turns printfs back on
[freebsd-src/fkvm-freebsd.git] / contrib / ntp / ntpd / ntp_crypto.c
blob84adbdda1e567c108f83a775e3c6cb5054f88c32
1 /*
2 * ntp_crypto.c - NTP version 4 public key routines
3 */
4 #ifdef HAVE_CONFIG_H
5 #include <config.h>
6 #endif
8 #ifdef OPENSSL
9 #include <stdio.h>
10 #include <sys/types.h>
11 #include <sys/param.h>
12 #include <unistd.h>
13 #include <fcntl.h>
15 #include "ntpd.h"
16 #include "ntp_stdlib.h"
17 #include "ntp_unixtime.h"
18 #include "ntp_string.h"
19 #include <ntp_random.h>
21 #include "openssl/asn1_mac.h"
22 #include "openssl/bn.h"
23 #include "openssl/err.h"
24 #include "openssl/evp.h"
25 #include "openssl/pem.h"
26 #include "openssl/rand.h"
27 #include "openssl/x509v3.h"
29 #ifdef KERNEL_PLL
30 #include "ntp_syscall.h"
31 #endif /* KERNEL_PLL */
34 * Extension field message format
36 * These are always signed and saved before sending in network byte
37 * order. They must be converted to and from host byte order for
38 * processing.
40 * +-------+-------+
41 * | op | len | <- extension pointer
42 * +-------+-------+
43 * | assocID |
44 * +---------------+
45 * | timestamp | <- value pointer
46 * +---------------+
47 * | filestamp |
48 * +---------------+
49 * | value len |
50 * +---------------+
51 * | |
52 * = value =
53 * | |
54 * +---------------+
55 * | signature len |
56 * +---------------+
57 * | |
58 * = signature =
59 * | |
60 * +---------------+
62 * The CRYPTO_RESP bit is set to 0 for requests, 1 for responses.
63 * Requests carry the association ID of the receiver; responses carry
64 * the association ID of the sender. Some messages include only the
65 * operation/length and association ID words and so have length 8
66 * octets. Ohers include the value structure and associated value and
67 * signature fields. These messages include the timestamp, filestamp,
68 * value and signature words and so have length at least 24 octets. The
69 * signature and/or value fields can be empty, in which case the
70 * respective length words are zero. An empty value with nonempty
71 * signature is syntactically valid, but semantically questionable.
73 * The filestamp represents the time when a cryptographic data file such
74 * as a public/private key pair is created. It follows every reference
75 * depending on that file and serves as a means to obsolete earlier data
76 * of the same type. The timestamp represents the time when the
77 * cryptographic data of the message were last signed. Creation of a
78 * cryptographic data file or signing a message can occur only when the
79 * creator or signor is synchronized to an authoritative source and
80 * proventicated to a trusted authority.
82 * Note there are four conditions required for server trust. First, the
83 * public key on the certificate must be verified, which involves a
84 * number of format, content and consistency checks. Next, the server
85 * identity must be confirmed by one of four schemes: private
86 * certificate, IFF scheme, GQ scheme or certificate trail hike to a
87 * self signed trusted certificate. Finally, the server signature must
88 * be verified.
91 * Cryptodefines
93 #define TAI_1972 10 /* initial TAI offset (s) */
94 #define MAX_LEAP 100 /* max UTC leapseconds (s) */
95 #define VALUE_LEN (6 * 4) /* min response field length */
96 #define YEAR (60 * 60 * 24 * 365) /* seconds in year */
99 * Global cryptodata in host byte order
101 u_int32 crypto_flags = 0x0; /* status word */
104 * Global cryptodata in network byte order
106 struct cert_info *cinfo = NULL; /* certificate info/value */
107 struct value hostval; /* host value */
108 struct value pubkey; /* public key */
109 struct value tai_leap; /* leapseconds table */
110 EVP_PKEY *iffpar_pkey = NULL; /* IFF parameters */
111 EVP_PKEY *gqpar_pkey = NULL; /* GQ parameters */
112 EVP_PKEY *mvpar_pkey = NULL; /* MV parameters */
113 char *iffpar_file = NULL; /* IFF parameters file */
114 char *gqpar_file = NULL; /* GQ parameters file */
115 char *mvpar_file = NULL; /* MV parameters file */
118 * Private cryptodata in host byte order
120 static char *passwd = NULL; /* private key password */
121 static EVP_PKEY *host_pkey = NULL; /* host key */
122 static EVP_PKEY *sign_pkey = NULL; /* sign key */
123 static const EVP_MD *sign_digest = NULL; /* sign digest */
124 static u_int sign_siglen; /* sign key length */
125 static char *rand_file = NULL; /* random seed file */
126 static char *host_file = NULL; /* host key file */
127 static char *sign_file = NULL; /* sign key file */
128 static char *cert_file = NULL; /* certificate file */
129 static char *leap_file = NULL; /* leapseconds file */
130 static tstamp_t if_fstamp = 0; /* IFF filestamp */
131 static tstamp_t gq_fstamp = 0; /* GQ file stamp */
132 static tstamp_t mv_fstamp = 0; /* MV filestamp */
133 static u_int ident_scheme = 0; /* server identity scheme */
136 * Cryptotypes
138 static int crypto_verify P((struct exten *, struct value *,
139 struct peer *));
140 static int crypto_encrypt P((struct exten *, struct value *,
141 keyid_t *));
142 static int crypto_alice P((struct peer *, struct value *));
143 static int crypto_alice2 P((struct peer *, struct value *));
144 static int crypto_alice3 P((struct peer *, struct value *));
145 static int crypto_bob P((struct exten *, struct value *));
146 static int crypto_bob2 P((struct exten *, struct value *));
147 static int crypto_bob3 P((struct exten *, struct value *));
148 static int crypto_iff P((struct exten *, struct peer *));
149 static int crypto_gq P((struct exten *, struct peer *));
150 static int crypto_mv P((struct exten *, struct peer *));
151 static u_int crypto_send P((struct exten *, struct value *));
152 static tstamp_t crypto_time P((void));
153 static u_long asn2ntp P((ASN1_TIME *));
154 static struct cert_info *cert_parse P((u_char *, u_int, tstamp_t));
155 static int cert_sign P((struct exten *, struct value *));
156 static int cert_valid P((struct cert_info *, EVP_PKEY *));
157 static int cert_install P((struct exten *, struct peer *));
158 static void cert_free P((struct cert_info *));
159 static EVP_PKEY *crypto_key P((char *, tstamp_t *));
160 static int bighash P((BIGNUM *, BIGNUM *));
161 static struct cert_info *crypto_cert P((char *));
162 static void crypto_tai P((char *));
164 #ifdef SYS_WINNT
166 readlink(char * link, char * file, int len) {
167 return (-1);
169 #endif
172 * session_key - generate session key
174 * This routine generates a session key from the source address,
175 * destination address, key ID and private value. The value of the
176 * session key is the MD5 hash of these values, while the next key ID is
177 * the first four octets of the hash.
179 * Returns the next key ID
181 keyid_t
182 session_key(
183 struct sockaddr_storage *srcadr, /* source address */
184 struct sockaddr_storage *dstadr, /* destination address */
185 keyid_t keyno, /* key ID */
186 keyid_t private, /* private value */
187 u_long lifetime /* key lifetime */
190 EVP_MD_CTX ctx; /* message digest context */
191 u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
192 keyid_t keyid; /* key identifer */
193 u_int32 header[10]; /* data in network byte order */
194 u_int hdlen, len;
196 if (!dstadr)
197 return 0;
200 * Generate the session key and key ID. If the lifetime is
201 * greater than zero, install the key and call it trusted.
203 hdlen = 0;
204 switch(srcadr->ss_family) {
205 case AF_INET:
206 header[0] = ((struct sockaddr_in *)srcadr)->sin_addr.s_addr;
207 header[1] = ((struct sockaddr_in *)dstadr)->sin_addr.s_addr;
208 header[2] = htonl(keyno);
209 header[3] = htonl(private);
210 hdlen = 4 * sizeof(u_int32);
211 break;
213 case AF_INET6:
214 memcpy(&header[0], &GET_INADDR6(*srcadr),
215 sizeof(struct in6_addr));
216 memcpy(&header[4], &GET_INADDR6(*dstadr),
217 sizeof(struct in6_addr));
218 header[8] = htonl(keyno);
219 header[9] = htonl(private);
220 hdlen = 10 * sizeof(u_int32);
221 break;
223 EVP_DigestInit(&ctx, EVP_md5());
224 EVP_DigestUpdate(&ctx, (u_char *)header, hdlen);
225 EVP_DigestFinal(&ctx, dgst, &len);
226 memcpy(&keyid, dgst, 4);
227 keyid = ntohl(keyid);
228 if (lifetime != 0) {
229 MD5auth_setkey(keyno, dgst, len);
230 authtrust(keyno, lifetime);
232 #ifdef DEBUG
233 if (debug > 1)
234 printf(
235 "session_key: %s > %s %08x %08x hash %08x life %lu\n",
236 stoa(srcadr), stoa(dstadr), keyno,
237 private, keyid, lifetime);
238 #endif
239 return (keyid);
244 * make_keylist - generate key list
246 * Returns
247 * XEVNT_OK success
248 * XEVNT_PER host certificate expired
250 * This routine constructs a pseudo-random sequence by repeatedly
251 * hashing the session key starting from a given source address,
252 * destination address, private value and the next key ID of the
253 * preceeding session key. The last entry on the list is saved along
254 * with its sequence number and public signature.
257 make_keylist(
258 struct peer *peer, /* peer structure pointer */
259 struct interface *dstadr /* interface */
262 EVP_MD_CTX ctx; /* signature context */
263 tstamp_t tstamp; /* NTP timestamp */
264 struct autokey *ap; /* autokey pointer */
265 struct value *vp; /* value pointer */
266 keyid_t keyid = 0; /* next key ID */
267 keyid_t cookie; /* private value */
268 u_long lifetime;
269 u_int len, mpoll;
270 int i;
272 if (!dstadr)
273 return XEVNT_OK;
276 * Allocate the key list if necessary.
278 tstamp = crypto_time();
279 if (peer->keylist == NULL)
280 peer->keylist = emalloc(sizeof(keyid_t) *
281 NTP_MAXSESSION);
284 * Generate an initial key ID which is unique and greater than
285 * NTP_MAXKEY.
287 while (1) {
288 keyid = (ntp_random() + NTP_MAXKEY + 1) & ((1 <<
289 sizeof(keyid_t)) - 1);
290 if (authhavekey(keyid))
291 continue;
292 break;
296 * Generate up to NTP_MAXSESSION session keys. Stop if the
297 * next one would not be unique or not a session key ID or if
298 * it would expire before the next poll. The private value
299 * included in the hash is zero if broadcast mode, the peer
300 * cookie if client mode or the host cookie if symmetric modes.
302 mpoll = 1 << min(peer->ppoll, peer->hpoll);
303 lifetime = min(sys_automax, NTP_MAXSESSION * mpoll);
304 if (peer->hmode == MODE_BROADCAST)
305 cookie = 0;
306 else
307 cookie = peer->pcookie;
308 for (i = 0; i < NTP_MAXSESSION; i++) {
309 peer->keylist[i] = keyid;
310 peer->keynumber = i;
311 keyid = session_key(&dstadr->sin, &peer->srcadr, keyid,
312 cookie, lifetime);
313 lifetime -= mpoll;
314 if (auth_havekey(keyid) || keyid <= NTP_MAXKEY ||
315 lifetime <= mpoll)
316 break;
320 * Save the last session key ID, sequence number and timestamp,
321 * then sign these values for later retrieval by the clients. Be
322 * careful not to use invalid key media. Use the public values
323 * timestamp as filestamp.
325 vp = &peer->sndval;
326 if (vp->ptr == NULL)
327 vp->ptr = emalloc(sizeof(struct autokey));
328 ap = (struct autokey *)vp->ptr;
329 ap->seq = htonl(peer->keynumber);
330 ap->key = htonl(keyid);
331 vp->tstamp = htonl(tstamp);
332 vp->fstamp = hostval.tstamp;
333 vp->vallen = htonl(sizeof(struct autokey));
334 vp->siglen = 0;
335 if (tstamp != 0) {
336 if (tstamp < cinfo->first || tstamp > cinfo->last)
337 return (XEVNT_PER);
339 if (vp->sig == NULL)
340 vp->sig = emalloc(sign_siglen);
341 EVP_SignInit(&ctx, sign_digest);
342 EVP_SignUpdate(&ctx, (u_char *)vp, 12);
343 EVP_SignUpdate(&ctx, vp->ptr, sizeof(struct autokey));
344 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
345 vp->siglen = htonl(len);
346 else
347 msyslog(LOG_ERR, "make_keys %s\n",
348 ERR_error_string(ERR_get_error(), NULL));
349 peer->flags |= FLAG_ASSOC;
351 #ifdef DEBUG
352 if (debug)
353 printf("make_keys: %d %08x %08x ts %u fs %u poll %d\n",
354 ntohl(ap->seq), ntohl(ap->key), cookie,
355 ntohl(vp->tstamp), ntohl(vp->fstamp), peer->hpoll);
356 #endif
357 return (XEVNT_OK);
362 * crypto_recv - parse extension fields
364 * This routine is called when the packet has been matched to an
365 * association and passed sanity, format and MAC checks. We believe the
366 * extension field values only if the field has proper format and
367 * length, the timestamp and filestamp are valid and the signature has
368 * valid length and is verified. There are a few cases where some values
369 * are believed even if the signature fails, but only if the proventic
370 * bit is not set.
373 crypto_recv(
374 struct peer *peer, /* peer structure pointer */
375 struct recvbuf *rbufp /* packet buffer pointer */
378 const EVP_MD *dp; /* message digest algorithm */
379 u_int32 *pkt; /* receive packet pointer */
380 struct autokey *ap, *bp; /* autokey pointer */
381 struct exten *ep, *fp; /* extension pointers */
382 int has_mac; /* length of MAC field */
383 int authlen; /* offset of MAC field */
384 associd_t associd; /* association ID */
385 tstamp_t tstamp = 0; /* timestamp */
386 tstamp_t fstamp = 0; /* filestamp */
387 u_int len; /* extension field length */
388 u_int code; /* extension field opcode */
389 u_int vallen = 0; /* value length */
390 X509 *cert; /* X509 certificate */
391 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
392 keyid_t cookie; /* crumbles */
393 int hismode; /* packet mode */
394 int rval = XEVNT_OK;
395 u_char *ptr;
396 u_int32 temp32;
399 * Initialize. Note that the packet has already been checked for
400 * valid format and extension field lengths. First extract the
401 * field length, command code and association ID in host byte
402 * order. These are used with all commands and modes. Then check
403 * the version number, which must be 2, and length, which must
404 * be at least 8 for requests and VALUE_LEN (24) for responses.
405 * Packets that fail either test sink without a trace. The
406 * association ID is saved only if nonzero.
408 authlen = LEN_PKT_NOMAC;
409 hismode = (int)PKT_MODE((&rbufp->recv_pkt)->li_vn_mode);
410 while ((has_mac = rbufp->recv_length - authlen) > MAX_MAC_LEN) {
411 pkt = (u_int32 *)&rbufp->recv_pkt + authlen / 4;
412 ep = (struct exten *)pkt;
413 code = ntohl(ep->opcode) & 0xffff0000;
414 len = ntohl(ep->opcode) & 0x0000ffff;
415 associd = (associd_t) ntohl(pkt[1]);
416 rval = XEVNT_OK;
417 #ifdef DEBUG
418 if (debug)
419 printf(
420 "crypto_recv: flags 0x%x ext offset %d len %u code 0x%x assocID %d\n",
421 peer->crypto, authlen, len, code >> 16,
422 associd);
423 #endif
426 * Check version number and field length. If bad,
427 * quietly ignore the packet.
429 if (((code >> 24) & 0x3f) != CRYPTO_VN || len < 8) {
430 sys_unknownversion++;
431 code |= CRYPTO_ERROR;
435 * Little vulnerability bandage here. If a perp tosses a
436 * fake association ID over the fence, we better toss it
437 * out. Only the first one counts.
439 if (code & CRYPTO_RESP) {
440 if (peer->assoc == 0)
441 peer->assoc = associd;
442 else if (peer->assoc != associd)
443 code |= CRYPTO_ERROR;
445 if (len >= VALUE_LEN) {
446 tstamp = ntohl(ep->tstamp);
447 fstamp = ntohl(ep->fstamp);
448 vallen = ntohl(ep->vallen);
450 switch (code) {
453 * Install status word, host name, signature scheme and
454 * association ID. In OpenSSL the signature algorithm is
455 * bound to the digest algorithm, so the NID completely
456 * defines the signature scheme. Note the request and
457 * response are identical, but neither is validated by
458 * signature. The request is processed here only in
459 * symmetric modes. The server name field might be
460 * useful to implement access controls in future.
462 case CRYPTO_ASSOC:
465 * If the machine is running when this message
466 * arrives, the other fellow has reset and so
467 * must we. Otherwise, pass the extension field
468 * to the transmit side.
470 if (peer->crypto) {
471 rval = XEVNT_ERR;
472 break;
474 fp = emalloc(len);
475 memcpy(fp, ep, len);
476 temp32 = CRYPTO_RESP;
477 fp->opcode |= htonl(temp32);
478 peer->cmmd = fp;
479 /* fall through */
481 case CRYPTO_ASSOC | CRYPTO_RESP:
484 * Discard the message if it has already been
485 * stored or the message has been amputated.
487 if (peer->crypto)
488 break;
490 if (vallen == 0 || vallen > MAXHOSTNAME ||
491 len < VALUE_LEN + vallen) {
492 rval = XEVNT_LEN;
493 break;
497 * Check the identity schemes are compatible. If
498 * the client has PC, the server must have PC,
499 * in which case the server public key and
500 * identity are presumed valid, so we skip the
501 * certificate and identity exchanges and move
502 * immediately to the cookie exchange which
503 * confirms the server signature.
