2 * ntp_crypto.c - NTP version 4 public key routines
10 #include <sys/types.h>
11 #include <sys/param.h>
16 #include "ntp_stdlib.h"
17 #include "ntp_unixtime.h"
18 #include "ntp_string.h"
19 #include <ntp_random.h>
21 #include "openssl/asn1_mac.h"
22 #include "openssl/bn.h"
23 #include "openssl/err.h"
24 #include "openssl/evp.h"
25 #include "openssl/pem.h"
26 #include "openssl/rand.h"
27 #include "openssl/x509v3.h"
30 #include "ntp_syscall.h"
31 #endif /* KERNEL_PLL */
34 * Extension field message format
36 * These are always signed and saved before sending in network byte
37 * order. They must be converted to and from host byte order for
41 * | op | len | <- extension pointer
45 * | timestamp | <- value pointer
62 * The CRYPTO_RESP bit is set to 0 for requests, 1 for responses.
63 * Requests carry the association ID of the receiver; responses carry
64 * the association ID of the sender. Some messages include only the
65 * operation/length and association ID words and so have length 8
66 * octets. Ohers include the value structure and associated value and
67 * signature fields. These messages include the timestamp, filestamp,
68 * value and signature words and so have length at least 24 octets. The
69 * signature and/or value fields can be empty, in which case the
70 * respective length words are zero. An empty value with nonempty
71 * signature is syntactically valid, but semantically questionable.
73 * The filestamp represents the time when a cryptographic data file such
74 * as a public/private key pair is created. It follows every reference
75 * depending on that file and serves as a means to obsolete earlier data
76 * of the same type. The timestamp represents the time when the
77 * cryptographic data of the message were last signed. Creation of a
78 * cryptographic data file or signing a message can occur only when the
79 * creator or signor is synchronized to an authoritative source and
80 * proventicated to a trusted authority.
82 * Note there are four conditions required for server trust. First, the
83 * public key on the certificate must be verified, which involves a
84 * number of format, content and consistency checks. Next, the server
85 * identity must be confirmed by one of four schemes: private
86 * certificate, IFF scheme, GQ scheme or certificate trail hike to a
87 * self signed trusted certificate. Finally, the server signature must
93 #define TAI_1972 10 /* initial TAI offset (s) */
94 #define MAX_LEAP 100 /* max UTC leapseconds (s) */
95 #define VALUE_LEN (6 * 4) /* min response field length */
96 #define YEAR (60 * 60 * 24 * 365) /* seconds in year */
99 * Global cryptodata in host byte order
101 u_int32 crypto_flags
= 0x0; /* status word */
104 * Global cryptodata in network byte order
106 struct cert_info
*cinfo
= NULL
; /* certificate info/value */
107 struct value hostval
; /* host value */
108 struct value pubkey
; /* public key */
109 struct value tai_leap
; /* leapseconds table */
110 EVP_PKEY
*iffpar_pkey
= NULL
; /* IFF parameters */
111 EVP_PKEY
*gqpar_pkey
= NULL
; /* GQ parameters */
112 EVP_PKEY
*mvpar_pkey
= NULL
; /* MV parameters */
113 char *iffpar_file
= NULL
; /* IFF parameters file */
114 char *gqpar_file
= NULL
; /* GQ parameters file */
115 char *mvpar_file
= NULL
; /* MV parameters file */
118 * Private cryptodata in host byte order
120 static char *passwd
= NULL
; /* private key password */
121 static EVP_PKEY
*host_pkey
= NULL
; /* host key */
122 static EVP_PKEY
*sign_pkey
= NULL
; /* sign key */
123 static const EVP_MD
*sign_digest
= NULL
; /* sign digest */
124 static u_int sign_siglen
; /* sign key length */
125 static char *rand_file
= NULL
; /* random seed file */
126 static char *host_file
= NULL
; /* host key file */
127 static char *sign_file
= NULL
; /* sign key file */
128 static char *cert_file
= NULL
; /* certificate file */
129 static char *leap_file
= NULL
; /* leapseconds file */
130 static tstamp_t if_fstamp
= 0; /* IFF filestamp */
131 static tstamp_t gq_fstamp
= 0; /* GQ file stamp */
132 static tstamp_t mv_fstamp
= 0; /* MV filestamp */
133 static u_int ident_scheme
= 0; /* server identity scheme */
138 static int crypto_verify
P((struct exten
*, struct value
*,
140 static int crypto_encrypt
P((struct exten
*, struct value
*,
142 static int crypto_alice
P((struct peer
*, struct value
*));
143 static int crypto_alice2
P((struct peer
*, struct value
*));
144 static int crypto_alice3
P((struct peer
*, struct value
*));
145 static int crypto_bob
P((struct exten
*, struct value
*));
146 static int crypto_bob2
P((struct exten
*, struct value
*));
147 static int crypto_bob3
P((struct exten
*, struct value
*));
148 static int crypto_iff
P((struct exten
*, struct peer
*));
149 static int crypto_gq
P((struct exten
*, struct peer
*));
150 static int crypto_mv
P((struct exten
*, struct peer
*));
151 static u_int crypto_send
P((struct exten
*, struct value
*));
152 static tstamp_t crypto_time
P((void));
153 static u_long asn2ntp
P((ASN1_TIME
*));
154 static struct cert_info
*cert_parse
P((u_char
*, u_int
, tstamp_t
));
155 static int cert_sign
P((struct exten
*, struct value
*));
156 static int cert_valid
P((struct cert_info
*, EVP_PKEY
*));
157 static int cert_install
P((struct exten
*, struct peer
*));
158 static void cert_free
P((struct cert_info
*));
159 static EVP_PKEY
*crypto_key
P((char *, tstamp_t
*));
160 static int bighash
P((BIGNUM
*, BIGNUM
*));
161 static struct cert_info
*crypto_cert
P((char *));
162 static void crypto_tai
P((char *));
166 readlink(char * link
, char * file
, int len
) {
172 * session_key - generate session key
174 * This routine generates a session key from the source address,
175 * destination address, key ID and private value. The value of the
176 * session key is the MD5 hash of these values, while the next key ID is
177 * the first four octets of the hash.
179 * Returns the next key ID
183 struct sockaddr_storage
*srcadr
, /* source address */
184 struct sockaddr_storage
*dstadr
, /* destination address */
185 keyid_t keyno
, /* key ID */
186 keyid_t
private, /* private value */
187 u_long lifetime
/* key lifetime */
190 EVP_MD_CTX ctx
; /* message digest context */
191 u_char dgst
[EVP_MAX_MD_SIZE
]; /* message digest */
192 keyid_t keyid
; /* key identifer */
193 u_int32 header
[10]; /* data in network byte order */
200 * Generate the session key and key ID. If the lifetime is
201 * greater than zero, install the key and call it trusted.
204 switch(srcadr
->ss_family
) {
206 header
[0] = ((struct sockaddr_in
*)srcadr
)->sin_addr
.s_addr
;
207 header
[1] = ((struct sockaddr_in
*)dstadr
)->sin_addr
.s_addr
;
208 header
[2] = htonl(keyno
);
209 header
[3] = htonl(private);
210 hdlen
= 4 * sizeof(u_int32
);
214 memcpy(&header
[0], &GET_INADDR6(*srcadr
),
215 sizeof(struct in6_addr
));
216 memcpy(&header
[4], &GET_INADDR6(*dstadr
),
217 sizeof(struct in6_addr
));
218 header
[8] = htonl(keyno
);
219 header
[9] = htonl(private);
220 hdlen
= 10 * sizeof(u_int32
);
223 EVP_DigestInit(&ctx
, EVP_md5());
224 EVP_DigestUpdate(&ctx
, (u_char
*)header
, hdlen
);
225 EVP_DigestFinal(&ctx
, dgst
, &len
);
226 memcpy(&keyid
, dgst
, 4);
227 keyid
= ntohl(keyid
);
229 MD5auth_setkey(keyno
, dgst
, len
);
230 authtrust(keyno
, lifetime
);
235 "session_key: %s > %s %08x %08x hash %08x life %lu\n",
236 stoa(srcadr
), stoa(dstadr
), keyno
,
237 private, keyid
, lifetime
);
244 * make_keylist - generate key list
248 * XEVNT_PER host certificate expired
250 * This routine constructs a pseudo-random sequence by repeatedly
251 * hashing the session key starting from a given source address,
252 * destination address, private value and the next key ID of the
253 * preceeding session key. The last entry on the list is saved along
254 * with its sequence number and public signature.
258 struct peer
*peer
, /* peer structure pointer */
259 struct interface
*dstadr
/* interface */
262 EVP_MD_CTX ctx
; /* signature context */
263 tstamp_t tstamp
; /* NTP timestamp */
264 struct autokey
*ap
; /* autokey pointer */
265 struct value
*vp
; /* value pointer */
266 keyid_t keyid
= 0; /* next key ID */
267 keyid_t cookie
; /* private value */
276 * Allocate the key list if necessary.
278 tstamp
= crypto_time();
279 if (peer
->keylist
== NULL
)
280 peer
->keylist
= emalloc(sizeof(keyid_t
) *
284 * Generate an initial key ID which is unique and greater than
288 keyid
= (ntp_random() + NTP_MAXKEY
+ 1) & ((1 <<
289 sizeof(keyid_t
)) - 1);
290 if (authhavekey(keyid
))
296 * Generate up to NTP_MAXSESSION session keys. Stop if the
297 * next one would not be unique or not a session key ID or if
298 * it would expire before the next poll. The private value
299 * included in the hash is zero if broadcast mode, the peer
300 * cookie if client mode or the host cookie if symmetric modes.
302 mpoll
= 1 << min(peer
->ppoll
, peer
->hpoll
);
303 lifetime
= min(sys_automax
, NTP_MAXSESSION
* mpoll
);
304 if (peer
->hmode
== MODE_BROADCAST
)
307 cookie
= peer
->pcookie
;
308 for (i
= 0; i
< NTP_MAXSESSION
; i
++) {
309 peer
->keylist
[i
] = keyid
;
311 keyid
= session_key(&dstadr
->sin
, &peer
->srcadr
, keyid
,
314 if (auth_havekey(keyid
) || keyid
<= NTP_MAXKEY
||
320 * Save the last session key ID, sequence number and timestamp,
321 * then sign these values for later retrieval by the clients. Be
322 * careful not to use invalid key media. Use the public values
323 * timestamp as filestamp.
327 vp
->ptr
= emalloc(sizeof(struct autokey
));
328 ap
= (struct autokey
*)vp
->ptr
;
329 ap
->seq
= htonl(peer
->keynumber
);
330 ap
->key
= htonl(keyid
);
331 vp
->tstamp
= htonl(tstamp
);
332 vp
->fstamp
= hostval
.tstamp
;
333 vp
->vallen
= htonl(sizeof(struct autokey
));
336 if (tstamp
< cinfo
->first
|| tstamp
> cinfo
->last
)
340 vp
->sig
= emalloc(sign_siglen
);
341 EVP_SignInit(&ctx
, sign_digest
);
342 EVP_SignUpdate(&ctx
, (u_char
*)vp
, 12);
343 EVP_SignUpdate(&ctx
, vp
->ptr
, sizeof(struct autokey
));
344 if (EVP_SignFinal(&ctx
, vp
->sig
, &len
, sign_pkey
))
345 vp
->siglen
= htonl(len
);
347 msyslog(LOG_ERR
, "make_keys %s\n",
348 ERR_error_string(ERR_get_error(), NULL
));
349 peer
->flags
|= FLAG_ASSOC
;
353 printf("make_keys: %d %08x %08x ts %u fs %u poll %d\n",
354 ntohl(ap
->seq
), ntohl(ap
->key
), cookie
,
355 ntohl(vp
->tstamp
), ntohl(vp
->fstamp
), peer
->hpoll
);
362 * crypto_recv - parse extension fields
364 * This routine is called when the packet has been matched to an
365 * association and passed sanity, format and MAC checks. We believe the
366 * extension field values only if the field has proper format and
367 * length, the timestamp and filestamp are valid and the signature has
368 * valid length and is verified. There are a few cases where some values
369 * are believed even if the signature fails, but only if the proventic
374 struct peer
*peer
, /* peer structure pointer */
375 struct recvbuf
*rbufp
/* packet buffer pointer */
378 const EVP_MD
*dp
; /* message digest algorithm */
379 u_int32
*pkt
; /* receive packet pointer */
380 struct autokey
*ap
, *bp
; /* autokey pointer */
381 struct exten
*ep
, *fp
; /* extension pointers */
382 int has_mac
; /* length of MAC field */
383 int authlen
; /* offset of MAC field */
384 associd_t associd
; /* association ID */
385 tstamp_t tstamp
= 0; /* timestamp */
386 tstamp_t fstamp
= 0; /* filestamp */
387 u_int len
; /* extension field length */
388 u_int code
; /* extension field opcode */
389 u_int vallen
= 0; /* value length */
390 X509
*cert
; /* X509 certificate */
391 char statstr
[NTP_MAXSTRLEN
]; /* statistics for filegen */
392 keyid_t cookie
; /* crumbles */
393 int hismode
; /* packet mode */
399 * Initialize. Note that the packet has already been checked for
400 * valid format and extension field lengths. First extract the
401 * field length, command code and association ID in host byte
402 * order. These are used with all commands and modes. Then check
403 * the version number, which must be 2, and length, which must
404 * be at least 8 for requests and VALUE_LEN (24) for responses.
405 * Packets that fail either test sink without a trace. The
406 * association ID is saved only if nonzero.
408 authlen
= LEN_PKT_NOMAC
;
409 hismode
= (int)PKT_MODE((&rbufp
->recv_pkt
)->li_vn_mode
);
410 while ((has_mac
= rbufp
->recv_length
- authlen
) > MAX_MAC_LEN
) {
411 pkt
= (u_int32
*)&rbufp
->recv_pkt
+ authlen
/ 4;
412 ep
= (struct exten
*)pkt
;
413 code
= ntohl(ep
->opcode
) & 0xffff0000;
414 len
= ntohl(ep
->opcode
) & 0x0000ffff;
415 associd
= (associd_t
) ntohl(pkt
[1]);
420 "crypto_recv: flags 0x%x ext offset %d len %u code 0x%x assocID %d\n",
421 peer
->crypto
, authlen
, len
, code
>> 16,
426 * Check version number and field length. If bad,
427 * quietly ignore the packet.
429 if (((code
>> 24) & 0x3f) != CRYPTO_VN
|| len
< 8) {
430 sys_unknownversion
++;
431 code
|= CRYPTO_ERROR
;
435 * Little vulnerability bandage here. If a perp tosses a
436 * fake association ID over the fence, we better toss it
437 * out. Only the first one counts.
439 if (code
& CRYPTO_RESP
) {
440 if (peer
->assoc
== 0)
441 peer
->assoc
= associd
;
442 else if (peer
->assoc
!= associd
)
443 code
|= CRYPTO_ERROR
;
445 if (len
>= VALUE_LEN
) {
446 tstamp
= ntohl(ep
->tstamp
);
447 fstamp
= ntohl(ep
->fstamp
);
448 vallen
= ntohl(ep
->vallen
);
453 * Install status word, host name, signature scheme and
454 * association ID. In OpenSSL the signature algorithm is
455 * bound to the digest algorithm, so the NID completely
456 * defines the signature scheme. Note the request and
457 * response are identical, but neither is validated by
458 * signature. The request is processed here only in
459 * symmetric modes. The server name field might be
460 * useful to implement access controls in future.
465 * If the machine is running when this message
466 * arrives, the other fellow has reset and so
467 * must we. Otherwise, pass the extension field
468 * to the transmit side.
476 temp32
= CRYPTO_RESP
;
477 fp
->opcode
|= htonl(temp32
);
481 case CRYPTO_ASSOC
| CRYPTO_RESP
:
484 * Discard the message if it has already been
485 * stored or the message has been amputated.
490 if (vallen
== 0 || vallen
> MAXHOSTNAME
||
491 len
< VALUE_LEN
+ vallen
) {
497 * Check the identity schemes are compatible. If
498 * the client has PC, the server must have PC,
499 * in which case the server public key and
500 * identity are presumed valid, so we skip the
501 * certificate and identity exchanges and move
502 * immediately to the cookie exchange which
503 * confirms the server signature.
