
1356 nlink = sino->si_nlink;
1357 ino = sino->si_ino;
1358 mode = sino->si_mode & IFMT;
1360 * If it's a directory with no dot links, it was truncated before
1361 * the name was cleared. We need to clear the dirent that
1362 * points at it.
1364 if (mode == IFDIR && nlink == 1 && sino->si_dotlinks == 0) {
1365 sino->si_nlink = nlink = 0;
1366 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1367 rrec = (struct jrefrec *)srec->sr_rec;
1368 if (ino_isat(rrec->jr_parent, rrec->jr_diroff, ino,
1369 &recmode, &isdot) == 0)
1370 continue;
1371 ino_clrat(rrec->jr_parent, rrec->jr_diroff, ino);
1372 break;
1374 if (srec == NULL)
1375 errx(1, "Directory %ju name not found", (uintmax_t)ino);
1378 * If it's a directory with no real names pointing to it go ahead
1379 * and truncate it. This will free any children.
1381 if (mode == IFDIR && nlink - sino->si_dotlinks == 0) {
1382 sino->si_nlink = nlink = 0;
1384 * Mark any .. links so they know not to free this inode
1385 * when they are removed.
1387 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1388 rrec = (struct jrefrec *)srec->sr_rec;
1389 if (rrec->jr_diroff == DOTDOT_OFFSET) {
1390 stmp = ino_lookup(rrec->jr_parent, 0);
1391 if (stmp)
1392 ino_setskip(stmp, ino);
1396 ip = ino_read(ino);
1397 mode = DIP(ip, di_mode) & IFMT;
1398 if (nlink > LINK_MAX)
1399 err_suj("ino %ju nlink manipulation error, new %d, old %d\n",
1400 (uintmax_t)ino, nlink, DIP(ip, di_nlink));
1401 if (debug)
1402 printf("Adjusting ino %ju, nlink %d, old link %d lastmode %o\n",
1403 (uintmax_t)ino, nlink, DIP(ip, di_nlink), sino->si_mode);
1404 if (mode == 0) {
1405 if (debug)
1406 printf("ino %ju, zero inode freeing bitmap\n",
1407 (uintmax_t)ino);
1408 ino_free(ino, sino->si_mode);
1409 return;
1411 /* XXX Should be an assert? */
1412 if (mode != sino->si_mode && debug)
1413 printf("ino %ju, mode %o != %o\n",
1414 (uintmax_t)ino, mode, sino->si_mode);
1415 if ((mode & IFMT) == IFDIR)
1416 reqlink = 2;
1417 else
1418 reqlink = 1;
1419 /* If the inode doesn't have enough links to live, free it. */
1420 if (nlink < reqlink) {
1421 if (debug)
1422 printf("ino %ju not enough links to live %d < %d\n",
1423 (uintmax_t)ino, nlink, reqlink);
1424 ino_reclaim(ip, ino, mode);
1425 return;
1427 /* If required write the updated link count. */
1428 if (DIP(ip, di_nlink) == nlink) {
1429 if (debug)
1430 printf("ino %ju, link matches, skipping.\n",
1431 (uintmax_t)ino);
1432 return;
1434 DIP_SET(ip, di_nlink, nlink);
1435 ino_dirty(ino);
1439 * Truncate some or all blocks in an indirect, freeing any that are required
1440 * and zeroing the indirect.
1442 static void
1443 indir_trunc(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, ufs_lbn_t lastlbn)
1445 ufs2_daddr_t *bap2;
1446 ufs1_daddr_t *bap1;
1447 ufs_lbn_t lbnadd;
1448 ufs2_daddr_t nblk;
1449 ufs_lbn_t next;
1450 ufs_lbn_t nlbn;
1451 int dirty;
1452 int level;
1453 int i;
1455 if (blk == 0)
1456 return;
1457 dirty = 0;
1458 level = lbn_level(lbn);
1459 if (level == -1)
1460 err_suj("Invalid level for lbn %jd\n", lbn);
1461 lbnadd = 1;
1462 for (i = level; i > 0; i--)
1463 lbnadd *= NINDIR(fs);
1464 bap1 = (void *)dblk_read(blk, fs->fs_bsize);
1465 bap2 = (void *)bap1;
1466 for (i = 0; i < NINDIR(fs); i++) {
1467 if (fs->fs_magic == FS_UFS1_MAGIC)
1468 nblk = *bap1++;
1469 else
1470 nblk = *bap2++;
1471 if (nblk == 0)
1472 continue;
1473 if (level != 0) {
1474 nlbn = (lbn + 1) - (i * lbnadd);
1476 * Calculate the lbn of the next indirect to
1477 * determine if any of this indirect must be
1478 * reclaimed.
1480 next = -(lbn + level) + ((i+1) * lbnadd);
1481 if (next <= lastlbn)
1482 continue;
1483 indir_trunc(ino, nlbn, nblk, lastlbn);
1484 /* If all of this indirect was reclaimed, free it. */
1485 nlbn = next - lbnadd;
1486 if (nlbn < lastlbn)
1487 continue;
1488 } else {
1489 nlbn = -lbn + i * lbnadd;
1490 if (nlbn < lastlbn)
1491 continue;
1493 dirty = 1;
1494 blk_free(nblk, 0, fs->fs_frag);
1495 if (fs->fs_magic == FS_UFS1_MAGIC)
1496 *(bap1 - 1) = 0;
1497 else
1498 *(bap2 - 1) = 0;
1500 if (dirty)
1501 dblk_dirty(blk);
1505 * Truncate an inode to the minimum of the given size or the last populated
1506 * block after any over size have been discarded. The kernel would allocate
1507 * the last block in the file but fsck does not and neither do we. This
1508 * code never extends files, only shrinks them.