505 #ifdef DEBUG
506 if (debug)
507 printf(
508 "crypto_recv: ident host 0x%x server 0x%x\n",
509 crypto_flags, fstamp);
510 #endif
511 temp32 = (crypto_flags | ident_scheme) &
512 fstamp & CRYPTO_FLAG_MASK;
513 if (crypto_flags & CRYPTO_FLAG_PRIV) {
514 if (!(fstamp & CRYPTO_FLAG_PRIV)) {
515 rval = XEVNT_KEY;
516 break;
518 } else {
519 fstamp |= CRYPTO_FLAG_VALID |
520 CRYPTO_FLAG_VRFY |
521 CRYPTO_FLAG_SIGN;
524 * In symmetric modes it is an error if either
525 * peer requests identity and the other peer
526 * does not support it.
528 } else if ((hismode == MODE_ACTIVE || hismode ==
529 MODE_PASSIVE) && ((crypto_flags | fstamp) &
530 CRYPTO_FLAG_MASK) && !temp32) {
531 rval = XEVNT_KEY;
532 break;
534 * It is an error if the client requests
535 * identity and the server does not support it.
537 } else if (hismode == MODE_CLIENT && (fstamp &
538 CRYPTO_FLAG_MASK) && !temp32) {
539 rval = XEVNT_KEY;
540 break;
544 * Otherwise, the identity scheme(s) are those
545 * that both client and server support.
547 fstamp = temp32 | (fstamp & ~CRYPTO_FLAG_MASK);
550 * Discard the message if the signature digest
551 * NID is not supported.
553 temp32 = (fstamp >> 16) & 0xffff;
554 dp =
555 (const EVP_MD *)EVP_get_digestbynid(temp32);
556 if (dp == NULL) {
557 rval = XEVNT_MD;
558 break;
562 * Save status word, host name and message
563 * digest/signature type.
565 peer->crypto = fstamp;
566 peer->digest = dp;
567 peer->subject = emalloc(vallen + 1);
568 memcpy(peer->subject, ep->pkt, vallen);
569 peer->subject[vallen] = '\0';
570 peer->issuer = emalloc(vallen + 1);
571 strcpy(peer->issuer, peer->subject);
572 temp32 = (fstamp >> 16) & 0xffff;
573 sprintf(statstr,
574 "flags 0x%x host %s signature %s", fstamp,
575 peer->subject, OBJ_nid2ln(temp32));
576 record_crypto_stats(&peer->srcadr, statstr);
577 #ifdef DEBUG
578 if (debug)
579 printf("crypto_recv: %s\n", statstr);
580 #endif
581 break;
584 * Decode X509 certificate in ASN.1 format and extract
585 * the data containing, among other things, subject
586 * name and public key. In the default identification
587 * scheme, the certificate trail is followed to a self
588 * signed trusted certificate.
590 case CRYPTO_CERT | CRYPTO_RESP:
593 * Discard the message if invalid.
595 if ((rval = crypto_verify(ep, NULL, peer)) !=
596 XEVNT_OK)
597 break;
600 * Scan the certificate list to delete old
601 * versions and link the newest version first on
602 * the list.
604 if ((rval = cert_install(ep, peer)) != XEVNT_OK)
605 break;
608 * If we snatch the certificate before the
609 * server certificate has been signed by its
610 * server, it will be self signed. When it is,
611 * we chase the certificate issuer, which the
612 * server has, and keep going until a self
613 * signed trusted certificate is found. Be sure
614 * to update the issuer field, since it may
615 * change.
617 if (peer->issuer != NULL)
618 free(peer->issuer);
619 peer->issuer = emalloc(strlen(cinfo->issuer) +
621 strcpy(peer->issuer, cinfo->issuer);
624 * We plug in the public key and lifetime from
625 * the first certificate received. However, note
626 * that this certificate might not be signed by
627 * the server, so we can't check the
628 * signature/digest NID.
630 if (peer->pkey == NULL) {
631 ptr = (u_char *)cinfo->cert.ptr;
632 cert = d2i_X509(NULL, &ptr,
633 ntohl(cinfo->cert.vallen));
634 peer->pkey = X509_get_pubkey(cert);
635 X509_free(cert);
637 peer->flash &= ~TEST8;
638 temp32 = cinfo->nid;
639 sprintf(statstr, "cert %s 0x%x %s (%u) fs %u",
640 cinfo->subject, cinfo->flags,
641 OBJ_nid2ln(temp32), temp32,
642 ntohl(ep->fstamp));
643 record_crypto_stats(&peer->srcadr, statstr);
644 #ifdef DEBUG
645 if (debug)
646 printf("crypto_recv: %s\n", statstr);
647 #endif
648 break;
651 * Schnorr (IFF)identity scheme. This scheme is designed
652 * for use with shared secret group keys and where the
653 * certificate may be generated by a third party. The
654 * client sends a challenge to the server, which
655 * performs a calculation and returns the result. A
656 * positive result is possible only if both client and
657 * server contain the same secret group key.
659 case CRYPTO_IFF | CRYPTO_RESP:
662 * Discard the message if invalid or certificate
663 * trail not trusted.
665 if (!(peer->crypto & CRYPTO_FLAG_VALID)) {
666 rval = XEVNT_ERR;
667 break;
669 if ((rval = crypto_verify(ep, NULL, peer)) !=
670 XEVNT_OK)
671 break;
674 * If the the challenge matches the response,
675 * the certificate public key, as well as the
676 * server public key, signatyre and identity are
677 * all verified at the same time. The server is
678 * declared trusted, so we skip further
679 * certificate stages and move immediately to
680 * the cookie stage.
682 if ((rval = crypto_iff(ep, peer)) != XEVNT_OK)
683 break;
685 peer->crypto |= CRYPTO_FLAG_VRFY |
686 CRYPTO_FLAG_PROV;
687 peer->flash &= ~TEST8;
688 sprintf(statstr, "iff fs %u",
689 ntohl(ep->fstamp));
690 record_crypto_stats(&peer->srcadr, statstr);
691 #ifdef DEBUG
692 if (debug)
693 printf("crypto_recv: %s\n", statstr);
694 #endif
695 break;
698 * Guillou-Quisquater (GQ) identity scheme. This scheme
699 * is designed for use with public certificates carrying
700 * the GQ public key in an extension field. The client
701 * sends a challenge to the server, which performs a
702 * calculation and returns the result. A positive result
703 * is possible only if both client and server contain
704 * the same group key and the server has the matching GQ
705 * private key.
707 case CRYPTO_GQ | CRYPTO_RESP:
710 * Discard the message if invalid or certificate
711 * trail not trusted.
713 if (!(peer->crypto & CRYPTO_FLAG_VALID)) {
714 rval = XEVNT_ERR;
715 break;
717 if ((rval = crypto_verify(ep, NULL, peer)) !=
718 XEVNT_OK)
719 break;
722 * If the the challenge matches the response,
723 * the certificate public key, as well as the
724 * server public key, signatyre and identity are
725 * all verified at the same time. The server is
726 * declared trusted, so we skip further
727 * certificate stages and move immediately to
728 * the cookie stage.
730 if ((rval = crypto_gq(ep, peer)) != XEVNT_OK)
731 break;
733 peer->crypto |= CRYPTO_FLAG_VRFY |
734 CRYPTO_FLAG_PROV;
735 peer->flash &= ~TEST8;
736 sprintf(statstr, "gq fs %u",
737 ntohl(ep->fstamp));
738 record_crypto_stats(&peer->srcadr, statstr);
739 #ifdef DEBUG
740 if (debug)
741 printf("crypto_recv: %s\n", statstr);
742 #endif
743 break;
746 * MV
748 case CRYPTO_MV | CRYPTO_RESP:
751 * Discard the message if invalid or certificate
752 * trail not trusted.
754 if (!(peer->crypto & CRYPTO_FLAG_VALID)) {
755 rval = XEVNT_ERR;
756 break;
758 if ((rval = crypto_verify(ep, NULL, peer)) !=
759 XEVNT_OK)
760 break;
763 * If the the challenge matches the response,
764 * the certificate public key, as well as the
765 * server public key, signatyre and identity are
766 * all verified at the same time. The server is
767 * declared trusted, so we skip further
768 * certificate stages and move immediately to
769 * the cookie stage.
771 if ((rval = crypto_mv(ep, peer)) != XEVNT_OK)
772 break;
774 peer->crypto |= CRYPTO_FLAG_VRFY |
775 CRYPTO_FLAG_PROV;
776 peer->flash &= ~TEST8;
777 sprintf(statstr, "mv fs %u",
778 ntohl(ep->fstamp));
779 record_crypto_stats(&peer->srcadr, statstr);
780 #ifdef DEBUG
781 if (debug)
782 printf("crypto_recv: %s\n", statstr);
783 #endif
784 break;
787 * Cookie request in symmetric modes. Roll a random
788 * cookie and install in symmetric mode. Encrypt for the
789 * response, which is transmitted later.
791 case CRYPTO_COOK:
794 * Discard the message if invalid or certificate
795 * trail not trusted.
797 if (!(peer->crypto & CRYPTO_FLAG_VALID)) {
798 rval = XEVNT_ERR;
799 break;
801 if ((rval = crypto_verify(ep, NULL, peer)) !=
802 XEVNT_OK)
803 break;
806 * Pass the extension field to the transmit
807 * side. If already agreed, walk away.
809 fp = emalloc(len);
810 memcpy(fp, ep, len);
811 temp32 = CRYPTO_RESP;
812 fp->opcode |= htonl(temp32);
813 peer->cmmd = fp;
814 if (peer->crypto & CRYPTO_FLAG_AGREE) {
815 peer->flash &= ~TEST8;
816 break;
820 * Install cookie values and light the cookie
821 * bit. The transmit side will pick up and
822 * encrypt it for the response.
824 key_expire(peer);
825 peer->cookval.tstamp = ep->tstamp;
826 peer->cookval.fstamp = ep->fstamp;
827 RAND_bytes((u_char *)&peer->pcookie, 4);
828 peer->crypto &= ~CRYPTO_FLAG_AUTO;
829 peer->crypto |= CRYPTO_FLAG_AGREE;
830 peer->flash &= ~TEST8;
831 sprintf(statstr, "cook %x ts %u fs %u",
832 peer->pcookie, ntohl(ep->tstamp),
833 ntohl(ep->fstamp));
834 record_crypto_stats(&peer->srcadr, statstr);
835 #ifdef DEBUG
836 if (debug)
837 printf("crypto_recv: %s\n", statstr);
838 #endif
839 break;
842 * Cookie response in client and symmetric modes. If the
843 * cookie bit is set, the working cookie is the EXOR of
844 * the current and new values.
846 case CRYPTO_COOK | CRYPTO_RESP:
849 * Discard the message if invalid or identity
850 * not confirmed or signature not verified with
851 * respect to the cookie values.
853 if (!(peer->crypto & CRYPTO_FLAG_VRFY)) {
854 rval = XEVNT_ERR;
855 break;
857 if ((rval = crypto_verify(ep, &peer->cookval,
858 peer)) != XEVNT_OK)
859 break;
862 * Decrypt the cookie, hunting all the time for
863 * errors.
865 if (vallen == (u_int) EVP_PKEY_size(host_pkey)) {
866 RSA_private_decrypt(vallen,
867 (u_char *)ep->pkt,
868 (u_char *)&temp32,
869 host_pkey->pkey.rsa,
870 RSA_PKCS1_OAEP_PADDING);
871 cookie = ntohl(temp32);
872 } else {
873 rval = XEVNT_CKY;
874 break;
878 * Install cookie values and light the cookie
879 * bit. If this is not broadcast client mode, we
880 * are done here.
882 key_expire(peer);
883 peer->cookval.tstamp = ep->tstamp;
884 peer->cookval.fstamp = ep->fstamp;
885 if (peer->crypto & CRYPTO_FLAG_AGREE)
886 peer->pcookie ^= cookie;
887 else
888 peer->pcookie = cookie;
889 if (peer->hmode == MODE_CLIENT &&
890 !(peer->cast_flags & MDF_BCLNT))
891 peer->crypto |= CRYPTO_FLAG_AUTO;
892 else
893 peer->crypto &= ~CRYPTO_FLAG_AUTO;
894 peer->crypto |= CRYPTO_FLAG_AGREE;
895 peer->flash &= ~TEST8;
896 sprintf(statstr, "cook %x ts %u fs %u",
897 peer->pcookie, ntohl(ep->tstamp),
898 ntohl(ep->fstamp));
899 record_crypto_stats(&peer->srcadr, statstr);
900 #ifdef DEBUG
901 if (debug)
902 printf("crypto_recv: %s\n", statstr);
903 #endif
904 break;
907 * Install autokey values in broadcast client and
908 * symmetric modes. We have to do this every time the
909 * sever/peer cookie changes or a new keylist is
910 * rolled. Ordinarily, this is automatic as this message
911 * is piggybacked on the first NTP packet sent upon
912 * either of these events. Note that a broadcast client
913 * or symmetric peer can receive this response without a
914 * matching request.
916 case CRYPTO_AUTO | CRYPTO_RESP:
919 * Discard the message if invalid or identity
920 * not confirmed or signature not verified with
921 * respect to the receive autokey values.
923 if (!(peer->crypto & CRYPTO_FLAG_VRFY)) {
924 rval = XEVNT_ERR;
925 break;
927 if ((rval = crypto_verify(ep, &peer->recval,
928 peer)) != XEVNT_OK)
929 break;
932 * Install autokey values and light the
933 * autokey bit. This is not hard.
935 if (peer->recval.ptr == NULL)
936 peer->recval.ptr =
937 emalloc(sizeof(struct autokey));
938 bp = (struct autokey *)peer->recval.ptr;
939 peer->recval.tstamp = ep->tstamp;
940 peer->recval.fstamp = ep->fstamp;
941 ap = (struct autokey *)ep->pkt;
942 bp->seq = ntohl(ap->seq);
943 bp->key = ntohl(ap->key);
944 peer->pkeyid = bp->key;
945 peer->crypto |= CRYPTO_FLAG_AUTO;
946 peer->flash &= ~TEST8;
947 sprintf(statstr,
948 "auto seq %d key %x ts %u fs %u", bp->seq,
949 bp->key, ntohl(ep->tstamp),
950 ntohl(ep->fstamp));
951 record_crypto_stats(&peer->srcadr, statstr);
952 #ifdef DEBUG
953 if (debug)
954 printf("crypto_recv: %s\n", statstr);
955 #endif
956 break;
959 * X509 certificate sign response. Validate the
960 * certificate signed by the server and install. Later
961 * this can be provided to clients of this server in
962 * lieu of the self signed certificate in order to
963 * validate the public key.
965 case CRYPTO_SIGN | CRYPTO_RESP:
968 * Discard the message if invalid or not
969 * proventic.
971 if (!(peer->crypto & CRYPTO_FLAG_PROV)) {
972 rval = XEVNT_ERR;
973 break;
975 if ((rval = crypto_verify(ep, NULL, peer)) !=
976 XEVNT_OK)
977 break;
980 * Scan the certificate list to delete old
981 * versions and link the newest version first on
982 * the list.
984 if ((rval = cert_install(ep, peer)) != XEVNT_OK)
985 break;
987 peer->crypto |= CRYPTO_FLAG_SIGN;
988 peer->flash &= ~TEST8;
989 temp32 = cinfo->nid;
990 sprintf(statstr, "sign %s 0x%x %s (%u) fs %u",
991 cinfo->issuer, cinfo->flags,
992 OBJ_nid2ln(temp32), temp32,
993 ntohl(ep->fstamp));
994 record_crypto_stats(&peer->srcadr, statstr);
995 #ifdef DEBUG
996 if (debug)
997 printf("crypto_recv: %s\n", statstr);
998 #endif
999 break;
1002 * Install leapseconds table in symmetric modes. This
1003 * table is proventicated to the NIST primary servers,
1004 * either by copying the file containing the table from
1005 * a NIST server to a trusted server or directly using
1006 * this protocol. While the entire table is installed at
1007 * the server, presently only the current TAI offset is
1008 * provided via the kernel to other applications.
1010 case CRYPTO_TAI:
1013 * Discard the message if invalid.
1015 if ((rval = crypto_verify(ep, NULL, peer)) !=
1016 XEVNT_OK)
1017 break;
1020 * Pass the extension field to the transmit
1021 * side. Continue below if a leapseconds table
1022 * accompanies the message.
1024 fp = emalloc(len);
1025 memcpy(fp, ep, len);
1026 temp32 = CRYPTO_RESP;
1027 fp->opcode |= htonl(temp32);
1028 peer->cmmd = fp;
1029 if (len <= VALUE_LEN) {
1030 peer->flash &= ~TEST8;
1031 break;
1033 /* fall through */
1035 case CRYPTO_TAI | CRYPTO_RESP:
1038 * If this is a response, discard the message if
1039 * signature not verified with respect to the
1040 * leapsecond table values.
1042 if (peer->cmmd == NULL) {
1043 if ((rval = crypto_verify(ep,
1044 &peer->tai_leap, peer)) != XEVNT_OK)
1045 break;
1049 * Initialize peer variables with latest update.
1051 peer->tai_leap.tstamp = ep->tstamp;
1052 peer->tai_leap.fstamp = ep->fstamp;
1053 peer->tai_leap.vallen = ep->vallen;
1056 * Install the new table if there is no stored
1057 * table or the new table is more recent than
1058 * the stored table. Since a filestamp may have
1059 * changed, recompute the signatures.
1061 if (ntohl(peer->tai_leap.fstamp) >
1062 ntohl(tai_leap.fstamp)) {
1063 tai_leap.fstamp = ep->fstamp;
1064 tai_leap.vallen = ep->vallen;
1065 if (tai_leap.ptr != NULL)
1066 free(tai_leap.ptr);
1067 tai_leap.ptr = emalloc(vallen);
1068 memcpy(tai_leap.ptr, ep->pkt, vallen);
1069 crypto_update();
1071 crypto_flags |= CRYPTO_FLAG_TAI;
1072 peer->crypto |= CRYPTO_FLAG_LEAP;
1073 peer->flash &= ~TEST8;
1074 sprintf(statstr, "leap %u ts %u fs %u", vallen,
1075 ntohl(ep->tstamp), ntohl(ep->fstamp));
1076 record_crypto_stats(&peer->srcadr, statstr);
1077 #ifdef DEBUG
1078 if (debug)
1079 printf("crypto_recv: %s\n", statstr);
1080 #endif
1081 break;
1084 * We come here in symmetric modes for miscellaneous
1085 * commands that have value fields but are processed on
1086 * the transmit side. All we need do here is check for
1087 * valid field length. Remaining checks are below and on
1088 * the transmit side.
