turns printfs back on
[freebsd-src/fkvm-freebsd.git] / contrib / gcc / function.c
blob7549ec421f07043c41e7ab50a8b5fe3233c6db5f
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* $FreeBSD$ */
25 /* This file handles the generation of rtl code from tree structure
26 at the level of the function as a whole.
27 It creates the rtl expressions for parameters and auto variables
28 and has full responsibility for allocating stack slots.
30 `expand_function_start' is called at the beginning of a function,
31 before the function body is parsed, and `expand_function_end' is
32 called after parsing the body.
34 Call `assign_stack_local' to allocate a stack slot for a local variable.
35 This is usually done during the RTL generation for the function body,
36 but it can also be done in the reload pass when a pseudo-register does
37 not get a hard register. */
39 #include "config.h"
40 #include "system.h"
41 #include "coretypes.h"
42 #include "tm.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "flags.h"
46 #include "except.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "optabs.h"
50 #include "libfuncs.h"
51 #include "regs.h"
52 #include "hard-reg-set.h"
53 #include "insn-config.h"
54 #include "recog.h"
55 #include "output.h"
56 #include "basic-block.h"
57 #include "toplev.h"
58 #include "hashtab.h"
59 #include "ggc.h"
60 #include "tm_p.h"
61 #include "integrate.h"
62 #include "langhooks.h"
63 #include "target.h"
64 #include "cfglayout.h"
65 #include "tree-gimple.h"
66 #include "tree-pass.h"
67 #include "predict.h"
68 #include "vecprim.h"
70 #ifndef LOCAL_ALIGNMENT
71 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
72 #endif
74 #ifndef STACK_ALIGNMENT_NEEDED
75 #define STACK_ALIGNMENT_NEEDED 1
76 #endif
78 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
80 /* Some systems use __main in a way incompatible with its use in gcc, in these
81 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
82 give the same symbol without quotes for an alternative entry point. You
83 must define both, or neither. */
84 #ifndef NAME__MAIN
85 #define NAME__MAIN "__main"
86 #endif
88 /* Round a value to the lowest integer less than it that is a multiple of
89 the required alignment. Avoid using division in case the value is
90 negative. Assume the alignment is a power of two. */
91 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
93 /* Similar, but round to the next highest integer that meets the
94 alignment. */
95 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
97 /* Nonzero if function being compiled doesn't contain any calls
98 (ignoring the prologue and epilogue). This is set prior to
99 local register allocation and is valid for the remaining
100 compiler passes. */
101 int current_function_is_leaf;
103 /* Nonzero if function being compiled doesn't modify the stack pointer
104 (ignoring the prologue and epilogue). This is only valid after
105 life_analysis has run. */
106 int current_function_sp_is_unchanging;
108 /* Nonzero if the function being compiled is a leaf function which only
109 uses leaf registers. This is valid after reload (specifically after
110 sched2) and is useful only if the port defines LEAF_REGISTERS. */
111 int current_function_uses_only_leaf_regs;
113 /* Nonzero once virtual register instantiation has been done.
114 assign_stack_local uses frame_pointer_rtx when this is nonzero.
115 calls.c:emit_library_call_value_1 uses it to set up
116 post-instantiation libcalls. */
117 int virtuals_instantiated;
119 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
120 static GTY(()) int funcdef_no;
122 /* These variables hold pointers to functions to create and destroy
123 target specific, per-function data structures. */
124 struct machine_function * (*init_machine_status) (void);
126 /* The currently compiled function. */
127 struct function *cfun = 0;
129 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
130 static VEC(int,heap) *prologue;
131 static VEC(int,heap) *epilogue;
133 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
134 in this function. */
135 static VEC(int,heap) *sibcall_epilogue;
137 /* In order to evaluate some expressions, such as function calls returning
138 structures in memory, we need to temporarily allocate stack locations.
139 We record each allocated temporary in the following structure.
141 Associated with each temporary slot is a nesting level. When we pop up
142 one level, all temporaries associated with the previous level are freed.
143 Normally, all temporaries are freed after the execution of the statement
144 in which they were created. However, if we are inside a ({...}) grouping,
145 the result may be in a temporary and hence must be preserved. If the
146 result could be in a temporary, we preserve it if we can determine which
147 one it is in. If we cannot determine which temporary may contain the
148 result, all temporaries are preserved. A temporary is preserved by
149 pretending it was allocated at the previous nesting level.
151 Automatic variables are also assigned temporary slots, at the nesting
152 level where they are defined. They are marked a "kept" so that
153 free_temp_slots will not free them. */
155 struct temp_slot GTY(())
157 /* Points to next temporary slot. */
158 struct temp_slot *next;
159 /* Points to previous temporary slot. */
160 struct temp_slot *prev;
162 /* The rtx to used to reference the slot. */
163 rtx slot;
164 /* The rtx used to represent the address if not the address of the
165 slot above. May be an EXPR_LIST if multiple addresses exist. */
166 rtx address;
167 /* The alignment (in bits) of the slot. */
168 unsigned int align;
169 /* The size, in units, of the slot. */
170 HOST_WIDE_INT size;
171 /* The type of the object in the slot, or zero if it doesn't correspond
172 to a type. We use this to determine whether a slot can be reused.
173 It can be reused if objects of the type of the new slot will always
174 conflict with objects of the type of the old slot. */
175 tree type;
176 /* Nonzero if this temporary is currently in use. */
177 char in_use;
178 /* Nonzero if this temporary has its address taken. */
179 char addr_taken;
180 /* Nesting level at which this slot is being used. */
181 int level;
182 /* Nonzero if this should survive a call to free_temp_slots. */
183 int keep;
184 /* The offset of the slot from the frame_pointer, including extra space
185 for alignment. This info is for combine_temp_slots. */
186 HOST_WIDE_INT base_offset;
187 /* The size of the slot, including extra space for alignment. This
188 info is for combine_temp_slots. */
189 HOST_WIDE_INT full_size;
192 /* Forward declarations. */
194 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
195 struct function *);
196 static struct temp_slot *find_temp_slot_from_address (rtx);
197 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
198 static void pad_below (struct args_size *, enum machine_mode, tree);
199 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
200 static int all_blocks (tree, tree *);
201 static tree *get_block_vector (tree, int *);
202 extern tree debug_find_var_in_block_tree (tree, tree);
203 /* We always define `record_insns' even if it's not used so that we
204 can always export `prologue_epilogue_contains'. */
205 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
206 static int contains (rtx, VEC(int,heap) **);
207 #ifdef HAVE_return
208 static void emit_return_into_block (basic_block, rtx);
209 #endif
210 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
211 static rtx keep_stack_depressed (rtx);
212 #endif
213 static void prepare_function_start (tree);
214 static void do_clobber_return_reg (rtx, void *);
215 static void do_use_return_reg (rtx, void *);
216 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
218 /* Pointer to chain of `struct function' for containing functions. */
219 struct function *outer_function_chain;
221 /* Given a function decl for a containing function,
222 return the `struct function' for it. */
224 struct function *
225 find_function_data (tree decl)
227 struct function *p;
229 for (p = outer_function_chain; p; p = p->outer)
230 if (p->decl == decl)
231 return p;
233 gcc_unreachable ();
236 /* Save the current context for compilation of a nested function.
237 This is called from language-specific code. The caller should use
238 the enter_nested langhook to save any language-specific state,
239 since this function knows only about language-independent
240 variables. */
242 void
243 push_function_context_to (tree context ATTRIBUTE_UNUSED)
245 struct function *p;
247 if (cfun == 0)
248 init_dummy_function_start ();
249 p = cfun;
251 p->outer = outer_function_chain;
252 outer_function_chain = p;
254 lang_hooks.function.enter_nested (p);
256 cfun = 0;
259 void
260 push_function_context (void)
262 push_function_context_to (current_function_decl);
265 /* Restore the last saved context, at the end of a nested function.
266 This function is called from language-specific code. */
268 void
269 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
271 struct function *p = outer_function_chain;
273 cfun = p;
274 outer_function_chain = p->outer;
276 current_function_decl = p->decl;
278 lang_hooks.function.leave_nested (p);
280 /* Reset variables that have known state during rtx generation. */
281 virtuals_instantiated = 0;
282 generating_concat_p = 1;
285 void
286 pop_function_context (void)
288 pop_function_context_from (current_function_decl);
291 /* Clear out all parts of the state in F that can safely be discarded
292 after the function has been parsed, but not compiled, to let
293 garbage collection reclaim the memory. */
295 void
296 free_after_parsing (struct function *f)
298 /* f->expr->forced_labels is used by code generation. */
299 /* f->emit->regno_reg_rtx is used by code generation. */
300 /* f->varasm is used by code generation. */
301 /* f->eh->eh_return_stub_label is used by code generation. */
303 lang_hooks.function.final (f);
306 /* Clear out all parts of the state in F that can safely be discarded
307 after the function has been compiled, to let garbage collection
308 reclaim the memory. */
310 void
311 free_after_compilation (struct function *f)
313 VEC_free (int, heap, prologue);
314 VEC_free (int, heap, epilogue);
315 VEC_free (int, heap, sibcall_epilogue);
317 f->eh = NULL;
318 f->expr = NULL;
319 f->emit = NULL;
320 f->varasm = NULL;
321 f->machine = NULL;
322 f->cfg = NULL;
324 f->x_avail_temp_slots = NULL;
325 f->x_used_temp_slots = NULL;
326 f->arg_offset_rtx = NULL;
327 f->return_rtx = NULL;
328 f->internal_arg_pointer = NULL;
329 f->x_nonlocal_goto_handler_labels = NULL;
330 f->x_return_label = NULL;
331 f->x_naked_return_label = NULL;
332 f->x_stack_slot_list = NULL;
333 f->x_stack_check_probe_note = NULL;
334 f->x_arg_pointer_save_area = NULL;
335 f->x_parm_birth_insn = NULL;
336 f->epilogue_delay_list = NULL;
339 /* Allocate fixed slots in the stack frame of the current function. */
341 /* Return size needed for stack frame based on slots so far allocated in
342 function F.
343 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
344 the caller may have to do that. */
346 static HOST_WIDE_INT
347 get_func_frame_size (struct function *f)
349 if (FRAME_GROWS_DOWNWARD)
350 return -f->x_frame_offset;
351 else
352 return f->x_frame_offset;
355 /* Return size needed for stack frame based on slots so far allocated.
356 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
357 the caller may have to do that. */
359 HOST_WIDE_INT
360 get_frame_size (void)
362 return get_func_frame_size (cfun);
365 /* Issue an error message and return TRUE if frame OFFSET overflows in
366 the signed target pointer arithmetics for function FUNC. Otherwise
367 return FALSE. */
369 bool
370 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
372 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
374 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
375 /* Leave room for the fixed part of the frame. */
376 - 64 * UNITS_PER_WORD)
378 error ("%Jtotal size of local objects too large", func);
379 return TRUE;
382 return FALSE;
385 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
386 with machine mode MODE.
388 ALIGN controls the amount of alignment for the address of the slot:
389 0 means according to MODE,
390 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
391 -2 means use BITS_PER_UNIT,
392 positive specifies alignment boundary in bits.
394 We do not round to stack_boundary here.
396 FUNCTION specifies the function to allocate in. */
398 static rtx
399 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
400 struct function *function)
402 rtx x, addr;
403 int bigend_correction = 0;
404 unsigned int alignment;
405 int frame_off, frame_alignment, frame_phase;
407 if (align == 0)
409 tree type;
411 if (mode == BLKmode)
412 alignment = BIGGEST_ALIGNMENT;
413 else
414 alignment = GET_MODE_ALIGNMENT (mode);
416 /* Allow the target to (possibly) increase the alignment of this
417 stack slot. */
418 type = lang_hooks.types.type_for_mode (mode, 0);
419 if (type)
420 alignment = LOCAL_ALIGNMENT (type, alignment);
422 alignment /= BITS_PER_UNIT;
424 else if (align == -1)
426 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
427 size = CEIL_ROUND (size, alignment);
429 else if (align == -2)
430 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
431 else
432 alignment = align / BITS_PER_UNIT;
434 if (FRAME_GROWS_DOWNWARD)
435 function->x_frame_offset -= size;
437 /* Ignore alignment we can't do with expected alignment of the boundary. */
438 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
439 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
441 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
442 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
444 /* Calculate how many bytes the start of local variables is off from
445 stack alignment. */
446 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
447 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
448 frame_phase = frame_off ? frame_alignment - frame_off : 0;
450 /* Round the frame offset to the specified alignment. The default is
451 to always honor requests to align the stack but a port may choose to
452 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
453 if (STACK_ALIGNMENT_NEEDED
454 || mode != BLKmode
455 || size != 0)
457 /* We must be careful here, since FRAME_OFFSET might be negative and
458 division with a negative dividend isn't as well defined as we might
459 like. So we instead assume that ALIGNMENT is a power of two and
460 use logical operations which are unambiguous. */
461 if (FRAME_GROWS_DOWNWARD)
462 function->x_frame_offset
463 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
464 (unsigned HOST_WIDE_INT) alignment)
465 + frame_phase);
466 else
467 function->x_frame_offset
468 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
469 (unsigned HOST_WIDE_INT) alignment)
470 + frame_phase);
473 /* On a big-endian machine, if we are allocating more space than we will use,
474 use the least significant bytes of those that are allocated. */
475 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
476 bigend_correction = size - GET_MODE_SIZE (mode);
478 /* If we have already instantiated virtual registers, return the actual
479 address relative to the frame pointer. */
480 if (function == cfun && virtuals_instantiated)
481 addr = plus_constant (frame_pointer_rtx,
482 trunc_int_for_mode
483 (frame_offset + bigend_correction
484 + STARTING_FRAME_OFFSET, Pmode));
485 else
486 addr = plus_constant (virtual_stack_vars_rtx,
487 trunc_int_for_mode
488 (function->x_frame_offset + bigend_correction,
489 Pmode));
491 if (!FRAME_GROWS_DOWNWARD)
492 function->x_frame_offset += size;
494 x = gen_rtx_MEM (mode, addr);
495 MEM_NOTRAP_P (x) = 1;
497 function->x_stack_slot_list
498 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
500 if (frame_offset_overflow (function->x_frame_offset, function->decl))
501 function->x_frame_offset = 0;
503 return x;
506 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
507 current function. */
510 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
512 return assign_stack_local_1 (mode, size, align, cfun);
516 /* Removes temporary slot TEMP from LIST. */
518 static void
519 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
521 if (temp->next)
522 temp->next->prev = temp->prev;
523 if (temp->prev)
524 temp->prev->next = temp->next;
525 else
526 *list = temp->next;
528 temp->prev = temp->next = NULL;
531 /* Inserts temporary slot TEMP to LIST. */
533 static void
534 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
536 temp->next = *list;
537 if (*list)
538 (*list)->prev = temp;
539 temp->prev = NULL;
540 *list = temp;
543 /* Returns the list of used temp slots at LEVEL. */
545 static struct temp_slot **
546 temp_slots_at_level (int level)
548 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
550 size_t old_length = VEC_length (temp_slot_p, used_temp_slots);
551 temp_slot_p *p;
553 VEC_safe_grow (temp_slot_p, gc, used_temp_slots, level + 1);
554 p = VEC_address (temp_slot_p, used_temp_slots);
555 memset (&p[old_length], 0,
556 sizeof (temp_slot_p) * (level + 1 - old_length));
559 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
562 /* Returns the maximal temporary slot level. */
564 static int
565 max_slot_level (void)
567 if (!used_temp_slots)
568 return -1;
570 return VEC_length (temp_slot_p, used_temp_slots) - 1;
573 /* Moves temporary slot TEMP to LEVEL. */
575 static void
576 move_slot_to_level (struct temp_slot *temp, int level)
578 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
579 insert_slot_to_list (temp, temp_slots_at_level (level));
580 temp->level = level;
583 /* Make temporary slot TEMP available. */
585 static void
586 make_slot_available (struct temp_slot *temp)
588 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
589 insert_slot_to_list (temp, &avail_temp_slots);
590 temp->in_use = 0;
591 temp->level = -1;
594 /* Allocate a temporary stack slot and record it for possible later
595 reuse.
597 MODE is the machine mode to be given to the returned rtx.
599 SIZE is the size in units of the space required. We do no rounding here
600 since assign_stack_local will do any required rounding.
602 KEEP is 1 if this slot is to be retained after a call to
603 free_temp_slots. Automatic variables for a block are allocated
604 with this flag. KEEP values of 2 or 3 were needed respectively
605 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
606 or for SAVE_EXPRs, but they are now unused.
608 TYPE is the type that will be used for the stack slot. */
611 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
612 int keep, tree type)
614 unsigned int align;
615 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
616 rtx slot;
618 /* If SIZE is -1 it means that somebody tried to allocate a temporary
619 of a variable size. */
620 gcc_assert (size != -1);
622 /* These are now unused. */
623 gcc_assert (keep <= 1);
625 if (mode == BLKmode)
626 align = BIGGEST_ALIGNMENT;
627 else
628 align = GET_MODE_ALIGNMENT (mode);
630 if (! type)
631 type = lang_hooks.types.type_for_mode (mode, 0);
633 if (type)
634 align = LOCAL_ALIGNMENT (type, align);
636 /* Try to find an available, already-allocated temporary of the proper
637 mode which meets the size and alignment requirements. Choose the
638 smallest one with the closest alignment.
640 If assign_stack_temp is called outside of the tree->rtl expansion,
641 we cannot reuse the stack slots (that may still refer to
642 VIRTUAL_STACK_VARS_REGNUM). */
643 if (!virtuals_instantiated)
645 for (p = avail_temp_slots; p; p = p->next)
647 if (p->align >= align && p->size >= size
648 && GET_MODE (p->slot) == mode
649 && objects_must_conflict_p (p->type, type)
650 && (best_p == 0 || best_p->size > p->size
651 || (best_p->size == p->size && best_p->align > p->align)))
653 if (p->align == align && p->size == size)
655 selected = p;
656 cut_slot_from_list (selected, &avail_temp_slots);
657 best_p = 0;
658 break;
660 best_p = p;
665 /* Make our best, if any, the one to use. */
666 if (best_p)
668 selected = best_p;
669 cut_slot_from_list (selected, &avail_temp_slots);
671 /* If there are enough aligned bytes left over, make them into a new
672 temp_slot so that the extra bytes don't get wasted. Do this only
673 for BLKmode slots, so that we can be sure of the alignment. */
674 if (GET_MODE (best_p->slot) == BLKmode)
676 int alignment = best_p->align / BITS_PER_UNIT;
677 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
679 if (best_p->size - rounded_size >= alignment)
681 p = ggc_alloc (sizeof (struct temp_slot));
682 p->in_use = p->addr_taken = 0;
683 p->size = best_p->size - rounded_size;
684 p->base_offset = best_p->base_offset + rounded_size;
685 p->full_size = best_p->full_size - rounded_size;
686 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
687 p->align = best_p->align;
688 p->address = 0;
689 p->type = best_p->type;
690 insert_slot_to_list (p, &avail_temp_slots);
692 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
693 stack_slot_list);
695 best_p->size = rounded_size;
696 best_p->full_size = rounded_size;
701 /* If we still didn't find one, make a new temporary. */
702 if (selected == 0)
704 HOST_WIDE_INT frame_offset_old = frame_offset;
706 p = ggc_alloc (sizeof (struct temp_slot));
708 /* We are passing an explicit alignment request to assign_stack_local.