1510 static void
1511 ino_trunc(ino_t ino, off_t size)
1513 union dinode *ip;
1514 ufs2_daddr_t bn;
1515 uint64_t totalfrags;
1516 ufs_lbn_t nextlbn;
1517 ufs_lbn_t lastlbn;
1518 ufs_lbn_t tmpval;
1519 ufs_lbn_t lbn;
1520 ufs_lbn_t i;
1521 int frags;
1522 off_t cursize;
1523 off_t off;
1524 int mode;
1526 ip = ino_read(ino);
1527 mode = DIP(ip, di_mode) & IFMT;
1528 cursize = DIP(ip, di_size);
1529 if (debug)
1530 printf("Truncating ino %ju, mode %o to size %jd from size %jd\n",
1531 (uintmax_t)ino, mode, size, cursize);
1533 /* Skip datablocks for short links and devices. */
1534 if (mode == 0 || mode == IFBLK || mode == IFCHR ||
1535 (mode == IFLNK && cursize < fs->fs_maxsymlinklen))
1536 return;
1537 /* Don't extend. */
1538 if (size > cursize)
1539 size = cursize;
1540 lastlbn = lblkno(fs, blkroundup(fs, size));
1541 for (i = lastlbn; i < NDADDR; i++) {
1542 if (DIP(ip, di_db[i]) == 0)
1543 continue;
1544 frags = sblksize(fs, cursize, i);
1545 frags = numfrags(fs, frags);
1546 blk_free(DIP(ip, di_db[i]), 0, frags);
1547 DIP_SET(ip, di_db[i], 0);
1550 * Follow indirect blocks, freeing anything required.
1552 for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++,
1553 lbn = nextlbn) {
1554 nextlbn = lbn + tmpval;
1555 tmpval *= NINDIR(fs);
1556 /* If we're not freeing any in this indirect range skip it. */
1557 if (lastlbn >= nextlbn)
1558 continue;
1559 if (DIP(ip, di_ib[i]) == 0)
1560 continue;
1561 indir_trunc(ino, -lbn - i, DIP(ip, di_ib[i]), lastlbn);
1562 /* If we freed everything in this indirect free the indir. */
1563 if (lastlbn > lbn)
1564 continue;
1565 blk_free(DIP(ip, di_ib[i]), 0, frags);
1566 DIP_SET(ip, di_ib[i], 0);
1568 ino_dirty(ino);
1570 * Now that we've freed any whole blocks that exceed the desired
1571 * truncation size, figure out how many blocks remain and what the
1572 * last populated lbn is. We will set the size to this last lbn
1573 * rather than worrying about allocating the final lbn as the kernel
1574 * would've done. This is consistent with normal fsck behavior.
1576 visitlbn = 0;
1577 totalfrags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT);
1578 if (size > lblktosize(fs, visitlbn + 1))
1579 size = lblktosize(fs, visitlbn + 1);
1581 * If we're truncating direct blocks we have to adjust frags
1582 * accordingly.
1584 if (visitlbn < NDADDR && totalfrags) {
1585 long oldspace, newspace;
1587 bn = DIP(ip, di_db[visitlbn]);
1588 if (bn == 0)
1589 err_suj("Bad blk at ino %ju lbn %jd\n",
1590 (uintmax_t)ino, visitlbn);
1591 oldspace = sblksize(fs, cursize, visitlbn);
1592 newspace = sblksize(fs, size, visitlbn);
1593 if (oldspace != newspace) {
1594 bn += numfrags(fs, newspace);
1595 frags = numfrags(fs, oldspace - newspace);
1596 blk_free(bn, 0, frags);
1597 totalfrags -= frags;
1600 DIP_SET(ip, di_blocks, fsbtodb(fs, totalfrags));
1601 DIP_SET(ip, di_size, size);
1603 * If we've truncated into the middle of a block or frag we have
1604 * to zero it here. Otherwise the file could extend into
1605 * uninitialized space later.
1607 off = blkoff(fs, size);
1608 if (off && DIP(ip, di_mode) != IFDIR) {
1609 uint8_t *buf;
1610 long clrsize;
1612 bn = ino_blkatoff(ip, ino, visitlbn, &frags);
1613 if (bn == 0)
1614 err_suj("Block missing from ino %ju at lbn %jd\n",
1615 (uintmax_t)ino, visitlbn);
1616 clrsize = frags * fs->fs_fsize;
1617 buf = dblk_read(bn, clrsize);
1618 clrsize -= off;
1619 buf += off;
1620 bzero(buf, clrsize);
1621 dblk_dirty(bn);
1623 return;
1627 * Process records available for one inode and determine whether the
1628 * link count is correct or needs adjusting.
1630 static void
1631 ino_check(struct suj_ino *sino)
1633 struct suj_rec *srec;
1634 struct jrefrec *rrec;
1635 nlink_t dotlinks;
1636 int newlinks;
1637 int removes;
1638 int nlink;
1639 ino_t ino;
1640 int isdot;
1641 int isat;
1642 int mode;
1644 if (sino->si_hasrecs == 0)
1645 return;
1646 ino = sino->si_ino;
1647 rrec = (struct jrefrec *)TAILQ_FIRST(&sino->si_recs)->sr_rec;
1648 nlink = rrec->jr_nlink;
1649 newlinks = 0;
1650 dotlinks = 0;
1651 removes = sino->si_nlinkadj;
1652 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1653 rrec = (struct jrefrec *)srec->sr_rec;
1654 isat = ino_isat(rrec->jr_parent, rrec->jr_diroff,
1655 rrec->jr_ino, &mode, &isdot);
1656 if (isat && (mode & IFMT) != (rrec->jr_mode & IFMT))
1657 err_suj("Inode mode/directory type mismatch %o != %o\n",
1658 mode, rrec->jr_mode);
1659 if (debug)
1660 printf("jrefrec: op %d ino %ju, nlink %d, parent %d, "
1661 "diroff %jd, mode %o, isat %d, isdot %d\n",
1662 rrec->jr_op, (uintmax_t)rrec->jr_ino,
1663 rrec->jr_nlink, rrec->jr_parent, rrec->jr_diroff,
1664 rrec->jr_mode, isat, isdot);
1665 mode = rrec->jr_mode & IFMT;
1666 if (rrec->jr_op == JOP_REMREF)
1667 removes++;
1668 newlinks += isat;
1669 if (isdot)
1670 dotlinks += isat;
1673 * The number of links that remain are the starting link count
1674 * subtracted by the total number of removes with the total
1675 * links discovered back in. An incomplete remove thus
1676 * makes no change to the link count but an add increases
1677 * by one.
1679 if (debug)
1680 printf("ino %ju nlink %d newlinks %d removes %d dotlinks %d\n",
1681 (uintmax_t)ino, nlink, newlinks, removes, dotlinks);
1682 nlink += newlinks;
1683 nlink -= removes;
1684 sino->si_linkadj = 1;
1685 sino->si_nlink = nlink;
1686 sino->si_dotlinks = dotlinks;
1687 sino->si_mode = mode;
1688 ino_adjust(sino);
1692 * Process records available for one block and determine whether it is
1693 * still allocated and whether the owning inode needs to be updated or
1694 * a free completed.