1090 case CRYPTO_CERT:
1091 case CRYPTO_IFF:
1092 case CRYPTO_GQ:
1093 case CRYPTO_MV:
1094 case CRYPTO_SIGN:
1095 if (len < VALUE_LEN) {
1096 rval = XEVNT_LEN;
1097 break;
1099 /* fall through */
1102 * We come here for miscellaneous requests and unknown
1103 * requests and responses. If an unknown response or
1104 * error, forget it. If a request, save the extension
1105 * field for later. Unknown requests will be caught on
1106 * the transmit side.
1108 default:
1109 if (code & (CRYPTO_RESP | CRYPTO_ERROR)) {
1110 rval = XEVNT_ERR;
1111 } else if ((rval = crypto_verify(ep, NULL,
1112 peer)) == XEVNT_OK) {
1113 fp = emalloc(len);
1114 memcpy(fp, ep, len);
1115 temp32 = CRYPTO_RESP;
1116 fp->opcode |= htonl(temp32);
1117 peer->cmmd = fp;
1122 * We don't log length/format/timestamp errors and
1123 * duplicates, which are log clogging vulnerabilities.
1124 * The first error found terminates the extension field
1125 * scan and we return the laundry to the caller. A
1126 * length/format/timestamp error on transmit is
1127 * cheerfully ignored, as the message is not sent.
1129 if (rval > XEVNT_TSP) {
1130 sprintf(statstr,
1131 "error %x opcode %x ts %u fs %u", rval,
1132 code, tstamp, fstamp);
1133 record_crypto_stats(&peer->srcadr, statstr);
1134 report_event(rval, peer);
1135 #ifdef DEBUG
1136 if (debug)
1137 printf("crypto_recv: %s\n", statstr);
1138 #endif
1139 break;
1141 } else if (rval > XEVNT_OK && (code & CRYPTO_RESP)) {
1142 rval = XEVNT_OK;
1144 authlen += len;
1146 return (rval);
1151 * crypto_xmit - construct extension fields
1153 * This routine is called both when an association is configured and
1154 * when one is not. The only case where this matters is to retrieve the
1155 * autokey information, in which case the caller has to provide the
1156 * association ID to match the association.
1158 * Returns length of extension field.
1161 crypto_xmit(
1162 struct pkt *xpkt, /* transmit packet pointer */
1163 struct sockaddr_storage *srcadr_sin, /* active runway */
1164 int start, /* offset to extension field */
1165 struct exten *ep, /* extension pointer */
1166 keyid_t cookie /* session cookie */
1169 u_int32 *pkt; /* packet pointer */
1170 struct peer *peer; /* peer structure pointer */
1171 u_int opcode; /* extension field opcode */
1172 struct exten *fp; /* extension pointers */
1173 struct cert_info *cp, *xp; /* certificate info/value pointer */
1174 char certname[MAXHOSTNAME + 1]; /* subject name buffer */
1175 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
1176 tstamp_t tstamp;
1177 u_int vallen;
1178 u_int len;
1179 struct value vtemp;
1180 associd_t associd;
1181 int rval;
1182 keyid_t tcookie;
1185 * Generate the requested extension field request code, length
1186 * and association ID. If this is a response and the host is not
1187 * synchronized, light the error bit and go home.
1189 pkt = (u_int32 *)xpkt + start / 4;
1190 fp = (struct exten *)pkt;
1191 opcode = ntohl(ep->opcode);
1192 associd = (associd_t) ntohl(ep->associd);
1193 fp->associd = htonl(associd);
1194 len = 8;
1195 rval = XEVNT_OK;
1196 tstamp = crypto_time();
1197 switch (opcode & 0xffff0000) {
1200 * Send association request and response with status word and
1201 * host name. Note, this message is not signed and the filestamp
1202 * contains only the status word.
1204 case CRYPTO_ASSOC | CRYPTO_RESP:
1205 len += crypto_send(fp, &hostval);
1206 fp->fstamp = htonl(crypto_flags);
1207 break;
1209 case CRYPTO_ASSOC:
1210 len += crypto_send(fp, &hostval);
1211 fp->fstamp = htonl(crypto_flags | ident_scheme);
1212 break;
1215 * Send certificate request. Use the values from the extension
1216 * field.
1218 case CRYPTO_CERT:
1219 memset(&vtemp, 0, sizeof(vtemp));
1220 vtemp.tstamp = ep->tstamp;
1221 vtemp.fstamp = ep->fstamp;
1222 vtemp.vallen = ep->vallen;
1223 vtemp.ptr = (u_char *)ep->pkt;
1224 len += crypto_send(fp, &vtemp);
1225 break;
1228 * Send certificate response or sign request. Use the values
1229 * from the certificate cache. If the request contains no
1230 * subject name, assume the name of this host. This is for
1231 * backwards compatibility. Private certificates are never sent.
1233 case CRYPTO_SIGN:
1234 case CRYPTO_CERT | CRYPTO_RESP:
1235 vallen = ntohl(ep->vallen);
1236 if (vallen == 8) {
1237 strcpy(certname, sys_hostname);
1238 } else if (vallen == 0 || vallen > MAXHOSTNAME) {
1239 rval = XEVNT_LEN;
1240 break;
1242 } else {
1243 memcpy(certname, ep->pkt, vallen);
1244 certname[vallen] = '\0';
1248 * Find all certificates with matching subject. If a
1249 * self-signed, trusted certificate is found, use that.
1250 * If not, use the first one with matching subject. A
1251 * private certificate is never divulged or signed.
1253 xp = NULL;
1254 for (cp = cinfo; cp != NULL; cp = cp->link) {
1255 if (cp->flags & CERT_PRIV)
1256 continue;
1258 if (strcmp(certname, cp->subject) == 0) {
1259 if (xp == NULL)
1260 xp = cp;
1261 if (strcmp(certname, cp->issuer) ==
1262 0 && cp->flags & CERT_TRUST) {
1263 xp = cp;
1264 break;
1270 * Be careful who you trust. If not yet synchronized,
1271 * give back an empty response. If certificate not found
1272 * or beyond the lifetime, return an error. This is to
1273 * avoid a bad dude trying to get an expired certificate
1274 * re-signed. Otherwise, send it.
1276 * Note the timestamp and filestamp are taken from the
1277 * certificate value structure. For all certificates the
1278 * timestamp is the latest signature update time. For
1279 * host and imported certificates the filestamp is the
1280 * creation epoch. For signed certificates the filestamp
1281 * is the creation epoch of the trusted certificate at
1282 * the base of the certificate trail. In principle, this
1283 * allows strong checking for signature masquerade.
1285 if (tstamp == 0)
1286 break;
1288 if (xp == NULL)
1289 rval = XEVNT_CRT;
1290 else if (tstamp < xp->first || tstamp > xp->last)
1291 rval = XEVNT_SRV;
1292 else
1293 len += crypto_send(fp, &xp->cert);
1294 break;
1297 * Send challenge in Schnorr (IFF) identity scheme.
1299 case CRYPTO_IFF:
1300 if ((peer = findpeerbyassoc(ep->pkt[0])) == NULL) {
1301 rval = XEVNT_ERR;
1302 break;
1304 if ((rval = crypto_alice(peer, &vtemp)) == XEVNT_OK) {
1305 len += crypto_send(fp, &vtemp);
1306 value_free(&vtemp);
1308 break;
1311 * Send response in Schnorr (IFF) identity scheme.
1313 case CRYPTO_IFF | CRYPTO_RESP:
1314 if ((rval = crypto_bob(ep, &vtemp)) == XEVNT_OK) {
1315 len += crypto_send(fp, &vtemp);
1316 value_free(&vtemp);
1318 break;
1321 * Send challenge in Guillou-Quisquater (GQ) identity scheme.
1323 case CRYPTO_GQ:
1324 if ((peer = findpeerbyassoc(ep->pkt[0])) == NULL) {
1325 rval = XEVNT_ERR;
1326 break;
1328 if ((rval = crypto_alice2(peer, &vtemp)) == XEVNT_OK) {
1329 len += crypto_send(fp, &vtemp);
1330 value_free(&vtemp);
1332 break;
1335 * Send response in Guillou-Quisquater (GQ) identity scheme.
1337 case CRYPTO_GQ | CRYPTO_RESP:
1338 if ((rval = crypto_bob2(ep, &vtemp)) == XEVNT_OK) {
1339 len += crypto_send(fp, &vtemp);
1340 value_free(&vtemp);
1342 break;
1345 * Send challenge in MV identity scheme.
1347 case CRYPTO_MV:
1348 if ((peer = findpeerbyassoc(ep->pkt[0])) == NULL) {
1349 rval = XEVNT_ERR;
1350 break;
1352 if ((rval = crypto_alice3(peer, &vtemp)) == XEVNT_OK) {
1353 len += crypto_send(fp, &vtemp);
1354 value_free(&vtemp);
1356 break;
1359 * Send response in MV identity scheme.
1361 case CRYPTO_MV | CRYPTO_RESP:
1362 if ((rval = crypto_bob3(ep, &vtemp)) == XEVNT_OK) {
1363 len += crypto_send(fp, &vtemp);
1364 value_free(&vtemp);
1366 break;
1369 * Send certificate sign response. The integrity of the request
1370 * certificate has already been verified on the receive side.
1371 * Sign the response using the local server key. Use the
1372 * filestamp from the request and use the timestamp as the
1373 * current time. Light the error bit if the certificate is
1374 * invalid or contains an unverified signature.
1376 case CRYPTO_SIGN | CRYPTO_RESP:
1377 if ((rval = cert_sign(ep, &vtemp)) == XEVNT_OK)
1378 len += crypto_send(fp, &vtemp);
1379 value_free(&vtemp);
1380 break;
1383 * Send public key and signature. Use the values from the public
1384 * key.
1386 case CRYPTO_COOK:
1387 len += crypto_send(fp, &pubkey);
1388 break;
1391 * Encrypt and send cookie and signature. Light the error bit if
1392 * anything goes wrong.
1394 case CRYPTO_COOK | CRYPTO_RESP:
1395 if ((opcode & 0xffff) < VALUE_LEN) {
1396 rval = XEVNT_LEN;
1397 break;
1399 if (PKT_MODE(xpkt->li_vn_mode) == MODE_SERVER) {
1400 tcookie = cookie;
1401 } else {
1402 if ((peer = findpeerbyassoc(associd)) == NULL) {
1403 rval = XEVNT_ERR;
1404 break;
1406 tcookie = peer->pcookie;
1408 if ((rval = crypto_encrypt(ep, &vtemp, &tcookie)) ==
1409 XEVNT_OK)
1410 len += crypto_send(fp, &vtemp);
1411 value_free(&vtemp);
1412 break;
1415 * Find peer and send autokey data and signature in broadcast
1416 * server and symmetric modes. Use the values in the autokey
1417 * structure. If no association is found, either the server has
1418 * restarted with new associations or some perp has replayed an
1419 * old message, in which case light the error bit.
1421 case CRYPTO_AUTO | CRYPTO_RESP:
1422 if ((peer = findpeerbyassoc(associd)) == NULL) {
1423 rval = XEVNT_ERR;
1424 break;
1426 peer->flags &= ~FLAG_ASSOC;
1427 len += crypto_send(fp, &peer->sndval);
1428 break;
1431 * Send leapseconds table and signature. Use the values from the
1432 * tai structure. If no table has been loaded, just send an
1433 * empty request.
1435 case CRYPTO_TAI:
1436 case CRYPTO_TAI | CRYPTO_RESP:
1437 if (crypto_flags & CRYPTO_FLAG_TAI)
1438 len += crypto_send(fp, &tai_leap);
1439 break;
1442 * Default - Fall through for requests; for unknown responses,
1443 * flag as error.
1445 default:
1446 if (opcode & CRYPTO_RESP)
1447 rval = XEVNT_ERR;
1451 * In case of error, flame the log. If a request, toss the
1452 * puppy; if a response, return so the sender can flame, too.
1454 if (rval != XEVNT_OK) {
1455 opcode |= CRYPTO_ERROR;
1456 sprintf(statstr, "error %x opcode %x", rval, opcode);
1457 record_crypto_stats(srcadr_sin, statstr);
1458 report_event(rval, NULL);
1459 #ifdef DEBUG
1460 if (debug)
1461 printf("crypto_xmit: %s\n", statstr);
1462 #endif
1463 if (!(opcode & CRYPTO_RESP))
1464 return (0);
1468 * Round up the field length to a multiple of 8 bytes and save
1469 * the request code and length.
1471 len = ((len + 7) / 8) * 8;
1472 fp->opcode = htonl((opcode & 0xffff0000) | len);
1473 #ifdef DEBUG
1474 if (debug)
1475 printf(
1476 "crypto_xmit: flags 0x%x ext offset %d len %u code 0x%x assocID %d\n",
1477 crypto_flags, start, len, opcode >> 16, associd);
1478 #endif
1479 return (len);
1484 * crypto_verify - parse and verify the extension field and value
1486 * Returns
1487 * XEVNT_OK success
1488 * XEVNT_LEN bad field format or length
1489 * XEVNT_TSP bad timestamp
1490 * XEVNT_FSP bad filestamp
1491 * XEVNT_PUB bad or missing public key
1492 * XEVNT_SGL bad signature length
1493 * XEVNT_SIG signature not verified
1494 * XEVNT_ERR protocol error
1496 static int
1497 crypto_verify(
1498 struct exten *ep, /* extension pointer */
1499 struct value *vp, /* value pointer */
1500 struct peer *peer /* peer structure pointer */
1503 EVP_PKEY *pkey; /* server public key */
1504 EVP_MD_CTX ctx; /* signature context */
1505 tstamp_t tstamp, tstamp1 = 0; /* timestamp */
1506 tstamp_t fstamp, fstamp1 = 0; /* filestamp */
1507 u_int vallen; /* value length */
1508 u_int siglen; /* signature length */
1509 u_int opcode, len;
1510 int i;
1513 * We require valid opcode and field lengths, timestamp,
1514 * filestamp, public key, digest, signature length and
1515 * signature, where relevant. Note that preliminary length
1516 * checks are done in the main loop.
1518 len = ntohl(ep->opcode) & 0x0000ffff;
1519 opcode = ntohl(ep->opcode) & 0xffff0000;
1522 * Check for valid operation code and protocol. The opcode must
1523 * not have the error bit set. If a response, it must have a
1524 * value header. If a request and does not contain a value
1525 * header, no need for further checking.
1527 if (opcode & CRYPTO_ERROR)
1528 return (XEVNT_ERR);
1530 if (opcode & CRYPTO_RESP) {
1531 if (len < VALUE_LEN)
1532 return (XEVNT_LEN);
1533 } else {
1534 if (len < VALUE_LEN)
1535 return (XEVNT_OK);
1539 * We have a value header. Check for valid field lengths. The
1540 * field length must be long enough to contain the value header,
1541 * value and signature. Note both the value and signature fields
1542 * are rounded up to the next word.
1544 vallen = ntohl(ep->vallen);
1545 i = (vallen + 3) / 4;
1546 siglen = ntohl(ep->pkt[i++]);
1547 if (len < VALUE_LEN + ((vallen + 3) / 4) * 4 + ((siglen + 3) /
1548 4) * 4)
1549 return (XEVNT_LEN);
1552 * Punt if this is a response with no data. Punt if this is a
1553 * request and a previous response is pending.
1555 if (opcode & CRYPTO_RESP) {
1556 if (vallen == 0)
1557 return (XEVNT_LEN);
1558 } else {
1559 if (peer->cmmd != NULL)
1560 return (XEVNT_LEN);
1564 * Check for valid timestamp and filestamp. If the timestamp is
1565 * zero, the sender is not synchronized and signatures are
1566 * disregarded. If not, the timestamp must not precede the
1567 * filestamp. The timestamp and filestamp must not precede the
1568 * corresponding values in the value structure, if present. Once
1569 * the autokey values have been installed, the timestamp must
1570 * always be later than the corresponding value in the value
1571 * structure. Duplicate timestamps are illegal once the cookie
1572 * has been validated.
1574 tstamp = ntohl(ep->tstamp);
1575 fstamp = ntohl(ep->fstamp);
1576 if (tstamp == 0)
1577 return (XEVNT_OK);
1579 if (tstamp < fstamp)
1580 return (XEVNT_TSP);
1582 if (vp != NULL) {
1583 tstamp1 = ntohl(vp->tstamp);
1584 fstamp1 = ntohl(vp->fstamp);
1585 if ((tstamp < tstamp1 || (tstamp == tstamp1 &&
1586 (peer->crypto & CRYPTO_FLAG_AUTO))))
1587 return (XEVNT_TSP);
1589 if ((tstamp < fstamp1 || fstamp < fstamp1))
1590 return (XEVNT_FSP);
1594 * Check for valid signature length, public key and digest
1595 * algorithm.
1597 if (crypto_flags & peer->crypto & CRYPTO_FLAG_PRIV)
1598 pkey = sign_pkey;
1599 else
1600 pkey = peer->pkey;
1601 if (siglen == 0 || pkey == NULL || peer->digest == NULL)
1602 return (XEVNT_OK);
1604 if (siglen != (u_int)EVP_PKEY_size(pkey))
1605 return (XEVNT_SGL);
1608 * Darn, I thought we would never get here. Verify the
1609 * signature. If the identity exchange is verified, light the
1610 * proventic bit. If no client identity scheme is specified,
1611 * avoid doing the sign exchange.