508 "crypto_recv: ident host 0x%x server 0x%x\n",
509 crypto_flags
, fstamp
);
511 temp32
= (crypto_flags
| ident_scheme
) &
512 fstamp
& CRYPTO_FLAG_MASK
;
513 if (crypto_flags
& CRYPTO_FLAG_PRIV
) {
514 if (!(fstamp
& CRYPTO_FLAG_PRIV
)) {
519 fstamp
|= CRYPTO_FLAG_VALID
|
524 * In symmetric modes it is an error if either
525 * peer requests identity and the other peer
526 * does not support it.
528 } else if ((hismode
== MODE_ACTIVE
|| hismode
==
529 MODE_PASSIVE
) && ((crypto_flags
| fstamp
) &
530 CRYPTO_FLAG_MASK
) && !temp32
) {
534 * It is an error if the client requests
535 * identity and the server does not support it.
537 } else if (hismode
== MODE_CLIENT
&& (fstamp
&
538 CRYPTO_FLAG_MASK
) && !temp32
) {
544 * Otherwise, the identity scheme(s) are those
545 * that both client and server support.
547 fstamp
= temp32
| (fstamp
& ~CRYPTO_FLAG_MASK
);
550 * Discard the message if the signature digest
551 * NID is not supported.
553 temp32
= (fstamp
>> 16) & 0xffff;
555 (const EVP_MD
*)EVP_get_digestbynid(temp32
);
562 * Save status word, host name and message
563 * digest/signature type.
565 peer
->crypto
= fstamp
;
567 peer
->subject
= emalloc(vallen
+ 1);
568 memcpy(peer
->subject
, ep
->pkt
, vallen
);
569 peer
->subject
[vallen
] = '\0';
570 peer
->issuer
= emalloc(vallen
+ 1);
571 strcpy(peer
->issuer
, peer
->subject
);
572 temp32
= (fstamp
>> 16) & 0xffff;
574 "flags 0x%x host %s signature %s", fstamp
,
575 peer
->subject
, OBJ_nid2ln(temp32
));
576 record_crypto_stats(&peer
->srcadr
, statstr
);
579 printf("crypto_recv: %s\n", statstr
);
584 * Decode X509 certificate in ASN.1 format and extract
585 * the data containing, among other things, subject
586 * name and public key. In the default identification
587 * scheme, the certificate trail is followed to a self
588 * signed trusted certificate.
590 case CRYPTO_CERT
| CRYPTO_RESP
:
593 * Discard the message if invalid.
595 if ((rval
= crypto_verify(ep
, NULL
, peer
)) !=
600 * Scan the certificate list to delete old
601 * versions and link the newest version first on
604 if ((rval
= cert_install(ep
, peer
)) != XEVNT_OK
)
608 * If we snatch the certificate before the
609 * server certificate has been signed by its
610 * server, it will be self signed. When it is,
611 * we chase the certificate issuer, which the
612 * server has, and keep going until a self
613 * signed trusted certificate is found. Be sure
614 * to update the issuer field, since it may
617 if (peer
->issuer
!= NULL
)
619 peer
->issuer
= emalloc(strlen(cinfo
->issuer
) +
621 strcpy(peer
->issuer
, cinfo
->issuer
);
624 * We plug in the public key and lifetime from
625 * the first certificate received. However, note
626 * that this certificate might not be signed by
627 * the server, so we can't check the
628 * signature/digest NID.
630 if (peer
->pkey
== NULL
) {
631 ptr
= (u_char
*)cinfo
->cert
.ptr
;
632 cert
= d2i_X509(NULL
, &ptr
,
633 ntohl(cinfo
->cert
.vallen
));
634 peer
->pkey
= X509_get_pubkey(cert
);
637 peer
->flash
&= ~TEST8
;
639 sprintf(statstr
, "cert %s 0x%x %s (%u) fs %u",
640 cinfo
->subject
, cinfo
->flags
,
641 OBJ_nid2ln(temp32
), temp32
,
643 record_crypto_stats(&peer
->srcadr
, statstr
);
646 printf("crypto_recv: %s\n", statstr
);
651 * Schnorr (IFF)identity scheme. This scheme is designed
652 * for use with shared secret group keys and where the
653 * certificate may be generated by a third party. The
654 * client sends a challenge to the server, which
655 * performs a calculation and returns the result. A
656 * positive result is possible only if both client and
657 * server contain the same secret group key.
659 case CRYPTO_IFF
| CRYPTO_RESP
:
662 * Discard the message if invalid or certificate
665 if (!(peer
->crypto
& CRYPTO_FLAG_VALID
)) {
669 if ((rval
= crypto_verify(ep
, NULL
, peer
)) !=
674 * If the the challenge matches the response,
675 * the certificate public key, as well as the
676 * server public key, signatyre and identity are
677 * all verified at the same time. The server is
678 * declared trusted, so we skip further
679 * certificate stages and move immediately to
682 if ((rval
= crypto_iff(ep
, peer
)) != XEVNT_OK
)
685 peer
->crypto
|= CRYPTO_FLAG_VRFY
|
687 peer
->flash
&= ~TEST8
;
688 sprintf(statstr
, "iff fs %u",
690 record_crypto_stats(&peer
->srcadr
, statstr
);
693 printf("crypto_recv: %s\n", statstr
);
698 * Guillou-Quisquater (GQ) identity scheme. This scheme
699 * is designed for use with public certificates carrying
700 * the GQ public key in an extension field. The client
701 * sends a challenge to the server, which performs a
702 * calculation and returns the result. A positive result
703 * is possible only if both client and server contain
704 * the same group key and the server has the matching GQ
707 case CRYPTO_GQ
| CRYPTO_RESP
:
710 * Discard the message if invalid or certificate
713 if (!(peer
->crypto
& CRYPTO_FLAG_VALID
)) {
717 if ((rval
= crypto_verify(ep
, NULL
, peer
)) !=
722 * If the the challenge matches the response,
723 * the certificate public key, as well as the
724 * server public key, signatyre and identity are
725 * all verified at the same time. The server is
726 * declared trusted, so we skip further
727 * certificate stages and move immediately to
730 if ((rval
= crypto_gq(ep
, peer
)) != XEVNT_OK
)
733 peer
->crypto
|= CRYPTO_FLAG_VRFY
|
735 peer
->flash
&= ~TEST8
;
736 sprintf(statstr
, "gq fs %u",
738 record_crypto_stats(&peer
->srcadr
, statstr
);
741 printf("crypto_recv: %s\n", statstr
);
748 case CRYPTO_MV
| CRYPTO_RESP
:
751 * Discard the message if invalid or certificate
754 if (!(peer
->crypto
& CRYPTO_FLAG_VALID
)) {
758 if ((rval
= crypto_verify(ep
, NULL
, peer
)) !=
763 * If the the challenge matches the response,
764 * the certificate public key, as well as the
765 * server public key, signatyre and identity are
766 * all verified at the same time. The server is
767 * declared trusted, so we skip further
768 * certificate stages and move immediately to
771 if ((rval
= crypto_mv(ep
, peer
)) != XEVNT_OK
)
774 peer
->crypto
|= CRYPTO_FLAG_VRFY
|
776 peer
->flash
&= ~TEST8
;
777 sprintf(statstr
, "mv fs %u",
779 record_crypto_stats(&peer
->srcadr
, statstr
);
782 printf("crypto_recv: %s\n", statstr
);
787 * Cookie request in symmetric modes. Roll a random
788 * cookie and install in symmetric mode. Encrypt for the
789 * response, which is transmitted later.
794 * Discard the message if invalid or certificate
797 if (!(peer
->crypto
& CRYPTO_FLAG_VALID
)) {
801 if ((rval
= crypto_verify(ep
, NULL
, peer
)) !=
806 * Pass the extension field to the transmit
807 * side. If already agreed, walk away.
811 temp32
= CRYPTO_RESP
;
812 fp
->opcode
|= htonl(temp32
);
814 if (peer
->crypto
& CRYPTO_FLAG_AGREE
) {
815 peer
->flash
&= ~TEST8
;
820 * Install cookie values and light the cookie
821 * bit. The transmit side will pick up and
822 * encrypt it for the response.
825 peer
->cookval
.tstamp
= ep
->tstamp
;
826 peer
->cookval
.fstamp
= ep
->fstamp
;
827 RAND_bytes((u_char
*)&peer
->pcookie
, 4);
828 peer
->crypto
&= ~CRYPTO_FLAG_AUTO
;
829 peer
->crypto
|= CRYPTO_FLAG_AGREE
;
830 peer
->flash
&= ~TEST8
;
831 sprintf(statstr
, "cook %x ts %u fs %u",
832 peer
->pcookie
, ntohl(ep
->tstamp
),
834 record_crypto_stats(&peer
->srcadr
, statstr
);
837 printf("crypto_recv: %s\n", statstr
);
842 * Cookie response in client and symmetric modes. If the
843 * cookie bit is set, the working cookie is the EXOR of
844 * the current and new values.
846 case CRYPTO_COOK
| CRYPTO_RESP
:
849 * Discard the message if invalid or identity
850 * not confirmed or signature not verified with
851 * respect to the cookie values.
853 if (!(peer
->crypto
& CRYPTO_FLAG_VRFY
)) {
857 if ((rval
= crypto_verify(ep
, &peer
->cookval
,
862 * Decrypt the cookie, hunting all the time for
865 if (vallen
== (u_int
) EVP_PKEY_size(host_pkey
)) {
866 RSA_private_decrypt(vallen
,
870 RSA_PKCS1_OAEP_PADDING
);
871 cookie
= ntohl(temp32
);
878 * Install cookie values and light the cookie
879 * bit. If this is not broadcast client mode, we
883 peer
->cookval
.tstamp
= ep
->tstamp
;
884 peer
->cookval
.fstamp
= ep
->fstamp
;
885 if (peer
->crypto
& CRYPTO_FLAG_AGREE
)
886 peer
->pcookie
^= cookie
;
888 peer
->pcookie
= cookie
;
889 if (peer
->hmode
== MODE_CLIENT
&&
890 !(peer
->cast_flags
& MDF_BCLNT
))
891 peer
->crypto
|= CRYPTO_FLAG_AUTO
;
893 peer
->crypto
&= ~CRYPTO_FLAG_AUTO
;
894 peer
->crypto
|= CRYPTO_FLAG_AGREE
;
895 peer
->flash
&= ~TEST8
;
896 sprintf(statstr
, "cook %x ts %u fs %u",
897 peer
->pcookie
, ntohl(ep
->tstamp
),
899 record_crypto_stats(&peer
->srcadr
, statstr
);
902 printf("crypto_recv: %s\n", statstr
);
907 * Install autokey values in broadcast client and
908 * symmetric modes. We have to do this every time the
909 * sever/peer cookie changes or a new keylist is
910 * rolled. Ordinarily, this is automatic as this message
911 * is piggybacked on the first NTP packet sent upon
912 * either of these events. Note that a broadcast client
913 * or symmetric peer can receive this response without a
916 case CRYPTO_AUTO
| CRYPTO_RESP
:
919 * Discard the message if invalid or identity
920 * not confirmed or signature not verified with
921 * respect to the receive autokey values.
923 if (!(peer
->crypto
& CRYPTO_FLAG_VRFY
)) {
927 if ((rval
= crypto_verify(ep
, &peer
->recval
,
932 * Install autokey values and light the
933 * autokey bit. This is not hard.
935 if (peer
->recval
.ptr
== NULL
)
937 emalloc(sizeof(struct autokey
));
938 bp
= (struct autokey
*)peer
->recval
.ptr
;
939 peer
->recval
.tstamp
= ep
->tstamp
;
940 peer
->recval
.fstamp
= ep
->fstamp
;
941 ap
= (struct autokey
*)ep
->pkt
;
942 bp
->seq
= ntohl(ap
->seq
);
943 bp
->key
= ntohl(ap
->key
);
944 peer
->pkeyid
= bp
->key
;
945 peer
->crypto
|= CRYPTO_FLAG_AUTO
;
946 peer
->flash
&= ~TEST8
;
948 "auto seq %d key %x ts %u fs %u", bp
->seq
,
949 bp
->key
, ntohl(ep
->tstamp
),
951 record_crypto_stats(&peer
->srcadr
, statstr
);
954 printf("crypto_recv: %s\n", statstr
);
959 * X509 certificate sign response. Validate the
960 * certificate signed by the server and install. Later
961 * this can be provided to clients of this server in
962 * lieu of the self signed certificate in order to
963 * validate the public key.
965 case CRYPTO_SIGN
| CRYPTO_RESP
:
968 * Discard the message if invalid or not
971 if (!(peer
->crypto
& CRYPTO_FLAG_PROV
)) {
975 if ((rval
= crypto_verify(ep
, NULL
, peer
)) !=
980 * Scan the certificate list to delete old
981 * versions and link the newest version first on
984 if ((rval
= cert_install(ep
, peer
)) != XEVNT_OK
)
987 peer
->crypto
|= CRYPTO_FLAG_SIGN
;
988 peer
->flash
&= ~TEST8
;
990 sprintf(statstr
, "sign %s 0x%x %s (%u) fs %u",
991 cinfo
->issuer
, cinfo
->flags
,
992 OBJ_nid2ln(temp32
), temp32
,
994 record_crypto_stats(&peer
->srcadr
, statstr
);
997 printf("crypto_recv: %s\n", statstr
);
1002 * Install leapseconds table in symmetric modes. This
1003 * table is proventicated to the NIST primary servers,
1004 * either by copying the file containing the table from
1005 * a NIST server to a trusted server or directly using
1006 * this protocol. While the entire table is installed at
1007 * the server, presently only the current TAI offset is
1008 * provided via the kernel to other applications.
1013 * Discard the message if invalid.
1015 if ((rval
= crypto_verify(ep
, NULL
, peer
)) !=
1020 * Pass the extension field to the transmit
1021 * side. Continue below if a leapseconds table
1022 * accompanies the message.
1025 memcpy(fp
, ep
, len
);
1026 temp32
= CRYPTO_RESP
;
1027 fp
->opcode
|= htonl(temp32
);
1029 if (len
<= VALUE_LEN
) {
1030 peer
->flash
&= ~TEST8
;
1035 case CRYPTO_TAI
| CRYPTO_RESP
:
1038 * If this is a response, discard the message if
1039 * signature not verified with respect to the
1040 * leapsecond table values.
1042 if (peer
->cmmd
== NULL
) {
1043 if ((rval
= crypto_verify(ep
,
1044 &peer
->tai_leap
, peer
)) != XEVNT_OK
)
1049 * Initialize peer variables with latest update.
1051 peer
->tai_leap
.tstamp
= ep
->tstamp
;
1052 peer
->tai_leap
.fstamp
= ep
->fstamp
;
1053 peer
->tai_leap
.vallen
= ep
->vallen
;
1056 * Install the new table if there is no stored
1057 * table or the new table is more recent than
1058 * the stored table. Since a filestamp may have
1059 * changed, recompute the signatures.
1061 if (ntohl(peer
->tai_leap
.fstamp
) >
1062 ntohl(tai_leap
.fstamp
)) {
1063 tai_leap
.fstamp
= ep
->fstamp
;
1064 tai_leap
.vallen
= ep
->vallen
;
1065 if (tai_leap
.ptr
!= NULL
)
1067 tai_leap
.ptr
= emalloc(vallen
);
1068 memcpy(tai_leap
.ptr
, ep
->pkt
, vallen
);
1071 crypto_flags
|= CRYPTO_FLAG_TAI
;
1072 peer
->crypto
|= CRYPTO_FLAG_LEAP
;
1073 peer
->flash
&= ~TEST8
;
1074 sprintf(statstr
, "leap %u ts %u fs %u", vallen
,
1075 ntohl(ep
->tstamp
), ntohl(ep
->fstamp
));
1076 record_crypto_stats(&peer
->srcadr
, statstr
);
1079 printf("crypto_recv: %s\n", statstr
);
1084 * We come here in symmetric modes for miscellaneous
1085 * commands that have value fields but are processed on
1086 * the transmit side. All we need do here is check for
1087 * valid field length. Remaining checks are below and on
1088 * the transmit side.
1095 if (len
< VALUE_LEN
) {
1102 * We come here for miscellaneous requests and unknown
1103 * requests and responses. If an unknown response or
1104 * error, forget it. If a request, save the extension
1105 * field for later. Unknown requests will be caught on
1106 * the transmit side.