1696 static void
1697 blk_check(struct suj_blk *sblk)
1699 struct suj_rec *srec;
1700 struct jblkrec *brec;
1701 struct suj_ino *sino;
1702 ufs2_daddr_t blk;
1703 int mask;
1704 int frags;
1705 int isat;
1708 * Each suj_blk actually contains records for any fragments in that
1709 * block. As a result we must evaluate each record individually.
1711 sino = NULL;
1712 TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
1713 brec = (struct jblkrec *)srec->sr_rec;
1714 frags = brec->jb_frags;
1715 blk = brec->jb_blkno + brec->jb_oldfrags;
1716 isat = blk_isat(brec->jb_ino, brec->jb_lbn, blk, &frags);
1717 if (sino == NULL || sino->si_ino != brec->jb_ino) {
1718 sino = ino_lookup(brec->jb_ino, 1);
1719 sino->si_blkadj = 1;
1721 if (debug)
1722 printf("op %d blk %jd ino %ju lbn %jd frags %d isat %d (%d)\n",
1723 brec->jb_op, blk, (uintmax_t)brec->jb_ino,
1724 brec->jb_lbn, brec->jb_frags, isat, frags);
1726 * If we found the block at this address we still have to
1727 * determine if we need to free the tail end that was
1728 * added by adding contiguous fragments from the same block.
1730 if (isat == 1) {
1731 if (frags == brec->jb_frags)
1732 continue;
1733 mask = blk_freemask(blk, brec->jb_ino, brec->jb_lbn,
1734 brec->jb_frags);
1735 mask >>= frags;
1736 blk += frags;
1737 frags = brec->jb_frags - frags;
1738 blk_free(blk, mask, frags);
1739 continue;
1742 * The block wasn't found, attempt to free it. It won't be
1743 * freed if it was actually reallocated. If this was an
1744 * allocation we don't want to follow indirects as they
1745 * may not be written yet. Any children of the indirect will
1746 * have their own records. If it's a free we need to
1747 * recursively free children.
1749 blk_free_lbn(blk, brec->jb_ino, brec->jb_lbn, brec->jb_frags,
1750 brec->jb_op == JOP_FREEBLK);
1755 * Walk the list of inode records for this cg and resolve moved and duplicate
1756 * inode references now that we have a complete picture.
1758 static void
1759 cg_build(struct suj_cg *sc)
1761 struct suj_ino *sino;
1762 int i;
1764 for (i = 0; i < SUJ_HASHSIZE; i++)
1765 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1766 ino_build(sino);
1770 * Handle inodes requiring truncation. This must be done prior to
1771 * looking up any inodes in directories.
1773 static void
1774 cg_trunc(struct suj_cg *sc)
1776 struct suj_ino *sino;
1777 int i;
1779 for (i = 0; i < SUJ_HASHSIZE; i++) {
1780 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) {
1781 if (sino->si_trunc) {
1782 ino_trunc(sino->si_ino,
1783 sino->si_trunc->jt_size);
1784 sino->si_blkadj = 0;
1785 sino->si_trunc = NULL;
1787 if (sino->si_blkadj)
1788 ino_adjblks(sino);
1793 static void
1794 cg_adj_blk(struct suj_cg *sc)
1796 struct suj_ino *sino;
1797 int i;
1799 for (i = 0; i < SUJ_HASHSIZE; i++) {
1800 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) {
1801 if (sino->si_blkadj)
1802 ino_adjblks(sino);
1808 * Free any partially allocated blocks and then resolve inode block
1809 * counts.
1811 static void
1812 cg_check_blk(struct suj_cg *sc)
1814 struct suj_blk *sblk;
1815 int i;
1818 for (i = 0; i < SUJ_HASHSIZE; i++)
1819 LIST_FOREACH(sblk, &sc->sc_blkhash[i], sb_next)
1820 blk_check(sblk);
1824 * Walk the list of inode records for this cg, recovering any
1825 * changes which were not complete at the time of crash.
1827 static void
1828 cg_check_ino(struct suj_cg *sc)
1830 struct suj_ino *sino;
1831 int i;
1833 for (i = 0; i < SUJ_HASHSIZE; i++)
1834 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1835 ino_check(sino);
1839 * Write a potentially dirty cg. Recalculate the summary information and
1840 * update the superblock summary.
1842 static void
1843 cg_write(struct suj_cg *sc)
1845 ufs1_daddr_t fragno, cgbno, maxbno;
1846 u_int8_t *blksfree;
1847 struct cg *cgp;
1848 int blk;
1849 int i;
1851 if (sc->sc_dirty == 0)
1852 return;
1854 * Fix the frag and cluster summary.
1856 cgp = sc->sc_cgp;
1857 cgp->cg_cs.cs_nbfree = 0;
1858 cgp->cg_cs.cs_nffree = 0;
1859 bzero(&cgp->cg_frsum, sizeof(cgp->cg_frsum));
1860 maxbno = fragstoblks(fs, fs->fs_fpg);
1861 if (fs->fs_contigsumsize > 0) {
1862 for (i = 1; i <= fs->fs_contigsumsize; i++)
1863 cg_clustersum(cgp)[i] = 0;
1864 bzero(cg_clustersfree(cgp), howmany(maxbno, CHAR_BIT));
1866 blksfree = cg_blksfree(cgp);
1867 for (cgbno = 0; cgbno < maxbno; cgbno++) {
1868 if (ffs_isfreeblock(fs, blksfree, cgbno))
1869 continue;
1870 if (ffs_isblock(fs, blksfree, cgbno)) {
1871 ffs_clusteracct(fs, cgp, cgbno, 1);
1872 cgp->cg_cs.cs_nbfree++;
1873 continue;
1875 fragno = blkstofrags(fs, cgbno);
1876 blk = blkmap(fs, blksfree, fragno);
1877 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1878 for (i = 0; i < fs->fs_frag; i++)
1879 if (isset(blksfree, fragno + i))
1880 cgp->cg_cs.cs_nffree++;
1883 * Update the superblock cg summary from our now correct values
1884 * before writing the block.