1613 EVP_VerifyInit(&ctx, peer->digest);
1614 EVP_VerifyUpdate(&ctx, (u_char *)&ep->tstamp, vallen + 12);
1615 if (!EVP_VerifyFinal(&ctx, (u_char *)&ep->pkt[i], siglen, pkey))
1616 return (XEVNT_SIG);
1618 if (peer->crypto & CRYPTO_FLAG_VRFY) {
1619 peer->crypto |= CRYPTO_FLAG_PROV;
1620 if (!(crypto_flags & CRYPTO_FLAG_MASK))
1621 peer->crypto |= CRYPTO_FLAG_SIGN;
1623 return (XEVNT_OK);
1628 * crypto_encrypt - construct encrypted cookie and signature from
1629 * extension field and cookie
1631 * Returns
1632 * XEVNT_OK success
1633 * XEVNT_PUB bad or missing public key
1634 * XEVNT_CKY bad or missing cookie
1635 * XEVNT_PER host certificate expired
1637 static int
1638 crypto_encrypt(
1639 struct exten *ep, /* extension pointer */
1640 struct value *vp, /* value pointer */
1641 keyid_t *cookie /* server cookie */
1644 EVP_PKEY *pkey; /* public key */
1645 EVP_MD_CTX ctx; /* signature context */
1646 tstamp_t tstamp; /* NTP timestamp */
1647 u_int32 temp32;
1648 u_int len;
1649 u_char *ptr;
1652 * Extract the public key from the request.
1654 len = ntohl(ep->vallen);
1655 ptr = (u_char *)ep->pkt;
1656 pkey = d2i_PublicKey(EVP_PKEY_RSA, NULL, &ptr, len);
1657 if (pkey == NULL) {
1658 msyslog(LOG_ERR, "crypto_encrypt %s\n",
1659 ERR_error_string(ERR_get_error(), NULL));
1660 return (XEVNT_PUB);
1664 * Encrypt the cookie, encode in ASN.1 and sign.
1666 tstamp = crypto_time();
1667 memset(vp, 0, sizeof(struct value));
1668 vp->tstamp = htonl(tstamp);
1669 vp->fstamp = hostval.tstamp;
1670 len = EVP_PKEY_size(pkey);
1671 vp->vallen = htonl(len);
1672 vp->ptr = emalloc(len);
1673 temp32 = htonl(*cookie);
1674 if (!RSA_public_encrypt(4, (u_char *)&temp32, vp->ptr,
1675 pkey->pkey.rsa, RSA_PKCS1_OAEP_PADDING)) {
1676 msyslog(LOG_ERR, "crypto_encrypt %s\n",
1677 ERR_error_string(ERR_get_error(), NULL));
1678 EVP_PKEY_free(pkey);
1679 return (XEVNT_CKY);
1681 EVP_PKEY_free(pkey);
1682 vp->siglen = 0;
1683 if (tstamp == 0)
1684 return (XEVNT_OK);
1686 if (tstamp < cinfo->first || tstamp > cinfo->last)
1687 return (XEVNT_PER);
1689 vp->sig = emalloc(sign_siglen);
1690 EVP_SignInit(&ctx, sign_digest);
1691 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
1692 EVP_SignUpdate(&ctx, vp->ptr, len);
1693 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
1694 vp->siglen = htonl(len);
1695 return (XEVNT_OK);
1700 * crypto_ident - construct extension field for identity scheme
1702 * This routine determines which identity scheme is in use and
1703 * constructs an extension field for that scheme.
1705 u_int
1706 crypto_ident(
1707 struct peer *peer /* peer structure pointer */
1710 char filename[MAXFILENAME + 1];
1713 * If the server identity has already been verified, no further
1714 * action is necessary. Otherwise, try to load the identity file
1715 * of the certificate issuer. If the issuer file is not found,
1716 * try the host file. If nothing found, declare a cryptobust.
1717 * Note we can't get here unless the trusted certificate has
1718 * been found and the CRYPTO_FLAG_VALID bit is set, so the
1719 * certificate issuer is valid.
1721 if (peer->ident_pkey != NULL)
1722 EVP_PKEY_free(peer->ident_pkey);
1723 if (peer->crypto & CRYPTO_FLAG_GQ) {
1724 snprintf(filename, MAXFILENAME, "ntpkey_gq_%s",
1725 peer->issuer);
1726 peer->ident_pkey = crypto_key(filename, &peer->fstamp);
1727 if (peer->ident_pkey != NULL)
1728 return (CRYPTO_GQ);
1730 snprintf(filename, MAXFILENAME, "ntpkey_gq_%s",
1731 sys_hostname);
1732 peer->ident_pkey = crypto_key(filename, &peer->fstamp);
1733 if (peer->ident_pkey != NULL)
1734 return (CRYPTO_GQ);
1736 if (peer->crypto & CRYPTO_FLAG_IFF) {
1737 snprintf(filename, MAXFILENAME, "ntpkey_iff_%s",
1738 peer->issuer);
1739 peer->ident_pkey = crypto_key(filename, &peer->fstamp);
1740 if (peer->ident_pkey != NULL)
1741 return (CRYPTO_IFF);
1743 snprintf(filename, MAXFILENAME, "ntpkey_iff_%s",
1744 sys_hostname);
1745 peer->ident_pkey = crypto_key(filename, &peer->fstamp);
1746 if (peer->ident_pkey != NULL)
1747 return (CRYPTO_IFF);
1749 if (peer->crypto & CRYPTO_FLAG_MV) {
1750 snprintf(filename, MAXFILENAME, "ntpkey_mv_%s",
1751 peer->issuer);
1752 peer->ident_pkey = crypto_key(filename, &peer->fstamp);
1753 if (peer->ident_pkey != NULL)
1754 return (CRYPTO_MV);
1756 snprintf(filename, MAXFILENAME, "ntpkey_mv_%s",
1757 sys_hostname);
1758 peer->ident_pkey = crypto_key(filename, &peer->fstamp);
1759 if (peer->ident_pkey != NULL)
1760 return (CRYPTO_MV);
1764 * No compatible identity scheme is available. Life is hard.
1766 msyslog(LOG_INFO,
1767 "crypto_ident: no compatible identity scheme found");
1768 return (0);
1773 * crypto_args - construct extension field from arguments
1775 * This routine creates an extension field with current timestamps and
1776 * specified opcode, association ID and optional string. Note that the
1777 * extension field is created here, but freed after the crypto_xmit()
1778 * call in the protocol module.
1780 * Returns extension field pointer (no errors).
1782 struct exten *
1783 crypto_args(
1784 struct peer *peer, /* peer structure pointer */
1785 u_int opcode, /* operation code */
1786 char *str /* argument string */
1789 tstamp_t tstamp; /* NTP timestamp */
1790 struct exten *ep; /* extension field pointer */
1791 u_int len; /* extension field length */
1793 tstamp = crypto_time();
1794 len = sizeof(struct exten);
1795 if (str != NULL)
1796 len += strlen(str);
1797 ep = emalloc(len);
1798 memset(ep, 0, len);
1799 if (opcode == 0)
1800 return (ep);
1802 ep->opcode = htonl(opcode + len);
1805 * If a response, send our ID; if a request, send the
1806 * responder's ID.
1808 if (opcode & CRYPTO_RESP)
1809 ep->associd = htonl(peer->associd);
1810 else
1811 ep->associd = htonl(peer->assoc);
1812 ep->tstamp = htonl(tstamp);
1813 ep->fstamp = hostval.tstamp;
1814 ep->vallen = 0;
1815 if (str != NULL) {
1816 ep->vallen = htonl(strlen(str));
1817 memcpy((char *)ep->pkt, str, strlen(str));
1818 } else {
1819 ep->pkt[0] = peer->associd;
1821 return (ep);
1826 * crypto_send - construct extension field from value components
1828 * Returns extension field length. Note: it is not polite to send a
1829 * nonempty signature with zero timestamp or a nonzero timestamp with
1830 * empty signature, but these rules are not enforced here.
1832 u_int
1833 crypto_send(
1834 struct exten *ep, /* extension field pointer */
1835 struct value *vp /* value pointer */
1838 u_int len, temp32;
1839 int i;
1842 * Copy data. If the data field is empty or zero length, encode
1843 * an empty value with length zero.
1845 ep->tstamp = vp->tstamp;
1846 ep->fstamp = vp->fstamp;
1847 ep->vallen = vp->vallen;
1848 len = 12;
1849 temp32 = ntohl(vp->vallen);
1850 if (temp32 > 0 && vp->ptr != NULL)
1851 memcpy(ep->pkt, vp->ptr, temp32);
1854 * Copy signature. If the signature field is empty or zero
1855 * length, encode an empty signature with length zero.
1857 i = (temp32 + 3) / 4;
1858 len += i * 4 + 4;
1859 ep->pkt[i++] = vp->siglen;
1860 temp32 = ntohl(vp->siglen);
1861 if (temp32 > 0 && vp->sig != NULL)
1862 memcpy(&ep->pkt[i], vp->sig, temp32);
1863 len += temp32;
1864 return (len);
1869 * crypto_update - compute new public value and sign extension fields
1871 * This routine runs periodically, like once a day, and when something
1872 * changes. It updates the timestamps on three value structures and one
1873 * value structure list, then signs all the structures:
1875 * hostval host name (not signed)
1876 * pubkey public key
1877 * cinfo certificate info/value list
1878 * tai_leap leapseconds file
1880 * Filestamps are proventicated data, so this routine is run only when
1881 * the host has been synchronized to a proventicated source. Thus, the
1882 * timestamp is proventicated, too, and can be used to deflect
1883 * clogging attacks and even cook breakfast.
1885 * Returns void (no errors)
1887 void
1888 crypto_update(void)
1890 EVP_MD_CTX ctx; /* message digest context */
1891 struct cert_info *cp, *cpn; /* certificate info/value */
1892 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
1893 tstamp_t tstamp; /* NTP timestamp */
1894 u_int len;
1896 if ((tstamp = crypto_time()) == 0)
1897 return;
1899 hostval.tstamp = htonl(tstamp);
1902 * Sign public key and timestamps. The filestamp is derived from
1903 * the host key file extension from wherever the file was
1904 * generated.
1906 if (pubkey.vallen != 0) {
1907 pubkey.tstamp = hostval.tstamp;
1908 pubkey.siglen = 0;
1909 if (pubkey.sig == NULL)
1910 pubkey.sig = emalloc(sign_siglen);
1911 EVP_SignInit(&ctx, sign_digest);
1912 EVP_SignUpdate(&ctx, (u_char *)&pubkey, 12);
1913 EVP_SignUpdate(&ctx, pubkey.ptr, ntohl(pubkey.vallen));
1914 if (EVP_SignFinal(&ctx, pubkey.sig, &len, sign_pkey))
1915 pubkey.siglen = htonl(len);
1919 * Sign certificates and timestamps. The filestamp is derived
1920 * from the certificate file extension from wherever the file
1921 * was generated. Note we do not throw expired certificates
1922 * away; they may have signed younger ones.
1924 for (cp = cinfo; cp != NULL; cp = cpn) {
1925 cpn = cp->link;
1926 cp->cert.tstamp = hostval.tstamp;
1927 cp->cert.siglen = 0;
1928 if (cp->cert.sig == NULL)
1929 cp->cert.sig = emalloc(sign_siglen);
1930 EVP_SignInit(&ctx, sign_digest);
1931 EVP_SignUpdate(&ctx, (u_char *)&cp->cert, 12);
1932 EVP_SignUpdate(&ctx, cp->cert.ptr,
1933 ntohl(cp->cert.vallen));
1934 if (EVP_SignFinal(&ctx, cp->cert.sig, &len, sign_pkey))
1935 cp->cert.siglen = htonl(len);
1939 * Sign leapseconds table and timestamps. The filestamp is
1940 * derived from the leapsecond file extension from wherever the
1941 * file was generated.
1943 if (tai_leap.vallen != 0) {
1944 tai_leap.tstamp = hostval.tstamp;
1945 tai_leap.siglen = 0;
1946 if (tai_leap.sig == NULL)
1947 tai_leap.sig = emalloc(sign_siglen);
1948 EVP_SignInit(&ctx, sign_digest);
1949 EVP_SignUpdate(&ctx, (u_char *)&tai_leap, 12);
1950 EVP_SignUpdate(&ctx, tai_leap.ptr,
1951 ntohl(tai_leap.vallen));
1952 if (EVP_SignFinal(&ctx, tai_leap.sig, &len, sign_pkey))
1953 tai_leap.siglen = htonl(len);
1955 sprintf(statstr, "update ts %u", ntohl(hostval.tstamp));
1956 record_crypto_stats(NULL, statstr);
1957 #ifdef DEBUG
1958 if (debug)
1959 printf("crypto_update: %s\n", statstr);
1960 #endif
1965 * value_free - free value structure components.
1967 * Returns void (no errors)
1969 void
1970 value_free(
1971 struct value *vp /* value structure */
1974 if (vp->ptr != NULL)
1975 free(vp->ptr);
1976 if (vp->sig != NULL)
1977 free(vp->sig);
1978 memset(vp, 0, sizeof(struct value));
1983 * crypto_time - returns current NTP time in seconds.
1985 tstamp_t
1986 crypto_time()
1988 l_fp tstamp; /* NTP time */ L_CLR(&tstamp);
1990 L_CLR(&tstamp);
1991 if (sys_leap != LEAP_NOTINSYNC)
1992 get_systime(&tstamp);
1993 return (tstamp.l_ui);
1998 * asn2ntp - convert ASN1_TIME time structure to NTP time in seconds.
2000 u_long
2001 asn2ntp (
2002 ASN1_TIME *asn1time /* pointer to ASN1_TIME structure */
2005 char *v; /* pointer to ASN1_TIME string */
2006 struct tm tm; /* used to convert to NTP time */
2009 * Extract time string YYMMDDHHMMSSZ from ASN1 time structure.
2010 * Note that the YY, MM, DD fields start with one, the HH, MM,
2011 * SS fiels start with zero and the Z character should be 'Z'
2012 * for UTC. Also note that years less than 50 map to years
2013 * greater than 100. Dontcha love ASN.1? Better than MIL-188.
2015 if (asn1time->length > 13)
2016 return ((u_long)(~0)); /* We can't use -1 here. It's invalid */
2018 v = (char *)asn1time->data;
2019 tm.tm_year = (v[0] - '0') * 10 + v[1] - '0';
2020 if (tm.tm_year < 50)
2021 tm.tm_year += 100;
2022 tm.tm_mon = (v[2] - '0') * 10 + v[3] - '0' - 1;
2023 tm.tm_mday = (v[4] - '0') * 10 + v[5] - '0';
2024 tm.tm_hour = (v[6] - '0') * 10 + v[7] - '0';
2025 tm.tm_min = (v[8] - '0') * 10 + v[9] - '0';
2026 tm.tm_sec = (v[10] - '0') * 10 + v[11] - '0';
2027 tm.tm_wday = 0;
2028 tm.tm_yday = 0;
2029 tm.tm_isdst = 0;
2030 return (timegm(&tm) + JAN_1970);
2035 * bigdig() - compute a BIGNUM MD5 hash of a BIGNUM number.
2037 static int
2038 bighash(
2039 BIGNUM *bn, /* BIGNUM * from */
2040 BIGNUM *bk /* BIGNUM * to */
2043 EVP_MD_CTX ctx; /* message digest context */
2044 u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
2045 u_char *ptr; /* a BIGNUM as binary string */
2046 u_int len;
2048 len = BN_num_bytes(bn);
2049 ptr = emalloc(len);
2050 BN_bn2bin(bn, ptr);
2051 EVP_DigestInit(&ctx, EVP_md5());
2052 EVP_DigestUpdate(&ctx, ptr, len);
2053 EVP_DigestFinal(&ctx, dgst, &len);
2054 BN_bin2bn(dgst, len, bk);
2056 /* XXX MEMLEAK? free ptr? */
2058 return (1);
2063 ***********************************************************************
2065 * The following routines implement the Schnorr (IFF) identity scheme *
2067 ***********************************************************************
2069 * The Schnorr (IFF) identity scheme is intended for use when
2070 * the ntp-genkeys program does not generate the certificates used in
2071 * the protocol and the group key cannot be conveyed in the certificate
2072 * itself. For this purpose, new generations of IFF values must be
2073 * securely transmitted to all members of the group before use. The
2074 * scheme is self contained and independent of new generations of host
2075 * keys, sign keys and certificates.
2077 * The IFF identity scheme is based on DSA cryptography and algorithms
2078 * described in Stinson p. 285. The IFF values hide in a DSA cuckoo
2079 * structure, but only the primes and generator are used. The p is a
2080 * 512-bit prime, q a 160-bit prime that divides p - 1 and is a qth root
2081 * of 1 mod p; that is, g^q = 1 mod p. The TA rolls primvate random
2082 * group key b disguised as a DSA structure member, then computes public
2083 * key g^(q - b). These values are shared only among group members and
2084 * never revealed in messages. Alice challenges Bob to confirm identity
2085 * using the protocol described below.
2087 * How it works
2089 * The scheme goes like this. Both Alice and Bob have the public primes
2090 * p, q and generator g. The TA gives private key b to Bob and public
2091 * key v = g^(q - a) mod p to Alice.
2093 * Alice rolls new random challenge r and sends to Bob in the IFF
2094 * request message. Bob rolls new random k, then computes y = k + b r
2095 * mod q and x = g^k mod p and sends (y, hash(x)) to Alice in the
2096 * response message. Besides making the response shorter, the hash makes
2097 * it effectivey impossible for an intruder to solve for b by observing
2098 * a number of these messages.
2100 * Alice receives the response and computes g^y v^r mod p. After a bit
2101 * of algebra, this simplifies to g^k. If the hash of this result
2102 * matches hash(x), Alice knows that Bob has the group key b. The signed
2103 * response binds this knowledge to Bob's private key and the public key
2104 * previously received in his certificate.
2106 * crypto_alice - construct Alice's challenge in IFF scheme
2108 * Returns
2109 * XEVNT_OK success
2110 * XEVNT_PUB bad or missing public key
2111 * XEVNT_ID bad or missing group key
2113 static int
2114 crypto_alice(
2115 struct peer *peer, /* peer pointer */
2116 struct value *vp /* value pointer */
2119 DSA *dsa; /* IFF parameters */
2120 BN_CTX *bctx; /* BIGNUM context */
2121 EVP_MD_CTX ctx; /* signature context */
2122 tstamp_t tstamp;
2123 u_int len;
2126 * The identity parameters must have correct format and content.