1109 if (code
& (CRYPTO_RESP
| CRYPTO_ERROR
)) {
1111 } else if ((rval
= crypto_verify(ep
, NULL
,
1112 peer
)) == XEVNT_OK
) {
1114 memcpy(fp
, ep
, len
);
1115 temp32
= CRYPTO_RESP
;
1116 fp
->opcode
|= htonl(temp32
);
1122 * We don't log length/format/timestamp errors and
1123 * duplicates, which are log clogging vulnerabilities.
1124 * The first error found terminates the extension field
1125 * scan and we return the laundry to the caller. A
1126 * length/format/timestamp error on transmit is
1127 * cheerfully ignored, as the message is not sent.
1129 if (rval
> XEVNT_TSP
) {
1131 "error %x opcode %x ts %u fs %u", rval
,
1132 code
, tstamp
, fstamp
);
1133 record_crypto_stats(&peer
->srcadr
, statstr
);
1134 report_event(rval
, peer
);
1137 printf("crypto_recv: %s\n", statstr
);
1141 } else if (rval
> XEVNT_OK
&& (code
& CRYPTO_RESP
)) {
1151 * crypto_xmit - construct extension fields
1153 * This routine is called both when an association is configured and
1154 * when one is not. The only case where this matters is to retrieve the
1155 * autokey information, in which case the caller has to provide the
1156 * association ID to match the association.
1158 * Returns length of extension field.
1162 struct pkt
*xpkt
, /* transmit packet pointer */
1163 struct sockaddr_storage
*srcadr_sin
, /* active runway */
1164 int start
, /* offset to extension field */
1165 struct exten
*ep
, /* extension pointer */
1166 keyid_t cookie
/* session cookie */
1169 u_int32
*pkt
; /* packet pointer */
1170 struct peer
*peer
; /* peer structure pointer */
1171 u_int opcode
; /* extension field opcode */
1172 struct exten
*fp
; /* extension pointers */
1173 struct cert_info
*cp
, *xp
; /* certificate info/value pointer */
1174 char certname
[MAXHOSTNAME
+ 1]; /* subject name buffer */
1175 char statstr
[NTP_MAXSTRLEN
]; /* statistics for filegen */
1185 * Generate the requested extension field request code, length
1186 * and association ID. If this is a response and the host is not
1187 * synchronized, light the error bit and go home.
1189 pkt
= (u_int32
*)xpkt
+ start
/ 4;
1190 fp
= (struct exten
*)pkt
;
1191 opcode
= ntohl(ep
->opcode
);
1192 associd
= (associd_t
) ntohl(ep
->associd
);
1193 fp
->associd
= htonl(associd
);
1196 tstamp
= crypto_time();
1197 switch (opcode
& 0xffff0000) {
1200 * Send association request and response with status word and
1201 * host name. Note, this message is not signed and the filestamp
1202 * contains only the status word.
1204 case CRYPTO_ASSOC
| CRYPTO_RESP
:
1205 len
+= crypto_send(fp
, &hostval
);
1206 fp
->fstamp
= htonl(crypto_flags
);
1210 len
+= crypto_send(fp
, &hostval
);
1211 fp
->fstamp
= htonl(crypto_flags
| ident_scheme
);
1215 * Send certificate request. Use the values from the extension
1219 memset(&vtemp
, 0, sizeof(vtemp
));
1220 vtemp
.tstamp
= ep
->tstamp
;
1221 vtemp
.fstamp
= ep
->fstamp
;
1222 vtemp
.vallen
= ep
->vallen
;
1223 vtemp
.ptr
= (u_char
*)ep
->pkt
;
1224 len
+= crypto_send(fp
, &vtemp
);
1228 * Send certificate response or sign request. Use the values
1229 * from the certificate cache. If the request contains no
1230 * subject name, assume the name of this host. This is for
1231 * backwards compatibility. Private certificates are never sent.
1234 case CRYPTO_CERT
| CRYPTO_RESP
:
1235 vallen
= ntohl(ep
->vallen
);
1237 strcpy(certname
, sys_hostname
);
1238 } else if (vallen
== 0 || vallen
> MAXHOSTNAME
) {
1243 memcpy(certname
, ep
->pkt
, vallen
);
1244 certname
[vallen
] = '\0';
1248 * Find all certificates with matching subject. If a
1249 * self-signed, trusted certificate is found, use that.
1250 * If not, use the first one with matching subject. A
1251 * private certificate is never divulged or signed.
1254 for (cp
= cinfo
; cp
!= NULL
; cp
= cp
->link
) {
1255 if (cp
->flags
& CERT_PRIV
)
1258 if (strcmp(certname
, cp
->subject
) == 0) {
1261 if (strcmp(certname
, cp
->issuer
) ==
1262 0 && cp
->flags
& CERT_TRUST
) {
1270 * Be careful who you trust. If not yet synchronized,
1271 * give back an empty response. If certificate not found
1272 * or beyond the lifetime, return an error. This is to
1273 * avoid a bad dude trying to get an expired certificate
1274 * re-signed. Otherwise, send it.
1276 * Note the timestamp and filestamp are taken from the
1277 * certificate value structure. For all certificates the
1278 * timestamp is the latest signature update time. For
1279 * host and imported certificates the filestamp is the
1280 * creation epoch. For signed certificates the filestamp
1281 * is the creation epoch of the trusted certificate at
1282 * the base of the certificate trail. In principle, this
1283 * allows strong checking for signature masquerade.
1290 else if (tstamp
< xp
->first
|| tstamp
> xp
->last
)
1293 len
+= crypto_send(fp
, &xp
->cert
);
1297 * Send challenge in Schnorr (IFF) identity scheme.
1300 if ((peer
= findpeerbyassoc(ep
->pkt
[0])) == NULL
) {
1304 if ((rval
= crypto_alice(peer
, &vtemp
)) == XEVNT_OK
) {
1305 len
+= crypto_send(fp
, &vtemp
);
1311 * Send response in Schnorr (IFF) identity scheme.
1313 case CRYPTO_IFF
| CRYPTO_RESP
:
1314 if ((rval
= crypto_bob(ep
, &vtemp
)) == XEVNT_OK
) {
1315 len
+= crypto_send(fp
, &vtemp
);
1321 * Send challenge in Guillou-Quisquater (GQ) identity scheme.
1324 if ((peer
= findpeerbyassoc(ep
->pkt
[0])) == NULL
) {
1328 if ((rval
= crypto_alice2(peer
, &vtemp
)) == XEVNT_OK
) {
1329 len
+= crypto_send(fp
, &vtemp
);
1335 * Send response in Guillou-Quisquater (GQ) identity scheme.
1337 case CRYPTO_GQ
| CRYPTO_RESP
:
1338 if ((rval
= crypto_bob2(ep
, &vtemp
)) == XEVNT_OK
) {
1339 len
+= crypto_send(fp
, &vtemp
);
1345 * Send challenge in MV identity scheme.
1348 if ((peer
= findpeerbyassoc(ep
->pkt
[0])) == NULL
) {
1352 if ((rval
= crypto_alice3(peer
, &vtemp
)) == XEVNT_OK
) {
1353 len
+= crypto_send(fp
, &vtemp
);
1359 * Send response in MV identity scheme.
1361 case CRYPTO_MV
| CRYPTO_RESP
:
1362 if ((rval
= crypto_bob3(ep
, &vtemp
)) == XEVNT_OK
) {
1363 len
+= crypto_send(fp
, &vtemp
);
1369 * Send certificate sign response. The integrity of the request
1370 * certificate has already been verified on the receive side.
1371 * Sign the response using the local server key. Use the
1372 * filestamp from the request and use the timestamp as the
1373 * current time. Light the error bit if the certificate is
1374 * invalid or contains an unverified signature.
1376 case CRYPTO_SIGN
| CRYPTO_RESP
:
1377 if ((rval
= cert_sign(ep
, &vtemp
)) == XEVNT_OK
)
1378 len
+= crypto_send(fp
, &vtemp
);
1383 * Send public key and signature. Use the values from the public
1387 len
+= crypto_send(fp
, &pubkey
);
1391 * Encrypt and send cookie and signature. Light the error bit if
1392 * anything goes wrong.
1394 case CRYPTO_COOK
| CRYPTO_RESP
:
1395 if ((opcode
& 0xffff) < VALUE_LEN
) {
1399 if (PKT_MODE(xpkt
->li_vn_mode
) == MODE_SERVER
) {
1402 if ((peer
= findpeerbyassoc(associd
)) == NULL
) {
1406 tcookie
= peer
->pcookie
;
1408 if ((rval
= crypto_encrypt(ep
, &vtemp
, &tcookie
)) ==
1410 len
+= crypto_send(fp
, &vtemp
);
1415 * Find peer and send autokey data and signature in broadcast
1416 * server and symmetric modes. Use the values in the autokey
1417 * structure. If no association is found, either the server has
1418 * restarted with new associations or some perp has replayed an
1419 * old message, in which case light the error bit.
1421 case CRYPTO_AUTO
| CRYPTO_RESP
:
1422 if ((peer
= findpeerbyassoc(associd
)) == NULL
) {
1426 peer
->flags
&= ~FLAG_ASSOC
;
1427 len
+= crypto_send(fp
, &peer
->sndval
);
1431 * Send leapseconds table and signature. Use the values from the
1432 * tai structure. If no table has been loaded, just send an
1436 case CRYPTO_TAI
| CRYPTO_RESP
:
1437 if (crypto_flags
& CRYPTO_FLAG_TAI
)
1438 len
+= crypto_send(fp
, &tai_leap
);
1442 * Default - Fall through for requests; for unknown responses,
1446 if (opcode
& CRYPTO_RESP
)
1451 * In case of error, flame the log. If a request, toss the
1452 * puppy; if a response, return so the sender can flame, too.
1454 if (rval
!= XEVNT_OK
) {
1455 opcode
|= CRYPTO_ERROR
;
1456 sprintf(statstr
, "error %x opcode %x", rval
, opcode
);
1457 record_crypto_stats(srcadr_sin
, statstr
);
1458 report_event(rval
, NULL
);
1461 printf("crypto_xmit: %s\n", statstr
);
1463 if (!(opcode
& CRYPTO_RESP
))
1468 * Round up the field length to a multiple of 8 bytes and save
1469 * the request code and length.
1471 len
= ((len
+ 7) / 8) * 8;
1472 fp
->opcode
= htonl((opcode
& 0xffff0000) | len
);
1476 "crypto_xmit: flags 0x%x ext offset %d len %u code 0x%x assocID %d\n",
1477 crypto_flags
, start
, len
, opcode
>> 16, associd
);
1484 * crypto_verify - parse and verify the extension field and value
1488 * XEVNT_LEN bad field format or length
1489 * XEVNT_TSP bad timestamp
1490 * XEVNT_FSP bad filestamp
1491 * XEVNT_PUB bad or missing public key
1492 * XEVNT_SGL bad signature length
1493 * XEVNT_SIG signature not verified
1494 * XEVNT_ERR protocol error
1498 struct exten
*ep
, /* extension pointer */
1499 struct value
*vp
, /* value pointer */
1500 struct peer
*peer
/* peer structure pointer */
1503 EVP_PKEY
*pkey
; /* server public key */
1504 EVP_MD_CTX ctx
; /* signature context */
1505 tstamp_t tstamp
, tstamp1
= 0; /* timestamp */
1506 tstamp_t fstamp
, fstamp1
= 0; /* filestamp */
1507 u_int vallen
; /* value length */
1508 u_int siglen
; /* signature length */
1513 * We require valid opcode and field lengths, timestamp,
1514 * filestamp, public key, digest, signature length and
1515 * signature, where relevant. Note that preliminary length
1516 * checks are done in the main loop.
1518 len
= ntohl(ep
->opcode
) & 0x0000ffff;
1519 opcode
= ntohl(ep
->opcode
) & 0xffff0000;
1522 * Check for valid operation code and protocol. The opcode must
1523 * not have the error bit set. If a response, it must have a
1524 * value header. If a request and does not contain a value
1525 * header, no need for further checking.
1527 if (opcode
& CRYPTO_ERROR
)
1530 if (opcode
& CRYPTO_RESP
) {
1531 if (len
< VALUE_LEN
)
1534 if (len
< VALUE_LEN
)
1539 * We have a value header. Check for valid field lengths. The
1540 * field length must be long enough to contain the value header,
1541 * value and signature. Note both the value and signature fields
1542 * are rounded up to the next word.
1544 vallen
= ntohl(ep
->vallen
);
1545 i
= (vallen
+ 3) / 4;
1546 siglen
= ntohl(ep
->pkt
[i
++]);
1547 if (len
< VALUE_LEN
+ ((vallen
+ 3) / 4) * 4 + ((siglen
+ 3) /
1552 * Punt if this is a response with no data. Punt if this is a
1553 * request and a previous response is pending.
1555 if (opcode
& CRYPTO_RESP
) {
1559 if (peer
->cmmd
!= NULL
)
1564 * Check for valid timestamp and filestamp. If the timestamp is
1565 * zero, the sender is not synchronized and signatures are
1566 * disregarded. If not, the timestamp must not precede the
1567 * filestamp. The timestamp and filestamp must not precede the
1568 * corresponding values in the value structure, if present. Once
1569 * the autokey values have been installed, the timestamp must
1570 * always be later than the corresponding value in the value
1571 * structure. Duplicate timestamps are illegal once the cookie
1572 * has been validated.
1574 tstamp
= ntohl(ep
->tstamp
);
1575 fstamp
= ntohl(ep
->fstamp
);
1579 if (tstamp
< fstamp
)
1583 tstamp1
= ntohl(vp
->tstamp
);
1584 fstamp1
= ntohl(vp
->fstamp
);
1585 if ((tstamp
< tstamp1
|| (tstamp
== tstamp1
&&
1586 (peer
->crypto
& CRYPTO_FLAG_AUTO
))))
1589 if ((tstamp
< fstamp1
|| fstamp
< fstamp1
))
1594 * Check for valid signature length, public key and digest
1597 if (crypto_flags
& peer
->crypto
& CRYPTO_FLAG_PRIV
)
1601 if (siglen
== 0 || pkey
== NULL
|| peer
->digest
== NULL
)
1604 if (siglen
!= (u_int
)EVP_PKEY_size(pkey
))
1608 * Darn, I thought we would never get here. Verify the
1609 * signature. If the identity exchange is verified, light the
1610 * proventic bit. If no client identity scheme is specified,
1611 * avoid doing the sign exchange.
1613 EVP_VerifyInit(&ctx
, peer
->digest
);
1614 EVP_VerifyUpdate(&ctx
, (u_char
*)&ep
->tstamp
, vallen
+ 12);
1615 if (!EVP_VerifyFinal(&ctx
, (u_char
*)&ep
->pkt
[i
], siglen
, pkey
))
1618 if (peer
->crypto
& CRYPTO_FLAG_VRFY
) {
1619 peer
->crypto
|= CRYPTO_FLAG_PROV
;
1620 if (!(crypto_flags
& CRYPTO_FLAG_MASK
))
1621 peer
->crypto
|= CRYPTO_FLAG_SIGN
;
1628 * crypto_encrypt - construct encrypted cookie and signature from
1629 * extension field and cookie
1633 * XEVNT_PUB bad or missing public key
1634 * XEVNT_CKY bad or missing cookie
1635 * XEVNT_PER host certificate expired
1639 struct exten
*ep
, /* extension pointer */
1640 struct value
*vp
, /* value pointer */
1641 keyid_t
*cookie
/* server cookie */
1644 EVP_PKEY
*pkey
; /* public key */
1645 EVP_MD_CTX ctx
; /* signature context */
1646 tstamp_t tstamp
; /* NTP timestamp */
1652 * Extract the public key from the request.
1654 len
= ntohl(ep
->vallen
);
1655 ptr
= (u_char
*)ep
->pkt
;
1656 pkey
= d2i_PublicKey(EVP_PKEY_RSA
, NULL
, &ptr
, len
);
1658 msyslog(LOG_ERR
, "crypto_encrypt %s\n",
1659 ERR_error_string(ERR_get_error(), NULL
));
1664 * Encrypt the cookie, encode in ASN.1 and sign.