709 One side effect of that is assign_stack_local will not round SIZE
710 to ensure the frame offset remains suitably aligned.
712 So for requests which depended on the rounding of SIZE, we go ahead
713 and round it now. We also make sure ALIGNMENT is at least
714 BIGGEST_ALIGNMENT. */
715 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
716 p->slot = assign_stack_local (mode,
717 (mode == BLKmode
718 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
719 : size),
720 align);
722 p->align = align;
724 /* The following slot size computation is necessary because we don't
725 know the actual size of the temporary slot until assign_stack_local
726 has performed all the frame alignment and size rounding for the
727 requested temporary. Note that extra space added for alignment
728 can be either above or below this stack slot depending on which
729 way the frame grows. We include the extra space if and only if it
730 is above this slot. */
731 if (FRAME_GROWS_DOWNWARD)
732 p->size = frame_offset_old - frame_offset;
733 else
734 p->size = size;
736 /* Now define the fields used by combine_temp_slots. */
737 if (FRAME_GROWS_DOWNWARD)
739 p->base_offset = frame_offset;
740 p->full_size = frame_offset_old - frame_offset;
742 else
744 p->base_offset = frame_offset_old;
745 p->full_size = frame_offset - frame_offset_old;
747 p->address = 0;
749 selected = p;
752 p = selected;
753 p->in_use = 1;
754 p->addr_taken = 0;
755 p->type = type;
756 p->level = temp_slot_level;
757 p->keep = keep;
759 pp = temp_slots_at_level (p->level);
760 insert_slot_to_list (p, pp);
762 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
763 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
764 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
766 /* If we know the alias set for the memory that will be used, use
767 it. If there's no TYPE, then we don't know anything about the
768 alias set for the memory. */
769 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
770 set_mem_align (slot, align);
772 /* If a type is specified, set the relevant flags. */
773 if (type != 0)
775 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
776 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
778 MEM_NOTRAP_P (slot) = 1;
780 return slot;
783 /* Allocate a temporary stack slot and record it for possible later
784 reuse. First three arguments are same as in preceding function. */
787 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
789 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
792 /* Assign a temporary.
793 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
794 and so that should be used in error messages. In either case, we
795 allocate of the given type.
796 KEEP is as for assign_stack_temp.
797 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
798 it is 0 if a register is OK.
799 DONT_PROMOTE is 1 if we should not promote values in register
800 to wider modes. */
803 assign_temp (tree type_or_decl, int keep, int memory_required,
804 int dont_promote ATTRIBUTE_UNUSED)
806 tree type, decl;
807 enum machine_mode mode;
808 #ifdef PROMOTE_MODE
809 int unsignedp;
810 #endif
812 if (DECL_P (type_or_decl))
813 decl = type_or_decl, type = TREE_TYPE (decl);
814 else
815 decl = NULL, type = type_or_decl;
817 mode = TYPE_MODE (type);
818 #ifdef PROMOTE_MODE
819 unsignedp = TYPE_UNSIGNED (type);
820 #endif
822 if (mode == BLKmode || memory_required)
824 HOST_WIDE_INT size = int_size_in_bytes (type);
825 rtx tmp;
827 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
828 problems with allocating the stack space. */
829 if (size == 0)
830 size = 1;
832 /* Unfortunately, we don't yet know how to allocate variable-sized
833 temporaries. However, sometimes we can find a fixed upper limit on
834 the size, so try that instead. */
835 else if (size == -1)
836 size = max_int_size_in_bytes (type);
838 /* The size of the temporary may be too large to fit into an integer. */
839 /* ??? Not sure this should happen except for user silliness, so limit
840 this to things that aren't compiler-generated temporaries. The
841 rest of the time we'll die in assign_stack_temp_for_type. */
842 if (decl && size == -1
843 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
845 error ("size of variable %q+D is too large", decl);
846 size = 1;
849 tmp = assign_stack_temp_for_type (mode, size, keep, type);
850 return tmp;
853 #ifdef PROMOTE_MODE
854 if (! dont_promote)
855 mode = promote_mode (type, mode, &unsignedp, 0);
856 #endif
858 return gen_reg_rtx (mode);
861 /* Combine temporary stack slots which are adjacent on the stack.
863 This allows for better use of already allocated stack space. This is only
864 done for BLKmode slots because we can be sure that we won't have alignment
865 problems in this case. */
867 static void
868 combine_temp_slots (void)
870 struct temp_slot *p, *q, *next, *next_q;
871 int num_slots;
873 /* We can't combine slots, because the information about which slot
874 is in which alias set will be lost. */
875 if (flag_strict_aliasing)
876 return;
878 /* If there are a lot of temp slots, don't do anything unless
879 high levels of optimization. */
880 if (! flag_expensive_optimizations)
881 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
882 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
883 return;
885 for (p = avail_temp_slots; p; p = next)
887 int delete_p = 0;
889 next = p->next;
891 if (GET_MODE (p->slot) != BLKmode)
892 continue;
894 for (q = p->next; q; q = next_q)
896 int delete_q = 0;
898 next_q = q->next;
900 if (GET_MODE (q->slot) != BLKmode)
901 continue;
903 if (p->base_offset + p->full_size == q->base_offset)
905 /* Q comes after P; combine Q into P. */
906 p->size += q->size;
907 p->full_size += q->full_size;
908 delete_q = 1;
910 else if (q->base_offset + q->full_size == p->base_offset)
912 /* P comes after Q; combine P into Q. */
913 q->size += p->size;
914 q->full_size += p->full_size;
915 delete_p = 1;
916 break;
918 if (delete_q)
919 cut_slot_from_list (q, &avail_temp_slots);
922 /* Either delete P or advance past it. */
923 if (delete_p)
924 cut_slot_from_list (p, &avail_temp_slots);
928 /* Find the temp slot corresponding to the object at address X. */
930 static struct temp_slot *
931 find_temp_slot_from_address (rtx x)
933 struct temp_slot *p;
934 rtx next;
935 int i;
937 for (i = max_slot_level (); i >= 0; i--)
938 for (p = *temp_slots_at_level (i); p; p = p->next)
940 if (XEXP (p->slot, 0) == x
941 || p->address == x
942 || (GET_CODE (x) == PLUS
943 && XEXP (x, 0) == virtual_stack_vars_rtx
944 && GET_CODE (XEXP (x, 1)) == CONST_INT
945 && INTVAL (XEXP (x, 1)) >= p->base_offset
946 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
947 return p;
949 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
950 for (next = p->address; next; next = XEXP (next, 1))
951 if (XEXP (next, 0) == x)
952 return p;
955 /* If we have a sum involving a register, see if it points to a temp
956 slot. */
957 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
958 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
959 return p;
960 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
961 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
962 return p;
964 return 0;
967 /* Indicate that NEW is an alternate way of referring to the temp slot
968 that previously was known by OLD. */
970 void
971 update_temp_slot_address (rtx old, rtx new)
973 struct temp_slot *p;
975 if (rtx_equal_p (old, new))
976 return;
978 p = find_temp_slot_from_address (old);
980 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
981 is a register, see if one operand of the PLUS is a temporary
982 location. If so, NEW points into it. Otherwise, if both OLD and
983 NEW are a PLUS and if there is a register in common between them.
984 If so, try a recursive call on those values. */
985 if (p == 0)
987 if (GET_CODE (old) != PLUS)
988 return;
990 if (REG_P (new))
992 update_temp_slot_address (XEXP (old, 0), new);
993 update_temp_slot_address (XEXP (old, 1), new);
994 return;
996 else if (GET_CODE (new) != PLUS)
997 return;
999 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1000 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1001 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1002 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1003 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1004 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1005 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1006 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1008 return;
1011 /* Otherwise add an alias for the temp's address. */
1012 else if (p->address == 0)
1013 p->address = new;
1014 else
1016 if (GET_CODE (p->address) != EXPR_LIST)
1017 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1019 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1023 /* If X could be a reference to a temporary slot, mark the fact that its
1024 address was taken. */
1026 void
1027 mark_temp_addr_taken (rtx x)
1029 struct temp_slot *p;
1031 if (x == 0)
1032 return;
1034 /* If X is not in memory or is at a constant address, it cannot be in
1035 a temporary slot. */
1036 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1037 return;
1039 p = find_temp_slot_from_address (XEXP (x, 0));
1040 if (p != 0)
1041 p->addr_taken = 1;
1044 /* If X could be a reference to a temporary slot, mark that slot as
1045 belonging to the to one level higher than the current level. If X
1046 matched one of our slots, just mark that one. Otherwise, we can't
1047 easily predict which it is, so upgrade all of them. Kept slots
1048 need not be touched.
1050 This is called when an ({...}) construct occurs and a statement
1051 returns a value in memory. */
1053 void
1054 preserve_temp_slots (rtx x)
1056 struct temp_slot *p = 0, *next;
1058 /* If there is no result, we still might have some objects whose address
1059 were taken, so we need to make sure they stay around. */
1060 if (x == 0)
1062 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1064 next = p->next;
1066 if (p->addr_taken)
1067 move_slot_to_level (p, temp_slot_level - 1);
1070 return;
1073 /* If X is a register that is being used as a pointer, see if we have
1074 a temporary slot we know it points to. To be consistent with
1075 the code below, we really should preserve all non-kept slots
1076 if we can't find a match, but that seems to be much too costly. */
1077 if (REG_P (x) && REG_POINTER (x))
1078 p = find_temp_slot_from_address (x);
1080 /* If X is not in memory or is at a constant address, it cannot be in
1081 a temporary slot, but it can contain something whose address was
1082 taken. */
1083 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1085 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1087 next = p->next;
1089 if (p->addr_taken)
1090 move_slot_to_level (p, temp_slot_level - 1);
1093 return;
1096 /* First see if we can find a match. */
1097 if (p == 0)
1098 p = find_temp_slot_from_address (XEXP (x, 0));
1100 if (p != 0)
1102 /* Move everything at our level whose address was taken to our new
1103 level in case we used its address. */
1104 struct temp_slot *q;
1106 if (p->level == temp_slot_level)
1108 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1110 next = q->next;
1112 if (p != q && q->addr_taken)
1113 move_slot_to_level (q, temp_slot_level - 1);
1116 move_slot_to_level (p, temp_slot_level - 1);
1117 p->addr_taken = 0;
1119 return;
1122 /* Otherwise, preserve all non-kept slots at this level. */
1123 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1125 next = p->next;
1127 if (!p->keep)
1128 move_slot_to_level (p, temp_slot_level - 1);
1132 /* Free all temporaries used so far. This is normally called at the
1133 end of generating code for a statement. */
1135 void
1136 free_temp_slots (void)
1138 struct temp_slot *p, *next;
1140 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1142 next = p->next;
1144 if (!p->keep)
1145 make_slot_available (p);
1148 combine_temp_slots ();
1151 /* Push deeper into the nesting level for stack temporaries. */
1153 void
1154 push_temp_slots (void)
1156 temp_slot_level++;
1159 /* Pop a temporary nesting level. All slots in use in the current level
1160 are freed. */
1162 void
1163 pop_temp_slots (void)
1165 struct temp_slot *p, *next;
1167 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1169 next = p->next;
1170 make_slot_available (p);
1173 combine_temp_slots ();
1175 temp_slot_level--;
1178 /* Initialize temporary slots. */
1180 void
1181 init_temp_slots (void)
1183 /* We have not allocated any temporaries yet. */
1184 avail_temp_slots = 0;
1185 used_temp_slots = 0;
1186 temp_slot_level = 0;
1189 /* These routines are responsible for converting virtual register references
1190 to the actual hard register references once RTL generation is complete.
1192 The following four variables are used for communication between the
1193 routines. They contain the offsets of the virtual registers from their
1194 respective hard registers. */
1196 static int in_arg_offset;
1197 static int var_offset;
1198 static int dynamic_offset;
1199 static int out_arg_offset;
1200 static int cfa_offset;
1202 /* In most machines, the stack pointer register is equivalent to the bottom
1203 of the stack. */
1205 #ifndef STACK_POINTER_OFFSET
1206 #define STACK_POINTER_OFFSET 0
1207 #endif
1209 /* If not defined, pick an appropriate default for the offset of dynamically
1210 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1211 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1213 #ifndef STACK_DYNAMIC_OFFSET
1215 /* The bottom of the stack points to the actual arguments. If
1216 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1217 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1218 stack space for register parameters is not pushed by the caller, but
1219 rather part of the fixed stack areas and hence not included in
1220 `current_function_outgoing_args_size'. Nevertheless, we must allow
1221 for it when allocating stack dynamic objects. */
1223 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1224 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1225 ((ACCUMULATE_OUTGOING_ARGS \
1226 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1227 + (STACK_POINTER_OFFSET)) \
1229 #else
1230 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1231 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1232 + (STACK_POINTER_OFFSET))
1233 #endif
1234 #endif
1237 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1238 is a virtual register, return the equivalent hard register and set the
1239 offset indirectly through the pointer. Otherwise, return 0. */
1241 static rtx
1242 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1244 rtx new;
1245 HOST_WIDE_INT offset;
1247 if (x == virtual_incoming_args_rtx)
1248 new = arg_pointer_rtx, offset = in_arg_offset;
1249 else if (x == virtual_stack_vars_rtx)
1250 new = frame_pointer_rtx, offset = var_offset;
1251 else if (x == virtual_stack_dynamic_rtx)
1252 new = stack_pointer_rtx, offset = dynamic_offset;
1253 else if (x == virtual_outgoing_args_rtx)
1254 new = stack_pointer_rtx, offset = out_arg_offset;
1255 else if (x == virtual_cfa_rtx)
1257 #ifdef FRAME_POINTER_CFA_OFFSET
1258 new = frame_pointer_rtx;
1259 #else
1260 new = arg_pointer_rtx;
1261 #endif
1262 offset = cfa_offset;
1264 else
1265 return NULL_RTX;
1267 *poffset = offset;
1268 return new;
1271 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1272 Instantiate any virtual registers present inside of *LOC. The expression
1273 is simplified, as much as possible, but is not to be considered "valid"
1274 in any sense implied by the target. If any change is made, set CHANGED
1275 to true. */
1277 static int
1278 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1280 HOST_WIDE_INT offset;
1281 bool *changed = (bool *) data;
1282 rtx x, new;
1284 x = *loc;
1285 if (x == 0)
1286 return 0;
1288 switch (GET_CODE (x))
1290 case REG:
1291 new = instantiate_new_reg (x, &offset);
1292 if (new)
1294 *loc = plus_constant (new, offset);
1295 if (changed)
1296 *changed = true;
1298 return -1;
1300 case PLUS:
1301 new = instantiate_new_reg (XEXP (x, 0), &offset);
1302 if (new)
1304 new = plus_constant (new, offset);
1305 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1306 if (changed)
1307 *changed = true;
1308 return -1;
1311 /* FIXME -- from old code */
1312 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1313 we can commute the PLUS and SUBREG because pointers into the
1314 frame are well-behaved. */
1315 break;
1317 default:
1318 break;
1321 return 0;
1324 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1325 matches the predicate for insn CODE operand OPERAND. */
1327 static int
1328 safe_insn_predicate (int code, int operand, rtx x)
1330 const struct insn_operand_data *op_data;
1332 if (code < 0)
1333 return true;
1335 op_data = &insn_data[code].operand[operand];
1336 if (op_data->predicate == NULL)
1337 return true;
1339 return op_data->predicate (x, op_data->mode);
1342 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1343 registers present inside of insn. The result will be a valid insn. */
1345 static void
1346 instantiate_virtual_regs_in_insn (rtx insn)
1348 HOST_WIDE_INT offset;
1349 int insn_code, i;
1350 bool any_change = false;
1351 rtx set, new, x, seq;
1353 /* There are some special cases to be handled first. */
1354 set = single_set (insn);
1355 if (set)
1357 /* We're allowed to assign to a virtual register. This is interpreted
1358 to mean that the underlying register gets assigned the inverse
1359 transformation. This is used, for example, in the handling of
1360 non-local gotos. */
1361 new = instantiate_new_reg (SET_DEST (set), &offset);
1362 if (new)
1364 start_sequence ();
1366 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1367 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1368 GEN_INT (-offset));
1369 x = force_operand (x, new);
1370 if (x != new)
1371 emit_move_insn (new, x);
1373 seq = get_insns ();
1374 end_sequence ();
1376 emit_insn_before (seq, insn);
1377 delete_insn (insn);
1378 return;
1381 /* Handle a straight copy from a virtual register by generating a
1382 new add insn. The difference between this and falling through
1383 to the generic case is avoiding a new pseudo and eliminating a
1384 move insn in the initial rtl stream. */
1385 new = instantiate_new_reg (SET_SRC (set), &offset);
1386 if (new && offset != 0
1387 && REG_P (SET_DEST (set))
1388 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1390 start_sequence ();
1392 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1393 new, GEN_INT (offset), SET_DEST (set),
1394 1, OPTAB_LIB_WIDEN);
1395 if (x != SET_DEST (set))
1396 emit_move_insn (SET_DEST (set), x);
1398 seq = get_insns ();
1399 end_sequence ();
1401 emit_insn_before (seq, insn);
1402 delete_insn (insn);
1403 return;
1406 extract_insn (insn);
1407 insn_code = INSN_CODE (insn);
1409 /* Handle a plus involving a virtual register by determining if the
1410 operands remain valid if they're modified in place. */
1411 if (GET_CODE (SET_SRC (set)) == PLUS
1412 && recog_data.n_operands >= 3
1413 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1414 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1415 && GET_CODE (recog_data.operand[2]) == CONST_INT
1416 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1418 offset += INTVAL (recog_data.operand[2]);
1420 /* If the sum is zero, then replace with a plain move. */
1421 if (offset == 0
1422 && REG_P (SET_DEST (set))
1423 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1425 start_sequence ();
1426 emit_move_insn (SET_DEST (set), new);
1427 seq = get_insns ();
1428 end_sequence ();
1430 emit_insn_before (seq, insn);
1431 delete_insn (insn);
1432 return;
1435 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1437 /* Using validate_change and apply_change_group here leaves
1438 recog_data in an invalid state. Since we know exactly what
1439 we want to check, do those two by hand. */
1440 if (safe_insn_predicate (insn_code, 1, new)
1441 && safe_insn_predicate (insn_code, 2, x))
1443 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1444 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1445 any_change = true;
1447 /* Fall through into the regular operand fixup loop in
1448 order to take care of operands other than 1 and 2. */
1452 else
1454 extract_insn (insn);
1455 insn_code = INSN_CODE (insn);
1458 /* In the general case, we expect virtual registers to appear only in
1459 operands, and then only as either bare registers or inside memories. */
1460 for (i = 0; i < recog_data.n_operands; ++i)
1462 x = recog_data.operand[i];
1463 switch (GET_CODE (x))
1465 case MEM:
1467 rtx addr = XEXP (x, 0);
1468 bool changed = false;
1470 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1471 if (!changed)
1472 continue;
1474 start_sequence ();
1475 x = replace_equiv_address (x, addr);
1476 seq = get_insns ();
1477 end_sequence ();
1478 if (seq)
1479 emit_insn_before (seq, insn);
1481 break;
1483 case REG:
1484 new = instantiate_new_reg (x, &offset);
1485 if (new == NULL)
1486 continue;
1487 if (offset == 0)
1488 x = new;
1489 else
1491 start_sequence ();
1493 /* Careful, special mode predicates may have stuff in
1494 insn_data[insn_code].operand[i].mode that isn't useful
1495 to us for computing a new value. */
1496 /* ??? Recognize address_operand and/or "p" constraints
1497 to see if (plus new offset) is a valid before we put
1498 this through expand_simple_binop. */
1499 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1500 GEN_INT (offset), NULL_RTX,
1501 1, OPTAB_LIB_WIDEN);
1502 seq = get_insns ();
1503 end_sequence ();
1504 emit_insn_before (seq, insn);
1506 break;
1508 case SUBREG:
1509 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1510 if (new == NULL)
1511 continue;
1512 if (offset != 0)
1514 start_sequence ();
1515 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1516 GEN_INT (offset), NULL_RTX,
1517 1, OPTAB_LIB_WIDEN);
1518 seq = get_insns ();
1519 end_sequence ();
1520 emit_insn_before (seq, insn);
1522 x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1523 GET_MODE (new), SUBREG_BYTE (x));
1524 break;
1526 default:
1527 continue;
1530 /* At this point, X contains the new value for the operand.