2128 if (peer->ident_pkey == NULL)
2129 return (XEVNT_ID);
2131 if ((dsa = peer->ident_pkey->pkey.dsa) == NULL) {
2132 msyslog(LOG_INFO, "crypto_alice: defective key");
2133 return (XEVNT_PUB);
2137 * Roll new random r (0 < r < q). The OpenSSL library has a bug
2138 * omitting BN_rand_range, so we have to do it the hard way.
2140 bctx = BN_CTX_new();
2141 len = BN_num_bytes(dsa->q);
2142 if (peer->iffval != NULL)
2143 BN_free(peer->iffval);
2144 peer->iffval = BN_new();
2145 BN_rand(peer->iffval, len * 8, -1, 1); /* r */
2146 BN_mod(peer->iffval, peer->iffval, dsa->q, bctx);
2147 BN_CTX_free(bctx);
2150 * Sign and send to Bob. The filestamp is from the local file.
2152 tstamp = crypto_time();
2153 memset(vp, 0, sizeof(struct value));
2154 vp->tstamp = htonl(tstamp);
2155 vp->fstamp = htonl(peer->fstamp);
2156 vp->vallen = htonl(len);
2157 vp->ptr = emalloc(len);
2158 BN_bn2bin(peer->iffval, vp->ptr);
2159 vp->siglen = 0;
2160 if (tstamp == 0)
2161 return (XEVNT_OK);
2163 if (tstamp < cinfo->first || tstamp > cinfo->last)
2164 return (XEVNT_PER);
2166 vp->sig = emalloc(sign_siglen);
2167 EVP_SignInit(&ctx, sign_digest);
2168 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2169 EVP_SignUpdate(&ctx, vp->ptr, len);
2170 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
2171 vp->siglen = htonl(len);
2172 return (XEVNT_OK);
2177 * crypto_bob - construct Bob's response to Alice's challenge
2179 * Returns
2180 * XEVNT_OK success
2181 * XEVNT_ID bad or missing group key
2182 * XEVNT_ERR protocol error
2183 * XEVNT_PER host expired certificate
2185 static int
2186 crypto_bob(
2187 struct exten *ep, /* extension pointer */
2188 struct value *vp /* value pointer */
2191 DSA *dsa; /* IFF parameters */
2192 DSA_SIG *sdsa; /* DSA signature context fake */
2193 BN_CTX *bctx; /* BIGNUM context */
2194 EVP_MD_CTX ctx; /* signature context */
2195 tstamp_t tstamp; /* NTP timestamp */
2196 BIGNUM *bn, *bk, *r;
2197 u_char *ptr;
2198 u_int len;
2201 * If the IFF parameters are not valid, something awful
2202 * happened or we are being tormented.
2204 if (iffpar_pkey == NULL) {
2205 msyslog(LOG_INFO, "crypto_bob: scheme unavailable");
2206 return (XEVNT_ID);
2208 dsa = iffpar_pkey->pkey.dsa;
2211 * Extract r from the challenge.
2213 len = ntohl(ep->vallen);
2214 if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2215 msyslog(LOG_ERR, "crypto_bob %s\n",
2216 ERR_error_string(ERR_get_error(), NULL));
2217 return (XEVNT_ERR);
2221 * Bob rolls random k (0 < k < q), computes y = k + b r mod q
2222 * and x = g^k mod p, then sends (y, hash(x)) to Alice.
2224 bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
2225 sdsa = DSA_SIG_new();
2226 BN_rand(bk, len * 8, -1, 1); /* k */
2227 BN_mod_mul(bn, dsa->priv_key, r, dsa->q, bctx); /* b r mod q */
2228 BN_add(bn, bn, bk);
2229 BN_mod(bn, bn, dsa->q, bctx); /* k + b r mod q */
2230 sdsa->r = BN_dup(bn);
2231 BN_mod_exp(bk, dsa->g, bk, dsa->p, bctx); /* g^k mod p */
2232 bighash(bk, bk);
2233 sdsa->s = BN_dup(bk);
2234 BN_CTX_free(bctx);
2235 BN_free(r); BN_free(bn); BN_free(bk);
2238 * Encode the values in ASN.1 and sign.
2240 tstamp = crypto_time();
2241 memset(vp, 0, sizeof(struct value));
2242 vp->tstamp = htonl(tstamp);
2243 vp->fstamp = htonl(if_fstamp);
2244 len = i2d_DSA_SIG(sdsa, NULL);
2245 if (len <= 0) {
2246 msyslog(LOG_ERR, "crypto_bob %s\n",
2247 ERR_error_string(ERR_get_error(), NULL));
2248 DSA_SIG_free(sdsa);
2249 return (XEVNT_ERR);
2251 vp->vallen = htonl(len);
2252 ptr = emalloc(len);
2253 vp->ptr = ptr;
2254 i2d_DSA_SIG(sdsa, &ptr);
2255 DSA_SIG_free(sdsa);
2256 vp->siglen = 0;
2257 if (tstamp == 0)
2258 return (XEVNT_OK);
2260 if (tstamp < cinfo->first || tstamp > cinfo->last)
2261 return (XEVNT_PER);
2263 vp->sig = emalloc(sign_siglen);
2264 EVP_SignInit(&ctx, sign_digest);
2265 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2266 EVP_SignUpdate(&ctx, vp->ptr, len);
2267 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
2268 vp->siglen = htonl(len);
2269 return (XEVNT_OK);
2274 * crypto_iff - verify Bob's response to Alice's challenge
2276 * Returns
2277 * XEVNT_OK success
2278 * XEVNT_PUB bad or missing public key
2279 * XEVNT_ID bad or missing group key
2280 * XEVNT_FSP bad filestamp
2283 crypto_iff(
2284 struct exten *ep, /* extension pointer */
2285 struct peer *peer /* peer structure pointer */
2288 DSA *dsa; /* IFF parameters */
2289 BN_CTX *bctx; /* BIGNUM context */
2290 DSA_SIG *sdsa; /* DSA parameters */
2291 BIGNUM *bn, *bk;
2292 u_int len;
2293 const u_char *ptr;
2294 int temp;
2297 * If the IFF parameters are not valid or no challenge was sent,
2298 * something awful happened or we are being tormented.
2300 if (peer->ident_pkey == NULL) {
2301 msyslog(LOG_INFO, "crypto_iff: scheme unavailable");
2302 return (XEVNT_ID);
2304 if (ntohl(ep->fstamp) != peer->fstamp) {
2305 msyslog(LOG_INFO, "crypto_iff: invalid filestamp %u",
2306 ntohl(ep->fstamp));
2307 return (XEVNT_FSP);
2309 if ((dsa = peer->ident_pkey->pkey.dsa) == NULL) {
2310 msyslog(LOG_INFO, "crypto_iff: defective key");
2311 return (XEVNT_PUB);
2313 if (peer->iffval == NULL) {
2314 msyslog(LOG_INFO, "crypto_iff: missing challenge");
2315 return (XEVNT_ID);
2319 * Extract the k + b r and g^k values from the response.
2321 bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
2322 len = ntohl(ep->vallen);
2323 ptr = (const u_char *)ep->pkt;
2324 if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
2325 msyslog(LOG_ERR, "crypto_iff %s\n",
2326 ERR_error_string(ERR_get_error(), NULL));
2327 return (XEVNT_ERR);
2331 * Compute g^(k + b r) g^(q - b)r mod p.
2333 BN_mod_exp(bn, dsa->pub_key, peer->iffval, dsa->p, bctx);
2334 BN_mod_exp(bk, dsa->g, sdsa->r, dsa->p, bctx);
2335 BN_mod_mul(bn, bn, bk, dsa->p, bctx);
2338 * Verify the hash of the result matches hash(x).
2340 bighash(bn, bn);
2341 temp = BN_cmp(bn, sdsa->s);
2342 BN_free(bn); BN_free(bk); BN_CTX_free(bctx);
2343 BN_free(peer->iffval);
2344 peer->iffval = NULL;
2345 DSA_SIG_free(sdsa);
2346 if (temp == 0)
2347 return (XEVNT_OK);
2349 else
2350 return (XEVNT_ID);
2355 ***********************************************************************
2357 * The following routines implement the Guillou-Quisquater (GQ) *
2358 * identity scheme *
2360 ***********************************************************************
2362 * The Guillou-Quisquater (GQ) identity scheme is intended for use when
2363 * the ntp-genkeys program generates the certificates used in the
2364 * protocol and the group key can be conveyed in a certificate extension
2365 * field. The scheme is self contained and independent of new
2366 * generations of host keys, sign keys and certificates.
2368 * The GQ identity scheme is based on RSA cryptography and algorithms
2369 * described in Stinson p. 300 (with errors). The GQ values hide in a
2370 * RSA cuckoo structure, but only the modulus is used. The 512-bit
2371 * public modulus is n = p q, where p and q are secret large primes. The
2372 * TA rolls random group key b disguised as a RSA structure member.
2373 * Except for the public key, these values are shared only among group
2374 * members and never revealed in messages.
2376 * When rolling new certificates, Bob recomputes the private and
2377 * public keys. The private key u is a random roll, while the public key
2378 * is the inverse obscured by the group key v = (u^-1)^b. These values
2379 * replace the private and public keys normally generated by the RSA
2380 * scheme. Alice challenges Bob to confirm identity using the protocol
2381 * described below.
2383 * How it works
2385 * The scheme goes like this. Both Alice and Bob have the same modulus n
2386 * and some random b as the group key. These values are computed and
2387 * distributed in advance via secret means, although only the group key
2388 * b is truly secret. Each has a private random private key u and public
2389 * key (u^-1)^b, although not necessarily the same ones. Bob and Alice
2390 * can regenerate the key pair from time to time without affecting
2391 * operations. The public key is conveyed on the certificate in an
2392 * extension field; the private key is never revealed.
2394 * Alice rolls new random challenge r and sends to Bob in the GQ
2395 * request message. Bob rolls new random k, then computes y = k u^r mod
2396 * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response
2397 * message. Besides making the response shorter, the hash makes it
2398 * effectivey impossible for an intruder to solve for b by observing
2399 * a number of these messages.
2401 * Alice receives the response and computes y^b v^r mod n. After a bit
2402 * of algebra, this simplifies to k^b. If the hash of this result
2403 * matches hash(x), Alice knows that Bob has the group key b. The signed
2404 * response binds this knowledge to Bob's private key and the public key
2405 * previously received in his certificate.
2407 * crypto_alice2 - construct Alice's challenge in GQ scheme
2409 * Returns
2410 * XEVNT_OK success
2411 * XEVNT_PUB bad or missing public key
2412 * XEVNT_ID bad or missing group key
2413 * XEVNT_PER host certificate expired
2415 static int
2416 crypto_alice2(
2417 struct peer *peer, /* peer pointer */
2418 struct value *vp /* value pointer */
2421 RSA *rsa; /* GQ parameters */
2422 BN_CTX *bctx; /* BIGNUM context */
2423 EVP_MD_CTX ctx; /* signature context */
2424 tstamp_t tstamp;
2425 u_int len;
2428 * The identity parameters must have correct format and content.
2430 if (peer->ident_pkey == NULL)
2431 return (XEVNT_ID);
2433 if ((rsa = peer->ident_pkey->pkey.rsa) == NULL) {
2434 msyslog(LOG_INFO, "crypto_alice2: defective key");
2435 return (XEVNT_PUB);
2439 * Roll new random r (0 < r < n). The OpenSSL library has a bug
2440 * omitting BN_rand_range, so we have to do it the hard way.
2442 bctx = BN_CTX_new();
2443 len = BN_num_bytes(rsa->n);
2444 if (peer->iffval != NULL)
2445 BN_free(peer->iffval);
2446 peer->iffval = BN_new();
2447 BN_rand(peer->iffval, len * 8, -1, 1); /* r mod n */
2448 BN_mod(peer->iffval, peer->iffval, rsa->n, bctx);
2449 BN_CTX_free(bctx);
2452 * Sign and send to Bob. The filestamp is from the local file.
2454 tstamp = crypto_time();
2455 memset(vp, 0, sizeof(struct value));
2456 vp->tstamp = htonl(tstamp);
2457 vp->fstamp = htonl(peer->fstamp);
2458 vp->vallen = htonl(len);
2459 vp->ptr = emalloc(len);
2460 BN_bn2bin(peer->iffval, vp->ptr);
2461 vp->siglen = 0;
2462 if (tstamp == 0)
2463 return (XEVNT_OK);
2465 if (tstamp < cinfo->first || tstamp > cinfo->last)
2466 return (XEVNT_PER);
2468 vp->sig = emalloc(sign_siglen);
2469 EVP_SignInit(&ctx, sign_digest);
2470 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2471 EVP_SignUpdate(&ctx, vp->ptr, len);
2472 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
2473 vp->siglen = htonl(len);
2474 return (XEVNT_OK);
2479 * crypto_bob2 - construct Bob's response to Alice's challenge
2481 * Returns
2482 * XEVNT_OK success
2483 * XEVNT_ID bad or missing group key
2484 * XEVNT_ERR protocol error
2485 * XEVNT_PER host certificate expired
2487 static int
2488 crypto_bob2(
2489 struct exten *ep, /* extension pointer */
2490 struct value *vp /* value pointer */
2493 RSA *rsa; /* GQ parameters */
2494 DSA_SIG *sdsa; /* DSA parameters */
2495 BN_CTX *bctx; /* BIGNUM context */
2496 EVP_MD_CTX ctx; /* signature context */
2497 tstamp_t tstamp; /* NTP timestamp */
2498 BIGNUM *r, *k, *g, *y;
2499 u_char *ptr;
2500 u_int len;
2503 * If the GQ parameters are not valid, something awful
2504 * happened or we are being tormented.
2506 if (gqpar_pkey == NULL) {
2507 msyslog(LOG_INFO, "crypto_bob2: scheme unavailable");
2508 return (XEVNT_ID);
2510 rsa = gqpar_pkey->pkey.rsa;
2513 * Extract r from the challenge.
2515 len = ntohl(ep->vallen);
2516 if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2517 msyslog(LOG_ERR, "crypto_bob2 %s\n",
2518 ERR_error_string(ERR_get_error(), NULL));
2519 return (XEVNT_ERR);
2523 * Bob rolls random k (0 < k < n), computes y = k u^r mod n and
2524 * x = k^b mod n, then sends (y, hash(x)) to Alice.
2526 bctx = BN_CTX_new(); k = BN_new(); g = BN_new(); y = BN_new();
2527 sdsa = DSA_SIG_new();
2528 BN_rand(k, len * 8, -1, 1); /* k */
2529 BN_mod(k, k, rsa->n, bctx);
2530 BN_mod_exp(y, rsa->p, r, rsa->n, bctx); /* u^r mod n */
2531 BN_mod_mul(y, k, y, rsa->n, bctx); /* k u^r mod n */
2532 sdsa->r = BN_dup(y);
2533 BN_mod_exp(g, k, rsa->e, rsa->n, bctx); /* k^b mod n */
2534 bighash(g, g);
2535 sdsa->s = BN_dup(g);
2536 BN_CTX_free(bctx);
2537 BN_free(r); BN_free(k); BN_free(g); BN_free(y);
2540 * Encode the values in ASN.1 and sign.
2542 tstamp = crypto_time();
2543 memset(vp, 0, sizeof(struct value));
2544 vp->tstamp = htonl(tstamp);
2545 vp->fstamp = htonl(gq_fstamp);
2546 len = i2d_DSA_SIG(sdsa, NULL);
2547 if (len <= 0) {
2548 msyslog(LOG_ERR, "crypto_bob2 %s\n",
2549 ERR_error_string(ERR_get_error(), NULL));
2550 DSA_SIG_free(sdsa);
2551 return (XEVNT_ERR);
2553 vp->vallen = htonl(len);
2554 ptr = emalloc(len);
2555 vp->ptr = ptr;
2556 i2d_DSA_SIG(sdsa, &ptr);
2557 DSA_SIG_free(sdsa);
2558 vp->siglen = 0;
2559 if (tstamp == 0)
2560 return (XEVNT_OK);
2562 if (tstamp < cinfo->first || tstamp > cinfo->last)
2563 return (XEVNT_PER);
2565 vp->sig = emalloc(sign_siglen);
2566 EVP_SignInit(&ctx, sign_digest);
2567 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2568 EVP_SignUpdate(&ctx, vp->ptr, len);
2569 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
2570 vp->siglen = htonl(len);
2571 return (XEVNT_OK);
2576 * crypto_gq - verify Bob's response to Alice's challenge
2578 * Returns
2579 * XEVNT_OK success
2580 * XEVNT_PUB bad or missing public key
2581 * XEVNT_ID bad or missing group keys
2582 * XEVNT_ERR protocol error
2583 * XEVNT_FSP bad filestamp
2586 crypto_gq(
2587 struct exten *ep, /* extension pointer */
2588 struct peer *peer /* peer structure pointer */
2591 RSA *rsa; /* GQ parameters */
2592 BN_CTX *bctx; /* BIGNUM context */
2593 DSA_SIG *sdsa; /* RSA signature context fake */
2594 BIGNUM *y, *v;
2595 const u_char *ptr;
2596 u_int len;
2597 int temp;
2600 * If the GQ parameters are not valid or no challenge was sent,
2601 * something awful happened or we are being tormented.
2603 if (peer->ident_pkey == NULL) {
2604 msyslog(LOG_INFO, "crypto_gq: scheme unavailable");
2605 return (XEVNT_ID);
2607 if (ntohl(ep->fstamp) != peer->fstamp) {
2608 msyslog(LOG_INFO, "crypto_gq: invalid filestamp %u",
2609 ntohl(ep->fstamp));
2610 return (XEVNT_FSP);
2612 if ((rsa = peer->ident_pkey->pkey.rsa) == NULL) {
2613 msyslog(LOG_INFO, "crypto_gq: defective key");
2614 return (XEVNT_PUB);
2616 if (peer->iffval == NULL) {
2617 msyslog(LOG_INFO, "crypto_gq: missing challenge");
2618 return (XEVNT_ID);
2622 * Extract the y = k u^r and hash(x = k^b) values from the
2623 * response.