1666 tstamp
= crypto_time();
1667 memset(vp
, 0, sizeof(struct value
));
1668 vp
->tstamp
= htonl(tstamp
);
1669 vp
->fstamp
= hostval
.tstamp
;
1670 len
= EVP_PKEY_size(pkey
);
1671 vp
->vallen
= htonl(len
);
1672 vp
->ptr
= emalloc(len
);
1673 temp32
= htonl(*cookie
);
1674 if (!RSA_public_encrypt(4, (u_char
*)&temp32
, vp
->ptr
,
1675 pkey
->pkey
.rsa
, RSA_PKCS1_OAEP_PADDING
)) {
1676 msyslog(LOG_ERR
, "crypto_encrypt %s\n",
1677 ERR_error_string(ERR_get_error(), NULL
));
1678 EVP_PKEY_free(pkey
);
1681 EVP_PKEY_free(pkey
);
1686 if (tstamp
< cinfo
->first
|| tstamp
> cinfo
->last
)
1689 vp
->sig
= emalloc(sign_siglen
);
1690 EVP_SignInit(&ctx
, sign_digest
);
1691 EVP_SignUpdate(&ctx
, (u_char
*)&vp
->tstamp
, 12);
1692 EVP_SignUpdate(&ctx
, vp
->ptr
, len
);
1693 if (EVP_SignFinal(&ctx
, vp
->sig
, &len
, sign_pkey
))
1694 vp
->siglen
= htonl(len
);
1700 * crypto_ident - construct extension field for identity scheme
1702 * This routine determines which identity scheme is in use and
1703 * constructs an extension field for that scheme.
1707 struct peer
*peer
/* peer structure pointer */
1710 char filename
[MAXFILENAME
+ 1];
1713 * If the server identity has already been verified, no further
1714 * action is necessary. Otherwise, try to load the identity file
1715 * of the certificate issuer. If the issuer file is not found,
1716 * try the host file. If nothing found, declare a cryptobust.
1717 * Note we can't get here unless the trusted certificate has
1718 * been found and the CRYPTO_FLAG_VALID bit is set, so the
1719 * certificate issuer is valid.
1721 if (peer
->ident_pkey
!= NULL
)
1722 EVP_PKEY_free(peer
->ident_pkey
);
1723 if (peer
->crypto
& CRYPTO_FLAG_GQ
) {
1724 snprintf(filename
, MAXFILENAME
, "ntpkey_gq_%s",
1726 peer
->ident_pkey
= crypto_key(filename
, &peer
->fstamp
);
1727 if (peer
->ident_pkey
!= NULL
)
1730 snprintf(filename
, MAXFILENAME
, "ntpkey_gq_%s",
1732 peer
->ident_pkey
= crypto_key(filename
, &peer
->fstamp
);
1733 if (peer
->ident_pkey
!= NULL
)
1736 if (peer
->crypto
& CRYPTO_FLAG_IFF
) {
1737 snprintf(filename
, MAXFILENAME
, "ntpkey_iff_%s",
1739 peer
->ident_pkey
= crypto_key(filename
, &peer
->fstamp
);
1740 if (peer
->ident_pkey
!= NULL
)
1741 return (CRYPTO_IFF
);
1743 snprintf(filename
, MAXFILENAME
, "ntpkey_iff_%s",
1745 peer
->ident_pkey
= crypto_key(filename
, &peer
->fstamp
);
1746 if (peer
->ident_pkey
!= NULL
)
1747 return (CRYPTO_IFF
);
1749 if (peer
->crypto
& CRYPTO_FLAG_MV
) {
1750 snprintf(filename
, MAXFILENAME
, "ntpkey_mv_%s",
1752 peer
->ident_pkey
= crypto_key(filename
, &peer
->fstamp
);
1753 if (peer
->ident_pkey
!= NULL
)
1756 snprintf(filename
, MAXFILENAME
, "ntpkey_mv_%s",
1758 peer
->ident_pkey
= crypto_key(filename
, &peer
->fstamp
);
1759 if (peer
->ident_pkey
!= NULL
)
1764 * No compatible identity scheme is available. Life is hard.
1767 "crypto_ident: no compatible identity scheme found");
1773 * crypto_args - construct extension field from arguments
1775 * This routine creates an extension field with current timestamps and
1776 * specified opcode, association ID and optional string. Note that the
1777 * extension field is created here, but freed after the crypto_xmit()
1778 * call in the protocol module.
1780 * Returns extension field pointer (no errors).
1784 struct peer
*peer
, /* peer structure pointer */
1785 u_int opcode
, /* operation code */
1786 char *str
/* argument string */
1789 tstamp_t tstamp
; /* NTP timestamp */
1790 struct exten
*ep
; /* extension field pointer */
1791 u_int len
; /* extension field length */
1793 tstamp
= crypto_time();
1794 len
= sizeof(struct exten
);
1802 ep
->opcode
= htonl(opcode
+ len
);
1805 * If a response, send our ID; if a request, send the
1808 if (opcode
& CRYPTO_RESP
)
1809 ep
->associd
= htonl(peer
->associd
);
1811 ep
->associd
= htonl(peer
->assoc
);
1812 ep
->tstamp
= htonl(tstamp
);
1813 ep
->fstamp
= hostval
.tstamp
;
1816 ep
->vallen
= htonl(strlen(str
));
1817 memcpy((char *)ep
->pkt
, str
, strlen(str
));
1819 ep
->pkt
[0] = peer
->associd
;
1826 * crypto_send - construct extension field from value components
1828 * Returns extension field length. Note: it is not polite to send a
1829 * nonempty signature with zero timestamp or a nonzero timestamp with
1830 * empty signature, but these rules are not enforced here.
1834 struct exten
*ep
, /* extension field pointer */
1835 struct value
*vp
/* value pointer */
1842 * Copy data. If the data field is empty or zero length, encode
1843 * an empty value with length zero.
1845 ep
->tstamp
= vp
->tstamp
;
1846 ep
->fstamp
= vp
->fstamp
;
1847 ep
->vallen
= vp
->vallen
;
1849 temp32
= ntohl(vp
->vallen
);
1850 if (temp32
> 0 && vp
->ptr
!= NULL
)
1851 memcpy(ep
->pkt
, vp
->ptr
, temp32
);
1854 * Copy signature. If the signature field is empty or zero
1855 * length, encode an empty signature with length zero.
1857 i
= (temp32
+ 3) / 4;
1859 ep
->pkt
[i
++] = vp
->siglen
;
1860 temp32
= ntohl(vp
->siglen
);
1861 if (temp32
> 0 && vp
->sig
!= NULL
)
1862 memcpy(&ep
->pkt
[i
], vp
->sig
, temp32
);
1869 * crypto_update - compute new public value and sign extension fields
1871 * This routine runs periodically, like once a day, and when something
1872 * changes. It updates the timestamps on three value structures and one
1873 * value structure list, then signs all the structures:
1875 * hostval host name (not signed)
1877 * cinfo certificate info/value list
1878 * tai_leap leapseconds file
1880 * Filestamps are proventicated data, so this routine is run only when
1881 * the host has been synchronized to a proventicated source. Thus, the
1882 * timestamp is proventicated, too, and can be used to deflect
1883 * clogging attacks and even cook breakfast.
1885 * Returns void (no errors)
1890 EVP_MD_CTX ctx
; /* message digest context */
1891 struct cert_info
*cp
, *cpn
; /* certificate info/value */
1892 char statstr
[NTP_MAXSTRLEN
]; /* statistics for filegen */
1893 tstamp_t tstamp
; /* NTP timestamp */
1896 if ((tstamp
= crypto_time()) == 0)
1899 hostval
.tstamp
= htonl(tstamp
);
1902 * Sign public key and timestamps. The filestamp is derived from
1903 * the host key file extension from wherever the file was
1906 if (pubkey
.vallen
!= 0) {
1907 pubkey
.tstamp
= hostval
.tstamp
;
1909 if (pubkey
.sig
== NULL
)
1910 pubkey
.sig
= emalloc(sign_siglen
);
1911 EVP_SignInit(&ctx
, sign_digest
);
1912 EVP_SignUpdate(&ctx
, (u_char
*)&pubkey
, 12);
1913 EVP_SignUpdate(&ctx
, pubkey
.ptr
, ntohl(pubkey
.vallen
));
1914 if (EVP_SignFinal(&ctx
, pubkey
.sig
, &len
, sign_pkey
))
1915 pubkey
.siglen
= htonl(len
);
1919 * Sign certificates and timestamps. The filestamp is derived
1920 * from the certificate file extension from wherever the file
1921 * was generated. Note we do not throw expired certificates
1922 * away; they may have signed younger ones.
1924 for (cp
= cinfo
; cp
!= NULL
; cp
= cpn
) {
1926 cp
->cert
.tstamp
= hostval
.tstamp
;
1927 cp
->cert
.siglen
= 0;
1928 if (cp
->cert
.sig
== NULL
)
1929 cp
->cert
.sig
= emalloc(sign_siglen
);
1930 EVP_SignInit(&ctx
, sign_digest
);
1931 EVP_SignUpdate(&ctx
, (u_char
*)&cp
->cert
, 12);
1932 EVP_SignUpdate(&ctx
, cp
->cert
.ptr
,
1933 ntohl(cp
->cert
.vallen
));
1934 if (EVP_SignFinal(&ctx
, cp
->cert
.sig
, &len
, sign_pkey
))
1935 cp
->cert
.siglen
= htonl(len
);
1939 * Sign leapseconds table and timestamps. The filestamp is
1940 * derived from the leapsecond file extension from wherever the
1941 * file was generated.
1943 if (tai_leap
.vallen
!= 0) {
1944 tai_leap
.tstamp
= hostval
.tstamp
;
1945 tai_leap
.siglen
= 0;
1946 if (tai_leap
.sig
== NULL
)
1947 tai_leap
.sig
= emalloc(sign_siglen
);
1948 EVP_SignInit(&ctx
, sign_digest
);
1949 EVP_SignUpdate(&ctx
, (u_char
*)&tai_leap
, 12);
1950 EVP_SignUpdate(&ctx
, tai_leap
.ptr
,
1951 ntohl(tai_leap
.vallen
));
1952 if (EVP_SignFinal(&ctx
, tai_leap
.sig
, &len
, sign_pkey
))
1953 tai_leap
.siglen
= htonl(len
);
1955 sprintf(statstr
, "update ts %u", ntohl(hostval
.tstamp
));
1956 record_crypto_stats(NULL
, statstr
);
1959 printf("crypto_update: %s\n", statstr
);
1965 * value_free - free value structure components.
1967 * Returns void (no errors)
1971 struct value
*vp
/* value structure */
1974 if (vp
->ptr
!= NULL
)
1976 if (vp
->sig
!= NULL
)
1978 memset(vp
, 0, sizeof(struct value
));
1983 * crypto_time - returns current NTP time in seconds.
1988 l_fp tstamp
; /* NTP time */ L_CLR(&tstamp
);
1991 if (sys_leap
!= LEAP_NOTINSYNC
)
1992 get_systime(&tstamp
);
1993 return (tstamp
.l_ui
);
1998 * asn2ntp - convert ASN1_TIME time structure to NTP time in seconds.
2002 ASN1_TIME
*asn1time
/* pointer to ASN1_TIME structure */
2005 char *v
; /* pointer to ASN1_TIME string */
2006 struct tm tm
; /* used to convert to NTP time */
2009 * Extract time string YYMMDDHHMMSSZ from ASN1 time structure.
2010 * Note that the YY, MM, DD fields start with one, the HH, MM,
2011 * SS fiels start with zero and the Z character should be 'Z'
2012 * for UTC. Also note that years less than 50 map to years
2013 * greater than 100. Dontcha love ASN.1? Better than MIL-188.
2015 if (asn1time
->length
> 13)
2016 return ((u_long
)(~0)); /* We can't use -1 here. It's invalid */
2018 v
= (char *)asn1time
->data
;
2019 tm
.tm_year
= (v
[0] - '0') * 10 + v
[1] - '0';
2020 if (tm
.tm_year
< 50)
2022 tm
.tm_mon
= (v
[2] - '0') * 10 + v
[3] - '0' - 1;
2023 tm
.tm_mday
= (v
[4] - '0') * 10 + v
[5] - '0';
2024 tm
.tm_hour
= (v
[6] - '0') * 10 + v
[7] - '0';
2025 tm
.tm_min
= (v
[8] - '0') * 10 + v
[9] - '0';
2026 tm
.tm_sec
= (v
[10] - '0') * 10 + v
[11] - '0';
2030 return (timegm(&tm
) + JAN_1970
);
2035 * bigdig() - compute a BIGNUM MD5 hash of a BIGNUM number.
2039 BIGNUM
*bn
, /* BIGNUM * from */
2040 BIGNUM
*bk
/* BIGNUM * to */
2043 EVP_MD_CTX ctx
; /* message digest context */
2044 u_char dgst
[EVP_MAX_MD_SIZE
]; /* message digest */
2045 u_char
*ptr
; /* a BIGNUM as binary string */
2048 len
= BN_num_bytes(bn
);
2051 EVP_DigestInit(&ctx
, EVP_md5());
2052 EVP_DigestUpdate(&ctx
, ptr
, len
);
2053 EVP_DigestFinal(&ctx
, dgst
, &len
);
2054 BN_bin2bn(dgst
, len
, bk
);
2056 /* XXX MEMLEAK? free ptr? */
2063 ***********************************************************************
2065 * The following routines implement the Schnorr (IFF) identity scheme *
2067 ***********************************************************************
2069 * The Schnorr (IFF) identity scheme is intended for use when
2070 * the ntp-genkeys program does not generate the certificates used in
2071 * the protocol and the group key cannot be conveyed in the certificate
2072 * itself. For this purpose, new generations of IFF values must be
2073 * securely transmitted to all members of the group before use. The
2074 * scheme is self contained and independent of new generations of host
2075 * keys, sign keys and certificates.
2077 * The IFF identity scheme is based on DSA cryptography and algorithms
2078 * described in Stinson p. 285. The IFF values hide in a DSA cuckoo
2079 * structure, but only the primes and generator are used. The p is a
2080 * 512-bit prime, q a 160-bit prime that divides p - 1 and is a qth root
2081 * of 1 mod p; that is, g^q = 1 mod p. The TA rolls primvate random
2082 * group key b disguised as a DSA structure member, then computes public
2083 * key g^(q - b). These values are shared only among group members and
2084 * never revealed in messages. Alice challenges Bob to confirm identity
2085 * using the protocol described below.
2089 * The scheme goes like this. Both Alice and Bob have the public primes
2090 * p, q and generator g. The TA gives private key b to Bob and public
2091 * key v = g^(q - a) mod p to Alice.
2093 * Alice rolls new random challenge r and sends to Bob in the IFF
2094 * request message. Bob rolls new random k, then computes y = k + b r
2095 * mod q and x = g^k mod p and sends (y, hash(x)) to Alice in the
2096 * response message. Besides making the response shorter, the hash makes
2097 * it effectivey impossible for an intruder to solve for b by observing
2098 * a number of these messages.
2100 * Alice receives the response and computes g^y v^r mod p. After a bit
2101 * of algebra, this simplifies to g^k. If the hash of this result
2102 * matches hash(x), Alice knows that Bob has the group key b. The signed
2103 * response binds this knowledge to Bob's private key and the public key
2104 * previously received in his certificate.
2106 * crypto_alice - construct Alice's challenge in IFF scheme
2110 * XEVNT_PUB bad or missing public key
2111 * XEVNT_ID bad or missing group key
2115 struct peer
*peer
, /* peer pointer */
2116 struct value
*vp
/* value pointer */
2119 DSA
*dsa
; /* IFF parameters */
2120 BN_CTX
*bctx
; /* BIGNUM context */
2121 EVP_MD_CTX ctx
; /* signature context */
2126 * The identity parameters must have correct format and content.
2128 if (peer
->ident_pkey
== NULL
)
2131 if ((dsa
= peer
->ident_pkey
->pkey
.dsa
) == NULL
) {
2132 msyslog(LOG_INFO
, "crypto_alice: defective key");
2137 * Roll new random r (0 < r < q). The OpenSSL library has a bug
2138 * omitting BN_rand_range, so we have to do it the hard way.
2140 bctx
= BN_CTX_new();
2141 len
= BN_num_bytes(dsa
->q
);
2142 if (peer
->iffval
!= NULL
)
2143 BN_free(peer
->iffval
);
2144 peer
->iffval
= BN_new();
2145 BN_rand(peer
->iffval
, len
* 8, -1, 1); /* r */
2146 BN_mod(peer
->iffval
, peer
->iffval
, dsa
->q
, bctx
);
2150 * Sign and send to Bob. The filestamp is from the local file.