1531 Validate the new value vs the insn predicate. Note that
1532 asm insns will have insn_code -1 here. */
1533 if (!safe_insn_predicate (insn_code, i, x))
1535 start_sequence ();
1536 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1537 seq = get_insns ();
1538 end_sequence ();
1539 if (seq)
1540 emit_insn_before (seq, insn);
1543 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1544 any_change = true;
1547 if (any_change)
1549 /* Propagate operand changes into the duplicates. */
1550 for (i = 0; i < recog_data.n_dups; ++i)
1551 *recog_data.dup_loc[i]
1552 = recog_data.operand[(unsigned)recog_data.dup_num[i]];
1554 /* Force re-recognition of the instruction for validation. */
1555 INSN_CODE (insn) = -1;
1558 if (asm_noperands (PATTERN (insn)) >= 0)
1560 if (!check_asm_operands (PATTERN (insn)))
1562 error_for_asm (insn, "impossible constraint in %<asm%>");
1563 delete_insn (insn);
1566 else
1568 if (recog_memoized (insn) < 0)
1569 fatal_insn_not_found (insn);
1573 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1574 do any instantiation required. */
1576 static void
1577 instantiate_decl (rtx x)
1579 rtx addr;
1581 if (x == 0)
1582 return;
1584 /* If this is a CONCAT, recurse for the pieces. */
1585 if (GET_CODE (x) == CONCAT)
1587 instantiate_decl (XEXP (x, 0));
1588 instantiate_decl (XEXP (x, 1));
1589 return;
1592 /* If this is not a MEM, no need to do anything. Similarly if the
1593 address is a constant or a register that is not a virtual register. */
1594 if (!MEM_P (x))
1595 return;
1597 addr = XEXP (x, 0);
1598 if (CONSTANT_P (addr)
1599 || (REG_P (addr)
1600 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1601 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1602 return;
1604 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1607 /* Helper for instantiate_decls called via walk_tree: Process all decls
1608 in the given DECL_VALUE_EXPR. */
1610 static tree
1611 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1613 tree t = *tp;
1614 if (! EXPR_P (t))
1616 *walk_subtrees = 0;
1617 if (DECL_P (t) && DECL_RTL_SET_P (t))
1618 instantiate_decl (DECL_RTL (t));
1620 return NULL;
1623 /* Subroutine of instantiate_decls: Process all decls in the given
1624 BLOCK node and all its subblocks. */
1626 static void
1627 instantiate_decls_1 (tree let)
1629 tree t;
1631 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1633 if (DECL_RTL_SET_P (t))
1634 instantiate_decl (DECL_RTL (t));
1635 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1637 tree v = DECL_VALUE_EXPR (t);
1638 walk_tree (&v, instantiate_expr, NULL, NULL);
1642 /* Process all subblocks. */
1643 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1644 instantiate_decls_1 (t);
1647 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1648 all virtual registers in their DECL_RTL's. */
1650 static void
1651 instantiate_decls (tree fndecl)
1653 tree decl;
1655 /* Process all parameters of the function. */
1656 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1658 instantiate_decl (DECL_RTL (decl));
1659 instantiate_decl (DECL_INCOMING_RTL (decl));
1660 if (DECL_HAS_VALUE_EXPR_P (decl))
1662 tree v = DECL_VALUE_EXPR (decl);
1663 walk_tree (&v, instantiate_expr, NULL, NULL);
1667 /* Now process all variables defined in the function or its subblocks. */
1668 instantiate_decls_1 (DECL_INITIAL (fndecl));
1671 /* Pass through the INSNS of function FNDECL and convert virtual register
1672 references to hard register references. */
1674 static unsigned int
1675 instantiate_virtual_regs (void)
1677 rtx insn;
1679 /* Compute the offsets to use for this function. */
1680 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1681 var_offset = STARTING_FRAME_OFFSET;
1682 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1683 out_arg_offset = STACK_POINTER_OFFSET;
1684 #ifdef FRAME_POINTER_CFA_OFFSET
1685 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1686 #else
1687 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1688 #endif
1690 /* Initialize recognition, indicating that volatile is OK. */
1691 init_recog ();
1693 /* Scan through all the insns, instantiating every virtual register still
1694 present. */
1695 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1696 if (INSN_P (insn))
1698 /* These patterns in the instruction stream can never be recognized.
1699 Fortunately, they shouldn't contain virtual registers either. */
1700 if (GET_CODE (PATTERN (insn)) == USE
1701 || GET_CODE (PATTERN (insn)) == CLOBBER
1702 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1703 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1704 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1705 continue;
1707 instantiate_virtual_regs_in_insn (insn);
1709 if (INSN_DELETED_P (insn))
1710 continue;
1712 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1714 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1715 if (GET_CODE (insn) == CALL_INSN)
1716 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1717 instantiate_virtual_regs_in_rtx, NULL);
1720 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1721 instantiate_decls (current_function_decl);
1723 /* Indicate that, from now on, assign_stack_local should use
1724 frame_pointer_rtx. */
1725 virtuals_instantiated = 1;
1726 return 0;
1729 struct tree_opt_pass pass_instantiate_virtual_regs =
1731 "vregs", /* name */
1732 NULL, /* gate */
1733 instantiate_virtual_regs, /* execute */
1734 NULL, /* sub */
1735 NULL, /* next */
1736 0, /* static_pass_number */
1737 0, /* tv_id */
1738 0, /* properties_required */
1739 0, /* properties_provided */
1740 0, /* properties_destroyed */
1741 0, /* todo_flags_start */
1742 TODO_dump_func, /* todo_flags_finish */
1743 0 /* letter */
1747 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1748 This means a type for which function calls must pass an address to the
1749 function or get an address back from the function.
1750 EXP may be a type node or an expression (whose type is tested). */
1753 aggregate_value_p (tree exp, tree fntype)
1755 int i, regno, nregs;
1756 rtx reg;
1758 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1760 /* DECL node associated with FNTYPE when relevant, which we might need to
1761 check for by-invisible-reference returns, typically for CALL_EXPR input
1762 EXPressions. */
1763 tree fndecl = NULL_TREE;
1765 if (fntype)
1766 switch (TREE_CODE (fntype))
1768 case CALL_EXPR:
1769 fndecl = get_callee_fndecl (fntype);
1770 fntype = fndecl ? TREE_TYPE (fndecl) : 0;
1771 break;
1772 case FUNCTION_DECL:
1773 fndecl = fntype;
1774 fntype = TREE_TYPE (fndecl);
1775 break;
1776 case FUNCTION_TYPE:
1777 case METHOD_TYPE:
1778 break;
1779 case IDENTIFIER_NODE:
1780 fntype = 0;
1781 break;
1782 default:
1783 /* We don't expect other rtl types here. */
1784 gcc_unreachable ();
1787 if (TREE_CODE (type) == VOID_TYPE)
1788 return 0;
1790 /* If the front end has decided that this needs to be passed by
1791 reference, do so. */
1792 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1793 && DECL_BY_REFERENCE (exp))
1794 return 1;
1796 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1797 called function RESULT_DECL, meaning the function returns in memory by
1798 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1799 on the function type, which used to be the way to request such a return
1800 mechanism but might now be causing troubles at gimplification time if
1801 temporaries with the function type need to be created. */
1802 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1803 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1804 return 1;
1806 if (targetm.calls.return_in_memory (type, fntype))
1807 return 1;
1808 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1809 and thus can't be returned in registers. */
1810 if (TREE_ADDRESSABLE (type))
1811 return 1;
1812 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1813 return 1;
1814 /* Make sure we have suitable call-clobbered regs to return
1815 the value in; if not, we must return it in memory. */
1816 reg = hard_function_value (type, 0, fntype, 0);
1818 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1819 it is OK. */
1820 if (!REG_P (reg))
1821 return 0;
1823 regno = REGNO (reg);
1824 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1825 for (i = 0; i < nregs; i++)
1826 if (! call_used_regs[regno + i])
1827 return 1;
1828 return 0;
1831 /* Return true if we should assign DECL a pseudo register; false if it
1832 should live on the local stack. */
1834 bool
1835 use_register_for_decl (tree decl)
1837 /* Honor volatile. */
1838 if (TREE_SIDE_EFFECTS (decl))
1839 return false;
1841 /* Honor addressability. */
1842 if (TREE_ADDRESSABLE (decl))
1843 return false;
1845 /* Only register-like things go in registers. */
1846 if (DECL_MODE (decl) == BLKmode)
1847 return false;
1849 /* If -ffloat-store specified, don't put explicit float variables
1850 into registers. */
1851 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1852 propagates values across these stores, and it probably shouldn't. */
1853 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1854 return false;
1856 /* If we're not interested in tracking debugging information for
1857 this decl, then we can certainly put it in a register. */
1858 if (DECL_IGNORED_P (decl))
1859 return true;
1861 return (optimize || DECL_REGISTER (decl));
1864 /* Return true if TYPE should be passed by invisible reference. */
1866 bool
1867 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1868 tree type, bool named_arg)
1870 if (type)
1872 /* If this type contains non-trivial constructors, then it is
1873 forbidden for the middle-end to create any new copies. */
1874 if (TREE_ADDRESSABLE (type))
1875 return true;
1877 /* GCC post 3.4 passes *all* variable sized types by reference. */
1878 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1879 return true;
1882 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1885 /* Return true if TYPE, which is passed by reference, should be callee
1886 copied instead of caller copied. */
1888 bool
1889 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1890 tree type, bool named_arg)
1892 if (type && TREE_ADDRESSABLE (type))
1893 return false;
1894 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1897 /* Structures to communicate between the subroutines of assign_parms.
1898 The first holds data persistent across all parameters, the second
1899 is cleared out for each parameter. */
1901 struct assign_parm_data_all
1903 CUMULATIVE_ARGS args_so_far;
1904 struct args_size stack_args_size;
1905 tree function_result_decl;
1906 tree orig_fnargs;
1907 rtx conversion_insns;
1908 HOST_WIDE_INT pretend_args_size;
1909 HOST_WIDE_INT extra_pretend_bytes;
1910 int reg_parm_stack_space;
1913 struct assign_parm_data_one
1915 tree nominal_type;
1916 tree passed_type;
1917 rtx entry_parm;
1918 rtx stack_parm;
1919 enum machine_mode nominal_mode;
1920 enum machine_mode passed_mode;
1921 enum machine_mode promoted_mode;
1922 struct locate_and_pad_arg_data locate;
1923 int partial;
1924 BOOL_BITFIELD named_arg : 1;
1925 BOOL_BITFIELD passed_pointer : 1;
1926 BOOL_BITFIELD on_stack : 1;
1927 BOOL_BITFIELD loaded_in_reg : 1;
1930 /* A subroutine of assign_parms. Initialize ALL. */
1932 static void
1933 assign_parms_initialize_all (struct assign_parm_data_all *all)
1935 tree fntype;
1937 memset (all, 0, sizeof (*all));
1939 fntype = TREE_TYPE (current_function_decl);
1941 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1942 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1943 #else
1944 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1945 current_function_decl, -1);
1946 #endif
1948 #ifdef REG_PARM_STACK_SPACE
1949 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1950 #endif
1953 /* If ARGS contains entries with complex types, split the entry into two
1954 entries of the component type. Return a new list of substitutions are
1955 needed, else the old list. */
1957 static tree
1958 split_complex_args (tree args)
1960 tree p;
1962 /* Before allocating memory, check for the common case of no complex. */
1963 for (p = args; p; p = TREE_CHAIN (p))
1965 tree type = TREE_TYPE (p);
1966 if (TREE_CODE (type) == COMPLEX_TYPE
1967 && targetm.calls.split_complex_arg (type))
1968 goto found;
1970 return args;
1972 found:
1973 args = copy_list (args);
1975 for (p = args; p; p = TREE_CHAIN (p))
1977 tree type = TREE_TYPE (p);
1978 if (TREE_CODE (type) == COMPLEX_TYPE
1979 && targetm.calls.split_complex_arg (type))
1981 tree decl;
1982 tree subtype = TREE_TYPE (type);
1983 bool addressable = TREE_ADDRESSABLE (p);
1985 /* Rewrite the PARM_DECL's type with its component. */
1986 TREE_TYPE (p) = subtype;
1987 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1988 DECL_MODE (p) = VOIDmode;
1989 DECL_SIZE (p) = NULL;
1990 DECL_SIZE_UNIT (p) = NULL;
1991 /* If this arg must go in memory, put it in a pseudo here.
1992 We can't allow it to go in memory as per normal parms,
1993 because the usual place might not have the imag part
1994 adjacent to the real part. */
1995 DECL_ARTIFICIAL (p) = addressable;
1996 DECL_IGNORED_P (p) = addressable;
1997 TREE_ADDRESSABLE (p) = 0;
1998 layout_decl (p, 0);
2000 /* Build a second synthetic decl. */
2001 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
2002 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2003 DECL_ARTIFICIAL (decl) = addressable;
2004 DECL_IGNORED_P (decl) = addressable;
2005 layout_decl (decl, 0);
2007 /* Splice it in; skip the new decl. */
2008 TREE_CHAIN (decl) = TREE_CHAIN (p);
2009 TREE_CHAIN (p) = decl;
2010 p = decl;
2014 return args;
2017 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2018 the hidden struct return argument, and (abi willing) complex args.
2019 Return the new parameter list. */
2021 static tree
2022 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2024 tree fndecl = current_function_decl;
2025 tree fntype = TREE_TYPE (fndecl);
2026 tree fnargs = DECL_ARGUMENTS (fndecl);
2028 /* If struct value address is treated as the first argument, make it so. */
2029 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2030 && ! current_function_returns_pcc_struct
2031 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2033 tree type = build_pointer_type (TREE_TYPE (fntype));
2034 tree decl;
2036 decl = build_decl (PARM_DECL, NULL_TREE, type);
2037 DECL_ARG_TYPE (decl) = type;
2038 DECL_ARTIFICIAL (decl) = 1;
2039 DECL_IGNORED_P (decl) = 1;
2041 TREE_CHAIN (decl) = fnargs;
2042 fnargs = decl;
2043 all->function_result_decl = decl;
2046 all->orig_fnargs = fnargs;
2048 /* If the target wants to split complex arguments into scalars, do so. */
2049 if (targetm.calls.split_complex_arg)
2050 fnargs = split_complex_args (fnargs);
2052 return fnargs;
2055 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2056 data for the parameter. Incorporate ABI specifics such as pass-by-
2057 reference and type promotion. */
2059 static void
2060 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2061 struct assign_parm_data_one *data)
2063 tree nominal_type, passed_type;
2064 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2066 memset (data, 0, sizeof (*data));
2068 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
2069 if (!current_function_stdarg)
2070 data->named_arg = 1; /* No varadic parms. */
2071 else if (TREE_CHAIN (parm))
2072 data->named_arg = 1; /* Not the last non-varadic parm. */
2073 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2074 data->named_arg = 1; /* Only varadic ones are unnamed. */
2075 else
2076 data->named_arg = 0; /* Treat as varadic. */
2078 nominal_type = TREE_TYPE (parm);
2079 passed_type = DECL_ARG_TYPE (parm);
2081 /* Look out for errors propagating this far. Also, if the parameter's
2082 type is void then its value doesn't matter. */
2083 if (TREE_TYPE (parm) == error_mark_node
2084 /* This can happen after weird syntax errors
2085 or if an enum type is defined among the parms. */
2086 || TREE_CODE (parm) != PARM_DECL
2087 || passed_type == NULL
2088 || VOID_TYPE_P (nominal_type))
2090 nominal_type = passed_type = void_type_node;
2091 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2092 goto egress;
2095 /* Find mode of arg as it is passed, and mode of arg as it should be
2096 during execution of this function. */
2097 passed_mode = TYPE_MODE (passed_type);
2098 nominal_mode = TYPE_MODE (nominal_type);
2100 /* If the parm is to be passed as a transparent union, use the type of
2101 the first field for the tests below. We have already verified that
2102 the modes are the same. */
2103 if (TREE_CODE (passed_type) == UNION_TYPE
2104 && TYPE_TRANSPARENT_UNION (passed_type))
2105 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2107 /* See if this arg was passed by invisible reference. */
2108 if (pass_by_reference (&all->args_so_far, passed_mode,
2109 passed_type, data->named_arg))
2111 passed_type = nominal_type = build_pointer_type (passed_type);
2112 data->passed_pointer = true;
2113 passed_mode = nominal_mode = Pmode;
2116 /* Find mode as it is passed by the ABI. */
2117 promoted_mode = passed_mode;
2118 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2120 int unsignedp = TYPE_UNSIGNED (passed_type);
2121 promoted_mode = promote_mode (passed_type, promoted_mode,
2122 &unsignedp, 1);
2125 egress:
2126 data->nominal_type = nominal_type;
2127 data->passed_type = passed_type;
2128 data->nominal_mode = nominal_mode;
2129 data->passed_mode = passed_mode;
2130 data->promoted_mode = promoted_mode;
2133 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2135 static void
2136 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2137 struct assign_parm_data_one *data, bool no_rtl)
2139 int varargs_pretend_bytes = 0;
2141 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2142 data->promoted_mode,
2143 data->passed_type,
2144 &varargs_pretend_bytes, no_rtl);
2146 /* If the back-end has requested extra stack space, record how much is
2147 needed. Do not change pretend_args_size otherwise since it may be
2148 nonzero from an earlier partial argument. */
2149 if (varargs_pretend_bytes > 0)
2150 all->pretend_args_size = varargs_pretend_bytes;
2153 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2154 the incoming location of the current parameter. */
2156 static void
2157 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2158 struct assign_parm_data_one *data)
2160 HOST_WIDE_INT pretend_bytes = 0;
2161 rtx entry_parm;
2162 bool in_regs;
2164 if (data->promoted_mode == VOIDmode)
2166 data->entry_parm = data->stack_parm = const0_rtx;
2167 return;
2170 #ifdef FUNCTION_INCOMING_ARG
2171 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2172 data->passed_type, data->named_arg);
2173 #else
2174 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2175 data->passed_type, data->named_arg);
2176 #endif
2178 if (entry_parm == 0)
2179 data->promoted_mode = data->passed_mode;
2181 /* Determine parm's home in the stack, in case it arrives in the stack
2182 or we should pretend it did. Compute the stack position and rtx where
2183 the argument arrives and its size.