1886 fs->fs_cs(fs, sc->sc_cgx) = cgp->cg_cs;
1887 if (bwrite(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf,
1888 fs->fs_bsize) == -1)
1889 err_suj("Unable to write cylinder group %d\n", sc->sc_cgx);
1893 * Write out any modified inodes.
1895 static void
1896 cg_write_inos(struct suj_cg *sc)
1898 struct ino_blk *iblk;
1899 int i;
1901 for (i = 0; i < SUJ_HASHSIZE; i++)
1902 LIST_FOREACH(iblk, &sc->sc_iblkhash[i], ib_next)
1903 if (iblk->ib_dirty)
1904 iblk_write(iblk);
1907 static void
1908 cg_apply(void (*apply)(struct suj_cg *))
1910 struct suj_cg *scg;
1911 int i;
1913 for (i = 0; i < SUJ_HASHSIZE; i++)
1914 LIST_FOREACH(scg, &cghash[i], sc_next)
1915 apply(scg);
1919 * Process the unlinked but referenced file list. Freeing all inodes.
1921 static void
1922 ino_unlinked(void)
1924 union dinode *ip;
1925 uint16_t mode;
1926 ino_t inon;
1927 ino_t ino;
1929 ino = fs->fs_sujfree;
1930 fs->fs_sujfree = 0;
1931 while (ino != 0) {
1932 ip = ino_read(ino);
1933 mode = DIP(ip, di_mode) & IFMT;
1934 inon = DIP(ip, di_freelink);
1935 DIP_SET(ip, di_freelink, 0);
1937 * XXX Should this be an errx?
1939 if (DIP(ip, di_nlink) == 0) {
1940 if (debug)
1941 printf("Freeing unlinked ino %ju mode %o\n",
1942 (uintmax_t)ino, mode);
1943 ino_reclaim(ip, ino, mode);
1944 } else if (debug)
1945 printf("Skipping ino %ju mode %o with link %d\n",
1946 (uintmax_t)ino, mode, DIP(ip, di_nlink));
1947 ino = inon;
1952 * Append a new record to the list of records requiring processing.
1954 static void
1955 ino_append(union jrec *rec)
1957 struct jrefrec *refrec;
1958 struct jmvrec *mvrec;
1959 struct suj_ino *sino;
1960 struct suj_rec *srec;
1962 mvrec = &rec->rec_jmvrec;
1963 refrec = &rec->rec_jrefrec;
1964 if (debug && mvrec->jm_op == JOP_MVREF)
1965 printf("ino move: ino %d, parent %d, diroff %jd, oldoff %jd\n",
1966 mvrec->jm_ino, mvrec->jm_parent, mvrec->jm_newoff,
1967 mvrec->jm_oldoff);
1968 else if (debug &&
1969 (refrec->jr_op == JOP_ADDREF || refrec->jr_op == JOP_REMREF))
1970 printf("ino ref: op %d, ino %d, nlink %d, "
1971 "parent %d, diroff %jd\n",
1972 refrec->jr_op, refrec->jr_ino, refrec->jr_nlink,
1973 refrec->jr_parent, refrec->jr_diroff);
1974 sino = ino_lookup(((struct jrefrec *)rec)->jr_ino, 1);
1975 sino->si_hasrecs = 1;
1976 srec = errmalloc(sizeof(*srec));
1977 srec->sr_rec = rec;
1978 TAILQ_INSERT_TAIL(&sino->si_newrecs, srec, sr_next);
1982 * Add a reference adjustment to the sino list and eliminate dups. The
1983 * primary loop in ino_build_ref() checks for dups but new ones may be
1984 * created as a result of offset adjustments.
1986 static void
1987 ino_add_ref(struct suj_ino *sino, struct suj_rec *srec)
1989 struct jrefrec *refrec;
1990 struct suj_rec *srn;
1991 struct jrefrec *rrn;
1993 refrec = (struct jrefrec *)srec->sr_rec;
1995 * We walk backwards so that the oldest link count is preserved. If
1996 * an add record conflicts with a remove keep the remove. Redundant
1997 * removes are eliminated in ino_build_ref. Otherwise we keep the
1998 * oldest record at a given location.
2000 for (srn = TAILQ_LAST(&sino->si_recs, srechd); srn;
2001 srn = TAILQ_PREV(srn, srechd, sr_next)) {
2002 rrn = (struct jrefrec *)srn->sr_rec;
2003 if (rrn->jr_parent != refrec->jr_parent ||
2004 rrn->jr_diroff != refrec->jr_diroff)
2005 continue;
2006 if (rrn->jr_op == JOP_REMREF || refrec->jr_op == JOP_ADDREF) {
2007 rrn->jr_mode = refrec->jr_mode;
2008 return;
2011 * Adding a remove.
2013 * Replace the record in place with the old nlink in case
2014 * we replace the head of the list. Abandon srec as a dup.
2016 refrec->jr_nlink = rrn->jr_nlink;
2017 srn->sr_rec = srec->sr_rec;
2018 return;
2020 TAILQ_INSERT_TAIL(&sino->si_recs, srec, sr_next);
2024 * Create a duplicate of a reference at a previous location.
2026 static void
2027 ino_dup_ref(struct suj_ino *sino, struct jrefrec *refrec, off_t diroff)
2029 struct jrefrec *rrn;
2030 struct suj_rec *srn;
2032 rrn = errmalloc(sizeof(*refrec));
2033 *rrn = *refrec;
2034 rrn->jr_op = JOP_ADDREF;
2035 rrn->jr_diroff = diroff;
2036 srn = errmalloc(sizeof(*srn));
2037 srn->sr_rec = (union jrec *)rrn;
2038 ino_add_ref(sino, srn);
2042 * Add a reference to the list at all known locations. We follow the offset
2043 * changes for a single instance and create duplicate add refs at each so
2044 * that we can tolerate any version of the directory block. Eliminate
2045 * removes which collide with adds that are seen in the journal. They should
2046 * not adjust the link count down.
2048 static void
2049 ino_build_ref(struct suj_ino *sino, struct suj_rec *srec)
2051 struct jrefrec *refrec;
2052 struct jmvrec *mvrec;
2053 struct suj_rec *srp;
2054 struct suj_rec *srn;
2055 struct jrefrec *rrn;
2056 off_t diroff;
2058 refrec = (struct jrefrec *)srec->sr_rec;
2060 * Search for a mvrec that matches this offset. Whether it's an add
2061 * or a remove we can delete the mvref after creating a dup record in
2062 * the old location.