2625 bctx = BN_CTX_new(); y = BN_new(); v = BN_new();
2626 len = ntohl(ep->vallen);
2627 ptr = (const u_char *)ep->pkt;
2628 if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
2629 msyslog(LOG_ERR, "crypto_gq %s\n",
2630 ERR_error_string(ERR_get_error(), NULL));
2631 return (XEVNT_ERR);
2635 * Compute v^r y^b mod n.
2637 BN_mod_exp(v, peer->grpkey, peer->iffval, rsa->n, bctx);
2638 /* v^r mod n */
2639 BN_mod_exp(y, sdsa->r, rsa->e, rsa->n, bctx); /* y^b mod n */
2640 BN_mod_mul(y, v, y, rsa->n, bctx); /* v^r y^b mod n */
2643 * Verify the hash of the result matches hash(x).
2645 bighash(y, y);
2646 temp = BN_cmp(y, sdsa->s);
2647 BN_CTX_free(bctx); BN_free(y); BN_free(v);
2648 BN_free(peer->iffval);
2649 peer->iffval = NULL;
2650 DSA_SIG_free(sdsa);
2651 if (temp == 0)
2652 return (XEVNT_OK);
2654 else
2655 return (XEVNT_ID);
2660 ***********************************************************************
2662 * The following routines implement the Mu-Varadharajan (MV) identity *
2663 * scheme *
2665 ***********************************************************************
2668 * The Mu-Varadharajan (MV) cryptosystem was originally intended when
2669 * servers broadcast messages to clients, but clients never send
2670 * messages to servers. There is one encryption key for the server and a
2671 * separate decryption key for each client. It operated something like a
2672 * pay-per-view satellite broadcasting system where the session key is
2673 * encrypted by the broadcaster and the decryption keys are held in a
2674 * tamperproof set-top box.
2676 * The MV parameters and private encryption key hide in a DSA cuckoo
2677 * structure which uses the same parameters, but generated in a
2678 * different way. The values are used in an encryption scheme similar to
2679 * El Gamal cryptography and a polynomial formed from the expansion of
2680 * product terms (x - x[j]), as described in Mu, Y., and V.
2681 * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
2682 * 223-231. The paper has significant errors and serious omissions.
2684 * Let q be the product of n distinct primes s'[j] (j = 1...n), where
2685 * each s'[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
2686 * that q and each s'[j] divide p - 1 and p has M = n * m + 1
2687 * significant bits. The elements x mod q of Zq with the elements 2 and
2688 * the primes removed form a field Zq* valid for polynomial arithetic.
2689 * Let g be a generator of Zp; that is, gcd(g, p - 1) = 1 and g^q = 1
2690 * mod p. We expect M to be in the 500-bit range and n relatively small,
2691 * like 25, so the likelihood of a randomly generated element of x mod q
2692 * of Zq colliding with a factor of p - 1 is very small and can be
2693 * avoided. Associated with each s'[j] is an element s[j] such that s[j]
2694 * s'[j] = s'[j] mod q. We find s[j] as the quotient (q + s'[j]) /
2695 * s'[j]. These are the parameters of the scheme and they are expensive
2696 * to compute.
2698 * We set up an instance of the scheme as follows. A set of random
2699 * values x[j] mod q (j = 1...n), are generated as the zeros of a
2700 * polynomial of order n. The product terms (x - x[j]) are expanded to
2701 * form coefficients a[i] mod q (i = 0...n) in powers of x. These are
2702 * used as exponents of the generator g mod p to generate the private
2703 * encryption key A. The pair (gbar, ghat) of public server keys and the
2704 * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
2705 * to construct the decryption keys. The devil is in the details.
2707 * The distinguishing characteristic of this scheme is the capability to
2708 * revoke keys. Included in the calculation of E, gbar and ghat is the
2709 * product s = prod(s'[j]) (j = 1...n) above. If the factor s'[j] is
2710 * subsequently removed from the product and E, gbar and ghat
2711 * recomputed, the jth client will no longer be able to compute E^-1 and
2712 * thus unable to decrypt the block.
2714 * How it works
2716 * The scheme goes like this. Bob has the server values (p, A, q, gbar,
2717 * ghat) and Alice the client values (p, xbar, xhat).
2719 * Alice rolls new random challenge r (0 < r < p) and sends to Bob in
2720 * the MV request message. Bob rolls new random k (0 < k < q), encrypts
2721 * y = A^k mod p (a permutation) and sends (hash(y), gbar^k, ghat^k) to
2722 * Alice.
2724 * Alice receives the response and computes the decryption key (the
2725 * inverse permutation) from previously obtained (xbar, xhat) and
2726 * (gbar^k, ghat^k) in the message. She computes the inverse, which is
2727 * unique by reasons explained in the ntp-keygen.c program sources. If
2728 * the hash of this result matches hash(y), Alice knows that Bob has the
2729 * group key b. The signed response binds this knowledge to Bob's
2730 * private key and the public key previously received in his
2731 * certificate.
2733 * crypto_alice3 - construct Alice's challenge in MV scheme
2735 * Returns
2736 * XEVNT_OK success
2737 * XEVNT_PUB bad or missing public key
2738 * XEVNT_ID bad or missing group key
2739 * XEVNT_PER host certificate expired
2741 static int
2742 crypto_alice3(
2743 struct peer *peer, /* peer pointer */
2744 struct value *vp /* value pointer */
2747 DSA *dsa; /* MV parameters */
2748 BN_CTX *bctx; /* BIGNUM context */
2749 EVP_MD_CTX ctx; /* signature context */
2750 tstamp_t tstamp;
2751 u_int len;
2754 * The identity parameters must have correct format and content.
2756 if (peer->ident_pkey == NULL)
2757 return (XEVNT_ID);
2759 if ((dsa = peer->ident_pkey->pkey.dsa) == NULL) {
2760 msyslog(LOG_INFO, "crypto_alice3: defective key");
2761 return (XEVNT_PUB);
2765 * Roll new random r (0 < r < q). The OpenSSL library has a bug
2766 * omitting BN_rand_range, so we have to do it the hard way.
2768 bctx = BN_CTX_new();
2769 len = BN_num_bytes(dsa->p);
2770 if (peer->iffval != NULL)
2771 BN_free(peer->iffval);
2772 peer->iffval = BN_new();
2773 BN_rand(peer->iffval, len * 8, -1, 1); /* r */
2774 BN_mod(peer->iffval, peer->iffval, dsa->p, bctx);
2775 BN_CTX_free(bctx);
2778 * Sign and send to Bob. The filestamp is from the local file.
2780 tstamp = crypto_time();
2781 memset(vp, 0, sizeof(struct value));
2782 vp->tstamp = htonl(tstamp);
2783 vp->fstamp = htonl(peer->fstamp);
2784 vp->vallen = htonl(len);
2785 vp->ptr = emalloc(len);
2786 BN_bn2bin(peer->iffval, vp->ptr);
2787 vp->siglen = 0;
2788 if (tstamp == 0)
2789 return (XEVNT_OK);
2791 if (tstamp < cinfo->first || tstamp > cinfo->last)
2792 return (XEVNT_PER);
2794 vp->sig = emalloc(sign_siglen);
2795 EVP_SignInit(&ctx, sign_digest);
2796 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2797 EVP_SignUpdate(&ctx, vp->ptr, len);
2798 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
2799 vp->siglen = htonl(len);
2800 return (XEVNT_OK);
2805 * crypto_bob3 - construct Bob's response to Alice's challenge
2807 * Returns
2808 * XEVNT_OK success
2809 * XEVNT_ERR protocol error
2810 * XEVNT_PER host certificate expired
2812 static int
2813 crypto_bob3(
2814 struct exten *ep, /* extension pointer */
2815 struct value *vp /* value pointer */
2818 DSA *dsa; /* MV parameters */
2819 DSA *sdsa; /* DSA signature context fake */
2820 BN_CTX *bctx; /* BIGNUM context */
2821 EVP_MD_CTX ctx; /* signature context */
2822 tstamp_t tstamp; /* NTP timestamp */
2823 BIGNUM *r, *k, *u;
2824 u_char *ptr;
2825 u_int len;
2828 * If the MV parameters are not valid, something awful
2829 * happened or we are being tormented.
2831 if (mvpar_pkey == NULL) {
2832 msyslog(LOG_INFO, "crypto_bob3: scheme unavailable");
2833 return (XEVNT_ID);
2835 dsa = mvpar_pkey->pkey.dsa;
2838 * Extract r from the challenge.
2840 len = ntohl(ep->vallen);
2841 if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2842 msyslog(LOG_ERR, "crypto_bob3 %s\n",
2843 ERR_error_string(ERR_get_error(), NULL));
2844 return (XEVNT_ERR);
2848 * Bob rolls random k (0 < k < q), making sure it is not a
2849 * factor of q. He then computes y = A^k r and sends (hash(y),
2850 * gbar^k, ghat^k) to Alice.
2852 bctx = BN_CTX_new(); k = BN_new(); u = BN_new();
2853 sdsa = DSA_new();
2854 sdsa->p = BN_new(); sdsa->q = BN_new(); sdsa->g = BN_new();
2855 while (1) {
2856 BN_rand(k, BN_num_bits(dsa->q), 0, 0);
2857 BN_mod(k, k, dsa->q, bctx);
2858 BN_gcd(u, k, dsa->q, bctx);
2859 if (BN_is_one(u))
2860 break;
2862 BN_mod_exp(u, dsa->g, k, dsa->p, bctx); /* A r */
2863 BN_mod_mul(u, u, r, dsa->p, bctx);
2864 bighash(u, sdsa->p);
2865 BN_mod_exp(sdsa->q, dsa->priv_key, k, dsa->p, bctx); /* gbar */
2866 BN_mod_exp(sdsa->g, dsa->pub_key, k, dsa->p, bctx); /* ghat */
2867 BN_CTX_free(bctx); BN_free(k); BN_free(r); BN_free(u);
2870 * Encode the values in ASN.1 and sign.
2872 tstamp = crypto_time();
2873 memset(vp, 0, sizeof(struct value));
2874 vp->tstamp = htonl(tstamp);
2875 vp->fstamp = htonl(mv_fstamp);
2876 len = i2d_DSAparams(sdsa, NULL);
2877 if (len <= 0) {
2878 msyslog(LOG_ERR, "crypto_bob3 %s\n",
2879 ERR_error_string(ERR_get_error(), NULL));
2880 DSA_free(sdsa);
2881 return (XEVNT_ERR);
2883 vp->vallen = htonl(len);
2884 ptr = emalloc(len);
2885 vp->ptr = ptr;
2886 i2d_DSAparams(sdsa, &ptr);
2887 DSA_free(sdsa);
2888 vp->siglen = 0;
2889 if (tstamp == 0)
2890 return (XEVNT_OK);
2892 if (tstamp < cinfo->first || tstamp > cinfo->last)
2893 return (XEVNT_PER);
2895 vp->sig = emalloc(sign_siglen);
2896 EVP_SignInit(&ctx, sign_digest);
2897 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2898 EVP_SignUpdate(&ctx, vp->ptr, len);
2899 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
2900 vp->siglen = htonl(len);
2901 return (XEVNT_OK);
2906 * crypto_mv - verify Bob's response to Alice's challenge
2908 * Returns
2909 * XEVNT_OK success
2910 * XEVNT_PUB bad or missing public key
2911 * XEVNT_ID bad or missing group key
2912 * XEVNT_ERR protocol error
2913 * XEVNT_FSP bad filestamp
2916 crypto_mv(
2917 struct exten *ep, /* extension pointer */
2918 struct peer *peer /* peer structure pointer */
2921 DSA *dsa; /* MV parameters */
2922 DSA *sdsa; /* DSA parameters */
2923 BN_CTX *bctx; /* BIGNUM context */
2924 BIGNUM *k, *u, *v;
2925 u_int len;
2926 const u_char *ptr;
2927 int temp;
2930 * If the MV parameters are not valid or no challenge was sent,
2931 * something awful happened or we are being tormented.
2933 if (peer->ident_pkey == NULL) {
2934 msyslog(LOG_INFO, "crypto_mv: scheme unavailable");
2935 return (XEVNT_ID);
2937 if (ntohl(ep->fstamp) != peer->fstamp) {
2938 msyslog(LOG_INFO, "crypto_mv: invalid filestamp %u",
2939 ntohl(ep->fstamp));
2940 return (XEVNT_FSP);
2942 if ((dsa = peer->ident_pkey->pkey.dsa) == NULL) {
2943 msyslog(LOG_INFO, "crypto_mv: defective key");
2944 return (XEVNT_PUB);
2946 if (peer->iffval == NULL) {
2947 msyslog(LOG_INFO, "crypto_mv: missing challenge");
2948 return (XEVNT_ID);
2952 * Extract the (hash(y), gbar, ghat) values from the response.
2954 bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); v = BN_new();
2955 len = ntohl(ep->vallen);
2956 ptr = (const u_char *)ep->pkt;
2957 if ((sdsa = d2i_DSAparams(NULL, &ptr, len)) == NULL) {
2958 msyslog(LOG_ERR, "crypto_mv %s\n",
2959 ERR_error_string(ERR_get_error(), NULL));
2960 return (XEVNT_ERR);
2964 * Compute (gbar^xhat ghat^xbar)^-1 mod p.
2966 BN_mod_exp(u, sdsa->q, dsa->pub_key, dsa->p, bctx);
2967 BN_mod_exp(v, sdsa->g, dsa->priv_key, dsa->p, bctx);
2968 BN_mod_mul(u, u, v, dsa->p, bctx);
2969 BN_mod_inverse(u, u, dsa->p, bctx);
2970 BN_mod_mul(v, u, peer->iffval, dsa->p, bctx);
2973 * The result should match the hash of r mod p.
2975 bighash(v, v);
2976 temp = BN_cmp(v, sdsa->p);
2977 BN_CTX_free(bctx); BN_free(k); BN_free(u); BN_free(v);
2978 BN_free(peer->iffval);
2979 peer->iffval = NULL;
2980 DSA_free(sdsa);
2981 if (temp == 0)
2982 return (XEVNT_OK);
2984 else
2985 return (XEVNT_ID);
2990 ***********************************************************************
2992 * The following routines are used to manipulate certificates *
2994 ***********************************************************************
2997 * cert_parse - parse x509 certificate and create info/value structures.
2999 * The server certificate includes the version number, issuer name,
3000 * subject name, public key and valid date interval. If the issuer name
3001 * is the same as the subject name, the certificate is self signed and
3002 * valid only if the server is configured as trustable. If the names are
3003 * different, another issuer has signed the server certificate and
3004 * vouched for it. In this case the server certificate is valid if
3005 * verified by the issuer public key.
3007 * Returns certificate info/value pointer if valid, NULL if not.
3009 struct cert_info * /* certificate information structure */
3010 cert_parse(
3011 u_char *asn1cert, /* X509 certificate */
3012 u_int len, /* certificate length */
3013 tstamp_t fstamp /* filestamp */
3016 X509 *cert; /* X509 certificate */
3017 X509_EXTENSION *ext; /* X509v3 extension */
3018 struct cert_info *ret; /* certificate info/value */
3019 BIO *bp;
3020 X509V3_EXT_METHOD *method;
3021 char pathbuf[MAXFILENAME];
3022 u_char *uptr;
3023 char *ptr;
3024 int temp, cnt, i;
3027 * Decode ASN.1 objects and construct certificate structure.
3029 uptr = asn1cert;
3030 if ((cert = d2i_X509(NULL, &uptr, len)) == NULL) {
3031 msyslog(LOG_ERR, "cert_parse %s\n",
3032 ERR_error_string(ERR_get_error(), NULL));
3033 return (NULL);
3037 * Extract version, subject name and public key.
3039 ret = emalloc(sizeof(struct cert_info));
3040 memset(ret, 0, sizeof(struct cert_info));
3041 if ((ret->pkey = X509_get_pubkey(cert)) == NULL) {
3042 msyslog(LOG_ERR, "cert_parse %s\n",
3043 ERR_error_string(ERR_get_error(), NULL));
3044 cert_free(ret);
3045 X509_free(cert);
3046 return (NULL);
3048 ret->version = X509_get_version(cert);
3049 X509_NAME_oneline(X509_get_subject_name(cert), pathbuf,
3050 MAXFILENAME - 1);
3051 ptr = strstr(pathbuf, "CN=");
3052 if (ptr == NULL) {
3053 msyslog(LOG_INFO, "cert_parse: invalid subject %s",
3054 pathbuf);
3055 cert_free(ret);
3056 X509_free(cert);
3057 return (NULL);
3059 ret->subject = emalloc(strlen(ptr) + 1);
3060 strcpy(ret->subject, ptr + 3);
3063 * Extract remaining objects. Note that the NTP serial number is
3064 * the NTP seconds at the time of signing, but this might not be
3065 * the case for other authority. We don't bother to check the
3066 * objects at this time, since the real crunch can happen only
3067 * when the time is valid but not yet certificated.
3069 ret->nid = OBJ_obj2nid(cert->cert_info->signature->algorithm);
3070 ret->digest = (const EVP_MD *)EVP_get_digestbynid(ret->nid);
3071 ret->serial =
3072 (u_long)ASN1_INTEGER_get(X509_get_serialNumber(cert));
3073 X509_NAME_oneline(X509_get_issuer_name(cert), pathbuf,
3074 MAXFILENAME);
3075 if ((ptr = strstr(pathbuf, "CN=")) == NULL) {
3076 msyslog(LOG_INFO, "cert_parse: invalid issuer %s",
3077 pathbuf);
3078 cert_free(ret);
3079 X509_free(cert);
3080 return (NULL);
3082 ret->issuer = emalloc(strlen(ptr) + 1);
3083 strcpy(ret->issuer, ptr + 3);
3084 ret->first = asn2ntp(X509_get_notBefore(cert));
3085 ret->last = asn2ntp(X509_get_notAfter(cert));
3088 * Extract extension fields. These are ad hoc ripoffs of
3089 * currently assigned functions and will certainly be changed
3090 * before prime time.