2152 tstamp
= crypto_time();
2153 memset(vp
, 0, sizeof(struct value
));
2154 vp
->tstamp
= htonl(tstamp
);
2155 vp
->fstamp
= htonl(peer
->fstamp
);
2156 vp
->vallen
= htonl(len
);
2157 vp
->ptr
= emalloc(len
);
2158 BN_bn2bin(peer
->iffval
, vp
->ptr
);
2163 if (tstamp
< cinfo
->first
|| tstamp
> cinfo
->last
)
2166 vp
->sig
= emalloc(sign_siglen
);
2167 EVP_SignInit(&ctx
, sign_digest
);
2168 EVP_SignUpdate(&ctx
, (u_char
*)&vp
->tstamp
, 12);
2169 EVP_SignUpdate(&ctx
, vp
->ptr
, len
);
2170 if (EVP_SignFinal(&ctx
, vp
->sig
, &len
, sign_pkey
))
2171 vp
->siglen
= htonl(len
);
2177 * crypto_bob - construct Bob's response to Alice's challenge
2181 * XEVNT_ID bad or missing group key
2182 * XEVNT_ERR protocol error
2183 * XEVNT_PER host expired certificate
2187 struct exten
*ep
, /* extension pointer */
2188 struct value
*vp
/* value pointer */
2191 DSA
*dsa
; /* IFF parameters */
2192 DSA_SIG
*sdsa
; /* DSA signature context fake */
2193 BN_CTX
*bctx
; /* BIGNUM context */
2194 EVP_MD_CTX ctx
; /* signature context */
2195 tstamp_t tstamp
; /* NTP timestamp */
2196 BIGNUM
*bn
, *bk
, *r
;
2201 * If the IFF parameters are not valid, something awful
2202 * happened or we are being tormented.
2204 if (iffpar_pkey
== NULL
) {
2205 msyslog(LOG_INFO
, "crypto_bob: scheme unavailable");
2208 dsa
= iffpar_pkey
->pkey
.dsa
;
2211 * Extract r from the challenge.
2213 len
= ntohl(ep
->vallen
);
2214 if ((r
= BN_bin2bn((u_char
*)ep
->pkt
, len
, NULL
)) == NULL
) {
2215 msyslog(LOG_ERR
, "crypto_bob %s\n",
2216 ERR_error_string(ERR_get_error(), NULL
));
2221 * Bob rolls random k (0 < k < q), computes y = k + b r mod q
2222 * and x = g^k mod p, then sends (y, hash(x)) to Alice.
2224 bctx
= BN_CTX_new(); bk
= BN_new(); bn
= BN_new();
2225 sdsa
= DSA_SIG_new();
2226 BN_rand(bk
, len
* 8, -1, 1); /* k */
2227 BN_mod_mul(bn
, dsa
->priv_key
, r
, dsa
->q
, bctx
); /* b r mod q */
2229 BN_mod(bn
, bn
, dsa
->q
, bctx
); /* k + b r mod q */
2230 sdsa
->r
= BN_dup(bn
);
2231 BN_mod_exp(bk
, dsa
->g
, bk
, dsa
->p
, bctx
); /* g^k mod p */
2233 sdsa
->s
= BN_dup(bk
);
2235 BN_free(r
); BN_free(bn
); BN_free(bk
);
2238 * Encode the values in ASN.1 and sign.
2240 tstamp
= crypto_time();
2241 memset(vp
, 0, sizeof(struct value
));
2242 vp
->tstamp
= htonl(tstamp
);
2243 vp
->fstamp
= htonl(if_fstamp
);
2244 len
= i2d_DSA_SIG(sdsa
, NULL
);
2246 msyslog(LOG_ERR
, "crypto_bob %s\n",
2247 ERR_error_string(ERR_get_error(), NULL
));
2251 vp
->vallen
= htonl(len
);
2254 i2d_DSA_SIG(sdsa
, &ptr
);
2260 if (tstamp
< cinfo
->first
|| tstamp
> cinfo
->last
)
2263 vp
->sig
= emalloc(sign_siglen
);
2264 EVP_SignInit(&ctx
, sign_digest
);
2265 EVP_SignUpdate(&ctx
, (u_char
*)&vp
->tstamp
, 12);
2266 EVP_SignUpdate(&ctx
, vp
->ptr
, len
);
2267 if (EVP_SignFinal(&ctx
, vp
->sig
, &len
, sign_pkey
))
2268 vp
->siglen
= htonl(len
);
2274 * crypto_iff - verify Bob's response to Alice's challenge
2278 * XEVNT_PUB bad or missing public key
2279 * XEVNT_ID bad or missing group key
2280 * XEVNT_FSP bad filestamp
2284 struct exten
*ep
, /* extension pointer */
2285 struct peer
*peer
/* peer structure pointer */
2288 DSA
*dsa
; /* IFF parameters */
2289 BN_CTX
*bctx
; /* BIGNUM context */
2290 DSA_SIG
*sdsa
; /* DSA parameters */
2297 * If the IFF parameters are not valid or no challenge was sent,
2298 * something awful happened or we are being tormented.
2300 if (peer
->ident_pkey
== NULL
) {
2301 msyslog(LOG_INFO
, "crypto_iff: scheme unavailable");
2304 if (ntohl(ep
->fstamp
) != peer
->fstamp
) {
2305 msyslog(LOG_INFO
, "crypto_iff: invalid filestamp %u",
2309 if ((dsa
= peer
->ident_pkey
->pkey
.dsa
) == NULL
) {
2310 msyslog(LOG_INFO
, "crypto_iff: defective key");
2313 if (peer
->iffval
== NULL
) {
2314 msyslog(LOG_INFO
, "crypto_iff: missing challenge");
2319 * Extract the k + b r and g^k values from the response.
2321 bctx
= BN_CTX_new(); bk
= BN_new(); bn
= BN_new();
2322 len
= ntohl(ep
->vallen
);
2323 ptr
= (const u_char
*)ep
->pkt
;
2324 if ((sdsa
= d2i_DSA_SIG(NULL
, &ptr
, len
)) == NULL
) {
2325 msyslog(LOG_ERR
, "crypto_iff %s\n",
2326 ERR_error_string(ERR_get_error(), NULL
));
2331 * Compute g^(k + b r) g^(q - b)r mod p.
2333 BN_mod_exp(bn
, dsa
->pub_key
, peer
->iffval
, dsa
->p
, bctx
);
2334 BN_mod_exp(bk
, dsa
->g
, sdsa
->r
, dsa
->p
, bctx
);
2335 BN_mod_mul(bn
, bn
, bk
, dsa
->p
, bctx
);
2338 * Verify the hash of the result matches hash(x).
2341 temp
= BN_cmp(bn
, sdsa
->s
);
2342 BN_free(bn
); BN_free(bk
); BN_CTX_free(bctx
);
2343 BN_free(peer
->iffval
);
2344 peer
->iffval
= NULL
;
2355 ***********************************************************************
2357 * The following routines implement the Guillou-Quisquater (GQ) *
2360 ***********************************************************************
2362 * The Guillou-Quisquater (GQ) identity scheme is intended for use when
2363 * the ntp-genkeys program generates the certificates used in the
2364 * protocol and the group key can be conveyed in a certificate extension
2365 * field. The scheme is self contained and independent of new
2366 * generations of host keys, sign keys and certificates.
2368 * The GQ identity scheme is based on RSA cryptography and algorithms
2369 * described in Stinson p. 300 (with errors). The GQ values hide in a
2370 * RSA cuckoo structure, but only the modulus is used. The 512-bit
2371 * public modulus is n = p q, where p and q are secret large primes. The
2372 * TA rolls random group key b disguised as a RSA structure member.
2373 * Except for the public key, these values are shared only among group
2374 * members and never revealed in messages.
2376 * When rolling new certificates, Bob recomputes the private and
2377 * public keys. The private key u is a random roll, while the public key
2378 * is the inverse obscured by the group key v = (u^-1)^b. These values
2379 * replace the private and public keys normally generated by the RSA
2380 * scheme. Alice challenges Bob to confirm identity using the protocol
2385 * The scheme goes like this. Both Alice and Bob have the same modulus n
2386 * and some random b as the group key. These values are computed and
2387 * distributed in advance via secret means, although only the group key
2388 * b is truly secret. Each has a private random private key u and public
2389 * key (u^-1)^b, although not necessarily the same ones. Bob and Alice
2390 * can regenerate the key pair from time to time without affecting
2391 * operations. The public key is conveyed on the certificate in an
2392 * extension field; the private key is never revealed.
2394 * Alice rolls new random challenge r and sends to Bob in the GQ
2395 * request message. Bob rolls new random k, then computes y = k u^r mod
2396 * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response
2397 * message. Besides making the response shorter, the hash makes it
2398 * effectivey impossible for an intruder to solve for b by observing
2399 * a number of these messages.
2401 * Alice receives the response and computes y^b v^r mod n. After a bit
2402 * of algebra, this simplifies to k^b. If the hash of this result
2403 * matches hash(x), Alice knows that Bob has the group key b. The signed
2404 * response binds this knowledge to Bob's private key and the public key
2405 * previously received in his certificate.
2407 * crypto_alice2 - construct Alice's challenge in GQ scheme
2411 * XEVNT_PUB bad or missing public key
2412 * XEVNT_ID bad or missing group key
2413 * XEVNT_PER host certificate expired
2417 struct peer
*peer
, /* peer pointer */
2418 struct value
*vp
/* value pointer */
2421 RSA
*rsa
; /* GQ parameters */
2422 BN_CTX
*bctx
; /* BIGNUM context */
2423 EVP_MD_CTX ctx
; /* signature context */
2428 * The identity parameters must have correct format and content.
2430 if (peer
->ident_pkey
== NULL
)
2433 if ((rsa
= peer
->ident_pkey
->pkey
.rsa
) == NULL
) {
2434 msyslog(LOG_INFO
, "crypto_alice2: defective key");
2439 * Roll new random r (0 < r < n). The OpenSSL library has a bug
2440 * omitting BN_rand_range, so we have to do it the hard way.
2442 bctx
= BN_CTX_new();
2443 len
= BN_num_bytes(rsa
->n
);
2444 if (peer
->iffval
!= NULL
)
2445 BN_free(peer
->iffval
);
2446 peer
->iffval
= BN_new();
2447 BN_rand(peer
->iffval
, len
* 8, -1, 1); /* r mod n */
2448 BN_mod(peer
->iffval
, peer
->iffval
, rsa
->n
, bctx
);
2452 * Sign and send to Bob. The filestamp is from the local file.
2454 tstamp
= crypto_time();
2455 memset(vp
, 0, sizeof(struct value
));
2456 vp
->tstamp
= htonl(tstamp
);
2457 vp
->fstamp
= htonl(peer
->fstamp
);
2458 vp
->vallen
= htonl(len
);
2459 vp
->ptr
= emalloc(len
);
2460 BN_bn2bin(peer
->iffval
, vp
->ptr
);
2465 if (tstamp
< cinfo
->first
|| tstamp
> cinfo
->last
)
2468 vp
->sig
= emalloc(sign_siglen
);
2469 EVP_SignInit(&ctx
, sign_digest
);
2470 EVP_SignUpdate(&ctx
, (u_char
*)&vp
->tstamp
, 12);
2471 EVP_SignUpdate(&ctx
, vp
->ptr
, len
);
2472 if (EVP_SignFinal(&ctx
, vp
->sig
, &len
, sign_pkey
))
2473 vp
->siglen
= htonl(len
);
2479 * crypto_bob2 - construct Bob's response to Alice's challenge
2483 * XEVNT_ID bad or missing group key
2484 * XEVNT_ERR protocol error
2485 * XEVNT_PER host certificate expired
2489 struct exten
*ep
, /* extension pointer */
2490 struct value
*vp
/* value pointer */
2493 RSA
*rsa
; /* GQ parameters */
2494 DSA_SIG
*sdsa
; /* DSA parameters */
2495 BN_CTX
*bctx
; /* BIGNUM context */
2496 EVP_MD_CTX ctx
; /* signature context */
2497 tstamp_t tstamp
; /* NTP timestamp */
2498 BIGNUM
*r
, *k
, *g
, *y
;
2503 * If the GQ parameters are not valid, something awful
2504 * happened or we are being tormented.
2506 if (gqpar_pkey
== NULL
) {
2507 msyslog(LOG_INFO
, "crypto_bob2: scheme unavailable");
2510 rsa
= gqpar_pkey
->pkey
.rsa
;
2513 * Extract r from the challenge.
2515 len
= ntohl(ep
->vallen
);
2516 if ((r
= BN_bin2bn((u_char
*)ep
->pkt
, len
, NULL
)) == NULL
) {
2517 msyslog(LOG_ERR
, "crypto_bob2 %s\n",
2518 ERR_error_string(ERR_get_error(), NULL
));
2523 * Bob rolls random k (0 < k < n), computes y = k u^r mod n and
2524 * x = k^b mod n, then sends (y, hash(x)) to Alice.
2526 bctx
= BN_CTX_new(); k
= BN_new(); g
= BN_new(); y
= BN_new();
2527 sdsa
= DSA_SIG_new();
2528 BN_rand(k
, len
* 8, -1, 1); /* k */
2529 BN_mod(k
, k
, rsa
->n
, bctx
);
2530 BN_mod_exp(y
, rsa
->p
, r
, rsa
->n
, bctx
); /* u^r mod n */
2531 BN_mod_mul(y
, k
, y
, rsa
->n
, bctx
); /* k u^r mod n */
2532 sdsa
->r
= BN_dup(y
);
2533 BN_mod_exp(g
, k
, rsa
->e
, rsa
->n
, bctx
); /* k^b mod n */
2535 sdsa
->s
= BN_dup(g
);
2537 BN_free(r
); BN_free(k
); BN_free(g
); BN_free(y
);
2540 * Encode the values in ASN.1 and sign.
2542 tstamp
= crypto_time();
2543 memset(vp
, 0, sizeof(struct value
));
2544 vp
->tstamp
= htonl(tstamp
);
2545 vp
->fstamp
= htonl(gq_fstamp
);
2546 len
= i2d_DSA_SIG(sdsa
, NULL
);
2548 msyslog(LOG_ERR
, "crypto_bob2 %s\n",
2549 ERR_error_string(ERR_get_error(), NULL
));
2553 vp
->vallen
= htonl(len
);
2556 i2d_DSA_SIG(sdsa
, &ptr
);
2562 if (tstamp
< cinfo
->first
|| tstamp
> cinfo
->last
)
2565 vp
->sig
= emalloc(sign_siglen
);
2566 EVP_SignInit(&ctx
, sign_digest
);
2567 EVP_SignUpdate(&ctx
, (u_char
*)&vp
->tstamp
, 12);
2568 EVP_SignUpdate(&ctx
, vp
->ptr
, len
);
2569 if (EVP_SignFinal(&ctx
, vp
->sig
, &len
, sign_pkey
))
2570 vp
->siglen
= htonl(len
);
2576 * crypto_gq - verify Bob's response to Alice's challenge
2580 * XEVNT_PUB bad or missing public key
2581 * XEVNT_ID bad or missing group keys
2582 * XEVNT_ERR protocol error
2583 * XEVNT_FSP bad filestamp
2587 struct exten
*ep
, /* extension pointer */
2588 struct peer
*peer
/* peer structure pointer */
2591 RSA
*rsa
; /* GQ parameters */
2592 BN_CTX
*bctx
; /* BIGNUM context */
2593 DSA_SIG
*sdsa
; /* RSA signature context fake */
2600 * If the GQ parameters are not valid or no challenge was sent,
2601 * something awful happened or we are being tormented.