2064 if (!TAILQ_EMPTY(&sino->si_movs)) {
2065 diroff = refrec->jr_diroff;
2066 for (srn = TAILQ_LAST(&sino->si_movs, srechd); srn; srn = srp) {
2067 srp = TAILQ_PREV(srn, srechd, sr_next);
2068 mvrec = (struct jmvrec *)srn->sr_rec;
2069 if (mvrec->jm_parent != refrec->jr_parent ||
2070 mvrec->jm_newoff != diroff)
2071 continue;
2072 diroff = mvrec->jm_oldoff;
2073 TAILQ_REMOVE(&sino->si_movs, srn, sr_next);
2074 free(srn);
2075 ino_dup_ref(sino, refrec, diroff);
2079 * If a remove wasn't eliminated by an earlier add just append it to
2080 * the list.
2082 if (refrec->jr_op == JOP_REMREF) {
2083 ino_add_ref(sino, srec);
2084 return;
2087 * Walk the list of records waiting to be added to the list. We
2088 * must check for moves that apply to our current offset and remove
2089 * them from the list. Remove any duplicates to eliminate removes
2090 * with corresponding adds.
2092 TAILQ_FOREACH_SAFE(srn, &sino->si_newrecs, sr_next, srp) {
2093 switch (srn->sr_rec->rec_jrefrec.jr_op) {
2094 case JOP_ADDREF:
2096 * This should actually be an error we should
2097 * have a remove for every add journaled.
2099 rrn = (struct jrefrec *)srn->sr_rec;
2100 if (rrn->jr_parent != refrec->jr_parent ||
2101 rrn->jr_diroff != refrec->jr_diroff)
2102 break;
2103 TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2104 break;
2105 case JOP_REMREF:
2107 * Once we remove the current iteration of the
2108 * record at this address we're done.
2110 rrn = (struct jrefrec *)srn->sr_rec;
2111 if (rrn->jr_parent != refrec->jr_parent ||
2112 rrn->jr_diroff != refrec->jr_diroff)
2113 break;
2114 TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2115 ino_add_ref(sino, srec);
2116 return;
2117 case JOP_MVREF:
2119 * Update our diroff based on any moves that match
2120 * and remove the move.
2122 mvrec = (struct jmvrec *)srn->sr_rec;
2123 if (mvrec->jm_parent != refrec->jr_parent ||
2124 mvrec->jm_oldoff != refrec->jr_diroff)
2125 break;
2126 ino_dup_ref(sino, refrec, mvrec->jm_oldoff);
2127 refrec->jr_diroff = mvrec->jm_newoff;
2128 TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2129 break;
2130 default:
2131 err_suj("ino_build_ref: Unknown op %d\n",
2132 srn->sr_rec->rec_jrefrec.jr_op);
2135 ino_add_ref(sino, srec);
2139 * Walk the list of new records and add them in-order resolving any
2140 * dups and adjusted offsets.
2142 static void
2143 ino_build(struct suj_ino *sino)
2145 struct suj_rec *srec;
2147 while ((srec = TAILQ_FIRST(&sino->si_newrecs)) != NULL) {
2148 TAILQ_REMOVE(&sino->si_newrecs, srec, sr_next);
2149 switch (srec->sr_rec->rec_jrefrec.jr_op) {
2150 case JOP_ADDREF:
2151 case JOP_REMREF:
2152 ino_build_ref(sino, srec);
2153 break;
2154 case JOP_MVREF:
2156 * Add this mvrec to the queue of pending mvs.
2158 TAILQ_INSERT_TAIL(&sino->si_movs, srec, sr_next);
2159 break;
2160 default:
2161 err_suj("ino_build: Unknown op %d\n",
2162 srec->sr_rec->rec_jrefrec.jr_op);
2165 if (TAILQ_EMPTY(&sino->si_recs))
2166 sino->si_hasrecs = 0;
2170 * Modify journal records so they refer to the base block number
2171 * and a start and end frag range. This is to facilitate the discovery
2172 * of overlapping fragment allocations.
2174 static void
2175 blk_build(struct jblkrec *blkrec)
2177 struct suj_rec *srec;
2178 struct suj_blk *sblk;
2179 struct jblkrec *blkrn;
2180 ufs2_daddr_t blk;
2181 int frag;
2183 if (debug)
2184 printf("blk_build: op %d blkno %jd frags %d oldfrags %d "
2185 "ino %d lbn %jd\n",
2186 blkrec->jb_op, blkrec->jb_blkno, blkrec->jb_frags,
2187 blkrec->jb_oldfrags, blkrec->jb_ino, blkrec->jb_lbn);
2189 blk = blknum(fs, blkrec->jb_blkno);
2190 frag = fragnum(fs, blkrec->jb_blkno);
2191 sblk = blk_lookup(blk, 1);
2193 * Rewrite the record using oldfrags to indicate the offset into
2194 * the block. Leave jb_frags as the actual allocated count.
2196 blkrec->jb_blkno -= frag;
2197 blkrec->jb_oldfrags = frag;
2198 if (blkrec->jb_oldfrags + blkrec->jb_frags > fs->fs_frag)
2199 err_suj("Invalid fragment count %d oldfrags %d\n",
2200 blkrec->jb_frags, frag);
2202 * Detect dups. If we detect a dup we always discard the oldest
2203 * record as it is superseded by the new record. This speeds up
2204 * later stages but also eliminates free records which are used
2205 * to indicate that the contents of indirects can be trusted.