2185 There is one complexity here: If this was a parameter that would
2186 have been passed in registers, but wasn't only because it is
2187 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2188 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2189 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2190 as it was the previous time. */
2191 in_regs = entry_parm != 0;
2192 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2193 in_regs = true;
2194 #endif
2195 if (!in_regs && !data->named_arg)
2197 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2199 rtx tem;
2200 #ifdef FUNCTION_INCOMING_ARG
2201 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2202 data->passed_type, true);
2203 #else
2204 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2205 data->passed_type, true);
2206 #endif
2207 in_regs = tem != NULL;
2211 /* If this parameter was passed both in registers and in the stack, use
2212 the copy on the stack. */
2213 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2214 data->passed_type))
2215 entry_parm = 0;
2217 if (entry_parm)
2219 int partial;
2221 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2222 data->promoted_mode,
2223 data->passed_type,
2224 data->named_arg);
2225 data->partial = partial;
2227 /* The caller might already have allocated stack space for the
2228 register parameters. */
2229 if (partial != 0 && all->reg_parm_stack_space == 0)
2231 /* Part of this argument is passed in registers and part
2232 is passed on the stack. Ask the prologue code to extend
2233 the stack part so that we can recreate the full value.
2235 PRETEND_BYTES is the size of the registers we need to store.
2236 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2237 stack space that the prologue should allocate.
2239 Internally, gcc assumes that the argument pointer is aligned
2240 to STACK_BOUNDARY bits. This is used both for alignment
2241 optimizations (see init_emit) and to locate arguments that are
2242 aligned to more than PARM_BOUNDARY bits. We must preserve this
2243 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2244 a stack boundary. */
2246 /* We assume at most one partial arg, and it must be the first
2247 argument on the stack. */
2248 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2250 pretend_bytes = partial;
2251 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2253 /* We want to align relative to the actual stack pointer, so
2254 don't include this in the stack size until later. */
2255 all->extra_pretend_bytes = all->pretend_args_size;
2259 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2260 entry_parm ? data->partial : 0, current_function_decl,
2261 &all->stack_args_size, &data->locate);
2263 /* Adjust offsets to include the pretend args. */
2264 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2265 data->locate.slot_offset.constant += pretend_bytes;
2266 data->locate.offset.constant += pretend_bytes;
2268 data->entry_parm = entry_parm;
2271 /* A subroutine of assign_parms. If there is actually space on the stack
2272 for this parm, count it in stack_args_size and return true. */
2274 static bool
2275 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2276 struct assign_parm_data_one *data)
2278 /* Trivially true if we've no incoming register. */
2279 if (data->entry_parm == NULL)
2281 /* Also true if we're partially in registers and partially not,
2282 since we've arranged to drop the entire argument on the stack. */
2283 else if (data->partial != 0)
2285 /* Also true if the target says that it's passed in both registers
2286 and on the stack. */
2287 else if (GET_CODE (data->entry_parm) == PARALLEL
2288 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2290 /* Also true if the target says that there's stack allocated for
2291 all register parameters. */
2292 else if (all->reg_parm_stack_space > 0)
2294 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2295 else
2296 return false;
2298 all->stack_args_size.constant += data->locate.size.constant;
2299 if (data->locate.size.var)
2300 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2302 return true;
2305 /* A subroutine of assign_parms. Given that this parameter is allocated
2306 stack space by the ABI, find it. */
2308 static void
2309 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2311 rtx offset_rtx, stack_parm;
2312 unsigned int align, boundary;
2314 /* If we're passing this arg using a reg, make its stack home the
2315 aligned stack slot. */
2316 if (data->entry_parm)
2317 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2318 else
2319 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2321 stack_parm = current_function_internal_arg_pointer;
2322 if (offset_rtx != const0_rtx)
2323 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2324 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2326 set_mem_attributes (stack_parm, parm, 1);
2328 boundary = data->locate.boundary;
2329 align = BITS_PER_UNIT;
2331 /* If we're padding upward, we know that the alignment of the slot
2332 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2333 intentionally forcing upward padding. Otherwise we have to come
2334 up with a guess at the alignment based on OFFSET_RTX. */
2335 if (data->locate.where_pad != downward || data->entry_parm)
2336 align = boundary;
2337 else if (GET_CODE (offset_rtx) == CONST_INT)
2339 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2340 align = align & -align;
2342 set_mem_align (stack_parm, align);
2344 if (data->entry_parm)
2345 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2347 data->stack_parm = stack_parm;
2350 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2351 always valid and contiguous. */
2353 static void
2354 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2356 rtx entry_parm = data->entry_parm;
2357 rtx stack_parm = data->stack_parm;
2359 /* If this parm was passed part in regs and part in memory, pretend it
2360 arrived entirely in memory by pushing the register-part onto the stack.
2361 In the special case of a DImode or DFmode that is split, we could put
2362 it together in a pseudoreg directly, but for now that's not worth
2363 bothering with. */
2364 if (data->partial != 0)
2366 /* Handle calls that pass values in multiple non-contiguous
2367 locations. The Irix 6 ABI has examples of this. */
2368 if (GET_CODE (entry_parm) == PARALLEL)
2369 emit_group_store (validize_mem (stack_parm), entry_parm,
2370 data->passed_type,
2371 int_size_in_bytes (data->passed_type));
2372 else
2374 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2375 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2376 data->partial / UNITS_PER_WORD);
2379 entry_parm = stack_parm;
2382 /* If we didn't decide this parm came in a register, by default it came
2383 on the stack. */
2384 else if (entry_parm == NULL)
2385 entry_parm = stack_parm;
2387 /* When an argument is passed in multiple locations, we can't make use
2388 of this information, but we can save some copying if the whole argument
2389 is passed in a single register. */
2390 else if (GET_CODE (entry_parm) == PARALLEL
2391 && data->nominal_mode != BLKmode
2392 && data->passed_mode != BLKmode)
2394 size_t i, len = XVECLEN (entry_parm, 0);
2396 for (i = 0; i < len; i++)
2397 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2398 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2399 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2400 == data->passed_mode)
2401 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2403 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2404 break;
2408 data->entry_parm = entry_parm;
2411 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2412 always valid and properly aligned. */
2414 static void
2415 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2417 rtx stack_parm = data->stack_parm;
2419 /* If we can't trust the parm stack slot to be aligned enough for its
2420 ultimate type, don't use that slot after entry. We'll make another
2421 stack slot, if we need one. */
2422 if (stack_parm
2423 && ((STRICT_ALIGNMENT
2424 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2425 || (data->nominal_type
2426 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2427 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2428 stack_parm = NULL;
2430 /* If parm was passed in memory, and we need to convert it on entry,
2431 don't store it back in that same slot. */
2432 else if (data->entry_parm == stack_parm
2433 && data->nominal_mode != BLKmode
2434 && data->nominal_mode != data->passed_mode)
2435 stack_parm = NULL;
2437 /* If stack protection is in effect for this function, don't leave any
2438 pointers in their passed stack slots. */
2439 else if (cfun->stack_protect_guard
2440 && (flag_stack_protect == 2
2441 || data->passed_pointer
2442 || POINTER_TYPE_P (data->nominal_type)))
2443 stack_parm = NULL;
2445 data->stack_parm = stack_parm;
2448 /* A subroutine of assign_parms. Return true if the current parameter
2449 should be stored as a BLKmode in the current frame. */
2451 static bool
2452 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2454 if (data->nominal_mode == BLKmode)
2455 return true;
2456 if (GET_CODE (data->entry_parm) == PARALLEL)
2457 return true;
2459 #ifdef BLOCK_REG_PADDING
2460 /* Only assign_parm_setup_block knows how to deal with register arguments
2461 that are padded at the least significant end. */
2462 if (REG_P (data->entry_parm)
2463 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2464 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2465 == (BYTES_BIG_ENDIAN ? upward : downward)))
2466 return true;
2467 #endif
2469 return false;
2472 /* A subroutine of assign_parms. Arrange for the parameter to be
2473 present and valid in DATA->STACK_RTL. */
2475 static void
2476 assign_parm_setup_block (struct assign_parm_data_all *all,
2477 tree parm, struct assign_parm_data_one *data)
2479 rtx entry_parm = data->entry_parm;
2480 rtx stack_parm = data->stack_parm;
2481 HOST_WIDE_INT size;
2482 HOST_WIDE_INT size_stored;
2483 rtx orig_entry_parm = entry_parm;
2485 if (GET_CODE (entry_parm) == PARALLEL)
2486 entry_parm = emit_group_move_into_temps (entry_parm);
2488 /* If we've a non-block object that's nevertheless passed in parts,
2489 reconstitute it in register operations rather than on the stack. */
2490 if (GET_CODE (entry_parm) == PARALLEL
2491 && data->nominal_mode != BLKmode)
2493 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2495 if ((XVECLEN (entry_parm, 0) > 1
2496 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2497 && use_register_for_decl (parm))
2499 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2501 push_to_sequence (all->conversion_insns);
2503 /* For values returned in multiple registers, handle possible
2504 incompatible calls to emit_group_store.
2506 For example, the following would be invalid, and would have to
2507 be fixed by the conditional below:
2509 emit_group_store ((reg:SF), (parallel:DF))
2510 emit_group_store ((reg:SI), (parallel:DI))
2512 An example of this are doubles in e500 v2:
2513 (parallel:DF (expr_list (reg:SI) (const_int 0))
2514 (expr_list (reg:SI) (const_int 4))). */
2515 if (data->nominal_mode != data->passed_mode)
2517 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2518 emit_group_store (t, entry_parm, NULL_TREE,
2519 GET_MODE_SIZE (GET_MODE (entry_parm)));
2520 convert_move (parmreg, t, 0);
2522 else
2523 emit_group_store (parmreg, entry_parm, data->nominal_type,
2524 int_size_in_bytes (data->nominal_type));
2526 all->conversion_insns = get_insns ();
2527 end_sequence ();
2529 SET_DECL_RTL (parm, parmreg);
2530 return;
2534 size = int_size_in_bytes (data->passed_type);
2535 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2536 if (stack_parm == 0)
2538 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2539 stack_parm = assign_stack_local (BLKmode, size_stored,
2540 DECL_ALIGN (parm));
2541 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2542 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2543 set_mem_attributes (stack_parm, parm, 1);
2546 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2547 calls that pass values in multiple non-contiguous locations. */
2548 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2550 rtx mem;
2552 /* Note that we will be storing an integral number of words.
2553 So we have to be careful to ensure that we allocate an
2554 integral number of words. We do this above when we call
2555 assign_stack_local if space was not allocated in the argument
2556 list. If it was, this will not work if PARM_BOUNDARY is not
2557 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2558 if it becomes a problem. Exception is when BLKmode arrives
2559 with arguments not conforming to word_mode. */
2561 if (data->stack_parm == 0)
2563 else if (GET_CODE (entry_parm) == PARALLEL)
2565 else
2566 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2568 mem = validize_mem (stack_parm);
2570 /* Handle values in multiple non-contiguous locations. */
2571 if (GET_CODE (entry_parm) == PARALLEL)
2573 push_to_sequence (all->conversion_insns);
2574 emit_group_store (mem, entry_parm, data->passed_type, size);
2575 all->conversion_insns = get_insns ();
2576 end_sequence ();
2579 else if (size == 0)
2582 /* If SIZE is that of a mode no bigger than a word, just use
2583 that mode's store operation. */
2584 else if (size <= UNITS_PER_WORD)
2586 enum machine_mode mode
2587 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2589 if (mode != BLKmode
2590 #ifdef BLOCK_REG_PADDING
2591 && (size == UNITS_PER_WORD
2592 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2593 != (BYTES_BIG_ENDIAN ? upward : downward)))
2594 #endif
2597 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2598 emit_move_insn (change_address (mem, mode, 0), reg);
2601 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2602 machine must be aligned to the left before storing
2603 to memory. Note that the previous test doesn't
2604 handle all cases (e.g. SIZE == 3). */
2605 else if (size != UNITS_PER_WORD
2606 #ifdef BLOCK_REG_PADDING
2607 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2608 == downward)
2609 #else
2610 && BYTES_BIG_ENDIAN
2611 #endif
2614 rtx tem, x;
2615 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2616 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2618 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2619 build_int_cst (NULL_TREE, by),
2620 NULL_RTX, 1);
2621 tem = change_address (mem, word_mode, 0);
2622 emit_move_insn (tem, x);
2624 else
2625 move_block_from_reg (REGNO (entry_parm), mem,
2626 size_stored / UNITS_PER_WORD);
2628 else
2629 move_block_from_reg (REGNO (entry_parm), mem,
2630 size_stored / UNITS_PER_WORD);
2632 else if (data->stack_parm == 0)
2634 push_to_sequence (all->conversion_insns);
2635 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2636 BLOCK_OP_NORMAL);
2637 all->conversion_insns = get_insns ();
2638 end_sequence ();
2641 data->stack_parm = stack_parm;
2642 SET_DECL_RTL (parm, stack_parm);
2645 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2646 parameter. Get it there. Perform all ABI specified conversions. */
2648 static void
2649 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2650 struct assign_parm_data_one *data)
2652 rtx parmreg;
2653 enum machine_mode promoted_nominal_mode;
2654 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2655 bool did_conversion = false;
2657 /* Store the parm in a pseudoregister during the function, but we may
2658 need to do it in a wider mode. */
2660 /* This is not really promoting for a call. However we need to be
2661 consistent with assign_parm_find_data_types and expand_expr_real_1. */
2662 promoted_nominal_mode
2663 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1);
2665 parmreg = gen_reg_rtx (promoted_nominal_mode);
2667 if (!DECL_ARTIFICIAL (parm))
2668 mark_user_reg (parmreg);
2670 /* If this was an item that we received a pointer to,
2671 set DECL_RTL appropriately. */
2672 if (data->passed_pointer)
2674 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2675 set_mem_attributes (x, parm, 1);
2676 SET_DECL_RTL (parm, x);
2678 else
2679 SET_DECL_RTL (parm, parmreg);
2681 /* Copy the value into the register. */
2682 if (data->nominal_mode != data->passed_mode
2683 || promoted_nominal_mode != data->promoted_mode)
2685 int save_tree_used;
2687 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2688 mode, by the caller. We now have to convert it to
2689 NOMINAL_MODE, if different. However, PARMREG may be in
2690 a different mode than NOMINAL_MODE if it is being stored
2691 promoted.
2693 If ENTRY_PARM is a hard register, it might be in a register
2694 not valid for operating in its mode (e.g., an odd-numbered
2695 register for a DFmode). In that case, moves are the only
2696 thing valid, so we can't do a convert from there. This
2697 occurs when the calling sequence allow such misaligned
2698 usages.