2603 if (peer
->ident_pkey
== NULL
) {
2604 msyslog(LOG_INFO
, "crypto_gq: scheme unavailable");
2607 if (ntohl(ep
->fstamp
) != peer
->fstamp
) {
2608 msyslog(LOG_INFO
, "crypto_gq: invalid filestamp %u",
2612 if ((rsa
= peer
->ident_pkey
->pkey
.rsa
) == NULL
) {
2613 msyslog(LOG_INFO
, "crypto_gq: defective key");
2616 if (peer
->iffval
== NULL
) {
2617 msyslog(LOG_INFO
, "crypto_gq: missing challenge");
2622 * Extract the y = k u^r and hash(x = k^b) values from the
2625 bctx
= BN_CTX_new(); y
= BN_new(); v
= BN_new();
2626 len
= ntohl(ep
->vallen
);
2627 ptr
= (const u_char
*)ep
->pkt
;
2628 if ((sdsa
= d2i_DSA_SIG(NULL
, &ptr
, len
)) == NULL
) {
2629 msyslog(LOG_ERR
, "crypto_gq %s\n",
2630 ERR_error_string(ERR_get_error(), NULL
));
2635 * Compute v^r y^b mod n.
2637 BN_mod_exp(v
, peer
->grpkey
, peer
->iffval
, rsa
->n
, bctx
);
2639 BN_mod_exp(y
, sdsa
->r
, rsa
->e
, rsa
->n
, bctx
); /* y^b mod n */
2640 BN_mod_mul(y
, v
, y
, rsa
->n
, bctx
); /* v^r y^b mod n */
2643 * Verify the hash of the result matches hash(x).
2646 temp
= BN_cmp(y
, sdsa
->s
);
2647 BN_CTX_free(bctx
); BN_free(y
); BN_free(v
);
2648 BN_free(peer
->iffval
);
2649 peer
->iffval
= NULL
;
2660 ***********************************************************************
2662 * The following routines implement the Mu-Varadharajan (MV) identity *
2665 ***********************************************************************
2668 * The Mu-Varadharajan (MV) cryptosystem was originally intended when
2669 * servers broadcast messages to clients, but clients never send
2670 * messages to servers. There is one encryption key for the server and a
2671 * separate decryption key for each client. It operated something like a
2672 * pay-per-view satellite broadcasting system where the session key is
2673 * encrypted by the broadcaster and the decryption keys are held in a
2674 * tamperproof set-top box.
2676 * The MV parameters and private encryption key hide in a DSA cuckoo
2677 * structure which uses the same parameters, but generated in a
2678 * different way. The values are used in an encryption scheme similar to
2679 * El Gamal cryptography and a polynomial formed from the expansion of
2680 * product terms (x - x[j]), as described in Mu, Y., and V.
2681 * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
2682 * 223-231. The paper has significant errors and serious omissions.
2684 * Let q be the product of n distinct primes s'[j] (j = 1...n), where
2685 * each s'[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
2686 * that q and each s'[j] divide p - 1 and p has M = n * m + 1
2687 * significant bits. The elements x mod q of Zq with the elements 2 and
2688 * the primes removed form a field Zq* valid for polynomial arithetic.
2689 * Let g be a generator of Zp; that is, gcd(g, p - 1) = 1 and g^q = 1
2690 * mod p. We expect M to be in the 500-bit range and n relatively small,
2691 * like 25, so the likelihood of a randomly generated element of x mod q
2692 * of Zq colliding with a factor of p - 1 is very small and can be
2693 * avoided. Associated with each s'[j] is an element s[j] such that s[j]
2694 * s'[j] = s'[j] mod q. We find s[j] as the quotient (q + s'[j]) /
2695 * s'[j]. These are the parameters of the scheme and they are expensive
2698 * We set up an instance of the scheme as follows. A set of random
2699 * values x[j] mod q (j = 1...n), are generated as the zeros of a
2700 * polynomial of order n. The product terms (x - x[j]) are expanded to
2701 * form coefficients a[i] mod q (i = 0...n) in powers of x. These are
2702 * used as exponents of the generator g mod p to generate the private
2703 * encryption key A. The pair (gbar, ghat) of public server keys and the
2704 * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
2705 * to construct the decryption keys. The devil is in the details.
2707 * The distinguishing characteristic of this scheme is the capability to
2708 * revoke keys. Included in the calculation of E, gbar and ghat is the
2709 * product s = prod(s'[j]) (j = 1...n) above. If the factor s'[j] is
2710 * subsequently removed from the product and E, gbar and ghat
2711 * recomputed, the jth client will no longer be able to compute E^-1 and
2712 * thus unable to decrypt the block.
2716 * The scheme goes like this. Bob has the server values (p, A, q, gbar,
2717 * ghat) and Alice the client values (p, xbar, xhat).
2719 * Alice rolls new random challenge r (0 < r < p) and sends to Bob in
2720 * the MV request message. Bob rolls new random k (0 < k < q), encrypts
2721 * y = A^k mod p (a permutation) and sends (hash(y), gbar^k, ghat^k) to
2724 * Alice receives the response and computes the decryption key (the
2725 * inverse permutation) from previously obtained (xbar, xhat) and
2726 * (gbar^k, ghat^k) in the message. She computes the inverse, which is
2727 * unique by reasons explained in the ntp-keygen.c program sources. If
2728 * the hash of this result matches hash(y), Alice knows that Bob has the
2729 * group key b. The signed response binds this knowledge to Bob's
2730 * private key and the public key previously received in his
2733 * crypto_alice3 - construct Alice's challenge in MV scheme
2737 * XEVNT_PUB bad or missing public key
2738 * XEVNT_ID bad or missing group key
2739 * XEVNT_PER host certificate expired
2743 struct peer
*peer
, /* peer pointer */
2744 struct value
*vp
/* value pointer */
2747 DSA
*dsa
; /* MV parameters */
2748 BN_CTX
*bctx
; /* BIGNUM context */
2749 EVP_MD_CTX ctx
; /* signature context */
2754 * The identity parameters must have correct format and content.
2756 if (peer
->ident_pkey
== NULL
)
2759 if ((dsa
= peer
->ident_pkey
->pkey
.dsa
) == NULL
) {
2760 msyslog(LOG_INFO
, "crypto_alice3: defective key");
2765 * Roll new random r (0 < r < q). The OpenSSL library has a bug
2766 * omitting BN_rand_range, so we have to do it the hard way.
2768 bctx
= BN_CTX_new();
2769 len
= BN_num_bytes(dsa
->p
);
2770 if (peer
->iffval
!= NULL
)
2771 BN_free(peer
->iffval
);
2772 peer
->iffval
= BN_new();
2773 BN_rand(peer
->iffval
, len
* 8, -1, 1); /* r */
2774 BN_mod(peer
->iffval
, peer
->iffval
, dsa
->p
, bctx
);
2778 * Sign and send to Bob. The filestamp is from the local file.
2780 tstamp
= crypto_time();
2781 memset(vp
, 0, sizeof(struct value
));
2782 vp
->tstamp
= htonl(tstamp
);
2783 vp
->fstamp
= htonl(peer
->fstamp
);
2784 vp
->vallen
= htonl(len
);
2785 vp
->ptr
= emalloc(len
);
2786 BN_bn2bin(peer
->iffval
, vp
->ptr
);
2791 if (tstamp
< cinfo
->first
|| tstamp
> cinfo
->last
)
2794 vp
->sig
= emalloc(sign_siglen
);
2795 EVP_SignInit(&ctx
, sign_digest
);
2796 EVP_SignUpdate(&ctx
, (u_char
*)&vp
->tstamp
, 12);
2797 EVP_SignUpdate(&ctx
, vp
->ptr
, len
);
2798 if (EVP_SignFinal(&ctx
, vp
->sig
, &len
, sign_pkey
))
2799 vp
->siglen
= htonl(len
);
2805 * crypto_bob3 - construct Bob's response to Alice's challenge
2809 * XEVNT_ERR protocol error
2810 * XEVNT_PER host certificate expired
2814 struct exten
*ep
, /* extension pointer */
2815 struct value
*vp
/* value pointer */
2818 DSA
*dsa
; /* MV parameters */
2819 DSA
*sdsa
; /* DSA signature context fake */
2820 BN_CTX
*bctx
; /* BIGNUM context */
2821 EVP_MD_CTX ctx
; /* signature context */
2822 tstamp_t tstamp
; /* NTP timestamp */
2828 * If the MV parameters are not valid, something awful
2829 * happened or we are being tormented.
2831 if (mvpar_pkey
== NULL
) {
2832 msyslog(LOG_INFO
, "crypto_bob3: scheme unavailable");
2835 dsa
= mvpar_pkey
->pkey
.dsa
;
2838 * Extract r from the challenge.
2840 len
= ntohl(ep
->vallen
);
2841 if ((r
= BN_bin2bn((u_char
*)ep
->pkt
, len
, NULL
)) == NULL
) {
2842 msyslog(LOG_ERR
, "crypto_bob3 %s\n",
2843 ERR_error_string(ERR_get_error(), NULL
));
2848 * Bob rolls random k (0 < k < q), making sure it is not a
2849 * factor of q. He then computes y = A^k r and sends (hash(y),
2850 * gbar^k, ghat^k) to Alice.
2852 bctx
= BN_CTX_new(); k
= BN_new(); u
= BN_new();
2854 sdsa
->p
= BN_new(); sdsa
->q
= BN_new(); sdsa
->g
= BN_new();
2856 BN_rand(k
, BN_num_bits(dsa
->q
), 0, 0);
2857 BN_mod(k
, k
, dsa
->q
, bctx
);
2858 BN_gcd(u
, k
, dsa
->q
, bctx
);
2862 BN_mod_exp(u
, dsa
->g
, k
, dsa
->p
, bctx
); /* A r */
2863 BN_mod_mul(u
, u
, r
, dsa
->p
, bctx
);
2864 bighash(u
, sdsa
->p
);
2865 BN_mod_exp(sdsa
->q
, dsa
->priv_key
, k
, dsa
->p
, bctx
); /* gbar */
2866 BN_mod_exp(sdsa
->g
, dsa
->pub_key
, k
, dsa
->p
, bctx
); /* ghat */
2867 BN_CTX_free(bctx
); BN_free(k
); BN_free(r
); BN_free(u
);
2870 * Encode the values in ASN.1 and sign.
2872 tstamp
= crypto_time();
2873 memset(vp
, 0, sizeof(struct value
));
2874 vp
->tstamp
= htonl(tstamp
);
2875 vp
->fstamp
= htonl(mv_fstamp
);
2876 len
= i2d_DSAparams(sdsa
, NULL
);
2878 msyslog(LOG_ERR
, "crypto_bob3 %s\n",
2879 ERR_error_string(ERR_get_error(), NULL
));
2883 vp
->vallen
= htonl(len
);
2886 i2d_DSAparams(sdsa
, &ptr
);
2892 if (tstamp
< cinfo
->first
|| tstamp
> cinfo
->last
)
2895 vp
->sig
= emalloc(sign_siglen
);
2896 EVP_SignInit(&ctx
, sign_digest
);
2897 EVP_SignUpdate(&ctx
, (u_char
*)&vp
->tstamp
, 12);
2898 EVP_SignUpdate(&ctx
, vp
->ptr
, len
);
2899 if (EVP_SignFinal(&ctx
, vp
->sig
, &len
, sign_pkey
))
2900 vp
->siglen
= htonl(len
);
2906 * crypto_mv - verify Bob's response to Alice's challenge
2910 * XEVNT_PUB bad or missing public key
2911 * XEVNT_ID bad or missing group key
2912 * XEVNT_ERR protocol error
2913 * XEVNT_FSP bad filestamp
2917 struct exten
*ep
, /* extension pointer */
2918 struct peer
*peer
/* peer structure pointer */
2921 DSA
*dsa
; /* MV parameters */
2922 DSA
*sdsa
; /* DSA parameters */
2923 BN_CTX
*bctx
; /* BIGNUM context */
2930 * If the MV parameters are not valid or no challenge was sent,
2931 * something awful happened or we are being tormented.
2933 if (peer
->ident_pkey
== NULL
) {
2934 msyslog(LOG_INFO
, "crypto_mv: scheme unavailable");
2937 if (ntohl(ep
->fstamp
) != peer
->fstamp
) {
2938 msyslog(LOG_INFO
, "crypto_mv: invalid filestamp %u",
2942 if ((dsa
= peer
->ident_pkey
->pkey
.dsa
) == NULL
) {
2943 msyslog(LOG_INFO
, "crypto_mv: defective key");
2946 if (peer
->iffval
== NULL
) {
2947 msyslog(LOG_INFO
, "crypto_mv: missing challenge");
2952 * Extract the (hash(y), gbar, ghat) values from the response.
2954 bctx
= BN_CTX_new(); k
= BN_new(); u
= BN_new(); v
= BN_new();
2955 len
= ntohl(ep
->vallen
);
2956 ptr
= (const u_char
*)ep
->pkt
;
2957 if ((sdsa
= d2i_DSAparams(NULL
, &ptr
, len
)) == NULL
) {
2958 msyslog(LOG_ERR
, "crypto_mv %s\n",
2959 ERR_error_string(ERR_get_error(), NULL
));
2964 * Compute (gbar^xhat ghat^xbar)^-1 mod p.
2966 BN_mod_exp(u
, sdsa
->q
, dsa
->pub_key
, dsa
->p
, bctx
);
2967 BN_mod_exp(v
, sdsa
->g
, dsa
->priv_key
, dsa
->p
, bctx
);
2968 BN_mod_mul(u
, u
, v
, dsa
->p
, bctx
);
2969 BN_mod_inverse(u
, u
, dsa
->p
, bctx
);
2970 BN_mod_mul(v
, u
, peer
->iffval
, dsa
->p
, bctx
);
2973 * The result should match the hash of r mod p.
2976 temp
= BN_cmp(v
, sdsa
->p
);
2977 BN_CTX_free(bctx
); BN_free(k
); BN_free(u
); BN_free(v
);
2978 BN_free(peer
->iffval
);
2979 peer
->iffval
= NULL
;
2990 ***********************************************************************
2992 * The following routines are used to manipulate certificates *
2994 ***********************************************************************
2997 * cert_parse - parse x509 certificate and create info/value structures.
2999 * The server certificate includes the version number, issuer name,
3000 * subject name, public key and valid date interval. If the issuer name
3001 * is the same as the subject name, the certificate is self signed and
3002 * valid only if the server is configured as trustable. If the names are
3003 * different, another issuer has signed the server certificate and
3004 * vouched for it. In this case the server certificate is valid if
3005 * verified by the issuer public key.
3007 * Returns certificate info/value pointer if valid, NULL if not.
3009 struct cert_info
* /* certificate information structure */
3011 u_char
*asn1cert
, /* X509 certificate */
3012 u_int len
, /* certificate length */
3013 tstamp_t fstamp
/* filestamp */
3016 X509
*cert
; /* X509 certificate */
3017 X509_EXTENSION
*ext
; /* X509v3 extension */
3018 struct cert_info
*ret
; /* certificate info/value */
3020 X509V3_EXT_METHOD
*method
;
3021 char pathbuf
[MAXFILENAME
];
3027 * Decode ASN.1 objects and construct certificate structure.
3030 if ((cert
= d2i_X509(NULL
, &uptr
, len
)) == NULL
) {
3031 msyslog(LOG_ERR
, "cert_parse %s\n",
3032 ERR_error_string(ERR_get_error(), NULL
));
3037 * Extract version, subject name and public key.
3039 ret
= emalloc(sizeof(struct cert_info
));
3040 memset(ret
, 0, sizeof(struct cert_info
));
3041 if ((ret
->pkey
= X509_get_pubkey(cert
)) == NULL
) {
3042 msyslog(LOG_ERR
, "cert_parse %s\n",
3043 ERR_error_string(ERR_get_error(), NULL
));
3048 ret
->version
= X509_get_version(cert
);
3049 X509_NAME_oneline(X509_get_subject_name(cert
), pathbuf
,
3051 ptr
= strstr(pathbuf
, "CN=");
3053 msyslog(LOG_INFO
, "cert_parse: invalid subject %s",
3059 ret
->subject
= emalloc(strlen(ptr
) + 1);
3060 strcpy(ret
->subject
, ptr
+ 3);
3063 * Extract remaining objects. Note that the NTP serial number is
3064 * the NTP seconds at the time of signing, but this might not be
3065 * the case for other authority. We don't bother to check the
3066 * objects at this time, since the real crunch can happen only
3067 * when the time is valid but not yet certificated.