2207 TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
2208 blkrn = (struct jblkrec *)srec->sr_rec;
2209 if (blkrn->jb_ino != blkrec->jb_ino ||
2210 blkrn->jb_lbn != blkrec->jb_lbn ||
2211 blkrn->jb_blkno != blkrec->jb_blkno ||
2212 blkrn->jb_frags != blkrec->jb_frags ||
2213 blkrn->jb_oldfrags != blkrec->jb_oldfrags)
2214 continue;
2215 if (debug)
2216 printf("Removed dup.\n");
2217 /* Discard the free which is a dup with an alloc. */
2218 if (blkrec->jb_op == JOP_FREEBLK)
2219 return;
2220 TAILQ_REMOVE(&sblk->sb_recs, srec, sr_next);
2221 free(srec);
2222 break;
2224 srec = errmalloc(sizeof(*srec));
2225 srec->sr_rec = (union jrec *)blkrec;
2226 TAILQ_INSERT_TAIL(&sblk->sb_recs, srec, sr_next);
2229 static void
2230 ino_build_trunc(struct jtrncrec *rec)
2232 struct suj_ino *sino;
2234 if (debug)
2235 printf("ino_build_trunc: op %d ino %d, size %jd\n",
2236 rec->jt_op, rec->jt_ino, rec->jt_size);
2237 sino = ino_lookup(rec->jt_ino, 1);
2238 if (rec->jt_op == JOP_SYNC) {
2239 sino->si_trunc = NULL;
2240 return;
2242 if (sino->si_trunc == NULL || sino->si_trunc->jt_size > rec->jt_size)
2243 sino->si_trunc = rec;
2247 * Build up tables of the operations we need to recover.
2249 static void
2250 suj_build(void)
2252 struct suj_seg *seg;
2253 union jrec *rec;
2254 int off;
2255 int i;
2257 TAILQ_FOREACH(seg, &allsegs, ss_next) {
2258 if (debug)
2259 printf("seg %jd has %d records, oldseq %jd.\n",
2260 seg->ss_rec.jsr_seq, seg->ss_rec.jsr_cnt,
2261 seg->ss_rec.jsr_oldest);
2262 off = 0;
2263 rec = (union jrec *)seg->ss_blk;
2264 for (i = 0; i < seg->ss_rec.jsr_cnt; off += JREC_SIZE, rec++) {
2265 /* skip the segrec. */
2266 if ((off % real_dev_bsize) == 0)
2267 continue;
2268 switch (rec->rec_jrefrec.jr_op) {
2269 case JOP_ADDREF:
2270 case JOP_REMREF:
2271 case JOP_MVREF:
2272 ino_append(rec);
2273 break;
2274 case JOP_NEWBLK:
2275 case JOP_FREEBLK:
2276 blk_build((struct jblkrec *)rec);
2277 break;
2278 case JOP_TRUNC:
2279 case JOP_SYNC:
2280 ino_build_trunc((struct jtrncrec *)rec);
2281 break;
2282 default:
2283 err_suj("Unknown journal operation %d (%d)\n",
2284 rec->rec_jrefrec.jr_op, off);
2286 i++;
2292 * Prune the journal segments to those we care about based on the
2293 * oldest sequence in the newest segment. Order the segment list
2294 * based on sequence number.
2296 static void
2297 suj_prune(void)
2299 struct suj_seg *seg;
2300 struct suj_seg *segn;
2301 uint64_t newseq;
2302 int discard;
2304 if (debug)
2305 printf("Pruning up to %jd\n", oldseq);
2306 /* First free the expired segments. */
2307 TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2308 if (seg->ss_rec.jsr_seq >= oldseq)
2309 continue;
2310 TAILQ_REMOVE(&allsegs, seg, ss_next);
2311 free(seg->ss_blk);
2312 free(seg);
2314 /* Next ensure that segments are ordered properly. */
2315 seg = TAILQ_FIRST(&allsegs);
2316 if (seg == NULL) {
2317 if (debug)
2318 printf("Empty journal\n");
2319 return;
2321 newseq = seg->ss_rec.jsr_seq;
2322 for (;;) {
2323 seg = TAILQ_LAST(&allsegs, seghd);
2324 if (seg->ss_rec.jsr_seq >= newseq)
2325 break;
2326 TAILQ_REMOVE(&allsegs, seg, ss_next);
2327 TAILQ_INSERT_HEAD(&allsegs, seg, ss_next);
2328 newseq = seg->ss_rec.jsr_seq;
2331 if (newseq != oldseq) {
2332 TAILQ_FOREACH(seg, &allsegs, ss_next) {
2333 printf("%jd, ", seg->ss_rec.jsr_seq);
2335 printf("\n");
2336 err_suj("Journal file sequence mismatch %jd != %jd\n",
2337 newseq, oldseq);
2340 * The kernel may asynchronously write segments which can create
2341 * gaps in the sequence space. Throw away any segments after the
2342 * gap as the kernel guarantees only those that are contiguously
2343 * reachable are marked as completed.
2345 discard = 0;
2346 TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2347 if (!discard && newseq++ == seg->ss_rec.jsr_seq) {
2348 jrecs += seg->ss_rec.jsr_cnt;
2349 jbytes += seg->ss_rec.jsr_blocks * real_dev_bsize;
2350 continue;
2352 discard = 1;
2353 if (debug)
2354 printf("Journal order mismatch %jd != %jd pruning\n",
2355 newseq-1, seg->ss_rec.jsr_seq);
2356 TAILQ_REMOVE(&allsegs, seg, ss_next);
2357 free(seg->ss_blk);
2358 free(seg);
2360 if (debug)
2361 printf("Processing journal segments from %jd to %jd\n",
2362 oldseq, newseq-1);
2366 * Verify the journal inode before attempting to read records.
2368 static int
2369 suj_verifyino(union dinode *ip)
2372 if (DIP(ip, di_nlink) != 1) {
2373 printf("Invalid link count %d for journal inode %ju\n",
2374 DIP(ip, di_nlink), (uintmax_t)sujino);
2375 return (-1);
2378 if ((DIP(ip, di_flags) & (SF_IMMUTABLE | SF_NOUNLINK)) !=
2379 (SF_IMMUTABLE | SF_NOUNLINK)) {
2380 printf("Invalid flags 0x%X for journal inode %ju\n",
2381 DIP(ip, di_flags), (uintmax_t)sujino);
2382 return (-1);
2385 if (DIP(ip, di_mode) != (IFREG | IREAD)) {
2386 printf("Invalid mode %o for journal inode %ju\n",
2387 DIP(ip, di_mode), (uintmax_t)sujino);
2388 return (-1);
2391 if (DIP(ip, di_size) < SUJ_MIN) {
2392 printf("Invalid size %jd for journal inode %ju\n",
2393 DIP(ip, di_size), (uintmax_t)sujino);
2394 return (-1);
2397 if (DIP(ip, di_modrev) != fs->fs_mtime) {
2398 printf("Journal timestamp does not match fs mount time\n");
2399 return (-1);
2402 return (0);
2405 struct jblocks {
2406 struct jextent *jb_extent; /* Extent array. */
2407 int jb_avail; /* Available extents. */
2408 int jb_used; /* Last used extent. */
2409 int jb_head; /* Allocator head. */
2410 int jb_off; /* Allocator extent offset. */
2412 struct jextent {
2413 ufs2_daddr_t je_daddr; /* Disk block address. */
2414 int je_blocks; /* Disk block count. */
2417 static struct jblocks *suj_jblocks;
2419 static struct jblocks *
2420 jblocks_create(void)
2422 struct jblocks *jblocks;
2423 int size;
2425 jblocks = errmalloc(sizeof(*jblocks));
2426 jblocks->jb_avail = 10;
2427 jblocks->jb_used = 0;
2428 jblocks->jb_head = 0;
2429 jblocks->jb_off = 0;
2430 size = sizeof(struct jextent) * jblocks->jb_avail;
2431 jblocks->jb_extent = errmalloc(size);
2432 bzero(jblocks->jb_extent, size);
2434 return (jblocks);
2438 * Return the next available disk block and the amount of contiguous
2439 * free space it contains.