2700 In addition, the conversion may involve a call, which could
2701 clobber parameters which haven't been copied to pseudo
2702 registers yet. Therefore, we must first copy the parm to
2703 a pseudo reg here, and save the conversion until after all
2704 parameters have been moved. */
2706 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2708 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2710 push_to_sequence (all->conversion_insns);
2711 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2713 if (GET_CODE (tempreg) == SUBREG
2714 && GET_MODE (tempreg) == data->nominal_mode
2715 && REG_P (SUBREG_REG (tempreg))
2716 && data->nominal_mode == data->passed_mode
2717 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2718 && GET_MODE_SIZE (GET_MODE (tempreg))
2719 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2721 /* The argument is already sign/zero extended, so note it
2722 into the subreg. */
2723 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2724 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2727 /* TREE_USED gets set erroneously during expand_assignment. */
2728 save_tree_used = TREE_USED (parm);
2729 expand_assignment (parm, make_tree (data->nominal_type, tempreg));
2730 TREE_USED (parm) = save_tree_used;
2731 all->conversion_insns = get_insns ();
2732 end_sequence ();
2734 did_conversion = true;
2736 else
2737 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2739 /* If we were passed a pointer but the actual value can safely live
2740 in a register, put it in one. */
2741 if (data->passed_pointer
2742 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2743 /* If by-reference argument was promoted, demote it. */
2744 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2745 || use_register_for_decl (parm)))
2747 /* We can't use nominal_mode, because it will have been set to
2748 Pmode above. We must use the actual mode of the parm. */
2749 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2750 mark_user_reg (parmreg);
2752 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2754 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2755 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2757 push_to_sequence (all->conversion_insns);
2758 emit_move_insn (tempreg, DECL_RTL (parm));
2759 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2760 emit_move_insn (parmreg, tempreg);
2761 all->conversion_insns = get_insns ();
2762 end_sequence ();
2764 did_conversion = true;
2766 else
2767 emit_move_insn (parmreg, DECL_RTL (parm));
2769 SET_DECL_RTL (parm, parmreg);
2771 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2772 now the parm. */
2773 data->stack_parm = NULL;
2776 /* Mark the register as eliminable if we did no conversion and it was
2777 copied from memory at a fixed offset, and the arg pointer was not
2778 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2779 offset formed an invalid address, such memory-equivalences as we
2780 make here would screw up life analysis for it. */
2781 if (data->nominal_mode == data->passed_mode
2782 && !did_conversion
2783 && data->stack_parm != 0
2784 && MEM_P (data->stack_parm)
2785 && data->locate.offset.var == 0
2786 && reg_mentioned_p (virtual_incoming_args_rtx,
2787 XEXP (data->stack_parm, 0)))
2789 rtx linsn = get_last_insn ();
2790 rtx sinsn, set;
2792 /* Mark complex types separately. */
2793 if (GET_CODE (parmreg) == CONCAT)
2795 enum machine_mode submode
2796 = GET_MODE_INNER (GET_MODE (parmreg));
2797 int regnor = REGNO (XEXP (parmreg, 0));
2798 int regnoi = REGNO (XEXP (parmreg, 1));
2799 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2800 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2801 GET_MODE_SIZE (submode));
2803 /* Scan backwards for the set of the real and
2804 imaginary parts. */
2805 for (sinsn = linsn; sinsn != 0;
2806 sinsn = prev_nonnote_insn (sinsn))
2808 set = single_set (sinsn);
2809 if (set == 0)
2810 continue;
2812 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2813 REG_NOTES (sinsn)
2814 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2815 REG_NOTES (sinsn));
2816 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2817 REG_NOTES (sinsn)
2818 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2819 REG_NOTES (sinsn));
2822 else if ((set = single_set (linsn)) != 0
2823 && SET_DEST (set) == parmreg)
2824 REG_NOTES (linsn)
2825 = gen_rtx_EXPR_LIST (REG_EQUIV,
2826 data->stack_parm, REG_NOTES (linsn));
2829 /* For pointer data type, suggest pointer register. */
2830 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2831 mark_reg_pointer (parmreg,
2832 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2835 /* A subroutine of assign_parms. Allocate stack space to hold the current
2836 parameter. Get it there. Perform all ABI specified conversions. */
2838 static void
2839 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2840 struct assign_parm_data_one *data)
2842 /* Value must be stored in the stack slot STACK_PARM during function
2843 execution. */
2844 bool to_conversion = false;
2846 if (data->promoted_mode != data->nominal_mode)
2848 /* Conversion is required. */
2849 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2851 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2853 push_to_sequence (all->conversion_insns);
2854 to_conversion = true;
2856 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2857 TYPE_UNSIGNED (TREE_TYPE (parm)));
2859 if (data->stack_parm)
2860 /* ??? This may need a big-endian conversion on sparc64. */
2861 data->stack_parm
2862 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2865 if (data->entry_parm != data->stack_parm)
2867 rtx src, dest;
2869 if (data->stack_parm == 0)
2871 data->stack_parm
2872 = assign_stack_local (GET_MODE (data->entry_parm),
2873 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2874 TYPE_ALIGN (data->passed_type));
2875 set_mem_attributes (data->stack_parm, parm, 1);
2878 dest = validize_mem (data->stack_parm);
2879 src = validize_mem (data->entry_parm);
2881 if (MEM_P (src))
2883 /* Use a block move to handle potentially misaligned entry_parm. */
2884 if (!to_conversion)
2885 push_to_sequence (all->conversion_insns);
2886 to_conversion = true;
2888 emit_block_move (dest, src,
2889 GEN_INT (int_size_in_bytes (data->passed_type)),
2890 BLOCK_OP_NORMAL);
2892 else
2893 emit_move_insn (dest, src);
2896 if (to_conversion)
2898 all->conversion_insns = get_insns ();
2899 end_sequence ();
2902 SET_DECL_RTL (parm, data->stack_parm);
2905 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2906 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2908 static void
2909 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2911 tree parm;
2912 tree orig_fnargs = all->orig_fnargs;
2914 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2916 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2917 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2919 rtx tmp, real, imag;
2920 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2922 real = DECL_RTL (fnargs);
2923 imag = DECL_RTL (TREE_CHAIN (fnargs));
2924 if (inner != GET_MODE (real))
2926 real = gen_lowpart_SUBREG (inner, real);
2927 imag = gen_lowpart_SUBREG (inner, imag);
2930 if (TREE_ADDRESSABLE (parm))
2932 rtx rmem, imem;
2933 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2935 /* split_complex_arg put the real and imag parts in
2936 pseudos. Move them to memory. */
2937 tmp = assign_stack_local (DECL_MODE (parm), size,
2938 TYPE_ALIGN (TREE_TYPE (parm)));
2939 set_mem_attributes (tmp, parm, 1);
2940 rmem = adjust_address_nv (tmp, inner, 0);
2941 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2942 push_to_sequence (all->conversion_insns);
2943 emit_move_insn (rmem, real);
2944 emit_move_insn (imem, imag);
2945 all->conversion_insns = get_insns ();
2946 end_sequence ();
2948 else
2949 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2950 SET_DECL_RTL (parm, tmp);
2952 real = DECL_INCOMING_RTL (fnargs);
2953 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2954 if (inner != GET_MODE (real))
2956 real = gen_lowpart_SUBREG (inner, real);
2957 imag = gen_lowpart_SUBREG (inner, imag);
2959 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2960 set_decl_incoming_rtl (parm, tmp);
2961 fnargs = TREE_CHAIN (fnargs);
2963 else
2965 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2966 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2968 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2969 instead of the copy of decl, i.e. FNARGS. */
2970 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2971 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2974 fnargs = TREE_CHAIN (fnargs);
2978 /* Assign RTL expressions to the function's parameters. This may involve
2979 copying them into registers and using those registers as the DECL_RTL. */
2981 static void
2982 assign_parms (tree fndecl)
2984 struct assign_parm_data_all all;
2985 tree fnargs, parm;
2987 current_function_internal_arg_pointer
2988 = targetm.calls.internal_arg_pointer ();
2990 assign_parms_initialize_all (&all);
2991 fnargs = assign_parms_augmented_arg_list (&all);
2993 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
2995 struct assign_parm_data_one data;
2997 /* Extract the type of PARM; adjust it according to ABI. */
2998 assign_parm_find_data_types (&all, parm, &data);
3000 /* Early out for errors and void parameters. */
3001 if (data.passed_mode == VOIDmode)
3003 SET_DECL_RTL (parm, const0_rtx);
3004 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3005 continue;
3008 if (current_function_stdarg && !TREE_CHAIN (parm))
3009 assign_parms_setup_varargs (&all, &data, false);
3011 /* Find out where the parameter arrives in this function. */
3012 assign_parm_find_entry_rtl (&all, &data);
3014 /* Find out where stack space for this parameter might be. */
3015 if (assign_parm_is_stack_parm (&all, &data))
3017 assign_parm_find_stack_rtl (parm, &data);
3018 assign_parm_adjust_entry_rtl (&data);
3021 /* Record permanently how this parm was passed. */
3022 set_decl_incoming_rtl (parm, data.entry_parm);
3024 /* Update info on where next arg arrives in registers. */
3025 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3026 data.passed_type, data.named_arg);
3028 assign_parm_adjust_stack_rtl (&data);
3030 if (assign_parm_setup_block_p (&data))
3031 assign_parm_setup_block (&all, parm, &data);
3032 else if (data.passed_pointer || use_register_for_decl (parm))
3033 assign_parm_setup_reg (&all, parm, &data);
3034 else
3035 assign_parm_setup_stack (&all, parm, &data);
3038 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3039 assign_parms_unsplit_complex (&all, fnargs);
3041 /* Output all parameter conversion instructions (possibly including calls)
3042 now that all parameters have been copied out of hard registers. */
3043 emit_insn (all.conversion_insns);
3045 /* If we are receiving a struct value address as the first argument, set up
3046 the RTL for the function result. As this might require code to convert
3047 the transmitted address to Pmode, we do this here to ensure that possible
3048 preliminary conversions of the address have been emitted already. */
3049 if (all.function_result_decl)
3051 tree result = DECL_RESULT (current_function_decl);
3052 rtx addr = DECL_RTL (all.function_result_decl);
3053 rtx x;
3055 if (DECL_BY_REFERENCE (result))
3056 x = addr;
3057 else
3059 addr = convert_memory_address (Pmode, addr);
3060 x = gen_rtx_MEM (DECL_MODE (result), addr);
3061 set_mem_attributes (x, result, 1);
3063 SET_DECL_RTL (result, x);
3066 /* We have aligned all the args, so add space for the pretend args. */
3067 current_function_pretend_args_size = all.pretend_args_size;
3068 all.stack_args_size.constant += all.extra_pretend_bytes;
3069 current_function_args_size = all.stack_args_size.constant;
3071 /* Adjust function incoming argument size for alignment and
3072 minimum length. */
3074 #ifdef REG_PARM_STACK_SPACE
3075 current_function_args_size = MAX (current_function_args_size,
3076 REG_PARM_STACK_SPACE (fndecl));
3077 #endif
3079 current_function_args_size = CEIL_ROUND (current_function_args_size,
3080 PARM_BOUNDARY / BITS_PER_UNIT);
3082 #ifdef ARGS_GROW_DOWNWARD
3083 current_function_arg_offset_rtx
3084 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3085 : expand_expr (size_diffop (all.stack_args_size.var,
3086 size_int (-all.stack_args_size.constant)),
3087 NULL_RTX, VOIDmode, 0));
3088 #else
3089 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3090 #endif
3092 /* See how many bytes, if any, of its args a function should try to pop
3093 on return. */
3095 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3096 current_function_args_size);
3098 /* For stdarg.h function, save info about
3099 regs and stack space used by the named args. */
3101 current_function_args_info = all.args_so_far;
3103 /* Set the rtx used for the function return value. Put this in its
3104 own variable so any optimizers that need this information don't have
3105 to include tree.h. Do this here so it gets done when an inlined
3106 function gets output. */
3108 current_function_return_rtx
3109 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3110 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3112 /* If scalar return value was computed in a pseudo-reg, or was a named
3113 return value that got dumped to the stack, copy that to the hard
3114 return register. */
3115 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3117 tree decl_result = DECL_RESULT (fndecl);
3118 rtx decl_rtl = DECL_RTL (decl_result);
3120 if (REG_P (decl_rtl)
3121 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3122 : DECL_REGISTER (decl_result))
3124 rtx real_decl_rtl;
3126 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3127 fndecl, true);
3128 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3129 /* The delay slot scheduler assumes that current_function_return_rtx
3130 holds the hard register containing the return value, not a
3131 temporary pseudo. */
3132 current_function_return_rtx = real_decl_rtl;
3137 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3138 For all seen types, gimplify their sizes. */
3140 static tree
3141 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3143 tree t = *tp;
3145 *walk_subtrees = 0;
3146 if (TYPE_P (t))
3148 if (POINTER_TYPE_P (t))
3149 *walk_subtrees = 1;
3150 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3151 && !TYPE_SIZES_GIMPLIFIED (t))
3153 gimplify_type_sizes (t, (tree *) data);
3154 *walk_subtrees = 1;
3158 return NULL;
3161 /* Gimplify the parameter list for current_function_decl. This involves
3162 evaluating SAVE_EXPRs of variable sized parameters and generating code
3163 to implement callee-copies reference parameters. Returns a list of
3164 statements to add to the beginning of the function, or NULL if nothing
3165 to do. */
3167 tree
3168 gimplify_parameters (void)
3170 struct assign_parm_data_all all;
3171 tree fnargs, parm, stmts = NULL;
3173 assign_parms_initialize_all (&all);
3174 fnargs = assign_parms_augmented_arg_list (&all);
3176 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3178 struct assign_parm_data_one data;
3180 /* Extract the type of PARM; adjust it according to ABI. */
3181 assign_parm_find_data_types (&all, parm, &data);
3183 /* Early out for errors and void parameters. */
3184 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3185 continue;
3187 /* Update info on where next arg arrives in registers. */
3188 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3189 data.passed_type, data.named_arg);
3191 /* ??? Once upon a time variable_size stuffed parameter list
3192 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3193 turned out to be less than manageable in the gimple world.
3194 Now we have to hunt them down ourselves. */
3195 walk_tree_without_duplicates (&data.passed_type,
3196 gimplify_parm_type, &stmts);
3198 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3200 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3201 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3204 if (data.passed_pointer)
3206 tree type = TREE_TYPE (data.passed_type);
3207 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3208 type, data.named_arg))
3210 tree local, t;
3212 /* For constant sized objects, this is trivial; for
3213 variable-sized objects, we have to play games. */
3214 if (TREE_CONSTANT (DECL_SIZE (parm)))
3216 local = create_tmp_var (type, get_name (parm));
3217 DECL_IGNORED_P (local) = 0;
3219 else
3221 tree ptr_type, addr, args;
3223 ptr_type = build_pointer_type (type);
3224 addr = create_tmp_var (ptr_type, get_name (parm));
3225 DECL_IGNORED_P (addr) = 0;
3226 local = build_fold_indirect_ref (addr);
3228 args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL);
3229 t = built_in_decls[BUILT_IN_ALLOCA];
3230 t = build_function_call_expr (t, args);
3231 t = fold_convert (ptr_type, t);
3232 t = build2 (MODIFY_EXPR, void_type_node, addr, t);
3233 gimplify_and_add (t, &stmts);
3236 t = build2 (MODIFY_EXPR, void_type_node, local, parm);
3237 gimplify_and_add (t, &stmts);
3239 SET_DECL_VALUE_EXPR (parm, local);
3240 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3245 return stmts;
3248 /* Indicate whether REGNO is an incoming argument to the current function
3249 that was promoted to a wider mode. If so, return the RTX for the
3250 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3251 that REGNO is promoted from and whether the promotion was signed or
3252 unsigned. */
3255 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3257 tree arg;
3259 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3260 arg = TREE_CHAIN (arg))
3261 if (REG_P (DECL_INCOMING_RTL (arg))
3262 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3263 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3265 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3266 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3268 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3269 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3270 && mode != DECL_MODE (arg))
3272 *pmode = DECL_MODE (arg);
3273 *punsignedp = unsignedp;
3274 return DECL_INCOMING_RTL (arg);
3278 return 0;
3282 /* Compute the size and offset from the start of the stacked arguments for a
3283 parm passed in mode PASSED_MODE and with type TYPE.
3285 INITIAL_OFFSET_PTR points to the current offset into the stacked
3286 arguments.
3288 The starting offset and size for this parm are returned in
3289 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3290 nonzero, the offset is that of stack slot, which is returned in
3291 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3292 padding required from the initial offset ptr to the stack slot.
3294 IN_REGS is nonzero if the argument will be passed in registers. It will
3295 never be set if REG_PARM_STACK_SPACE is not defined.
3297 FNDECL is the function in which the argument was defined.
3299 There are two types of rounding that are done. The first, controlled by
3300 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3301 list to be aligned to the specific boundary (in bits). This rounding
3302 affects the initial and starting offsets, but not the argument size.
3304 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3305 optionally rounds the size of the parm to PARM_BOUNDARY. The
3306 initial offset is not affected by this rounding, while the size always
3307 is and the starting offset may be. */
3309 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3310 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3311 callers pass in the total size of args so far as
3312 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3314 void
3315 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3316 int partial, tree fndecl ATTRIBUTE_UNUSED,
3317 struct args_size *initial_offset_ptr,
3318 struct locate_and_pad_arg_data *locate)
3320 tree sizetree;
3321 enum direction where_pad;
3322 unsigned int boundary;
3323 int reg_parm_stack_space = 0;
3324 int part_size_in_regs;
3326 #ifdef REG_PARM_STACK_SPACE
3327 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3329 /* If we have found a stack parm before we reach the end of the
3330 area reserved for registers, skip that area. */
3331 if (! in_regs)
3333 if (reg_parm_stack_space > 0)
3335 if (initial_offset_ptr->var)
3337 initial_offset_ptr->var
3338 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3339 ssize_int (reg_parm_stack_space));
3340 initial_offset_ptr->constant = 0;
3342 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3343 initial_offset_ptr->constant = reg_parm_stack_space;
3346 #endif /* REG_PARM_STACK_SPACE */
3348 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3350 sizetree
3351 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3352 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3353 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3354 locate->where_pad = where_pad;
3355 locate->boundary = boundary;
3357 /* Remember if the outgoing parameter requires extra alignment on the
3358 calling function side. */
3359 if (boundary > PREFERRED_STACK_BOUNDARY)
3360 boundary = PREFERRED_STACK_BOUNDARY;
3361 if (cfun->stack_alignment_needed < boundary)
3362 cfun->stack_alignment_needed = boundary;
3364 #ifdef ARGS_GROW_DOWNWARD
3365 locate->slot_offset.constant = -initial_offset_ptr->constant;
3366 if (initial_offset_ptr->var)
3367 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3368 initial_offset_ptr->var);
3371 tree s2 = sizetree;
3372 if (where_pad != none
3373 && (!host_integerp (sizetree, 1)
3374 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3375 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3376 SUB_PARM_SIZE (locate->slot_offset, s2);
3379 locate->slot_offset.constant += part_size_in_regs;
3381 if (!in_regs
3382 #ifdef REG_PARM_STACK_SPACE
3383 || REG_PARM_STACK_SPACE (fndecl) > 0
3384 #endif
3386 pad_to_arg_alignment (&locate->slot_offset, boundary,
3387 &locate->alignment_pad);
3389 locate->size.constant = (-initial_offset_ptr->constant
3390 - locate->slot_offset.constant);
3391 if (initial_offset_ptr->var)
3392 locate->size.var = size_binop (MINUS_EXPR,
3393 size_binop (MINUS_EXPR,
3394 ssize_int (0),
3395 initial_offset_ptr->var),
3396 locate->slot_offset.var);
3398 /* Pad_below needs the pre-rounded size to know how much to pad
3399 below. */
3400 locate->offset = locate->slot_offset;
3401 if (where_pad == downward)
3402 pad_below (&locate->offset, passed_mode, sizetree);
3404 #else /* !ARGS_GROW_DOWNWARD */
3405 if (!in_regs
3406 #ifdef REG_PARM_STACK_SPACE
3407 || REG_PARM_STACK_SPACE (fndecl) > 0
3408 #endif
3410 pad_to_arg_alignment (initial_offset_ptr, boundary,
3411 &locate->alignment_pad);
3412 locate->slot_offset = *initial_offset_ptr;
3414 #ifdef PUSH_ROUNDING
3415 if (passed_mode != BLKmode)
3416 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3417 #endif
3419 /* Pad_below needs the pre-rounded size to know how much to pad below
3420 so this must be done before rounding up. */
3421 locate->offset = locate->slot_offset;
3422 if (where_pad == downward)
3423 pad_below (&locate->offset, passed_mode, sizetree);
3425 if (where_pad != none
3426 && (!host_integerp (sizetree, 1)
3427 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3428 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3430 ADD_PARM_SIZE (locate->size, sizetree);
3432 locate->size.constant -= part_size_in_regs;
3433 #endif /* ARGS_GROW_DOWNWARD */
3436 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3437 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3439 static void
3440 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3441 struct args_size *alignment_pad)
3443 tree save_var = NULL_TREE;
3444 HOST_WIDE_INT save_constant = 0;
3445 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3446 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3448 #ifdef SPARC_STACK_BOUNDARY_HACK
3449 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3450 the real alignment of %sp. However, when it does this, the
3451 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3452 if (SPARC_STACK_BOUNDARY_HACK)
3453 sp_offset = 0;
3454 #endif
3456 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3458 save_var = offset_ptr->var;
3459 save_constant = offset_ptr->constant;
3462 alignment_pad->var = NULL_TREE;
3463 alignment_pad->constant = 0;
3465 if (boundary > BITS_PER_UNIT)
3467 if (offset_ptr->var)
3469 tree sp_offset_tree = ssize_int (sp_offset);
3470 tree offset = size_binop (PLUS_EXPR,
3471 ARGS_SIZE_TREE (*offset_ptr),
3472 sp_offset_tree);
3473 #ifdef ARGS_GROW_DOWNWARD
3474 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3475 #else
3476 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3477 #endif
3479 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3480 /* ARGS_SIZE_TREE includes constant term. */
3481 offset_ptr->constant = 0;
3482 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3483 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3484 save_var);
3486 else
3488 offset_ptr->constant = -sp_offset +
3489 #ifdef ARGS_GROW_DOWNWARD
3490 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3491 #else
3492 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3493 #endif
3494 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3495 alignment_pad->constant = offset_ptr->constant - save_constant;
3500 static void
3501 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3503 if (passed_mode != BLKmode)
3505 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3506 offset_ptr->constant
3507 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3508 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3509 - GET_MODE_SIZE (passed_mode));
3511 else
3513 if (TREE_CODE (sizetree) != INTEGER_CST
3514 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3516 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3517 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3518 /* Add it in. */
3519 ADD_PARM_SIZE (*offset_ptr, s2);
3520 SUB_PARM_SIZE (*offset_ptr, sizetree);
3525 /* Walk the tree of blocks describing the binding levels within a function
3526 and warn about variables the might be killed by setjmp or vfork.