3069 ret
->nid
= OBJ_obj2nid(cert
->cert_info
->signature
->algorithm
);
3070 ret
->digest
= (const EVP_MD
*)EVP_get_digestbynid(ret
->nid
);
3072 (u_long
)ASN1_INTEGER_get(X509_get_serialNumber(cert
));
3073 X509_NAME_oneline(X509_get_issuer_name(cert
), pathbuf
,
3075 if ((ptr
= strstr(pathbuf
, "CN=")) == NULL
) {
3076 msyslog(LOG_INFO
, "cert_parse: invalid issuer %s",
3082 ret
->issuer
= emalloc(strlen(ptr
) + 1);
3083 strcpy(ret
->issuer
, ptr
+ 3);
3084 ret
->first
= asn2ntp(X509_get_notBefore(cert
));
3085 ret
->last
= asn2ntp(X509_get_notAfter(cert
));
3088 * Extract extension fields. These are ad hoc ripoffs of
3089 * currently assigned functions and will certainly be changed
3090 * before prime time.
3092 cnt
= X509_get_ext_count(cert
);
3093 for (i
= 0; i
< cnt
; i
++) {
3094 ext
= X509_get_ext(cert
, i
);
3095 method
= X509V3_EXT_get(ext
);
3096 temp
= OBJ_obj2nid(ext
->object
);
3100 * If a key_usage field is present, we decode whether
3101 * this is a trusted or private certificate. This is
3102 * dorky; all we want is to compare NIDs, but OpenSSL
3103 * insists on BIO text strings.
3105 case NID_ext_key_usage
:
3106 bp
= BIO_new(BIO_s_mem());
3107 X509V3_EXT_print(bp
, ext
, 0, 0);
3108 BIO_gets(bp
, pathbuf
, MAXFILENAME
);
3112 printf("cert_parse: %s: %s\n",
3113 OBJ_nid2ln(temp
), pathbuf
);
3115 if (strcmp(pathbuf
, "Trust Root") == 0)
3116 ret
->flags
|= CERT_TRUST
;
3117 else if (strcmp(pathbuf
, "Private") == 0)
3118 ret
->flags
|= CERT_PRIV
;
3122 * If a NID_subject_key_identifier field is present, it
3123 * contains the GQ public key.
3125 case NID_subject_key_identifier
:
3126 ret
->grplen
= ext
->value
->length
- 2;
3127 ret
->grpkey
= emalloc(ret
->grplen
);
3128 memcpy(ret
->grpkey
, &ext
->value
->data
[2],
3135 * If certificate is self signed, verify signature.
3137 if (strcmp(ret
->subject
, ret
->issuer
) == 0) {
3138 if (!X509_verify(cert
, ret
->pkey
)) {
3140 "cert_parse: signature not verified %s",
3149 * Verify certificate valid times. Note that certificates cannot
3152 if (ret
->first
> ret
->last
|| ret
->first
< fstamp
) {
3154 "cert_parse: invalid certificate %s first %u last %u fstamp %u",
3155 ret
->subject
, ret
->first
, ret
->last
, fstamp
);
3162 * Build the value structure to sign and send later.
3164 ret
->cert
.fstamp
= htonl(fstamp
);
3165 ret
->cert
.vallen
= htonl(len
);
3166 ret
->cert
.ptr
= emalloc(len
);
3167 memcpy(ret
->cert
.ptr
, asn1cert
, len
);
3170 X509_print_fp(stdout
, cert
);
3178 * cert_sign - sign x509 certificate equest and update value structure.
3180 * The certificate request includes a copy of the host certificate,
3181 * which includes the version number, subject name and public key of the
3182 * host. The resulting certificate includes these values plus the
3183 * serial number, issuer name and valid interval of the server. The
3184 * valid interval extends from the current time to the same time one
3185 * year hence. This may extend the life of the signed certificate beyond
3186 * that of the signer certificate.
3188 * It is convenient to use the NTP seconds of the current time as the
3189 * serial number. In the value structure the timestamp is the current
3190 * time and the filestamp is taken from the extension field. Note this
3191 * routine is called only when the client clock is synchronized to a
3192 * proventic source, so timestamp comparisons are valid.
3194 * The host certificate is valid from the time it was generated for a
3195 * period of one year. A signed certificate is valid from the time of
3196 * signature for a period of one year, but only the host certificate (or
3197 * sign certificate if used) is actually used to encrypt and decrypt
3198 * signatures. The signature trail is built from the client via the
3199 * intermediate servers to the trusted server. Each signature on the
3200 * trail must be valid at the time of signature, but it could happen
3201 * that a signer certificate expire before the signed certificate, which
3202 * remains valid until its expiration.
3206 * XEVNT_PUB bad or missing public key
3207 * XEVNT_CRT bad or missing certificate
3208 * XEVNT_VFY certificate not verified
3209 * XEVNT_PER host certificate expired
3213 struct exten
*ep
, /* extension field pointer */
3214 struct value
*vp
/* value pointer */
3217 X509
*req
; /* X509 certificate request */
3218 X509
*cert
; /* X509 certificate */
3219 X509_EXTENSION
*ext
; /* certificate extension */
3220 ASN1_INTEGER
*serial
; /* serial number */
3221 X509_NAME
*subj
; /* distinguished (common) name */
3222 EVP_PKEY
*pkey
; /* public key */
3223 EVP_MD_CTX ctx
; /* message digest context */
3224 tstamp_t tstamp
; /* NTP timestamp */
3230 * Decode ASN.1 objects and construct certificate structure.
3231 * Make sure the system clock is synchronized to a proventic
3234 tstamp
= crypto_time();
3238 if (tstamp
< cinfo
->first
|| tstamp
> cinfo
->last
)
3241 ptr
= (u_char
*)ep
->pkt
;
3242 if ((req
= d2i_X509(NULL
, &ptr
, ntohl(ep
->vallen
))) == NULL
) {
3243 msyslog(LOG_ERR
, "cert_sign %s\n",
3244 ERR_error_string(ERR_get_error(), NULL
));
3248 * Extract public key and check for errors.
3250 if ((pkey
= X509_get_pubkey(req
)) == NULL
) {
3251 msyslog(LOG_ERR
, "cert_sign %s\n",
3252 ERR_error_string(ERR_get_error(), NULL
));
3258 * Generate X509 certificate signed by this server. For this
3259 * purpose the issuer name is the server name. Also copy any
3260 * extensions that might be present.
3263 X509_set_version(cert
, X509_get_version(req
));
3264 serial
= ASN1_INTEGER_new();
3265 ASN1_INTEGER_set(serial
, tstamp
);
3266 X509_set_serialNumber(cert
, serial
);
3267 X509_gmtime_adj(X509_get_notBefore(cert
), 0L);
3268 X509_gmtime_adj(X509_get_notAfter(cert
), YEAR
);
3269 subj
= X509_get_issuer_name(cert
);
3270 X509_NAME_add_entry_by_txt(subj
, "commonName", MBSTRING_ASC
,
3271 (u_char
*)sys_hostname
, strlen(sys_hostname
), -1, 0);
3272 subj
= X509_get_subject_name(req
);
3273 X509_set_subject_name(cert
, subj
);
3274 X509_set_pubkey(cert
, pkey
);
3275 ext
= X509_get_ext(req
, 0);
3276 temp
= X509_get_ext_count(req
);
3277 for (i
= 0; i
< temp
; i
++) {
3278 ext
= X509_get_ext(req
, i
);
3279 X509_add_ext(cert
, ext
, -1);
3284 * Sign and verify the certificate.
3286 X509_sign(cert
, sign_pkey
, sign_digest
);
3287 if (!X509_verify(cert
, sign_pkey
)) {
3288 printf("cert_sign\n%s\n",
3289 ERR_error_string(ERR_get_error(), NULL
));
3293 len
= i2d_X509(cert
, NULL
);
3296 * Build and sign the value structure. We have to sign it here,
3297 * since the response has to be returned right away. This is a
3300 memset(vp
, 0, sizeof(struct value
));
3301 vp
->tstamp
= htonl(tstamp
);
3302 vp
->fstamp
= ep
->fstamp
;
3303 vp
->vallen
= htonl(len
);
3304 vp
->ptr
= emalloc(len
);
3306 i2d_X509(cert
, &ptr
);
3308 vp
->sig
= emalloc(sign_siglen
);
3309 EVP_SignInit(&ctx
, sign_digest
);
3310 EVP_SignUpdate(&ctx
, (u_char
*)vp
, 12);
3311 EVP_SignUpdate(&ctx
, vp
->ptr
, len
);
3312 if (EVP_SignFinal(&ctx
, vp
->sig
, &len
, sign_pkey
))
3313 vp
->siglen
= htonl(len
);
3316 X509_print_fp(stdout
, cert
);
3324 * cert_valid - verify certificate with given public key
3326 * This is pretty ugly, as the certificate has to be verified in the
3327 * OpenSSL X509 structure, not in the DER format in the info/value
3332 * XEVNT_VFY certificate not verified
3336 struct cert_info
*cinf
, /* certificate information structure */
3337 EVP_PKEY
*pkey
/* public key */
3340 X509
*cert
; /* X509 certificate */
3343 if (cinf
->flags
& CERT_SIGN
)
3346 ptr
= (u_char
*)cinf
->cert
.ptr
;
3347 cert
= d2i_X509(NULL
, &ptr
, ntohl(cinf
->cert
.vallen
));
3348 if (cert
== NULL
|| !X509_verify(cert
, pkey
))
3357 * cert - install certificate in certificate list
3359 * This routine encodes an extension field into a certificate info/value
3360 * structure. It searches the certificate list for duplicates and
3361 * expunges whichever is older. It then searches the list for other
3362 * certificates that might be verified by this latest one. Finally, it
3363 * inserts this certificate first on the list.
3367 * XEVNT_FSP bad or missing filestamp
3368 * XEVNT_CRT bad or missing certificate
3372 struct exten
*ep
, /* cert info/value */
3373 struct peer
*peer
/* peer structure */
3376 struct cert_info
*cp
, *xp
, *yp
, **zp
;
3379 * Parse and validate the signed certificate. If valid,
3380 * construct the info/value structure; otherwise, scamper home.
3382 if ((cp
= cert_parse((u_char
*)ep
->pkt
, ntohl(ep
->vallen
),
3383 ntohl(ep
->fstamp
))) == NULL
)
3387 * Scan certificate list looking for another certificate with
3388 * the same subject and issuer. If another is found with the
3389 * same or older filestamp, unlink it and return the goodies to
3390 * the heap. If another is found with a later filestamp, discard
3391 * the new one and leave the building.
3393 * Make a note to study this issue again. An earlier certificate
3394 * with a long lifetime might be overtaken by a later
3395 * certificate with a short lifetime, thus invalidating the
3396 * earlier signature. However, we gotta find a way to leak old
3397 * stuff from the cache, so we do it anyway.
3401 for (xp
= cinfo
; xp
!= NULL
; xp
= xp
->link
) {
3402 if (strcmp(cp
->subject
, xp
->subject
) == 0 &&
3403 strcmp(cp
->issuer
, xp
->issuer
) == 0) {
3404 if (ntohl(cp
->cert
.fstamp
) <=
3405 ntohl(xp
->cert
.fstamp
)) {
3420 * Scan the certificate list to see if Y is signed by X. This is
3421 * independent of order.
3423 for (yp
= cinfo
; yp
!= NULL
; yp
= yp
->link
) {
3424 for (xp
= cinfo
; xp
!= NULL
; xp
= xp
->link
) {
3427 * If the issuer of certificate Y matches the
3428 * subject of certificate X, verify the
3429 * signature of Y using the public key of X. If
3432 if (strcmp(yp
->issuer
, xp
->subject
) != 0 ||
3433 xp
->flags
& CERT_ERROR
)
3436 if (cert_valid(yp
, xp
->pkey
) != XEVNT_OK
) {
3437 yp
->flags
|= CERT_ERROR
;
3442 * The signature Y is valid only if it begins
3443 * during the lifetime of X; however, it is not
3444 * necessarily an error, since some other
3445 * certificate might sign Y.
3447 if (yp
->first
< xp
->first
|| yp
->first
>
3451 yp
->flags
|= CERT_SIGN
;
3454 * If X is trusted, then Y is trusted. Note that
3455 * we might stumble over a self-signed
3456 * certificate that is not trusted, at least
3457 * temporarily. This can happen when a dude
3458 * first comes up, but has not synchronized the
3459 * clock and had its certificate signed by its
3460 * server. In case of broken certificate trail,
3461 * this might result in a loop that could
3462 * persist until timeout.
3464 if (!(xp
->flags
& (CERT_TRUST
| CERT_VALID
)))
3467 yp
->flags
|= CERT_VALID
;
3470 * If subject Y matches the server subject name,
3471 * then Y has completed the certificate trail.
3472 * Save the group key and light the valid bit.
3474 if (strcmp(yp
->subject
, peer
->subject
) != 0)
3477 if (yp
->grpkey
!= NULL
) {
3478 if (peer
->grpkey
!= NULL
)
3479 BN_free(peer
->grpkey
);
3480 peer
->grpkey
= BN_bin2bn(yp
->grpkey
,
3483 peer
->crypto
|= CRYPTO_FLAG_VALID
;
3486 * If the server has an an identity scheme,
3487 * fetch the identity credentials. If not, the
3488 * identity is verified only by the trusted
3489 * certificate. The next signature will set the
3492 if (peer
->crypto
& (CRYPTO_FLAG_GQ
|
3493 CRYPTO_FLAG_IFF
| CRYPTO_FLAG_MV
))
3496 peer
->crypto
|= CRYPTO_FLAG_VRFY
;
3501 * That was awesome. Now update the timestamps and signatures.
3509 * cert_free - free certificate information structure
3513 struct cert_info
*cinf
/* certificate info/value structure */
3516 if (cinf
->pkey
!= NULL
)
3517 EVP_PKEY_free(cinf
->pkey
);
3518 if (cinf
->subject
!= NULL
)
3519 free(cinf
->subject
);
3520 if (cinf
->issuer
!= NULL
)
3522 if (cinf
->grpkey
!= NULL
)
3524 value_free(&cinf
->cert
);
3530 ***********************************************************************
3532 * The following routines are used only at initialization time *
3534 ***********************************************************************
3537 * crypto_key - load cryptographic parameters and keys from files
3539 * This routine loads a PEM-encoded public/private key pair and extracts
3540 * the filestamp from the file name.
3542 * Returns public key pointer if valid, NULL if not. Side effect updates
3543 * the filestamp if valid.
3547 char *cp
, /* file name */
3548 tstamp_t
*fstamp
/* filestamp */
3551 FILE *str
; /* file handle */
3552 EVP_PKEY
*pkey
= NULL
; /* public/private key */
3553 char filename
[MAXFILENAME
]; /* name of key file */
3554 char linkname
[MAXFILENAME
]; /* filestamp buffer) */
3555 char statstr
[NTP_MAXSTRLEN
]; /* statistics for filegen */
3559 * Open the key file. If the first character of the file name is
3560 * not '/', prepend the keys directory string. If something goes
3561 * wrong, abandon ship.
3564 strcpy(filename
, cp
);
3566 snprintf(filename
, MAXFILENAME
, "%s/%s", keysdir
, cp
);
3567 str
= fopen(filename
, "r");
3572 * Read the filestamp, which is contained in the first line.
3574 if ((ptr
= fgets(linkname
, MAXFILENAME
, str
)) == NULL
) {
3575 msyslog(LOG_ERR
, "crypto_key: no data %s\n",
3580 if ((ptr
= strrchr(ptr
, '.')) == NULL
) {
3581 msyslog(LOG_ERR
, "crypto_key: no filestamp %s\n",
3586 if (sscanf(++ptr
, "%u", fstamp
) != 1) {
3587 msyslog(LOG_ERR
, "crypto_key: invalid timestamp %s\n",
3594 * Read and decrypt PEM-encoded private key.
3596 pkey
= PEM_read_PrivateKey(str
, NULL
, NULL
, passwd
);
3599 msyslog(LOG_ERR
, "crypto_key %s\n",
3600 ERR_error_string(ERR_get_error(), NULL
));
3605 * Leave tracks in the cryptostats.
3607 if ((ptr
= strrchr(linkname
, '\n')) != NULL
)
3609 sprintf(statstr
, "%s mod %d", &linkname
[2],
3610 EVP_PKEY_size(pkey
) * 8);
3611 record_crypto_stats(NULL
, statstr
);
3614 printf("crypto_key: %s\n", statstr
);
3616 if (EVP_MD_type(pkey
) == EVP_PKEY_DSA
)
3617 DSA_print_fp(stdout
, pkey
->pkey
.dsa
, 0);
3619 RSA_print_fp(stdout
, pkey
->pkey
.rsa
, 0);
3627 * crypto_cert - load certificate from file
3629 * This routine loads a X.509 RSA or DSA certificate from a file and
3630 * constructs a info/cert value structure for this machine. The
3631 * structure includes a filestamp extracted from the file name. Later
3632 * the certificate can be sent to another machine by request.