2441 static ufs2_daddr_t
2442 jblocks_next(struct jblocks *jblocks, int bytes, int *actual)
2444 struct jextent *jext;
2445 ufs2_daddr_t daddr;
2446 int freecnt;
2447 int blocks;
2449 blocks = bytes / disk->d_bsize;
2450 jext = &jblocks->jb_extent[jblocks->jb_head];
2451 freecnt = jext->je_blocks - jblocks->jb_off;
2452 if (freecnt == 0) {
2453 jblocks->jb_off = 0;
2454 if (++jblocks->jb_head > jblocks->jb_used)
2455 return (0);
2456 jext = &jblocks->jb_extent[jblocks->jb_head];
2457 freecnt = jext->je_blocks;
2459 if (freecnt > blocks)
2460 freecnt = blocks;
2461 *actual = freecnt * disk->d_bsize;
2462 daddr = jext->je_daddr + jblocks->jb_off;
2464 return (daddr);
2468 * Advance the allocation head by a specified number of bytes, consuming
2469 * one journal segment.
2471 static void
2472 jblocks_advance(struct jblocks *jblocks, int bytes)
2475 jblocks->jb_off += bytes / disk->d_bsize;
2478 static void
2479 jblocks_destroy(struct jblocks *jblocks)
2482 free(jblocks->jb_extent);
2483 free(jblocks);
2486 static void
2487 jblocks_add(struct jblocks *jblocks, ufs2_daddr_t daddr, int blocks)
2489 struct jextent *jext;
2490 int size;
2492 jext = &jblocks->jb_extent[jblocks->jb_used];
2493 /* Adding the first block. */
2494 if (jext->je_daddr == 0) {
2495 jext->je_daddr = daddr;
2496 jext->je_blocks = blocks;
2497 return;
2499 /* Extending the last extent. */
2500 if (jext->je_daddr + jext->je_blocks == daddr) {
2501 jext->je_blocks += blocks;
2502 return;
2504 /* Adding a new extent. */
2505 if (++jblocks->jb_used == jblocks->jb_avail) {
2506 jblocks->jb_avail *= 2;
2507 size = sizeof(struct jextent) * jblocks->jb_avail;
2508 jext = errmalloc(size);
2509 bzero(jext, size);
2510 bcopy(jblocks->jb_extent, jext,
2511 sizeof(struct jextent) * jblocks->jb_used);
2512 free(jblocks->jb_extent);
2513 jblocks->jb_extent = jext;
2515 jext = &jblocks->jb_extent[jblocks->jb_used];
2516 jext->je_daddr = daddr;
2517 jext->je_blocks = blocks;
2519 return;
2523 * Add a file block from the journal to the extent map. We can't read
2524 * each file block individually because the kernel treats it as a circular
2525 * buffer and segments may span mutliple contiguous blocks.
2527 static void
2528 suj_add_block(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
2531 jblocks_add(suj_jblocks, fsbtodb(fs, blk), fsbtodb(fs, frags));
2534 static void
2535 suj_read(void)
2537 uint8_t block[1 * 1024 * 1024];
2538 struct suj_seg *seg;
2539 struct jsegrec *recn;
2540 struct jsegrec *rec;
2541 ufs2_daddr_t blk;
2542 int readsize;
2543 int blocks;
2544 int recsize;
2545 int size;
2546 int i;
2549 * Read records until we exhaust the journal space. If we find
2550 * an invalid record we start searching for a valid segment header
2551 * at the next block. This is because we don't have a head/tail
2552 * pointer and must recover the information indirectly. At the gap
2553 * between the head and tail we won't necessarily have a valid
2554 * segment.
2556 restart:
2557 for (;;) {
2558 size = sizeof(block);
2559 blk = jblocks_next(suj_jblocks, size, &readsize);
2560 if (blk == 0)
2561 return;
2562 size = readsize;
2564 * Read 1MB at a time and scan for records within this block.
2566 if (bread(disk, blk, &block, size) == -1) {
2567 err_suj("Error reading journal block %jd\n",
2568 (intmax_t)blk);
2570 for (rec = (void *)block; size; size -= recsize,
2571 rec = (struct jsegrec *)((uintptr_t)rec + recsize)) {
2572 recsize = real_dev_bsize;
2573 if (rec->jsr_time != fs->fs_mtime) {
2574 if (debug)
2575 printf("Rec time %jd != fs mtime %jd\n",
2576 rec->jsr_time, fs->fs_mtime);
2577 jblocks_advance(suj_jblocks, recsize);
2578 continue;
2580 if (rec->jsr_cnt == 0) {
2581 if (debug)
2582 printf("Found illegal count %d\n",
2583 rec->jsr_cnt);
2584 jblocks_advance(suj_jblocks, recsize);
2585 continue;
2587 blocks = rec->jsr_blocks;
2588 recsize = blocks * real_dev_bsize;
2589 if (recsize > size) {
2591 * We may just have run out of buffer, restart
2592 * the loop to re-read from this spot.
2594 if (size < fs->fs_bsize &&
2595 size != readsize &&
2596 recsize <= fs->fs_bsize)
2597 goto restart;
2598 if (debug)
2599 printf("Found invalid segsize %d > %d\n",
2600 recsize, size);
2601 recsize = real_dev_bsize;
2602 jblocks_advance(suj_jblocks, recsize);
2603 continue;
2606 * Verify that all blocks in the segment are present.