3527 This is done after calling flow_analysis and before global_alloc
3528 clobbers the pseudo-regs to hard regs. */
3530 void
3531 setjmp_vars_warning (tree block)
3533 tree decl, sub;
3535 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3537 if (TREE_CODE (decl) == VAR_DECL
3538 && DECL_RTL_SET_P (decl)
3539 && REG_P (DECL_RTL (decl))
3540 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3541 warning (0, "variable %q+D might be clobbered by %<longjmp%>"
3542 " or %<vfork%>",
3543 decl);
3546 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3547 setjmp_vars_warning (sub);
3550 /* Do the appropriate part of setjmp_vars_warning
3551 but for arguments instead of local variables. */
3553 void
3554 setjmp_args_warning (void)
3556 tree decl;
3557 for (decl = DECL_ARGUMENTS (current_function_decl);
3558 decl; decl = TREE_CHAIN (decl))
3559 if (DECL_RTL (decl) != 0
3560 && REG_P (DECL_RTL (decl))
3561 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3562 warning (0, "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3563 decl);
3567 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3568 and create duplicate blocks. */
3569 /* ??? Need an option to either create block fragments or to create
3570 abstract origin duplicates of a source block. It really depends
3571 on what optimization has been performed. */
3573 void
3574 reorder_blocks (void)
3576 tree block = DECL_INITIAL (current_function_decl);
3577 VEC(tree,heap) *block_stack;
3579 if (block == NULL_TREE)
3580 return;
3582 block_stack = VEC_alloc (tree, heap, 10);
3584 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3585 clear_block_marks (block);
3587 /* Prune the old trees away, so that they don't get in the way. */
3588 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3589 BLOCK_CHAIN (block) = NULL_TREE;
3591 /* Recreate the block tree from the note nesting. */
3592 reorder_blocks_1 (get_insns (), block, &block_stack);
3593 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3595 VEC_free (tree, heap, block_stack);
3598 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3600 void
3601 clear_block_marks (tree block)
3603 while (block)
3605 TREE_ASM_WRITTEN (block) = 0;
3606 clear_block_marks (BLOCK_SUBBLOCKS (block));
3607 block = BLOCK_CHAIN (block);
3611 static void
3612 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3614 rtx insn;
3616 for (insn = insns; insn; insn = NEXT_INSN (insn))
3618 if (NOTE_P (insn))
3620 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3622 tree block = NOTE_BLOCK (insn);
3623 tree origin;
3625 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3626 ? BLOCK_FRAGMENT_ORIGIN (block)
3627 : block);
3629 /* If we have seen this block before, that means it now
3630 spans multiple address regions. Create a new fragment. */
3631 if (TREE_ASM_WRITTEN (block))
3633 tree new_block = copy_node (block);
3635 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3636 BLOCK_FRAGMENT_CHAIN (new_block)
3637 = BLOCK_FRAGMENT_CHAIN (origin);
3638 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3640 NOTE_BLOCK (insn) = new_block;
3641 block = new_block;
3644 BLOCK_SUBBLOCKS (block) = 0;
3645 TREE_ASM_WRITTEN (block) = 1;
3646 /* When there's only one block for the entire function,
3647 current_block == block and we mustn't do this, it
3648 will cause infinite recursion. */
3649 if (block != current_block)
3651 if (block != origin)
3652 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3654 BLOCK_SUPERCONTEXT (block) = current_block;
3655 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3656 BLOCK_SUBBLOCKS (current_block) = block;
3657 current_block = origin;
3659 VEC_safe_push (tree, heap, *p_block_stack, block);
3661 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3663 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3664 BLOCK_SUBBLOCKS (current_block)
3665 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3666 current_block = BLOCK_SUPERCONTEXT (current_block);
3672 /* Reverse the order of elements in the chain T of blocks,
3673 and return the new head of the chain (old last element). */
3675 tree
3676 blocks_nreverse (tree t)
3678 tree prev = 0, decl, next;
3679 for (decl = t; decl; decl = next)
3681 next = BLOCK_CHAIN (decl);
3682 BLOCK_CHAIN (decl) = prev;
3683 prev = decl;
3685 return prev;
3688 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3689 non-NULL, list them all into VECTOR, in a depth-first preorder
3690 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3691 blocks. */
3693 static int
3694 all_blocks (tree block, tree *vector)
3696 int n_blocks = 0;
3698 while (block)
3700 TREE_ASM_WRITTEN (block) = 0;
3702 /* Record this block. */
3703 if (vector)
3704 vector[n_blocks] = block;
3706 ++n_blocks;
3708 /* Record the subblocks, and their subblocks... */
3709 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3710 vector ? vector + n_blocks : 0);
3711 block = BLOCK_CHAIN (block);
3714 return n_blocks;
3717 /* Return a vector containing all the blocks rooted at BLOCK. The
3718 number of elements in the vector is stored in N_BLOCKS_P. The
3719 vector is dynamically allocated; it is the caller's responsibility
3720 to call `free' on the pointer returned. */
3722 static tree *
3723 get_block_vector (tree block, int *n_blocks_p)
3725 tree *block_vector;
3727 *n_blocks_p = all_blocks (block, NULL);
3728 block_vector = XNEWVEC (tree, *n_blocks_p);
3729 all_blocks (block, block_vector);
3731 return block_vector;
3734 static GTY(()) int next_block_index = 2;
3736 /* Set BLOCK_NUMBER for all the blocks in FN. */
3738 void
3739 number_blocks (tree fn)
3741 int i;
3742 int n_blocks;
3743 tree *block_vector;
3745 /* For SDB and XCOFF debugging output, we start numbering the blocks
3746 from 1 within each function, rather than keeping a running
3747 count. */
3748 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3749 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3750 next_block_index = 1;
3751 #endif
3753 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3755 /* The top-level BLOCK isn't numbered at all. */
3756 for (i = 1; i < n_blocks; ++i)
3757 /* We number the blocks from two. */
3758 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3760 free (block_vector);
3762 return;
3765 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3767 tree
3768 debug_find_var_in_block_tree (tree var, tree block)
3770 tree t;
3772 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3773 if (t == var)
3774 return block;
3776 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3778 tree ret = debug_find_var_in_block_tree (var, t);
3779 if (ret)
3780 return ret;
3783 return NULL_TREE;
3786 /* Allocate a function structure for FNDECL and set its contents
3787 to the defaults. */
3789 void
3790 allocate_struct_function (tree fndecl)
3792 tree result;
3793 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3795 cfun = ggc_alloc_cleared (sizeof (struct function));
3797 cfun->stack_alignment_needed = STACK_BOUNDARY;
3798 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3800 current_function_funcdef_no = funcdef_no++;
3802 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3804 init_eh_for_function ();
3806 lang_hooks.function.init (cfun);
3807 if (init_machine_status)
3808 cfun->machine = (*init_machine_status) ();
3810 if (fndecl == NULL)
3811 return;
3813 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3814 cfun->decl = fndecl;
3816 result = DECL_RESULT (fndecl);
3817 if (aggregate_value_p (result, fndecl))
3819 #ifdef PCC_STATIC_STRUCT_RETURN
3820 current_function_returns_pcc_struct = 1;
3821 #endif
3822 current_function_returns_struct = 1;
3825 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3827 current_function_stdarg
3828 = (fntype
3829 && TYPE_ARG_TYPES (fntype) != 0
3830 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3831 != void_type_node));
3833 /* Assume all registers in stdarg functions need to be saved. */
3834 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3835 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3838 /* Reset cfun, and other non-struct-function variables to defaults as
3839 appropriate for emitting rtl at the start of a function. */
3841 static void
3842 prepare_function_start (tree fndecl)
3844 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3845 cfun = DECL_STRUCT_FUNCTION (fndecl);
3846 else
3847 allocate_struct_function (fndecl);
3848 init_emit ();
3849 init_varasm_status (cfun);
3850 init_expr ();
3852 cse_not_expected = ! optimize;
3854 /* Caller save not needed yet. */
3855 caller_save_needed = 0;
3857 /* We haven't done register allocation yet. */
3858 reg_renumber = 0;
3860 /* Indicate that we have not instantiated virtual registers yet. */
3861 virtuals_instantiated = 0;
3863 /* Indicate that we want CONCATs now. */
3864 generating_concat_p = 1;
3866 /* Indicate we have no need of a frame pointer yet. */
3867 frame_pointer_needed = 0;
3870 /* Initialize the rtl expansion mechanism so that we can do simple things
3871 like generate sequences. This is used to provide a context during global
3872 initialization of some passes. */
3873 void
3874 init_dummy_function_start (void)
3876 prepare_function_start (NULL);
3879 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3880 and initialize static variables for generating RTL for the statements
3881 of the function. */
3883 void
3884 init_function_start (tree subr)
3886 prepare_function_start (subr);
3888 /* Prevent ever trying to delete the first instruction of a
3889 function. Also tell final how to output a linenum before the
3890 function prologue. Note linenums could be missing, e.g. when
3891 compiling a Java .class file. */
3892 if (! DECL_IS_BUILTIN (subr))
3893 emit_line_note (DECL_SOURCE_LOCATION (subr));
3895 /* Make sure first insn is a note even if we don't want linenums.
3896 This makes sure the first insn will never be deleted.
3897 Also, final expects a note to appear there. */
3898 emit_note (NOTE_INSN_DELETED);
3900 /* Warn if this value is an aggregate type,
3901 regardless of which calling convention we are using for it. */
3902 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3903 warning (OPT_Waggregate_return, "function returns an aggregate");
3906 /* Make sure all values used by the optimization passes have sane
3907 defaults. */
3908 unsigned int
3909 init_function_for_compilation (void)
3911 reg_renumber = 0;
3913 /* No prologue/epilogue insns yet. Make sure that these vectors are
3914 empty. */
3915 gcc_assert (VEC_length (int, prologue) == 0);
3916 gcc_assert (VEC_length (int, epilogue) == 0);
3917 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
3918 return 0;
3921 struct tree_opt_pass pass_init_function =
3923 NULL, /* name */
3924 NULL, /* gate */
3925 init_function_for_compilation, /* execute */
3926 NULL, /* sub */
3927 NULL, /* next */
3928 0, /* static_pass_number */
3929 0, /* tv_id */
3930 0, /* properties_required */
3931 0, /* properties_provided */
3932 0, /* properties_destroyed */
3933 0, /* todo_flags_start */
3934 0, /* todo_flags_finish */
3935 0 /* letter */
3939 void
3940 expand_main_function (void)
3942 #if (defined(INVOKE__main) \
3943 || (!defined(HAS_INIT_SECTION) \
3944 && !defined(INIT_SECTION_ASM_OP) \
3945 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
3946 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3947 #endif
3950 /* Expand code to initialize the stack_protect_guard. This is invoked at
3951 the beginning of a function to be protected. */
3953 #ifndef HAVE_stack_protect_set
3954 # define HAVE_stack_protect_set 0
3955 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
3956 #endif
3958 void
3959 stack_protect_prologue (void)
3961 tree guard_decl = targetm.stack_protect_guard ();
3962 rtx x, y;
3964 /* Avoid expand_expr here, because we don't want guard_decl pulled
3965 into registers unless absolutely necessary. And we know that
3966 cfun->stack_protect_guard is a local stack slot, so this skips
3967 all the fluff. */
3968 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
3969 y = validize_mem (DECL_RTL (guard_decl));
3971 /* Allow the target to copy from Y to X without leaking Y into a
3972 register. */
3973 if (HAVE_stack_protect_set)
3975 rtx insn = gen_stack_protect_set (x, y);
3976 if (insn)
3978 emit_insn (insn);
3979 return;
3983 /* Otherwise do a straight move. */
3984 emit_move_insn (x, y);
3987 /* Expand code to verify the stack_protect_guard. This is invoked at
3988 the end of a function to be protected. */
3990 #ifndef HAVE_stack_protect_test
3991 # define HAVE_stack_protect_test 0
3992 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
3993 #endif
3995 void
3996 stack_protect_epilogue (void)
3998 tree guard_decl = targetm.stack_protect_guard ();
3999 rtx label = gen_label_rtx ();
4000 rtx x, y, tmp;
4002 /* Avoid expand_expr here, because we don't want guard_decl pulled
4003 into registers unless absolutely necessary. And we know that
4004 cfun->stack_protect_guard is a local stack slot, so this skips
4005 all the fluff. */
4006 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
4007 y = validize_mem (DECL_RTL (guard_decl));
4009 /* Allow the target to compare Y with X without leaking either into
4010 a register. */
4011 switch (HAVE_stack_protect_test != 0)
4013 case 1:
4014 tmp = gen_stack_protect_test (x, y, label);
4015 if (tmp)
4017 emit_insn (tmp);
4018 break;
4020 /* FALLTHRU */
4022 default:
4023 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4024 break;
4027 /* The noreturn predictor has been moved to the tree level. The rtl-level
4028 predictors estimate this branch about 20%, which isn't enough to get
4029 things moved out of line. Since this is the only extant case of adding
4030 a noreturn function at the rtl level, it doesn't seem worth doing ought
4031 except adding the prediction by hand. */
4032 tmp = get_last_insn ();
4033 if (JUMP_P (tmp))
4034 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4036 expand_expr_stmt (targetm.stack_protect_fail ());
4037 emit_label (label);
4040 /* Start the RTL for a new function, and set variables used for
4041 emitting RTL.
4042 SUBR is the FUNCTION_DECL node.
4043 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4044 the function's parameters, which must be run at any return statement. */
4046 void
4047 expand_function_start (tree subr)
4049 /* Make sure volatile mem refs aren't considered
4050 valid operands of arithmetic insns. */
4051 init_recog_no_volatile ();
4053 current_function_profile
4054 = (profile_flag
4055 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4057 current_function_limit_stack
4058 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4060 /* Make the label for return statements to jump to. Do not special
4061 case machines with special return instructions -- they will be
4062 handled later during jump, ifcvt, or epilogue creation. */
4063 return_label = gen_label_rtx ();
4065 /* Initialize rtx used to return the value. */
4066 /* Do this before assign_parms so that we copy the struct value address
4067 before any library calls that assign parms might generate. */
4069 /* Decide whether to return the value in memory or in a register. */
4070 if (aggregate_value_p (DECL_RESULT (subr), subr))
4072 /* Returning something that won't go in a register. */
4073 rtx value_address = 0;
4075 #ifdef PCC_STATIC_STRUCT_RETURN
4076 if (current_function_returns_pcc_struct)
4078 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4079 value_address = assemble_static_space (size);
4081 else
4082 #endif
4084 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4085 /* Expect to be passed the address of a place to store the value.
4086 If it is passed as an argument, assign_parms will take care of
4087 it. */
4088 if (sv)
4090 value_address = gen_reg_rtx (Pmode);
4091 emit_move_insn (value_address, sv);
4094 if (value_address)
4096 rtx x = value_address;
4097 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4099 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4100 set_mem_attributes (x, DECL_RESULT (subr), 1);
4102 SET_DECL_RTL (DECL_RESULT (subr), x);
4105 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4106 /* If return mode is void, this decl rtl should not be used. */
4107 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4108 else
4110 /* Compute the return values into a pseudo reg, which we will copy
4111 into the true return register after the cleanups are done. */
4112 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4113 if (TYPE_MODE (return_type) != BLKmode
4114 && targetm.calls.return_in_msb (return_type))
4115 /* expand_function_end will insert the appropriate padding in
4116 this case. Use the return value's natural (unpadded) mode
4117 within the function proper. */
4118 SET_DECL_RTL (DECL_RESULT (subr),
4119 gen_reg_rtx (TYPE_MODE (return_type)));
4120 else
4122 /* In order to figure out what mode to use for the pseudo, we
4123 figure out what the mode of the eventual return register will
4124 actually be, and use that. */
4125 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4127 /* Structures that are returned in registers are not
4128 aggregate_value_p, so we may see a PARALLEL or a REG. */
4129 if (REG_P (hard_reg))
4130 SET_DECL_RTL (DECL_RESULT (subr),
4131 gen_reg_rtx (GET_MODE (hard_reg)));
4132 else
4134 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4135 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4139 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4140 result to the real return register(s). */
4141 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4144 /* Initialize rtx for parameters and local variables.
4145 In some cases this requires emitting insns. */
4146 assign_parms (subr);
4148 /* If function gets a static chain arg, store it. */
4149 if (cfun->static_chain_decl)
4151 tree parm = cfun->static_chain_decl;
4152 rtx local = gen_reg_rtx (Pmode);
4154 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4155 SET_DECL_RTL (parm, local);
4156 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4158 emit_move_insn (local, static_chain_incoming_rtx);
4161 /* If the function receives a non-local goto, then store the
4162 bits we need to restore the frame pointer. */
4163 if (cfun->nonlocal_goto_save_area)
4165 tree t_save;
4166 rtx r_save;
4168 /* ??? We need to do this save early. Unfortunately here is
4169 before the frame variable gets declared. Help out... */
4170 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4172 t_save = build4 (ARRAY_REF, ptr_type_node,
4173 cfun->nonlocal_goto_save_area,
4174 integer_zero_node, NULL_TREE, NULL_TREE);
4175 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4176 r_save = convert_memory_address (Pmode, r_save);
4178 emit_move_insn (r_save, virtual_stack_vars_rtx);
4179 update_nonlocal_goto_save_area ();
4182 /* The following was moved from init_function_start.
