1 @c $Id: whatis.texi 16769 2006-02-27 12:26:50Z joda $
3 @node What is Kerberos?, Building and Installing, Introduction, Top
4 @chapter What is Kerberos?
8 Now this Cerberus had three heads of dogs,
9 the tail of a dragon, and on his back the
10 heads of all sorts of snakes.
11 --- Pseudo-Apollodorus Library 2.5.12
15 Kerberos is a system for authenticating users and services on a network.
16 It is built upon the assumption that the network is ``unsafe''. For
17 example, data sent over the network can be eavesdropped and altered, and
18 addresses can also be faked. Therefore they cannot be used for
19 authentication purposes.
20 @cindex authentication
22 Kerberos is a trusted third-party service. That means that there is a
23 third party (the kerberos server) that is trusted by all the entities on
24 the network (users and services, usually called @dfn{principals}). All
25 principals share a secret password (or key) with the kerberos server and
26 this enables principals to verify that the messages from the kerberos
27 server are authentic. Thus trusting the kerberos server, users and
28 services can authenticate each other.
30 @section Basic mechanism
54 @c <subscript>\arg\</subscript>
60 @strong{Note} This discussion is about Kerberos version 4, but version
64 In Kerberos, principals use @dfn{tickets} to prove that they are who
65 they claim to be. In the following example, @var{A} is the initiator of
66 the authentication exchange, usually a user, and @var{B} is the service
67 that @var{A} wishes to use.
69 To obtain a ticket for a specific service, @var{A} sends a ticket
70 request to the kerberos server. The request contains @var{A}'s and
71 @var{B}'s names (along with some other fields). The kerberos server
72 checks that both @var{A} and @var{B} are valid principals.
74 Having verified the validity of the principals, it creates a packet
75 containing @var{A}'s and @var{B}'s names, @var{A}'s network address
76 (@var{A@sub{addr}}), the current time (@var{t@sub{issue}}), the lifetime
77 of the ticket (@var{life}), and a secret @dfn{session key}
79 (@var{K@sub{AB}}). This packet is encrypted with @var{B}'s secret key
80 (@var{K@sub{B}}). The actual ticket (@var{T@sub{AB}}) looks like this:
81 (@{@var{A}, @var{B}, @var{A@sub{addr}}, @var{t@sub{issue}}, @var{life},
82 @var{K@sub{AB}}@}@var{K@sub{B}}).
84 The reply to @var{A} consists of the ticket (@var{T@sub{AB}}), @var{B}'s
85 name, the current time, the lifetime of the ticket, and the session key, all
86 encrypted in @var{A}'s secret key (@{@var{B}, @var{t@sub{issue}},
87 @var{life}, @var{K@sub{AB}}, @var{T@sub{AB}}@}@var{K@sub{A}}). @var{A}
88 decrypts the reply and retains it for later use.
92 Before sending a message to @var{B}, @var{A} creates an authenticator
93 consisting of @var{A}'s name, @var{A}'s address, the current time, and a
94 ``checksum'' chosen by @var{A}, all encrypted with the secret session
95 key (@{@var{A}, @var{A@sub{addr}}, @var{t@sub{current}},
96 @var{checksum}@}@var{K@sub{AB}}). This is sent together with the ticket
97 received from the kerberos server to @var{B}. Upon reception, @var{B}
98 decrypts the ticket using @var{B}'s secret key. Since the ticket
99 contains the session key that the authenticator was encrypted with,
100 @var{B} can now also decrypt the authenticator. To verify that @var{A}
101 really is @var{A}, @var{B} now has to compare the contents of the ticket
102 with that of the authenticator. If everything matches, @var{B} now
103 considers @var{A} as properly authenticated.
105 @c (here we should have some more explanations)
107 @section Different attacks
109 @subheading Impersonating A
111 An impostor, @var{C} could steal the authenticator and the ticket as it
112 is transmitted across the network, and use them to impersonate
113 @var{A}. The address in the ticket and the authenticator was added to
114 make it more difficult to perform this attack. To succeed @var{C} will
115 have to either use the same machine as @var{A} or fake the source
116 addresses of the packets. By including the time stamp in the
117 authenticator, @var{C} does not have much time in which to mount the
120 @subheading Impersonating B
122 @var{C} can hijack @var{B}'s network address, and when @var{A} sends
123 her credentials, @var{C} just pretend to verify them. @var{C} can't
124 be sure that she is talking to @var{A}.
126 @section Defence strategies
128 It would be possible to add a @dfn{replay cache}
130 to the server side. The idea is to save the authenticators sent during
131 the last few minutes, so that @var{B} can detect when someone is trying
132 to retransmit an already used message. This is somewhat impractical
133 (mostly regarding efficiency), and is not part of Kerberos 4; MIT
134 Kerberos 5 contains it.
136 To authenticate @var{B}, @var{A} might request that @var{B} sends
137 something back that proves that @var{B} has access to the session
138 key. An example of this is the checksum that @var{A} sent as part of the
139 authenticator. One typical procedure is to add one to the checksum,
140 encrypt it with the session key and send it back to @var{A}. This is
141 called @dfn{mutual authentication}.
143 The session key can also be used to add cryptographic checksums to the
144 messages sent between @var{A} and @var{B} (known as @dfn{message
145 integrity}). Encryption can also be added (@dfn{message
146 confidentiality}). This is probably the best approach in all cases.
148 @cindex confidentiality
150 @section Further reading
152 The original paper on Kerberos from 1988 is @cite{Kerberos: An
153 Authentication Service for Open Network Systems}, by Jennifer Steiner,
154 Clifford Neuman and Jeffrey I. Schiller.
156 A less technical description can be found in @cite{Designing an
157 Authentication System: a Dialogue in Four Scenes} by Bill Bryant, also
160 These documents can be found on our web-page at
161 @url{http://www.pdc.kth.se/kth-krb/}.