3092 cnt = X509_get_ext_count(cert);
3093 for (i = 0; i < cnt; i++) {
3094 ext = X509_get_ext(cert, i);
3095 method = X509V3_EXT_get(ext);
3096 temp = OBJ_obj2nid(ext->object);
3097 switch (temp) {
3100 * If a key_usage field is present, we decode whether
3101 * this is a trusted or private certificate. This is
3102 * dorky; all we want is to compare NIDs, but OpenSSL
3103 * insists on BIO text strings.
3105 case NID_ext_key_usage:
3106 bp = BIO_new(BIO_s_mem());
3107 X509V3_EXT_print(bp, ext, 0, 0);
3108 BIO_gets(bp, pathbuf, MAXFILENAME);
3109 BIO_free(bp);
3110 #if DEBUG
3111 if (debug)
3112 printf("cert_parse: %s: %s\n",
3113 OBJ_nid2ln(temp), pathbuf);
3114 #endif
3115 if (strcmp(pathbuf, "Trust Root") == 0)
3116 ret->flags |= CERT_TRUST;
3117 else if (strcmp(pathbuf, "Private") == 0)
3118 ret->flags |= CERT_PRIV;
3119 break;
3122 * If a NID_subject_key_identifier field is present, it
3123 * contains the GQ public key.
3125 case NID_subject_key_identifier:
3126 ret->grplen = ext->value->length - 2;
3127 ret->grpkey = emalloc(ret->grplen);
3128 memcpy(ret->grpkey, &ext->value->data[2],
3129 ret->grplen);
3130 break;
3135 * If certificate is self signed, verify signature.
3137 if (strcmp(ret->subject, ret->issuer) == 0) {
3138 if (!X509_verify(cert, ret->pkey)) {
3139 msyslog(LOG_INFO,
3140 "cert_parse: signature not verified %s",
3141 pathbuf);
3142 cert_free(ret);
3143 X509_free(cert);
3144 return (NULL);
3149 * Verify certificate valid times. Note that certificates cannot
3150 * be retroactive.
3152 if (ret->first > ret->last || ret->first < fstamp) {
3153 msyslog(LOG_INFO,
3154 "cert_parse: invalid certificate %s first %u last %u fstamp %u",
3155 ret->subject, ret->first, ret->last, fstamp);
3156 cert_free(ret);
3157 X509_free(cert);
3158 return (NULL);
3162 * Build the value structure to sign and send later.
3164 ret->cert.fstamp = htonl(fstamp);
3165 ret->cert.vallen = htonl(len);
3166 ret->cert.ptr = emalloc(len);
3167 memcpy(ret->cert.ptr, asn1cert, len);
3168 #ifdef DEBUG
3169 if (debug > 1)
3170 X509_print_fp(stdout, cert);
3171 #endif
3172 X509_free(cert);
3173 return (ret);
3178 * cert_sign - sign x509 certificate equest and update value structure.
3180 * The certificate request includes a copy of the host certificate,
3181 * which includes the version number, subject name and public key of the
3182 * host. The resulting certificate includes these values plus the
3183 * serial number, issuer name and valid interval of the server. The
3184 * valid interval extends from the current time to the same time one
3185 * year hence. This may extend the life of the signed certificate beyond
3186 * that of the signer certificate.
3188 * It is convenient to use the NTP seconds of the current time as the
3189 * serial number. In the value structure the timestamp is the current
3190 * time and the filestamp is taken from the extension field. Note this
3191 * routine is called only when the client clock is synchronized to a
3192 * proventic source, so timestamp comparisons are valid.
3194 * The host certificate is valid from the time it was generated for a
3195 * period of one year. A signed certificate is valid from the time of
3196 * signature for a period of one year, but only the host certificate (or
3197 * sign certificate if used) is actually used to encrypt and decrypt
3198 * signatures. The signature trail is built from the client via the
3199 * intermediate servers to the trusted server. Each signature on the
3200 * trail must be valid at the time of signature, but it could happen
3201 * that a signer certificate expire before the signed certificate, which
3202 * remains valid until its expiration.
3204 * Returns
3205 * XEVNT_OK success
3206 * XEVNT_PUB bad or missing public key
3207 * XEVNT_CRT bad or missing certificate
3208 * XEVNT_VFY certificate not verified
3209 * XEVNT_PER host certificate expired
3211 static int
3212 cert_sign(
3213 struct exten *ep, /* extension field pointer */
3214 struct value *vp /* value pointer */
3217 X509 *req; /* X509 certificate request */
3218 X509 *cert; /* X509 certificate */
3219 X509_EXTENSION *ext; /* certificate extension */
3220 ASN1_INTEGER *serial; /* serial number */
3221 X509_NAME *subj; /* distinguished (common) name */
3222 EVP_PKEY *pkey; /* public key */
3223 EVP_MD_CTX ctx; /* message digest context */
3224 tstamp_t tstamp; /* NTP timestamp */
3225 u_int len;
3226 u_char *ptr;
3227 int i, temp;
3230 * Decode ASN.1 objects and construct certificate structure.
3231 * Make sure the system clock is synchronized to a proventic
3232 * source.
3234 tstamp = crypto_time();
3235 if (tstamp == 0)
3236 return (XEVNT_TSP);
3238 if (tstamp < cinfo->first || tstamp > cinfo->last)
3239 return (XEVNT_PER);
3241 ptr = (u_char *)ep->pkt;
3242 if ((req = d2i_X509(NULL, &ptr, ntohl(ep->vallen))) == NULL) {
3243 msyslog(LOG_ERR, "cert_sign %s\n",
3244 ERR_error_string(ERR_get_error(), NULL));
3245 return (XEVNT_CRT);
3248 * Extract public key and check for errors.
3250 if ((pkey = X509_get_pubkey(req)) == NULL) {
3251 msyslog(LOG_ERR, "cert_sign %s\n",
3252 ERR_error_string(ERR_get_error(), NULL));
3253 X509_free(req);
3254 return (XEVNT_PUB);
3258 * Generate X509 certificate signed by this server. For this
3259 * purpose the issuer name is the server name. Also copy any
3260 * extensions that might be present.
3262 cert = X509_new();
3263 X509_set_version(cert, X509_get_version(req));
3264 serial = ASN1_INTEGER_new();
3265 ASN1_INTEGER_set(serial, tstamp);
3266 X509_set_serialNumber(cert, serial);
3267 X509_gmtime_adj(X509_get_notBefore(cert), 0L);
3268 X509_gmtime_adj(X509_get_notAfter(cert), YEAR);
3269 subj = X509_get_issuer_name(cert);
3270 X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
3271 (u_char *)sys_hostname, strlen(sys_hostname), -1, 0);
3272 subj = X509_get_subject_name(req);
3273 X509_set_subject_name(cert, subj);
3274 X509_set_pubkey(cert, pkey);
3275 ext = X509_get_ext(req, 0);
3276 temp = X509_get_ext_count(req);
3277 for (i = 0; i < temp; i++) {
3278 ext = X509_get_ext(req, i);
3279 X509_add_ext(cert, ext, -1);
3281 X509_free(req);
3284 * Sign and verify the certificate.
3286 X509_sign(cert, sign_pkey, sign_digest);
3287 if (!X509_verify(cert, sign_pkey)) {
3288 printf("cert_sign\n%s\n",
3289 ERR_error_string(ERR_get_error(), NULL));
3290 X509_free(cert);
3291 return (XEVNT_VFY);
3293 len = i2d_X509(cert, NULL);
3296 * Build and sign the value structure. We have to sign it here,
3297 * since the response has to be returned right away. This is a
3298 * clogging hazard.
3300 memset(vp, 0, sizeof(struct value));
3301 vp->tstamp = htonl(tstamp);
3302 vp->fstamp = ep->fstamp;
3303 vp->vallen = htonl(len);
3304 vp->ptr = emalloc(len);
3305 ptr = vp->ptr;
3306 i2d_X509(cert, &ptr);
3307 vp->siglen = 0;
3308 vp->sig = emalloc(sign_siglen);
3309 EVP_SignInit(&ctx, sign_digest);
3310 EVP_SignUpdate(&ctx, (u_char *)vp, 12);
3311 EVP_SignUpdate(&ctx, vp->ptr, len);
3312 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
3313 vp->siglen = htonl(len);
3314 #ifdef DEBUG
3315 if (debug > 1)
3316 X509_print_fp(stdout, cert);
3317 #endif
3318 X509_free(cert);
3319 return (XEVNT_OK);
3324 * cert_valid - verify certificate with given public key
3326 * This is pretty ugly, as the certificate has to be verified in the
3327 * OpenSSL X509 structure, not in the DER format in the info/value
3328 * structure.
3330 * Returns
3331 * XEVNT_OK success
3332 * XEVNT_VFY certificate not verified
3335 cert_valid(
3336 struct cert_info *cinf, /* certificate information structure */
3337 EVP_PKEY *pkey /* public key */
3340 X509 *cert; /* X509 certificate */
3341 u_char *ptr;
3343 if (cinf->flags & CERT_SIGN)
3344 return (XEVNT_OK);
3346 ptr = (u_char *)cinf->cert.ptr;
3347 cert = d2i_X509(NULL, &ptr, ntohl(cinf->cert.vallen));
3348 if (cert == NULL || !X509_verify(cert, pkey))
3349 return (XEVNT_VFY);
3351 X509_free(cert);
3352 return (XEVNT_OK);
3357 * cert - install certificate in certificate list
3359 * This routine encodes an extension field into a certificate info/value
3360 * structure. It searches the certificate list for duplicates and
3361 * expunges whichever is older. It then searches the list for other
3362 * certificates that might be verified by this latest one. Finally, it
3363 * inserts this certificate first on the list.
3365 * Returns
3366 * XEVNT_OK success
3367 * XEVNT_FSP bad or missing filestamp
3368 * XEVNT_CRT bad or missing certificate
3371 cert_install(
3372 struct exten *ep, /* cert info/value */
3373 struct peer *peer /* peer structure */
3376 struct cert_info *cp, *xp, *yp, **zp;
3379 * Parse and validate the signed certificate. If valid,
3380 * construct the info/value structure; otherwise, scamper home.
3382 if ((cp = cert_parse((u_char *)ep->pkt, ntohl(ep->vallen),
3383 ntohl(ep->fstamp))) == NULL)
3384 return (XEVNT_CRT);
3387 * Scan certificate list looking for another certificate with
3388 * the same subject and issuer. If another is found with the
3389 * same or older filestamp, unlink it and return the goodies to
3390 * the heap. If another is found with a later filestamp, discard
3391 * the new one and leave the building.
3393 * Make a note to study this issue again. An earlier certificate
3394 * with a long lifetime might be overtaken by a later
3395 * certificate with a short lifetime, thus invalidating the
3396 * earlier signature. However, we gotta find a way to leak old
3397 * stuff from the cache, so we do it anyway.
3399 yp = cp;
3400 zp = &cinfo;
3401 for (xp = cinfo; xp != NULL; xp = xp->link) {
3402 if (strcmp(cp->subject, xp->subject) == 0 &&
3403 strcmp(cp->issuer, xp->issuer) == 0) {
3404 if (ntohl(cp->cert.fstamp) <=
3405 ntohl(xp->cert.fstamp)) {
3406 *zp = xp->link;;
3407 cert_free(xp);
3408 } else {
3409 cert_free(cp);
3410 return (XEVNT_FSP);
3412 break;
3414 zp = &xp->link;
3416 yp->link = cinfo;
3417 cinfo = yp;
3420 * Scan the certificate list to see if Y is signed by X. This is
3421 * independent of order.
3423 for (yp = cinfo; yp != NULL; yp = yp->link) {
3424 for (xp = cinfo; xp != NULL; xp = xp->link) {
3427 * If the issuer of certificate Y matches the
3428 * subject of certificate X, verify the
3429 * signature of Y using the public key of X. If
3430 * so, X signs Y.
3432 if (strcmp(yp->issuer, xp->subject) != 0 ||
3433 xp->flags & CERT_ERROR)
3434 continue;
3436 if (cert_valid(yp, xp->pkey) != XEVNT_OK) {
3437 yp->flags |= CERT_ERROR;
3438 continue;
3442 * The signature Y is valid only if it begins
3443 * during the lifetime of X; however, it is not
3444 * necessarily an error, since some other
3445 * certificate might sign Y.
3447 if (yp->first < xp->first || yp->first >
3448 xp->last)
3449 continue;
3451 yp->flags |= CERT_SIGN;
3454 * If X is trusted, then Y is trusted. Note that
3455 * we might stumble over a self-signed
3456 * certificate that is not trusted, at least
3457 * temporarily. This can happen when a dude
3458 * first comes up, but has not synchronized the
3459 * clock and had its certificate signed by its
3460 * server. In case of broken certificate trail,
3461 * this might result in a loop that could
3462 * persist until timeout.
3464 if (!(xp->flags & (CERT_TRUST | CERT_VALID)))
3465 continue;
3467 yp->flags |= CERT_VALID;
3470 * If subject Y matches the server subject name,
3471 * then Y has completed the certificate trail.
3472 * Save the group key and light the valid bit.
3474 if (strcmp(yp->subject, peer->subject) != 0)
3475 continue;
3477 if (yp->grpkey != NULL) {
3478 if (peer->grpkey != NULL)
3479 BN_free(peer->grpkey);
3480 peer->grpkey = BN_bin2bn(yp->grpkey,
3481 yp->grplen, NULL);
3483 peer->crypto |= CRYPTO_FLAG_VALID;
3486 * If the server has an an identity scheme,
3487 * fetch the identity credentials. If not, the
3488 * identity is verified only by the trusted
3489 * certificate. The next signature will set the
3490 * server proventic.
3492 if (peer->crypto & (CRYPTO_FLAG_GQ |
3493 CRYPTO_FLAG_IFF | CRYPTO_FLAG_MV))
3494 continue;
3496 peer->crypto |= CRYPTO_FLAG_VRFY;
3501 * That was awesome. Now update the timestamps and signatures.
3503 crypto_update();
3504 return (XEVNT_OK);
3509 * cert_free - free certificate information structure
3511 void
3512 cert_free(
3513 struct cert_info *cinf /* certificate info/value structure */
3516 if (cinf->pkey != NULL)
3517 EVP_PKEY_free(cinf->pkey);
3518 if (cinf->subject != NULL)
3519 free(cinf->subject);
3520 if (cinf->issuer != NULL)
3521 free(cinf->issuer);
3522 if (cinf->grpkey != NULL)
3523 free(cinf->grpkey);
3524 value_free(&cinf->cert);
3525 free(cinf);
3530 ***********************************************************************
3532 * The following routines are used only at initialization time *
3534 ***********************************************************************
3537 * crypto_key - load cryptographic parameters and keys from files
3539 * This routine loads a PEM-encoded public/private key pair and extracts
3540 * the filestamp from the file name.
3542 * Returns public key pointer if valid, NULL if not. Side effect updates
3543 * the filestamp if valid.
3545 static EVP_PKEY *
3546 crypto_key(
3547 char *cp, /* file name */
3548 tstamp_t *fstamp /* filestamp */
3551 FILE *str; /* file handle */
3552 EVP_PKEY *pkey = NULL; /* public/private key */
3553 char filename[MAXFILENAME]; /* name of key file */
3554 char linkname[MAXFILENAME]; /* filestamp buffer) */
3555 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3556 char *ptr;
3559 * Open the key file. If the first character of the file name is
3560 * not '/', prepend the keys directory string. If something goes
3561 * wrong, abandon ship.
3563 if (*cp == '/')
3564 strcpy(filename, cp);
3565 else
3566 snprintf(filename, MAXFILENAME, "%s/%s", keysdir, cp);
3567 str = fopen(filename, "r");
3568 if (str == NULL)
3569 return (NULL);
3572 * Read the filestamp, which is contained in the first line.
3574 if ((ptr = fgets(linkname, MAXFILENAME, str)) == NULL) {
3575 msyslog(LOG_ERR, "crypto_key: no data %s\n",
3576 filename);
3577 (void)fclose(str);
3578 return (NULL);
3580 if ((ptr = strrchr(ptr, '.')) == NULL) {
3581 msyslog(LOG_ERR, "crypto_key: no filestamp %s\n",
3582 filename);
3583 (void)fclose(str);
3584 return (NULL);
3586 if (sscanf(++ptr, "%u", fstamp) != 1) {
3587 msyslog(LOG_ERR, "crypto_key: invalid timestamp %s\n",
3588 filename);
3589 (void)fclose(str);
3590 return (NULL);
3594 * Read and decrypt PEM-encoded private key.
3596 pkey = PEM_read_PrivateKey(str, NULL, NULL, passwd);
3597 fclose(str);
3598 if (pkey == NULL) {
3599 msyslog(LOG_ERR, "crypto_key %s\n",
3600 ERR_error_string(ERR_get_error(), NULL));
3601 return (NULL);
3605 * Leave tracks in the cryptostats.
3607 if ((ptr = strrchr(linkname, '\n')) != NULL)
3608 *ptr = '\0';
3609 sprintf(statstr, "%s mod %d", &linkname[2],
3610 EVP_PKEY_size(pkey) * 8);
3611 record_crypto_stats(NULL, statstr);
3612 #ifdef DEBUG
3613 if (debug)
3614 printf("crypto_key: %s\n", statstr);
3615 if (debug > 1) {
3616 if (EVP_MD_type(pkey) == EVP_PKEY_DSA)
3617 DSA_print_fp(stdout, pkey->pkey.dsa, 0);
3618 else
3619 RSA_print_fp(stdout, pkey->pkey.rsa, 0);
3621 #endif
3622 return (pkey);
3627 * crypto_cert - load certificate from file
3629 * This routine loads a X.509 RSA or DSA certificate from a file and
3630 * constructs a info/cert value structure for this machine. The
3631 * structure includes a filestamp extracted from the file name. Later
3632 * the certificate can be sent to another machine by request.
3634 * Returns certificate info/value pointer if valid, NULL if not.