4183 The move is supposed to make sdb output more accurate. */
4184 /* Indicate the beginning of the function body,
4185 as opposed to parm setup. */
4186 emit_note (NOTE_INSN_FUNCTION_BEG);
4188 gcc_assert (NOTE_P (get_last_insn ()));
4190 parm_birth_insn = get_last_insn ();
4192 if (current_function_profile)
4194 #ifdef PROFILE_HOOK
4195 PROFILE_HOOK (current_function_funcdef_no);
4196 #endif
4199 /* After the display initializations is where the stack checking
4200 probe should go. */
4201 if(flag_stack_check)
4202 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4204 /* Make sure there is a line number after the function entry setup code. */
4205 force_next_line_note ();
4208 /* Undo the effects of init_dummy_function_start. */
4209 void
4210 expand_dummy_function_end (void)
4212 /* End any sequences that failed to be closed due to syntax errors. */
4213 while (in_sequence_p ())
4214 end_sequence ();
4216 /* Outside function body, can't compute type's actual size
4217 until next function's body starts. */
4219 free_after_parsing (cfun);
4220 free_after_compilation (cfun);
4221 cfun = 0;
4224 /* Call DOIT for each hard register used as a return value from
4225 the current function. */
4227 void
4228 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4230 rtx outgoing = current_function_return_rtx;
4232 if (! outgoing)
4233 return;
4235 if (REG_P (outgoing))
4236 (*doit) (outgoing, arg);
4237 else if (GET_CODE (outgoing) == PARALLEL)
4239 int i;
4241 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4243 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4245 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4246 (*doit) (x, arg);
4251 static void
4252 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4254 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4257 void
4258 clobber_return_register (void)
4260 diddle_return_value (do_clobber_return_reg, NULL);
4262 /* In case we do use pseudo to return value, clobber it too. */
4263 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4265 tree decl_result = DECL_RESULT (current_function_decl);
4266 rtx decl_rtl = DECL_RTL (decl_result);
4267 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4269 do_clobber_return_reg (decl_rtl, NULL);
4274 static void
4275 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4277 emit_insn (gen_rtx_USE (VOIDmode, reg));
4280 static void
4281 use_return_register (void)
4283 diddle_return_value (do_use_return_reg, NULL);
4286 /* Possibly warn about unused parameters. */
4287 void
4288 do_warn_unused_parameter (tree fn)
4290 tree decl;
4292 for (decl = DECL_ARGUMENTS (fn);
4293 decl; decl = TREE_CHAIN (decl))
4294 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4295 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4296 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4299 static GTY(()) rtx initial_trampoline;
4301 /* Generate RTL for the end of the current function. */
4303 void
4304 expand_function_end (void)
4306 rtx clobber_after;
4308 /* If arg_pointer_save_area was referenced only from a nested
4309 function, we will not have initialized it yet. Do that now. */
4310 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4311 get_arg_pointer_save_area (cfun);
4313 /* If we are doing stack checking and this function makes calls,
4314 do a stack probe at the start of the function to ensure we have enough
4315 space for another stack frame. */
4316 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4318 rtx insn, seq;
4320 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4321 if (CALL_P (insn))
4323 start_sequence ();
4324 probe_stack_range (STACK_CHECK_PROTECT,
4325 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4326 seq = get_insns ();
4327 end_sequence ();
4328 emit_insn_before (seq, stack_check_probe_note);
4329 break;
4333 /* Possibly warn about unused parameters.
4334 When frontend does unit-at-a-time, the warning is already
4335 issued at finalization time. */
4336 if (warn_unused_parameter
4337 && !lang_hooks.callgraph.expand_function)
4338 do_warn_unused_parameter (current_function_decl);
4340 /* End any sequences that failed to be closed due to syntax errors. */
4341 while (in_sequence_p ())
4342 end_sequence ();
4344 clear_pending_stack_adjust ();
4345 do_pending_stack_adjust ();
4347 /* Mark the end of the function body.
4348 If control reaches this insn, the function can drop through
4349 without returning a value. */
4350 emit_note (NOTE_INSN_FUNCTION_END);
4352 /* Must mark the last line number note in the function, so that the test
4353 coverage code can avoid counting the last line twice. This just tells
4354 the code to ignore the immediately following line note, since there
4355 already exists a copy of this note somewhere above. This line number
4356 note is still needed for debugging though, so we can't delete it. */
4357 if (flag_test_coverage)
4358 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4360 /* Output a linenumber for the end of the function.
4361 SDB depends on this. */
4362 force_next_line_note ();
4363 emit_line_note (input_location);
4365 /* Before the return label (if any), clobber the return
4366 registers so that they are not propagated live to the rest of
4367 the function. This can only happen with functions that drop
4368 through; if there had been a return statement, there would
4369 have either been a return rtx, or a jump to the return label.
4371 We delay actual code generation after the current_function_value_rtx
4372 is computed. */
4373 clobber_after = get_last_insn ();
4375 /* Output the label for the actual return from the function. */
4376 emit_label (return_label);
4378 #ifdef TARGET_PROFILER_EPILOGUE
4379 if (current_function_profile && TARGET_PROFILER_EPILOGUE)
4381 static rtx mexitcount_libfunc;
4382 static int initialized;
4384 if (!initialized)
4386 mexitcount_libfunc = init_one_libfunc (".mexitcount");
4387 initialized = 0;
4389 emit_library_call (mexitcount_libfunc, LCT_NORMAL, VOIDmode, 0);
4391 #endif
4393 if (USING_SJLJ_EXCEPTIONS)
4395 /* Let except.c know where it should emit the call to unregister
4396 the function context for sjlj exceptions. */
4397 if (flag_exceptions)
4398 sjlj_emit_function_exit_after (get_last_insn ());
4400 else
4402 /* @@@ This is a kludge. We want to ensure that instructions that
4403 may trap are not moved into the epilogue by scheduling, because
4404 we don't always emit unwind information for the epilogue.
4405 However, not all machine descriptions define a blockage insn, so
4406 emit an ASM_INPUT to act as one. */
4407 if (flag_non_call_exceptions)
4408 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4411 /* If this is an implementation of throw, do what's necessary to
4412 communicate between __builtin_eh_return and the epilogue. */
4413 expand_eh_return ();
4415 /* If scalar return value was computed in a pseudo-reg, or was a named
4416 return value that got dumped to the stack, copy that to the hard
4417 return register. */
4418 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4420 tree decl_result = DECL_RESULT (current_function_decl);
4421 rtx decl_rtl = DECL_RTL (decl_result);
4423 if (REG_P (decl_rtl)
4424 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4425 : DECL_REGISTER (decl_result))
4427 rtx real_decl_rtl = current_function_return_rtx;
4429 /* This should be set in assign_parms. */
4430 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4432 /* If this is a BLKmode structure being returned in registers,
4433 then use the mode computed in expand_return. Note that if
4434 decl_rtl is memory, then its mode may have been changed,
4435 but that current_function_return_rtx has not. */
4436 if (GET_MODE (real_decl_rtl) == BLKmode)
4437 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4439 /* If a non-BLKmode return value should be padded at the least
4440 significant end of the register, shift it left by the appropriate
4441 amount. BLKmode results are handled using the group load/store
4442 machinery. */
4443 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4444 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4446 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4447 REGNO (real_decl_rtl)),
4448 decl_rtl);
4449 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4451 /* If a named return value dumped decl_return to memory, then
4452 we may need to re-do the PROMOTE_MODE signed/unsigned
4453 extension. */
4454 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4456 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4458 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4459 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4460 &unsignedp, 1);
4462 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4464 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4466 /* If expand_function_start has created a PARALLEL for decl_rtl,
4467 move the result to the real return registers. Otherwise, do
4468 a group load from decl_rtl for a named return. */
4469 if (GET_CODE (decl_rtl) == PARALLEL)
4470 emit_group_move (real_decl_rtl, decl_rtl);
4471 else
4472 emit_group_load (real_decl_rtl, decl_rtl,
4473 TREE_TYPE (decl_result),
4474 int_size_in_bytes (TREE_TYPE (decl_result)));
4476 /* In the case of complex integer modes smaller than a word, we'll
4477 need to generate some non-trivial bitfield insertions. Do that
4478 on a pseudo and not the hard register. */
4479 else if (GET_CODE (decl_rtl) == CONCAT
4480 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4481 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4483 int old_generating_concat_p;
4484 rtx tmp;
4486 old_generating_concat_p = generating_concat_p;
4487 generating_concat_p = 0;
4488 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4489 generating_concat_p = old_generating_concat_p;
4491 emit_move_insn (tmp, decl_rtl);
4492 emit_move_insn (real_decl_rtl, tmp);
4494 else
4495 emit_move_insn (real_decl_rtl, decl_rtl);
4499 /* If returning a structure, arrange to return the address of the value
4500 in a place where debuggers expect to find it.
4502 If returning a structure PCC style,
4503 the caller also depends on this value.
4504 And current_function_returns_pcc_struct is not necessarily set. */
4505 if (current_function_returns_struct
4506 || current_function_returns_pcc_struct)
4508 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4509 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4510 rtx outgoing;
4512 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4513 type = TREE_TYPE (type);
4514 else
4515 value_address = XEXP (value_address, 0);
4517 outgoing = targetm.calls.function_value (build_pointer_type (type),
4518 current_function_decl, true);
4520 /* Mark this as a function return value so integrate will delete the
4521 assignment and USE below when inlining this function. */
4522 REG_FUNCTION_VALUE_P (outgoing) = 1;
4524 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4525 value_address = convert_memory_address (GET_MODE (outgoing),
4526 value_address);
4528 emit_move_insn (outgoing, value_address);
4530 /* Show return register used to hold result (in this case the address
4531 of the result. */
4532 current_function_return_rtx = outgoing;
4535 /* Emit the actual code to clobber return register. */
4537 rtx seq;
4539 start_sequence ();
4540 clobber_return_register ();
4541 expand_naked_return ();
4542 seq = get_insns ();
4543 end_sequence ();
4545 emit_insn_after (seq, clobber_after);
4548 /* Output the label for the naked return from the function. */
4549 emit_label (naked_return_label);
4551 /* If stack protection is enabled for this function, check the guard. */
4552 if (cfun->stack_protect_guard)
4553 stack_protect_epilogue ();
4555 /* If we had calls to alloca, and this machine needs
4556 an accurate stack pointer to exit the function,
4557 insert some code to save and restore the stack pointer. */
4558 if (! EXIT_IGNORE_STACK
4559 && current_function_calls_alloca)
4561 rtx tem = 0;
4563 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4564 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4567 /* ??? This should no longer be necessary since stupid is no longer with
4568 us, but there are some parts of the compiler (eg reload_combine, and
4569 sh mach_dep_reorg) that still try and compute their own lifetime info
4570 instead of using the general framework. */
4571 use_return_register ();
4575 get_arg_pointer_save_area (struct function *f)
4577 rtx ret = f->x_arg_pointer_save_area;
4579 if (! ret)
4581 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4582 f->x_arg_pointer_save_area = ret;
4585 if (f == cfun && ! f->arg_pointer_save_area_init)
4587 rtx seq;
4589 /* Save the arg pointer at the beginning of the function. The
4590 generated stack slot may not be a valid memory address, so we
4591 have to check it and fix it if necessary. */
4592 start_sequence ();
4593 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4594 seq = get_insns ();
4595 end_sequence ();
4597 push_topmost_sequence ();
4598 emit_insn_after (seq, entry_of_function ());
4599 pop_topmost_sequence ();
4602 return ret;
4605 /* Extend a vector that records the INSN_UIDs of INSNS
4606 (a list of one or more insns). */
4608 static void
4609 record_insns (rtx insns, VEC(int,heap) **vecp)
4611 rtx tmp;
4613 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4614 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4617 /* Set the locator of the insn chain starting at INSN to LOC. */
4618 static void
4619 set_insn_locators (rtx insn, int loc)
4621 while (insn != NULL_RTX)
4623 if (INSN_P (insn))
4624 INSN_LOCATOR (insn) = loc;
4625 insn = NEXT_INSN (insn);
4629 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4630 be running after reorg, SEQUENCE rtl is possible. */
4632 static int
4633 contains (rtx insn, VEC(int,heap) **vec)
4635 int i, j;
4637 if (NONJUMP_INSN_P (insn)
4638 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4640 int count = 0;
4641 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4642 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4643 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4644 == VEC_index (int, *vec, j))
4645 count++;
4646 return count;
4648 else
4650 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4651 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4652 return 1;
4654 return 0;
4658 prologue_epilogue_contains (rtx insn)
4660 if (contains (insn, &prologue))
4661 return 1;
4662 if (contains (insn, &epilogue))
4663 return 1;
4664 return 0;
4668 sibcall_epilogue_contains (rtx insn)
4670 if (sibcall_epilogue)
4671 return contains (insn, &sibcall_epilogue);
4672 return 0;
4675 #ifdef HAVE_return
4676 /* Insert gen_return at the end of block BB. This also means updating
4677 block_for_insn appropriately. */
4679 static void
4680 emit_return_into_block (basic_block bb, rtx line_note)
4682 emit_jump_insn_after (gen_return (), BB_END (bb));
4683 if (line_note)
4684 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4686 #endif /* HAVE_return */
4688 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4690 /* These functions convert the epilogue into a variant that does not
4691 modify the stack pointer. This is used in cases where a function
4692 returns an object whose size is not known until it is computed.
4693 The called function leaves the object on the stack, leaves the
4694 stack depressed, and returns a pointer to the object.
4696 What we need to do is track all modifications and references to the
4697 stack pointer, deleting the modifications and changing the
4698 references to point to the location the stack pointer would have
4699 pointed to had the modifications taken place.
4701 These functions need to be portable so we need to make as few
4702 assumptions about the epilogue as we can. However, the epilogue
4703 basically contains three things: instructions to reset the stack
4704 pointer, instructions to reload registers, possibly including the
4705 frame pointer, and an instruction to return to the caller.
4707 We must be sure of what a relevant epilogue insn is doing. We also
4708 make no attempt to validate the insns we make since if they are
4709 invalid, we probably can't do anything valid. The intent is that
4710 these routines get "smarter" as more and more machines start to use
4711 them and they try operating on different epilogues.
4713 We use the following structure to track what the part of the
4714 epilogue that we've already processed has done. We keep two copies
4715 of the SP equivalence, one for use during the insn we are
4716 processing and one for use in the next insn. The difference is
4717 because one part of a PARALLEL may adjust SP and the other may use
4718 it. */
4720 struct epi_info
4722 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4723 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4724 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4725 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4726 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4727 should be set to once we no longer need
4728 its value. */
4729 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4730 for registers. */
4733 static void handle_epilogue_set (rtx, struct epi_info *);
4734 static void update_epilogue_consts (rtx, rtx, void *);
4735 static void emit_equiv_load (struct epi_info *);
4737 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4738 no modifications to the stack pointer. Return the new list of insns. */
4740 static rtx
4741 keep_stack_depressed (rtx insns)
4743 int j;
4744 struct epi_info info;
4745 rtx insn, next;
4747 /* If the epilogue is just a single instruction, it must be OK as is. */
4748 if (NEXT_INSN (insns) == NULL_RTX)
4749 return insns;
4751 /* Otherwise, start a sequence, initialize the information we have, and
4752 process all the insns we were given. */
4753 start_sequence ();
4755 info.sp_equiv_reg = stack_pointer_rtx;
4756 info.sp_offset = 0;
4757 info.equiv_reg_src = 0;
4759 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4760 info.const_equiv[j] = 0;
4762 insn = insns;
4763 next = NULL_RTX;
4764 while (insn != NULL_RTX)
4766 next = NEXT_INSN (insn);
4768 if (!INSN_P (insn))
4770 add_insn (insn);
4771 insn = next;
4772 continue;
4775 /* If this insn references the register that SP is equivalent to and
4776 we have a pending load to that register, we must force out the load
4777 first and then indicate we no longer know what SP's equivalent is. */
4778 if (info.equiv_reg_src != 0
4779 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4781 emit_equiv_load (&info);
4782 info.sp_equiv_reg = 0;
4785 info.new_sp_equiv_reg = info.sp_equiv_reg;
4786 info.new_sp_offset = info.sp_offset;
4788 /* If this is a (RETURN) and the return address is on the stack,
4789 update the address and change to an indirect jump. */
4790 if (GET_CODE (PATTERN (insn)) == RETURN
4791 || (GET_CODE (PATTERN (insn)) == PARALLEL
4792 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4794 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4795 rtx base = 0;
4796 HOST_WIDE_INT offset = 0;
4797 rtx jump_insn, jump_set;
4799 /* If the return address is in a register, we can emit the insn
4800 unchanged. Otherwise, it must be a MEM and we see what the
4801 base register and offset are. In any case, we have to emit any
4802 pending load to the equivalent reg of SP, if any. */
4803 if (REG_P (retaddr))
4805 emit_equiv_load (&info);
4806 add_insn (insn);
4807 insn = next;
4808 continue;
4810 else
4812 rtx ret_ptr;
4813 gcc_assert (MEM_P (retaddr));
4815 ret_ptr = XEXP (retaddr, 0);
4817 if (REG_P (ret_ptr))
4819 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4820 offset = 0;
4822 else
4824 gcc_assert (GET_CODE (ret_ptr) == PLUS
4825 && REG_P (XEXP (ret_ptr, 0))
4826 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4827 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4828 offset = INTVAL (XEXP (ret_ptr, 1));
4832 /* If the base of the location containing the return pointer
4833 is SP, we must update it with the replacement address. Otherwise,
4834 just build the necessary MEM. */
4835 retaddr = plus_constant (base, offset);
4836 if (base == stack_pointer_rtx)
4837 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4838 plus_constant (info.sp_equiv_reg,
4839 info.sp_offset));
4841 retaddr = gen_rtx_MEM (Pmode, retaddr);
4842 MEM_NOTRAP_P (retaddr) = 1;
4844 /* If there is a pending load to the equivalent register for SP
4845 and we reference that register, we must load our address into
4846 a scratch register and then do that load. */
4847 if (info.equiv_reg_src
4848 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4850 unsigned int regno;
4851 rtx reg;
4853 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4854 if (HARD_REGNO_MODE_OK (regno, Pmode)
4855 && !fixed_regs[regno]
4856 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4857 && !REGNO_REG_SET_P
4858 (EXIT_BLOCK_PTR->il.rtl->global_live_at_start, regno)
4859 && !refers_to_regno_p (regno,
4860 regno + hard_regno_nregs[regno]
4861 [Pmode],
4862 info.equiv_reg_src, NULL)
4863 && info.const_equiv[regno] == 0)
4864 break;
4866 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4868 reg = gen_rtx_REG (Pmode, regno);
4869 emit_move_insn (reg, retaddr);
4870 retaddr = reg;
4873 emit_equiv_load (&info);
4874 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4876 /* Show the SET in the above insn is a RETURN. */
4877 jump_set = single_set (jump_insn);
4878 gcc_assert (jump_set);
4879 SET_IS_RETURN_P (jump_set) = 1;
4882 /* If SP is not mentioned in the pattern and its equivalent register, if
4883 any, is not modified, just emit it. Otherwise, if neither is set,
4884 replace the reference to SP and emit the insn. If none of those are
4885 true, handle each SET individually. */
4886 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4887 && (info.sp_equiv_reg == stack_pointer_rtx
4888 || !reg_set_p (info.sp_equiv_reg, insn)))
4889 add_insn (insn);
4890 else if (! reg_set_p (stack_pointer_rtx, insn)
4891 && (info.sp_equiv_reg == stack_pointer_rtx
4892 || !reg_set_p (info.sp_equiv_reg, insn)))
4894 int changed;
4896 changed = validate_replace_rtx (stack_pointer_rtx,
4897 plus_constant (info.sp_equiv_reg,
4898 info.sp_offset),
4899 insn);
4900 gcc_assert (changed);
4902 add_insn (insn);
4904 else if (GET_CODE (PATTERN (insn)) == SET)
4905 handle_epilogue_set (PATTERN (insn), &info);
4906 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4908 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4909 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4910 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4912 else
4913 add_insn (insn);
4915 info.sp_equiv_reg = info.new_sp_equiv_reg;
4916 info.sp_offset = info.new_sp_offset;
4918 /* Now update any constants this insn sets. */
4919 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4920 insn = next;
4923 insns = get_insns ();
4924 end_sequence ();
4925 return insns;
4928 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4929 structure that contains information about what we've seen so far. We
4930 process this SET by either updating that data or by emitting one or
4931 more insns. */
4933 static void
4934 handle_epilogue_set (rtx set, struct epi_info *p)
4936 /* First handle the case where we are setting SP. Record what it is being
4937 set from, which we must be able to determine */
4938 if (reg_set_p (stack_pointer_rtx, set))
4940 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4942 if (GET_CODE (SET_SRC (set)) == PLUS)
4944 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4945 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4946 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4947 else
4949 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4950 && (REGNO (XEXP (SET_SRC (set), 1))
4951 < FIRST_PSEUDO_REGISTER)
4952 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4953 p->new_sp_offset
4954 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4957 else
4958 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4960 /* If we are adjusting SP, we adjust from the old data. */
4961 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4963 p->new_sp_equiv_reg = p->sp_equiv_reg;
4964 p->new_sp_offset += p->sp_offset;
4967 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
4969 return;
4972 /* Next handle the case where we are setting SP's equivalent
4973 register. We must not already have a value to set it to. We
4974 could update, but there seems little point in handling that case.