2608 for (i = 1; i < blocks; i++) {
2609 recn = (void *)((uintptr_t)rec) + i *
2610 real_dev_bsize;
2611 if (recn->jsr_seq == rec->jsr_seq &&
2612 recn->jsr_time == rec->jsr_time)
2613 continue;
2614 if (debug)
2615 printf("Incomplete record %jd (%d)\n",
2616 rec->jsr_seq, i);
2617 recsize = i * real_dev_bsize;
2618 jblocks_advance(suj_jblocks, recsize);
2619 goto restart;
2621 seg = errmalloc(sizeof(*seg));
2622 seg->ss_blk = errmalloc(recsize);
2623 seg->ss_rec = *rec;
2624 bcopy((void *)rec, seg->ss_blk, recsize);
2625 if (rec->jsr_oldest > oldseq)
2626 oldseq = rec->jsr_oldest;
2627 TAILQ_INSERT_TAIL(&allsegs, seg, ss_next);
2628 jblocks_advance(suj_jblocks, recsize);
2634 * Search a directory block for the SUJ_FILE.
2636 static void
2637 suj_find(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
2639 char block[MAXBSIZE];
2640 struct direct *dp;
2641 int bytes;
2642 int off;
2644 if (sujino)
2645 return;
2646 bytes = lfragtosize(fs, frags);
2647 if (bread(disk, fsbtodb(fs, blk), block, bytes) <= 0)
2648 err_suj("Failed to read ROOTINO directory block %jd\n", blk);
2649 for (off = 0; off < bytes; off += dp->d_reclen) {
2650 dp = (struct direct *)&block[off];
2651 if (dp->d_reclen == 0)
2652 break;
2653 if (dp->d_ino == 0)
2654 continue;
2655 if (dp->d_namlen != strlen(SUJ_FILE))
2656 continue;
2657 if (bcmp(dp->d_name, SUJ_FILE, dp->d_namlen) != 0)
2658 continue;
2659 sujino = dp->d_ino;
2660 return;
2665 * Orchestrate the verification of a filesystem via the softupdates journal.
2668 suj_check(const char *filesys)
2670 union dinode *jip;
2671 union dinode *ip;
2672 uint64_t blocks;
2673 int retval;
2674 struct suj_seg *seg;
2675 struct suj_seg *segn;
2677 initsuj();
2678 opendisk(filesys);
2681 * Set an exit point when SUJ check failed
2683 retval = setjmp(jmpbuf);
2684 if (retval != 0) {
2685 pwarn("UNEXPECTED SU+J INCONSISTENCY\n");
2686 TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2687 TAILQ_REMOVE(&allsegs, seg, ss_next);
2688 free(seg->ss_blk);
2689 free(seg);
2691 if (reply("FALLBACK TO FULL FSCK") == 0) {
2692 ckfini(0);
2693 exit(EEXIT);
2694 } else
2695 return (-1);
2699 * Find the journal inode.
2701 ip = ino_read(ROOTINO);
2702 sujino = 0;
2703 ino_visit(ip, ROOTINO, suj_find, 0);
2704 if (sujino == 0) {
2705 printf("Journal inode removed. Use tunefs to re-create.\n");
2706 sblock.fs_flags &= ~FS_SUJ;
2707 sblock.fs_sujfree = 0;
2708 return (-1);
2711 * Fetch the journal inode and verify it.
2713 jip = ino_read(sujino);
2714 printf("** SU+J Recovering %s\n", filesys);
2715 if (suj_verifyino(jip) != 0)
2716 return (-1);
2718 * Build a list of journal blocks in jblocks before parsing the
2719 * available journal blocks in with suj_read().
2721 printf("** Reading %jd byte journal from inode %ju.\n",
2722 DIP(jip, di_size), (uintmax_t)sujino);
2723 suj_jblocks = jblocks_create();
2724 blocks = ino_visit(jip, sujino, suj_add_block, 0);
2725 if (blocks != numfrags(fs, DIP(jip, di_size))) {
2726 printf("Sparse journal inode %ju.\n", (uintmax_t)sujino);
2727 return (-1);
2729 suj_read();
2730 jblocks_destroy(suj_jblocks);
2731 suj_jblocks = NULL;
2732 if (preen || reply("RECOVER")) {
2733 printf("** Building recovery table.\n");
2734 suj_prune();
2735 suj_build();
2736 cg_apply(cg_build);
2737 printf("** Resolving unreferenced inode list.\n");
2738 ino_unlinked();
2739 printf("** Processing journal entries.\n");
2740 cg_apply(cg_trunc);
2741 cg_apply(cg_check_blk);
2742 cg_apply(cg_adj_blk);
2743 cg_apply(cg_check_ino);
2745 if (preen == 0 && (jrecs > 0 || jbytes > 0) && reply("WRITE CHANGES") == 0)
2746 return (0);
2748 * To remain idempotent with partial truncations the free bitmaps
2749 * must be written followed by indirect blocks and lastly inode
2750 * blocks. This preserves access to the modified pointers until
2751 * they are freed.
2753 cg_apply(cg_write);
2754 dblk_write();
2755 cg_apply(cg_write_inos);
2756 /* Write back superblock. */
2757 closedisk(filesys);
2758 if (jrecs > 0 || jbytes > 0) {
2759 printf("** %jd journal records in %jd bytes for %.2f%% utilization\n",
2760 jrecs, jbytes, ((float)jrecs / (float)(jbytes / JREC_SIZE)) * 100);
2761 printf("** Freed %jd inodes (%jd dirs) %jd blocks, and %jd frags.\n",
2762 freeinos, freedir, freeblocks, freefrags);
2765 return (0);
2768 static void
2769 initsuj(void)
2771 int i;
2773 for (i = 0; i < SUJ_HASHSIZE; i++) {
2774 LIST_INIT(&cghash[i]);
2775 LIST_INIT(&dbhash[i]);
2777 lastcg = NULL;
2778 lastblk = NULL;
2779 TAILQ_INIT(&allsegs);
2780 oldseq = 0;
2781 disk = NULL;
2782 fs = NULL;
2783 sujino = 0;
2784 freefrags = 0;
2785 freeblocks = 0;
2786 freeinos = 0;
2787 freedir = 0;
2788 jbytes = 0;
2789 jrecs = 0;
2790 suj_jblocks = NULL;