3634 * Returns certificate info/value pointer if valid, NULL if not.
3636 static struct cert_info
* /* certificate information */
3638 char *cp
/* file name */
3641 struct cert_info
*ret
; /* certificate information */
3642 FILE *str
; /* file handle */
3643 char filename
[MAXFILENAME
]; /* name of certificate file */
3644 char linkname
[MAXFILENAME
]; /* filestamp buffer */
3645 char statstr
[NTP_MAXSTRLEN
]; /* statistics for filegen */
3646 tstamp_t fstamp
; /* filestamp */
3649 char *name
, *header
;
3653 * Open the certificate file. If the first character of the file
3654 * name is not '/', prepend the keys directory string. If
3655 * something goes wrong, abandon ship.
3658 strcpy(filename
, cp
);
3660 snprintf(filename
, MAXFILENAME
, "%s/%s", keysdir
, cp
);
3661 str
= fopen(filename
, "r");
3666 * Read the filestamp, which is contained in the first line.
3668 if ((ptr
= fgets(linkname
, MAXFILENAME
, str
)) == NULL
) {
3669 msyslog(LOG_ERR
, "crypto_cert: no data %s\n",
3674 if ((ptr
= strrchr(ptr
, '.')) == NULL
) {
3675 msyslog(LOG_ERR
, "crypto_cert: no filestamp %s\n",
3680 if (sscanf(++ptr
, "%u", &fstamp
) != 1) {
3681 msyslog(LOG_ERR
, "crypto_cert: invalid filestamp %s\n",
3688 * Read PEM-encoded certificate and install.
3690 if (!PEM_read(str
, &name
, &header
, &data
, &len
)) {
3691 msyslog(LOG_ERR
, "crypto_cert %s\n",
3692 ERR_error_string(ERR_get_error(), NULL
));
3697 if (strcmp(name
, "CERTIFICATE") !=0) {
3698 msyslog(LOG_INFO
, "crypto_cert: wrong PEM type %s",
3708 * Parse certificate and generate info/value structure.
3710 ret
= cert_parse(data
, len
, fstamp
);
3716 if ((ptr
= strrchr(linkname
, '\n')) != NULL
)
3718 sprintf(statstr
, "%s 0x%x len %lu", &linkname
[2], ret
->flags
,
3720 record_crypto_stats(NULL
, statstr
);
3723 printf("crypto_cert: %s\n", statstr
);
3730 * crypto_tai - load leapseconds table from file
3732 * This routine loads the ERTS leapsecond file in NIST text format,
3733 * converts to a value structure and extracts a filestamp from the file
3734 * name. The data are used to establish the TAI offset from UTC, which
3735 * is provided to the kernel if supported. Later the data can be sent to
3736 * another machine on request.
3740 char *cp
/* file name */
3743 FILE *str
; /* file handle */
3744 char buf
[NTP_MAXSTRLEN
]; /* file line buffer */
3745 u_int32 leapsec
[MAX_LEAP
]; /* NTP time at leaps */
3746 int offset
; /* offset at leap (s) */
3747 char filename
[MAXFILENAME
]; /* name of leapseconds file */
3748 char linkname
[MAXFILENAME
]; /* file link (for filestamp) */
3749 char statstr
[NTP_MAXSTRLEN
]; /* statistics for filegen */
3750 tstamp_t fstamp
; /* filestamp */
3757 * Open the file and discard comment lines. If the first
3758 * character of the file name is not '/', prepend the keys
3759 * directory string. If the file is not found, not to worry; it
3760 * can be retrieved over the net. But, if it is found with
3761 * errors, we crash and burn.
3764 strcpy(filename
, cp
);
3766 snprintf(filename
, MAXFILENAME
, "%s/%s", keysdir
, cp
);
3767 if ((str
= fopen(filename
, "r")) == NULL
)
3771 * Extract filestamp if present.
3773 rval
= readlink(filename
, linkname
, MAXFILENAME
- 1);
3775 linkname
[rval
] = '\0';
3776 dp
= strrchr(linkname
, '.');
3778 dp
= strrchr(filename
, '.');
3781 sscanf(++dp
, "%u", &fstamp
);
3784 tai_leap
.fstamp
= htonl(fstamp
);
3787 * We are rather paranoid here, since an intruder might cause a
3788 * coredump by infiltrating naughty values. Empty lines and
3789 * comments are ignored. Other lines must begin with two
3790 * integers followed by junk or comments. The first integer is
3791 * the NTP seconds of leap insertion, the second is the offset
3792 * of TAI relative to UTC after that insertion. The second word
3793 * must equal the initial insertion of ten seconds on 1 January
3794 * 1972 plus one second for each succeeding insertion.
3797 while (i
< MAX_LEAP
) {
3798 dp
= fgets(buf
, NTP_MAXSTRLEN
- 1, str
);
3802 if (strlen(buf
) < 1)
3808 if (sscanf(buf
, "%u %d", &leapsec
[i
], &offset
) != 2)
3811 if (i
!= offset
- TAI_1972
)
3819 "crypto_tai: leapseconds file %s error %d", cp
,
3825 * The extension field table entries consists of the NTP seconds
3826 * of leap insertion in network byte order.
3828 len
= i
* sizeof(u_int32
);
3829 tai_leap
.vallen
= htonl(len
);
3831 tai_leap
.ptr
= (u_char
*)ptr
;
3832 for (j
= 0; j
< i
; j
++)
3833 *ptr
++ = htonl(leapsec
[j
]);
3834 crypto_flags
|= CRYPTO_FLAG_TAI
;
3835 sprintf(statstr
, "%s fs %u leap %u len %u", cp
, fstamp
,
3837 record_crypto_stats(NULL
, statstr
);
3840 printf("crypto_tai: %s\n", statstr
);
3846 * crypto_setup - load keys, certificate and leapseconds table
3848 * This routine loads the public/private host key and certificate. If
3849 * available, it loads the public/private sign key, which defaults to
3850 * the host key, and leapseconds table. The host key must be RSA, but
3851 * the sign key can be either RSA or DSA. In either case, the public key
3852 * on the certificate must agree with the sign key.
3857 EVP_PKEY
*pkey
; /* private/public key pair */
3858 char filename
[MAXFILENAME
]; /* file name buffer */
3859 l_fp seed
; /* crypto PRNG seed as NTP timestamp */
3860 tstamp_t fstamp
; /* filestamp */
3861 tstamp_t sstamp
; /* sign filestamp */
3866 * Initialize structures.
3871 gethostname(filename
, MAXFILENAME
);
3872 bytes
= strlen(filename
) + 1;
3873 sys_hostname
= emalloc(bytes
);
3874 memcpy(sys_hostname
, filename
, bytes
);
3876 passwd
= sys_hostname
;
3877 memset(&hostval
, 0, sizeof(hostval
));
3878 memset(&pubkey
, 0, sizeof(pubkey
));
3879 memset(&tai_leap
, 0, sizeof(tai_leap
));
3882 * Load required random seed file and seed the random number
3883 * generator. Be default, it is found in the user home
3884 * directory. The root home directory may be / or /root,
3885 * depending on the system. Wiggle the contents a bit and write
3886 * it back so the sequence does not repeat when we next restart.
3888 ERR_load_crypto_strings();
3889 if (rand_file
== NULL
) {
3890 if ((RAND_file_name(filename
, MAXFILENAME
)) != NULL
) {
3891 rand_file
= emalloc(strlen(filename
) + 1);
3892 strcpy(rand_file
, filename
);
3894 } else if (*rand_file
!= '/') {
3895 snprintf(filename
, MAXFILENAME
, "%s/%s", keysdir
,
3898 rand_file
= emalloc(strlen(filename
) + 1);
3899 strcpy(rand_file
, filename
);
3901 if (rand_file
== NULL
) {
3903 "crypto_setup: random seed file not specified");
3906 if ((bytes
= RAND_load_file(rand_file
, -1)) == 0) {
3908 "crypto_setup: random seed file %s not found\n",
3913 RAND_seed(&seed
, sizeof(l_fp
));
3914 RAND_write_file(rand_file
);
3915 OpenSSL_add_all_algorithms();
3919 "crypto_setup: OpenSSL version %lx random seed file %s bytes read %d\n",
3920 SSLeay(), rand_file
, bytes
);
3924 * Load required host key from file "ntpkey_host_<hostname>". It
3925 * also becomes the default sign key.
3927 if (host_file
== NULL
) {
3928 snprintf(filename
, MAXFILENAME
, "ntpkey_host_%s",
3930 host_file
= emalloc(strlen(filename
) + 1);
3931 strcpy(host_file
, filename
);
3933 pkey
= crypto_key(host_file
, &fstamp
);
3936 "crypto_setup: host key file %s not found or corrupt",
3943 hostval
.fstamp
= htonl(fstamp
);
3944 if (EVP_MD_type(host_pkey
) != EVP_PKEY_RSA
) {
3946 "crypto_setup: host key is not RSA key type");
3949 hostval
.vallen
= htonl(strlen(sys_hostname
));
3950 hostval
.ptr
= (u_char
*)sys_hostname
;
3953 * Construct public key extension field for agreement scheme.
3955 len
= i2d_PublicKey(host_pkey
, NULL
);
3958 i2d_PublicKey(host_pkey
, &ptr
);
3959 pubkey
.vallen
= htonl(len
);
3960 pubkey
.fstamp
= hostval
.fstamp
;
3963 * Load optional sign key from file "ntpkey_sign_<hostname>". If
3964 * loaded, it becomes the sign key.
3966 if (sign_file
== NULL
) {
3967 snprintf(filename
, MAXFILENAME
, "ntpkey_sign_%s",
3969 sign_file
= emalloc(strlen(filename
) + 1);
3970 strcpy(sign_file
, filename
);
3972 pkey
= crypto_key(sign_file
, &fstamp
);
3977 sign_siglen
= EVP_PKEY_size(sign_pkey
);
3980 * Load optional IFF parameters from file
3981 * "ntpkey_iff_<hostname>".
3983 if (iffpar_file
== NULL
) {
3984 snprintf(filename
, MAXFILENAME
, "ntpkey_iff_%s",
3986 iffpar_file
= emalloc(strlen(filename
) + 1);
3987 strcpy(iffpar_file
, filename
);
3989 iffpar_pkey
= crypto_key(iffpar_file
, &if_fstamp
);
3990 if (iffpar_pkey
!= NULL
)
3991 crypto_flags
|= CRYPTO_FLAG_IFF
;
3994 * Load optional GQ parameters from file "ntpkey_gq_<hostname>".
3996 if (gqpar_file
== NULL
) {
3997 snprintf(filename
, MAXFILENAME
, "ntpkey_gq_%s",
3999 gqpar_file
= emalloc(strlen(filename
) + 1);
4000 strcpy(gqpar_file
, filename
);
4002 gqpar_pkey
= crypto_key(gqpar_file
, &gq_fstamp
);
4003 if (gqpar_pkey
!= NULL
)
4004 crypto_flags
|= CRYPTO_FLAG_GQ
;
4007 * Load optional MV parameters from file "ntpkey_mv_<hostname>".
4009 if (mvpar_file
== NULL
) {
4010 snprintf(filename
, MAXFILENAME
, "ntpkey_mv_%s",
4012 mvpar_file
= emalloc(strlen(filename
) + 1);
4013 strcpy(mvpar_file
, filename
);
4015 mvpar_pkey
= crypto_key(mvpar_file
, &mv_fstamp
);
4016 if (mvpar_pkey
!= NULL
)
4017 crypto_flags
|= CRYPTO_FLAG_MV
;
4020 * Load required certificate from file "ntpkey_cert_<hostname>".
4022 if (cert_file
== NULL
) {
4023 snprintf(filename
, MAXFILENAME
, "ntpkey_cert_%s",
4025 cert_file
= emalloc(strlen(filename
) + 1);
4026 strcpy(cert_file
, filename
);
4028 if ((cinfo
= crypto_cert(cert_file
)) == NULL
) {
4030 "certificate file %s not found or corrupt",
4036 * The subject name must be the same as the host name, unless
4037 * the certificate is private, in which case it may have come
4038 * from another host.
4040 if (!(cinfo
->flags
& CERT_PRIV
) && strcmp(cinfo
->subject
,
4041 sys_hostname
) != 0) {
4043 "crypto_setup: certificate %s not for this host",
4050 * It the certificate is trusted, the subject must be the same
4051 * as the issuer, in other words it must be self signed.
4053 if (cinfo
->flags
& CERT_TRUST
&& strcmp(cinfo
->subject
,
4054 cinfo
->issuer
) != 0) {
4055 if (cert_valid(cinfo
, sign_pkey
) != XEVNT_OK
) {
4057 "crypto_setup: certificate %s is trusted, but not self signed.",
4063 sign_digest
= cinfo
->digest
;
4064 if (cinfo
->flags
& CERT_PRIV
)
4065 crypto_flags
|= CRYPTO_FLAG_PRIV
;
4066 crypto_flags
|= cinfo
->nid
<< 16;
4069 * Load optional leapseconds table from file "ntpkey_leap". If
4070 * the file is missing or defective, the values can later be
4071 * retrieved from a server.
4073 if (leap_file
== NULL
)
4074 leap_file
= "ntpkey_leap";
4075 crypto_tai(leap_file
);
4079 "crypto_setup: flags 0x%x host %s signature %s\n",
4080 crypto_flags
, sys_hostname
, OBJ_nid2ln(cinfo
->nid
));
4086 * crypto_config - configure data from crypto configuration command.
4090 int item
, /* configuration item */
4091 char *cp
/* file name */
4097 * Set random seed file name.
4099 case CRYPTO_CONF_RAND
:
4100 rand_file
= emalloc(strlen(cp
) + 1);
4101 strcpy(rand_file
, cp
);
4105 * Set private key password.
4107 case CRYPTO_CONF_PW
:
4108 passwd
= emalloc(strlen(cp
) + 1);
4113 * Set host file name.
4115 case CRYPTO_CONF_PRIV
:
4116 host_file
= emalloc(strlen(cp
) + 1);
4117 strcpy(host_file
, cp
);
4121 * Set sign key file name.
4123 case CRYPTO_CONF_SIGN
:
4124 sign_file
= emalloc(strlen(cp
) + 1);
4125 strcpy(sign_file
, cp
);
4129 * Set iff parameters file name.
4131 case CRYPTO_CONF_IFFPAR
:
4132 iffpar_file
= emalloc(strlen(cp
) + 1);
4133 strcpy(iffpar_file
, cp
);
4137 * Set gq parameters file name.
4139 case CRYPTO_CONF_GQPAR
:
4140 gqpar_file
= emalloc(strlen(cp
) + 1);
4141 strcpy(gqpar_file
, cp
);
4145 * Set mv parameters file name.
4147 case CRYPTO_CONF_MVPAR
:
4148 mvpar_file
= emalloc(strlen(cp
) + 1);
4149 strcpy(mvpar_file
, cp
);
4153 * Set identity scheme.
4155 case CRYPTO_CONF_IDENT
:
4156 if (!strcasecmp(cp
, "iff"))
4157 ident_scheme
|= CRYPTO_FLAG_IFF
;
4158 else if (!strcasecmp(cp
, "gq"))
4159 ident_scheme
|= CRYPTO_FLAG_GQ
;
4160 else if (!strcasecmp(cp
, "mv"))
4161 ident_scheme
|= CRYPTO_FLAG_MV
;
4165 * Set certificate file name.
4167 case CRYPTO_CONF_CERT
:
4168 cert_file
= emalloc(strlen(cp
) + 1);
4169 strcpy(cert_file
, cp
);
4173 * Set leapseconds file name.
4175 case CRYPTO_CONF_LEAP
:
4176 leap_file
= emalloc(strlen(cp
) + 1);
4177 strcpy(leap_file
, cp
);
4180 crypto_flags
|= CRYPTO_FLAG_ENAB
;
4183 int ntp_crypto_bs_pubkey
;
4184 # endif /* OPENSSL */