3636 static struct cert_info * /* certificate information */
3637 crypto_cert(
3638 char *cp /* file name */
3641 struct cert_info *ret; /* certificate information */
3642 FILE *str; /* file handle */
3643 char filename[MAXFILENAME]; /* name of certificate file */
3644 char linkname[MAXFILENAME]; /* filestamp buffer */
3645 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3646 tstamp_t fstamp; /* filestamp */
3647 long len;
3648 char *ptr;
3649 char *name, *header;
3650 u_char *data;
3653 * Open the certificate file. If the first character of the file
3654 * name is not '/', prepend the keys directory string. If
3655 * something goes wrong, abandon ship.
3657 if (*cp == '/')
3658 strcpy(filename, cp);
3659 else
3660 snprintf(filename, MAXFILENAME, "%s/%s", keysdir, cp);
3661 str = fopen(filename, "r");
3662 if (str == NULL)
3663 return (NULL);
3666 * Read the filestamp, which is contained in the first line.
3668 if ((ptr = fgets(linkname, MAXFILENAME, str)) == NULL) {
3669 msyslog(LOG_ERR, "crypto_cert: no data %s\n",
3670 filename);
3671 (void)fclose(str);
3672 return (NULL);
3674 if ((ptr = strrchr(ptr, '.')) == NULL) {
3675 msyslog(LOG_ERR, "crypto_cert: no filestamp %s\n",
3676 filename);
3677 (void)fclose(str);
3678 return (NULL);
3680 if (sscanf(++ptr, "%u", &fstamp) != 1) {
3681 msyslog(LOG_ERR, "crypto_cert: invalid filestamp %s\n",
3682 filename);
3683 (void)fclose(str);
3684 return (NULL);
3688 * Read PEM-encoded certificate and install.
3690 if (!PEM_read(str, &name, &header, &data, &len)) {
3691 msyslog(LOG_ERR, "crypto_cert %s\n",
3692 ERR_error_string(ERR_get_error(), NULL));
3693 (void)fclose(str);
3694 return (NULL);
3696 free(header);
3697 if (strcmp(name, "CERTIFICATE") !=0) {
3698 msyslog(LOG_INFO, "crypto_cert: wrong PEM type %s",
3699 name);
3700 free(name);
3701 free(data);
3702 (void)fclose(str);
3703 return (NULL);
3705 free(name);
3708 * Parse certificate and generate info/value structure.
3710 ret = cert_parse(data, len, fstamp);
3711 free(data);
3712 (void)fclose(str);
3713 if (ret == NULL)
3714 return (NULL);
3716 if ((ptr = strrchr(linkname, '\n')) != NULL)
3717 *ptr = '\0';
3718 sprintf(statstr, "%s 0x%x len %lu", &linkname[2], ret->flags,
3719 len);
3720 record_crypto_stats(NULL, statstr);
3721 #ifdef DEBUG
3722 if (debug)
3723 printf("crypto_cert: %s\n", statstr);
3724 #endif
3725 return (ret);
3730 * crypto_tai - load leapseconds table from file
3732 * This routine loads the ERTS leapsecond file in NIST text format,
3733 * converts to a value structure and extracts a filestamp from the file
3734 * name. The data are used to establish the TAI offset from UTC, which
3735 * is provided to the kernel if supported. Later the data can be sent to
3736 * another machine on request.
3738 static void
3739 crypto_tai(
3740 char *cp /* file name */
3743 FILE *str; /* file handle */
3744 char buf[NTP_MAXSTRLEN]; /* file line buffer */
3745 u_int32 leapsec[MAX_LEAP]; /* NTP time at leaps */
3746 int offset; /* offset at leap (s) */
3747 char filename[MAXFILENAME]; /* name of leapseconds file */
3748 char linkname[MAXFILENAME]; /* file link (for filestamp) */
3749 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3750 tstamp_t fstamp; /* filestamp */
3751 u_int len;
3752 u_int32 *ptr;
3753 char *dp;
3754 int rval, i, j;
3757 * Open the file and discard comment lines. If the first
3758 * character of the file name is not '/', prepend the keys
3759 * directory string. If the file is not found, not to worry; it
3760 * can be retrieved over the net. But, if it is found with
3761 * errors, we crash and burn.
3763 if (*cp == '/')
3764 strcpy(filename, cp);
3765 else
3766 snprintf(filename, MAXFILENAME, "%s/%s", keysdir, cp);
3767 if ((str = fopen(filename, "r")) == NULL)
3768 return;
3771 * Extract filestamp if present.
3773 rval = readlink(filename, linkname, MAXFILENAME - 1);
3774 if (rval > 0) {
3775 linkname[rval] = '\0';
3776 dp = strrchr(linkname, '.');
3777 } else {
3778 dp = strrchr(filename, '.');
3780 if (dp != NULL)
3781 sscanf(++dp, "%u", &fstamp);
3782 else
3783 fstamp = 0;
3784 tai_leap.fstamp = htonl(fstamp);
3787 * We are rather paranoid here, since an intruder might cause a
3788 * coredump by infiltrating naughty values. Empty lines and
3789 * comments are ignored. Other lines must begin with two
3790 * integers followed by junk or comments. The first integer is
3791 * the NTP seconds of leap insertion, the second is the offset
3792 * of TAI relative to UTC after that insertion. The second word
3793 * must equal the initial insertion of ten seconds on 1 January
3794 * 1972 plus one second for each succeeding insertion.
3796 i = 0;
3797 while (i < MAX_LEAP) {
3798 dp = fgets(buf, NTP_MAXSTRLEN - 1, str);
3799 if (dp == NULL)
3800 break;
3802 if (strlen(buf) < 1)
3803 continue;
3805 if (*buf == '#')
3806 continue;
3808 if (sscanf(buf, "%u %d", &leapsec[i], &offset) != 2)
3809 continue;
3811 if (i != offset - TAI_1972)
3812 break;
3814 i++;
3816 fclose(str);
3817 if (dp != NULL) {
3818 msyslog(LOG_INFO,
3819 "crypto_tai: leapseconds file %s error %d", cp,
3820 rval);
3821 exit (-1);
3825 * The extension field table entries consists of the NTP seconds
3826 * of leap insertion in network byte order.
3828 len = i * sizeof(u_int32);
3829 tai_leap.vallen = htonl(len);
3830 ptr = emalloc(len);
3831 tai_leap.ptr = (u_char *)ptr;
3832 for (j = 0; j < i; j++)
3833 *ptr++ = htonl(leapsec[j]);
3834 crypto_flags |= CRYPTO_FLAG_TAI;
3835 sprintf(statstr, "%s fs %u leap %u len %u", cp, fstamp,
3836 leapsec[--j], len);
3837 record_crypto_stats(NULL, statstr);
3838 #ifdef DEBUG
3839 if (debug)
3840 printf("crypto_tai: %s\n", statstr);
3841 #endif
3846 * crypto_setup - load keys, certificate and leapseconds table
3848 * This routine loads the public/private host key and certificate. If
3849 * available, it loads the public/private sign key, which defaults to
3850 * the host key, and leapseconds table. The host key must be RSA, but
3851 * the sign key can be either RSA or DSA. In either case, the public key
3852 * on the certificate must agree with the sign key.
3854 void
3855 crypto_setup(void)
3857 EVP_PKEY *pkey; /* private/public key pair */
3858 char filename[MAXFILENAME]; /* file name buffer */
3859 l_fp seed; /* crypto PRNG seed as NTP timestamp */
3860 tstamp_t fstamp; /* filestamp */
3861 tstamp_t sstamp; /* sign filestamp */
3862 u_int len, bytes;
3863 u_char *ptr;
3866 * Initialize structures.
3868 if (!crypto_flags)
3869 return;
3871 gethostname(filename, MAXFILENAME);
3872 bytes = strlen(filename) + 1;
3873 sys_hostname = emalloc(bytes);
3874 memcpy(sys_hostname, filename, bytes);
3875 if (passwd == NULL)
3876 passwd = sys_hostname;
3877 memset(&hostval, 0, sizeof(hostval));
3878 memset(&pubkey, 0, sizeof(pubkey));
3879 memset(&tai_leap, 0, sizeof(tai_leap));
3882 * Load required random seed file and seed the random number
3883 * generator. Be default, it is found in the user home
3884 * directory. The root home directory may be / or /root,
3885 * depending on the system. Wiggle the contents a bit and write
3886 * it back so the sequence does not repeat when we next restart.
3888 ERR_load_crypto_strings();
3889 if (rand_file == NULL) {
3890 if ((RAND_file_name(filename, MAXFILENAME)) != NULL) {
3891 rand_file = emalloc(strlen(filename) + 1);
3892 strcpy(rand_file, filename);
3894 } else if (*rand_file != '/') {
3895 snprintf(filename, MAXFILENAME, "%s/%s", keysdir,
3896 rand_file);
3897 free(rand_file);
3898 rand_file = emalloc(strlen(filename) + 1);
3899 strcpy(rand_file, filename);
3901 if (rand_file == NULL) {
3902 msyslog(LOG_ERR,
3903 "crypto_setup: random seed file not specified");
3904 exit (-1);
3906 if ((bytes = RAND_load_file(rand_file, -1)) == 0) {
3907 msyslog(LOG_ERR,
3908 "crypto_setup: random seed file %s not found\n",
3909 rand_file);
3910 exit (-1);
3912 get_systime(&seed);
3913 RAND_seed(&seed, sizeof(l_fp));
3914 RAND_write_file(rand_file);
3915 OpenSSL_add_all_algorithms();
3916 #ifdef DEBUG
3917 if (debug)
3918 printf(
3919 "crypto_setup: OpenSSL version %lx random seed file %s bytes read %d\n",
3920 SSLeay(), rand_file, bytes);
3921 #endif
3924 * Load required host key from file "ntpkey_host_<hostname>". It
3925 * also becomes the default sign key.
3927 if (host_file == NULL) {
3928 snprintf(filename, MAXFILENAME, "ntpkey_host_%s",
3929 sys_hostname);
3930 host_file = emalloc(strlen(filename) + 1);
3931 strcpy(host_file, filename);
3933 pkey = crypto_key(host_file, &fstamp);
3934 if (pkey == NULL) {
3935 msyslog(LOG_ERR,
3936 "crypto_setup: host key file %s not found or corrupt",
3937 host_file);
3938 exit (-1);
3940 host_pkey = pkey;
3941 sign_pkey = pkey;
3942 sstamp = fstamp;
3943 hostval.fstamp = htonl(fstamp);
3944 if (EVP_MD_type(host_pkey) != EVP_PKEY_RSA) {
3945 msyslog(LOG_ERR,
3946 "crypto_setup: host key is not RSA key type");
3947 exit (-1);
3949 hostval.vallen = htonl(strlen(sys_hostname));
3950 hostval.ptr = (u_char *)sys_hostname;
3953 * Construct public key extension field for agreement scheme.
3955 len = i2d_PublicKey(host_pkey, NULL);
3956 ptr = emalloc(len);
3957 pubkey.ptr = ptr;
3958 i2d_PublicKey(host_pkey, &ptr);
3959 pubkey.vallen = htonl(len);
3960 pubkey.fstamp = hostval.fstamp;
3963 * Load optional sign key from file "ntpkey_sign_<hostname>". If
3964 * loaded, it becomes the sign key.
3966 if (sign_file == NULL) {
3967 snprintf(filename, MAXFILENAME, "ntpkey_sign_%s",
3968 sys_hostname);
3969 sign_file = emalloc(strlen(filename) + 1);
3970 strcpy(sign_file, filename);
3972 pkey = crypto_key(sign_file, &fstamp);
3973 if (pkey != NULL) {
3974 sign_pkey = pkey;
3975 sstamp = fstamp;
3977 sign_siglen = EVP_PKEY_size(sign_pkey);
3980 * Load optional IFF parameters from file
3981 * "ntpkey_iff_<hostname>".
3983 if (iffpar_file == NULL) {
3984 snprintf(filename, MAXFILENAME, "ntpkey_iff_%s",
3985 sys_hostname);
3986 iffpar_file = emalloc(strlen(filename) + 1);
3987 strcpy(iffpar_file, filename);
3989 iffpar_pkey = crypto_key(iffpar_file, &if_fstamp);
3990 if (iffpar_pkey != NULL)
3991 crypto_flags |= CRYPTO_FLAG_IFF;
3994 * Load optional GQ parameters from file "ntpkey_gq_<hostname>".
3996 if (gqpar_file == NULL) {
3997 snprintf(filename, MAXFILENAME, "ntpkey_gq_%s",
3998 sys_hostname);
3999 gqpar_file = emalloc(strlen(filename) + 1);
4000 strcpy(gqpar_file, filename);
4002 gqpar_pkey = crypto_key(gqpar_file, &gq_fstamp);
4003 if (gqpar_pkey != NULL)
4004 crypto_flags |= CRYPTO_FLAG_GQ;
4007 * Load optional MV parameters from file "ntpkey_mv_<hostname>".
4009 if (mvpar_file == NULL) {
4010 snprintf(filename, MAXFILENAME, "ntpkey_mv_%s",
4011 sys_hostname);
4012 mvpar_file = emalloc(strlen(filename) + 1);
4013 strcpy(mvpar_file, filename);
4015 mvpar_pkey = crypto_key(mvpar_file, &mv_fstamp);
4016 if (mvpar_pkey != NULL)
4017 crypto_flags |= CRYPTO_FLAG_MV;
4020 * Load required certificate from file "ntpkey_cert_<hostname>".
4022 if (cert_file == NULL) {
4023 snprintf(filename, MAXFILENAME, "ntpkey_cert_%s",
4024 sys_hostname);
4025 cert_file = emalloc(strlen(filename) + 1);
4026 strcpy(cert_file, filename);
4028 if ((cinfo = crypto_cert(cert_file)) == NULL) {
4029 msyslog(LOG_ERR,
4030 "certificate file %s not found or corrupt",
4031 cert_file);
4032 exit (-1);
4036 * The subject name must be the same as the host name, unless
4037 * the certificate is private, in which case it may have come
4038 * from another host.
4040 if (!(cinfo->flags & CERT_PRIV) && strcmp(cinfo->subject,
4041 sys_hostname) != 0) {
4042 msyslog(LOG_ERR,
4043 "crypto_setup: certificate %s not for this host",
4044 cert_file);
4045 cert_free(cinfo);
4046 exit (-1);
4050 * It the certificate is trusted, the subject must be the same
4051 * as the issuer, in other words it must be self signed.
4053 if (cinfo->flags & CERT_TRUST && strcmp(cinfo->subject,
4054 cinfo->issuer) != 0) {
4055 if (cert_valid(cinfo, sign_pkey) != XEVNT_OK) {
4056 msyslog(LOG_ERR,
4057 "crypto_setup: certificate %s is trusted, but not self signed.",
4058 cert_file);
4059 cert_free(cinfo);
4060 exit (-1);
4063 sign_digest = cinfo->digest;
4064 if (cinfo->flags & CERT_PRIV)
4065 crypto_flags |= CRYPTO_FLAG_PRIV;
4066 crypto_flags |= cinfo->nid << 16;
4069 * Load optional leapseconds table from file "ntpkey_leap". If
4070 * the file is missing or defective, the values can later be
4071 * retrieved from a server.
4073 if (leap_file == NULL)
4074 leap_file = "ntpkey_leap";
4075 crypto_tai(leap_file);
4076 #ifdef DEBUG
4077 if (debug)
4078 printf(
4079 "crypto_setup: flags 0x%x host %s signature %s\n",
4080 crypto_flags, sys_hostname, OBJ_nid2ln(cinfo->nid));
4081 #endif
4086 * crypto_config - configure data from crypto configuration command.
4088 void
4089 crypto_config(
4090 int item, /* configuration item */
4091 char *cp /* file name */
4094 switch (item) {
4097 * Set random seed file name.
4099 case CRYPTO_CONF_RAND:
4100 rand_file = emalloc(strlen(cp) + 1);
4101 strcpy(rand_file, cp);
4102 break;
4105 * Set private key password.
4107 case CRYPTO_CONF_PW:
4108 passwd = emalloc(strlen(cp) + 1);
4109 strcpy(passwd, cp);
4110 break;
4113 * Set host file name.
4115 case CRYPTO_CONF_PRIV:
4116 host_file = emalloc(strlen(cp) + 1);
4117 strcpy(host_file, cp);
4118 break;
4121 * Set sign key file name.
4123 case CRYPTO_CONF_SIGN:
4124 sign_file = emalloc(strlen(cp) + 1);
4125 strcpy(sign_file, cp);
4126 break;
4129 * Set iff parameters file name.
4131 case CRYPTO_CONF_IFFPAR:
4132 iffpar_file = emalloc(strlen(cp) + 1);
4133 strcpy(iffpar_file, cp);
4134 break;
4137 * Set gq parameters file name.
4139 case CRYPTO_CONF_GQPAR:
4140 gqpar_file = emalloc(strlen(cp) + 1);
4141 strcpy(gqpar_file, cp);
4142 break;
4145 * Set mv parameters file name.
4147 case CRYPTO_CONF_MVPAR:
4148 mvpar_file = emalloc(strlen(cp) + 1);
4149 strcpy(mvpar_file, cp);
4150 break;
4153 * Set identity scheme.
4155 case CRYPTO_CONF_IDENT:
4156 if (!strcasecmp(cp, "iff"))
4157 ident_scheme |= CRYPTO_FLAG_IFF;
4158 else if (!strcasecmp(cp, "gq"))
4159 ident_scheme |= CRYPTO_FLAG_GQ;
4160 else if (!strcasecmp(cp, "mv"))
4161 ident_scheme |= CRYPTO_FLAG_MV;
4162 break;
4165 * Set certificate file name.
4167 case CRYPTO_CONF_CERT:
4168 cert_file = emalloc(strlen(cp) + 1);
4169 strcpy(cert_file, cp);
4170 break;
4173 * Set leapseconds file name.
4175 case CRYPTO_CONF_LEAP:
4176 leap_file = emalloc(strlen(cp) + 1);
4177 strcpy(leap_file, cp);
4178 break;
4180 crypto_flags |= CRYPTO_FLAG_ENAB;
4182 # else
4183 int ntp_crypto_bs_pubkey;
4184 # endif /* OPENSSL */