4975 Note that we have to allow for the case where we are setting the
4976 register set in the previous part of a PARALLEL inside a single
4977 insn. But use the old offset for any updates within this insn.
4978 We must allow for the case where the register is being set in a
4979 different (usually wider) mode than Pmode). */
4980 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4982 gcc_assert (!p->equiv_reg_src
4983 && REG_P (p->new_sp_equiv_reg)
4984 && REG_P (SET_DEST (set))
4985 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
4986 <= BITS_PER_WORD)
4987 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
4988 p->equiv_reg_src
4989 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4990 plus_constant (p->sp_equiv_reg,
4991 p->sp_offset));
4994 /* Otherwise, replace any references to SP in the insn to its new value
4995 and emit the insn. */
4996 else
4998 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4999 plus_constant (p->sp_equiv_reg,
5000 p->sp_offset));
5001 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
5002 plus_constant (p->sp_equiv_reg,
5003 p->sp_offset));
5004 emit_insn (set);
5008 /* Update the tracking information for registers set to constants. */
5010 static void
5011 update_epilogue_consts (rtx dest, rtx x, void *data)
5013 struct epi_info *p = (struct epi_info *) data;
5014 rtx new;
5016 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5017 return;
5019 /* If we are either clobbering a register or doing a partial set,
5020 show we don't know the value. */
5021 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
5022 p->const_equiv[REGNO (dest)] = 0;
5024 /* If we are setting it to a constant, record that constant. */
5025 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
5026 p->const_equiv[REGNO (dest)] = SET_SRC (x);
5028 /* If this is a binary operation between a register we have been tracking
5029 and a constant, see if we can compute a new constant value. */
5030 else if (ARITHMETIC_P (SET_SRC (x))
5031 && REG_P (XEXP (SET_SRC (x), 0))
5032 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
5033 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
5034 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
5035 && 0 != (new = simplify_binary_operation
5036 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
5037 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
5038 XEXP (SET_SRC (x), 1)))
5039 && GET_CODE (new) == CONST_INT)
5040 p->const_equiv[REGNO (dest)] = new;
5042 /* Otherwise, we can't do anything with this value. */
5043 else
5044 p->const_equiv[REGNO (dest)] = 0;
5047 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
5049 static void
5050 emit_equiv_load (struct epi_info *p)
5052 if (p->equiv_reg_src != 0)
5054 rtx dest = p->sp_equiv_reg;
5056 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5057 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5058 REGNO (p->sp_equiv_reg));
5060 emit_move_insn (dest, p->equiv_reg_src);
5061 p->equiv_reg_src = 0;
5064 #endif
5066 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5067 this into place with notes indicating where the prologue ends and where
5068 the epilogue begins. Update the basic block information when possible. */
5070 void
5071 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
5073 int inserted = 0;
5074 edge e;
5075 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5076 rtx seq;
5077 #endif
5078 #ifdef HAVE_prologue
5079 rtx prologue_end = NULL_RTX;
5080 #endif
5081 #if defined (HAVE_epilogue) || defined(HAVE_return)
5082 rtx epilogue_end = NULL_RTX;
5083 #endif
5084 edge_iterator ei;
5086 #ifdef HAVE_prologue
5087 if (HAVE_prologue)
5089 start_sequence ();
5090 seq = gen_prologue ();
5091 emit_insn (seq);
5093 /* Retain a map of the prologue insns. */
5094 record_insns (seq, &prologue);
5095 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
5097 #ifndef PROFILE_BEFORE_PROLOGUE
5098 /* Ensure that instructions are not moved into the prologue when
5099 profiling is on. The call to the profiling routine can be
5100 emitted within the live range of a call-clobbered register. */
5101 if (current_function_profile)
5102 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
5103 #endif
5105 seq = get_insns ();
5106 end_sequence ();
5107 set_insn_locators (seq, prologue_locator);
5109 /* Can't deal with multiple successors of the entry block
5110 at the moment. Function should always have at least one
5111 entry point. */
5112 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5114 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5115 inserted = 1;
5117 #endif
5119 /* If the exit block has no non-fake predecessors, we don't need
5120 an epilogue. */
5121 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5122 if ((e->flags & EDGE_FAKE) == 0)
5123 break;
5124 if (e == NULL)
5125 goto epilogue_done;
5127 #ifdef HAVE_return
5128 if (optimize && HAVE_return)
5130 /* If we're allowed to generate a simple return instruction,
5131 then by definition we don't need a full epilogue. Examine
5132 the block that falls through to EXIT. If it does not
5133 contain any code, examine its predecessors and try to
5134 emit (conditional) return instructions. */
5136 basic_block last;
5137 rtx label;
5139 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5140 if (e->flags & EDGE_FALLTHRU)
5141 break;
5142 if (e == NULL)
5143 goto epilogue_done;
5144 last = e->src;
5146 /* Verify that there are no active instructions in the last block. */
5147 label = BB_END (last);
5148 while (label && !LABEL_P (label))
5150 if (active_insn_p (label))
5151 break;
5152 label = PREV_INSN (label);
5155 if (BB_HEAD (last) == label && LABEL_P (label))
5157 edge_iterator ei2;
5158 rtx epilogue_line_note = NULL_RTX;
5160 /* Locate the line number associated with the closing brace,
5161 if we can find one. */
5162 for (seq = get_last_insn ();
5163 seq && ! active_insn_p (seq);
5164 seq = PREV_INSN (seq))
5165 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5167 epilogue_line_note = seq;
5168 break;
5171 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5173 basic_block bb = e->src;
5174 rtx jump;
5176 if (bb == ENTRY_BLOCK_PTR)
5178 ei_next (&ei2);
5179 continue;
5182 jump = BB_END (bb);
5183 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5185 ei_next (&ei2);
5186 continue;
5189 /* If we have an unconditional jump, we can replace that
5190 with a simple return instruction. */
5191 if (simplejump_p (jump))
5193 emit_return_into_block (bb, epilogue_line_note);
5194 delete_insn (jump);
5197 /* If we have a conditional jump, we can try to replace
5198 that with a conditional return instruction. */
5199 else if (condjump_p (jump))
5201 if (! redirect_jump (jump, 0, 0))
5203 ei_next (&ei2);
5204 continue;
5207 /* If this block has only one successor, it both jumps
5208 and falls through to the fallthru block, so we can't
5209 delete the edge. */
5210 if (single_succ_p (bb))
5212 ei_next (&ei2);
5213 continue;
5216 else
5218 ei_next (&ei2);
5219 continue;
5222 /* Fix up the CFG for the successful change we just made. */
5223 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5226 /* Emit a return insn for the exit fallthru block. Whether
5227 this is still reachable will be determined later. */
5229 emit_barrier_after (BB_END (last));
5230 emit_return_into_block (last, epilogue_line_note);
5231 epilogue_end = BB_END (last);
5232 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5233 goto epilogue_done;
5236 #endif
5237 /* Find the edge that falls through to EXIT. Other edges may exist
5238 due to RETURN instructions, but those don't need epilogues.
5239 There really shouldn't be a mixture -- either all should have
5240 been converted or none, however... */
5242 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5243 if (e->flags & EDGE_FALLTHRU)
5244 break;
5245 if (e == NULL)
5246 goto epilogue_done;
5248 #ifdef HAVE_epilogue
5249 if (HAVE_epilogue)
5251 start_sequence ();
5252 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5254 seq = gen_epilogue ();
5256 #ifdef INCOMING_RETURN_ADDR_RTX
5257 /* If this function returns with the stack depressed and we can support
5258 it, massage the epilogue to actually do that. */
5259 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5260 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5261 seq = keep_stack_depressed (seq);
5262 #endif
5264 emit_jump_insn (seq);
5266 /* Retain a map of the epilogue insns. */
5267 record_insns (seq, &epilogue);
5268 set_insn_locators (seq, epilogue_locator);
5270 seq = get_insns ();
5271 end_sequence ();
5273 insert_insn_on_edge (seq, e);
5274 inserted = 1;
5276 else
5277 #endif
5279 basic_block cur_bb;
5281 if (! next_active_insn (BB_END (e->src)))
5282 goto epilogue_done;
5283 /* We have a fall-through edge to the exit block, the source is not
5284 at the end of the function, and there will be an assembler epilogue
5285 at the end of the function.
5286 We can't use force_nonfallthru here, because that would try to
5287 use return. Inserting a jump 'by hand' is extremely messy, so
5288 we take advantage of cfg_layout_finalize using
5289 fixup_fallthru_exit_predecessor. */
5290 cfg_layout_initialize (0);
5291 FOR_EACH_BB (cur_bb)
5292 if (cur_bb->index >= NUM_FIXED_BLOCKS
5293 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5294 cur_bb->aux = cur_bb->next_bb;
5295 cfg_layout_finalize ();
5297 epilogue_done:
5299 if (inserted)
5300 commit_edge_insertions ();
5302 #ifdef HAVE_sibcall_epilogue
5303 /* Emit sibling epilogues before any sibling call sites. */
5304 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5306 basic_block bb = e->src;
5307 rtx insn = BB_END (bb);
5309 if (!CALL_P (insn)
5310 || ! SIBLING_CALL_P (insn))
5312 ei_next (&ei);
5313 continue;
5316 start_sequence ();
5317 emit_insn (gen_sibcall_epilogue ());
5318 seq = get_insns ();
5319 end_sequence ();
5321 /* Retain a map of the epilogue insns. Used in life analysis to
5322 avoid getting rid of sibcall epilogue insns. Do this before we
5323 actually emit the sequence. */
5324 record_insns (seq, &sibcall_epilogue);
5325 set_insn_locators (seq, epilogue_locator);
5327 emit_insn_before (seq, insn);
5328 ei_next (&ei);
5330 #endif
5332 #ifdef HAVE_prologue
5333 /* This is probably all useless now that we use locators. */
5334 if (prologue_end)
5336 rtx insn, prev;
5338 /* GDB handles `break f' by setting a breakpoint on the first
5339 line note after the prologue. Which means (1) that if
5340 there are line number notes before where we inserted the
5341 prologue we should move them, and (2) we should generate a
5342 note before the end of the first basic block, if there isn't
5343 one already there.
5345 ??? This behavior is completely broken when dealing with
5346 multiple entry functions. We simply place the note always
5347 into first basic block and let alternate entry points
5348 to be missed.
5351 for (insn = prologue_end; insn; insn = prev)
5353 prev = PREV_INSN (insn);
5354 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5356 /* Note that we cannot reorder the first insn in the
5357 chain, since rest_of_compilation relies on that
5358 remaining constant. */
5359 if (prev == NULL)
5360 break;
5361 reorder_insns (insn, insn, prologue_end);
5365 /* Find the last line number note in the first block. */
5366 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5367 insn != prologue_end && insn;
5368 insn = PREV_INSN (insn))
5369 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5370 break;
5372 /* If we didn't find one, make a copy of the first line number
5373 we run across. */
5374 if (! insn)
5376 for (insn = next_active_insn (prologue_end);
5377 insn;
5378 insn = PREV_INSN (insn))
5379 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5381 emit_note_copy_after (insn, prologue_end);
5382 break;
5386 #endif
5387 #ifdef HAVE_epilogue
5388 if (epilogue_end)
5390 rtx insn, next;
5392 /* Similarly, move any line notes that appear after the epilogue.
5393 There is no need, however, to be quite so anal about the existence
5394 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5395 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5396 info generation. */
5397 for (insn = epilogue_end; insn; insn = next)
5399 next = NEXT_INSN (insn);
5400 if (NOTE_P (insn)
5401 && (NOTE_LINE_NUMBER (insn) > 0
5402 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5403 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5404 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5407 #endif
5410 /* Reposition the prologue-end and epilogue-begin notes after instruction
5411 scheduling and delayed branch scheduling. */
5413 void
5414 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5416 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5417 rtx insn, last, note;
5418 int len;
5420 if ((len = VEC_length (int, prologue)) > 0)
5422 last = 0, note = 0;
5424 /* Scan from the beginning until we reach the last prologue insn.
5425 We apparently can't depend on basic_block_{head,end} after
5426 reorg has run. */
5427 for (insn = f; insn; insn = NEXT_INSN (insn))
5429 if (NOTE_P (insn))
5431 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5432 note = insn;
5434 else if (contains (insn, &prologue))
5436 last = insn;
5437 if (--len == 0)
5438 break;
5442 if (last)
5444 /* Find the prologue-end note if we haven't already, and
5445 move it to just after the last prologue insn. */
5446 if (note == 0)
5448 for (note = last; (note = NEXT_INSN (note));)
5449 if (NOTE_P (note)
5450 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5451 break;
5454 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5455 if (LABEL_P (last))
5456 last = NEXT_INSN (last);
5457 reorder_insns (note, note, last);
5461 if ((len = VEC_length (int, epilogue)) > 0)
5463 last = 0, note = 0;
5465 /* Scan from the end until we reach the first epilogue insn.
5466 We apparently can't depend on basic_block_{head,end} after
5467 reorg has run. */
5468 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5470 if (NOTE_P (insn))
5472 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5473 note = insn;
5475 else if (contains (insn, &epilogue))
5477 last = insn;
5478 if (--len == 0)
5479 break;
5483 if (last)
5485 /* Find the epilogue-begin note if we haven't already, and
5486 move it to just before the first epilogue insn. */
5487 if (note == 0)
5489 for (note = insn; (note = PREV_INSN (note));)
5490 if (NOTE_P (note)
5491 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5492 break;
5495 if (PREV_INSN (last) != note)
5496 reorder_insns (note, note, PREV_INSN (last));
5499 #endif /* HAVE_prologue or HAVE_epilogue */
5502 /* Resets insn_block_boundaries array. */
5504 void
5505 reset_block_changes (void)
5507 cfun->ib_boundaries_block = VEC_alloc (tree, gc, 100);
5508 VEC_quick_push (tree, cfun->ib_boundaries_block, NULL_TREE);
5511 /* Record the boundary for BLOCK. */
5512 void
5513 record_block_change (tree block)
5515 int i, n;
5516 tree last_block;
5518 if (!block)
5519 return;
5521 if(!cfun->ib_boundaries_block)
5522 return;
5524 last_block = VEC_pop (tree, cfun->ib_boundaries_block);
5525 n = get_max_uid ();
5526 for (i = VEC_length (tree, cfun->ib_boundaries_block); i < n; i++)
5527 VEC_safe_push (tree, gc, cfun->ib_boundaries_block, last_block);
5529 VEC_safe_push (tree, gc, cfun->ib_boundaries_block, block);
5532 /* Finishes record of boundaries. */
5533 void
5534 finalize_block_changes (void)
5536 record_block_change (DECL_INITIAL (current_function_decl));
5539 /* For INSN return the BLOCK it belongs to. */
5540 void
5541 check_block_change (rtx insn, tree *block)
5543 unsigned uid = INSN_UID (insn);
5545 if (uid >= VEC_length (tree, cfun->ib_boundaries_block))
5546 return;
5548 *block = VEC_index (tree, cfun->ib_boundaries_block, uid);
5551 /* Releases the ib_boundaries_block records. */
5552 void
5553 free_block_changes (void)
5555 VEC_free (tree, gc, cfun->ib_boundaries_block);
5558 /* Returns the name of the current function. */
5559 const char *
5560 current_function_name (void)
5562 return lang_hooks.decl_printable_name (cfun->decl, 2);
5566 static unsigned int
5567 rest_of_handle_check_leaf_regs (void)
5569 #ifdef LEAF_REGISTERS
5570 current_function_uses_only_leaf_regs
5571 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5572 #endif
5573 return 0;
5576 /* Insert a TYPE into the used types hash table of CFUN. */
5577 static void
5578 used_types_insert_helper (tree type, struct function *func)
5580 if (type != NULL && func != NULL)
5582 void **slot;
5584 if (func->used_types_hash == NULL)
5585 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5586 htab_eq_pointer, NULL);
5587 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5588 if (*slot == NULL)
5589 *slot = type;
5593 /* Given a type, insert it into the used hash table in cfun. */
5594 void
5595 used_types_insert (tree t)
5597 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5598 t = TREE_TYPE (t);
5599 t = TYPE_MAIN_VARIANT (t);
5600 if (debug_info_level > DINFO_LEVEL_NONE)
5601 used_types_insert_helper (t, cfun);
5604 struct tree_opt_pass pass_leaf_regs =
5606 NULL, /* name */
5607 NULL, /* gate */
5608 rest_of_handle_check_leaf_regs, /* execute */
5609 NULL, /* sub */
5610 NULL, /* next */
5611 0, /* static_pass_number */
5612 0, /* tv_id */
5613 0, /* properties_required */
5614 0, /* properties_provided */
5615 0, /* properties_destroyed */
5616 0, /* todo_flags_start */
5617 0, /* todo_flags_finish */
5618 0 /* letter */
5622 #include "gt-function.h"