1 /* refclock_ees - clock driver for the EES M201 receiver */
7 #if defined(REFCLOCK) && defined(CLOCK_MSFEES) && defined(PPS)
9 /* Currently REQUIRES STREAM and PPSCD. CLK and CBREAK modes
10 * were removed as the code was overly hairy, they weren't in use
11 * (hence probably didn't work). Still in RCS file at cl.cam.ac.uk
16 #include "ntp_refclock.h"
17 #include "ntp_unixtime.h"
18 #include "ntp_calendar.h"
21 #if defined(HAVE_BSD_TTYS)
23 #endif /* HAVE_BSD_TTYS */
24 #if defined(HAVE_SYSV_TTYS)
26 #endif /* HAVE_SYSV_TTYS */
27 #if defined(HAVE_TERMIOS)
34 #ifdef HAVE_SYS_TERMIOS_H
35 # include <sys/termios.h>
37 #ifdef HAVE_SYS_PPSCLOCK_H
38 # include <sys/ppsclock.h>
41 #include "ntp_stdlib.h"
45 fudgefactor = fudgetime1;
46 os_delay = fudgetime2;
47 offset_fudge = os_delay + fudgefactor + inherent_delay;
48 stratumtouse = fudgeval1 & 0xf
50 sloppyclockflag = flags & CLK_FLAG1;
51 1 log smoothing summary when processing sample
52 4 dump the buffer from the clock
53 8 EIOGETKD the last n uS time stamps
54 if (flags & CLK_FLAG2 && unitinuse) ees->leaphold = 0;
55 ees->dump_vals = flags & CLK_FLAG3;
56 ees->usealldata = flags & CLK_FLAG4;
59 bug->values[0] = (ees->lasttime) ? current_time - ees->lasttime : 0;
60 bug->values[1] = (ees->clocklastgood)?current_time-ees->clocklastgood:0;
61 bug->values[2] = (u_long)ees->status;
62 bug->values[3] = (u_long)ees->lastevent;
63 bug->values[4] = (u_long)ees->reason;
64 bug->values[5] = (u_long)ees->nsamples;
65 bug->values[6] = (u_long)ees->codestate;
66 bug->values[7] = (u_long)ees->day;
67 bug->values[8] = (u_long)ees->hour;
68 bug->values[9] = (u_long)ees->minute;
69 bug->values[10] = (u_long)ees->second;
70 bug->values[11] = (u_long)ees->tz;
71 bug->values[12] = ees->yearstart;
72 bug->values[13] = (ees->leaphold > current_time) ?
73 ees->leaphold - current_time : 0;
74 bug->values[14] = inherent_delay[unit].l_uf;
75 bug->values[15] = offset_fudge[unit].l_uf;
77 bug->times[0] = ees->reftime;
78 bug->times[1] = ees->arrvtime;
79 bug->times[2] = ees->lastsampletime;
80 bug->times[3] = ees->offset;
81 bug->times[4] = ees->lowoffset;
82 bug->times[5] = ees->highoffset;
83 bug->times[6] = inherent_delay[unit];
84 bug->times[8] = os_delay[unit];
85 bug->times[7] = fudgefactor[unit];
86 bug->times[9] = offset_fudge[unit];
87 bug->times[10]= ees->yearstart, 0;
90 /* This should support the use of an EES M201 receiver with RS232
91 * output (modified to transmit time once per second).
93 * For the format of the message sent by the clock, see the EESM_
96 * It appears to run free for an integral number of minutes, until the error
97 * reaches 4mS, at which point it steps at second = 01.
98 * It appears that sometimes it steps 4mS (say at 7 min interval),
99 * then the next minute it decides that it was an error, so steps back.
100 * On the next minute it steps forward again :-(
101 * This is typically 16.5uS/S then 3975uS at the 4min re-sync,
102 * or 9.5uS/S then 3990.5uS at a 7min re-sync,
103 * at which point it may lose the "00" second time stamp.
104 * I assume that the most accurate time is just AFTER the re-sync.
105 * Hence remember the last cycle interval,
107 * Can run in any one of:
109 * PPSCD PPS signal sets CD which interupts, and grabs the current TOD
110 * (sun) *in the interupt code*, so as to avoid problems with
111 * the STREAMS scheduling.
113 * It appears that it goes 16.5 uS slow each second, then every 4 mins it
114 * generates no "00" second tick, and gains 3975 uS. Ho Hum ! (93/2/7)
119 #define MAXUNITS 4 /* maximum number of EES units permitted */
123 #define EES232 "/dev/ees%d" /* Device to open to read the data */
126 /* Other constant stuff */
128 #define EESPRECISION (-10) /* what the heck - 2**-10 = 1ms */
131 #define EESREFID "MSF\0" /* String to identify the clock */
134 #define EESHSREFID (0x7f7f0000 | ((REFCLK_MSF_EES) << 8)) /* Numeric refid */
137 /* Description of clock */
138 #define EESDESCRIPTION "EES M201 MSF Receiver"
140 /* Speed we run the clock port at. If this is changed the UARTDELAY
141 * value should be recomputed to suit.
144 #define SPEED232 B9600 /* 9600 baud */
147 /* What is the inherent delay for this mode of working, i.e. when is the
150 #define SAFETY_SHIFT 10 /* Split the shift to avoid overflow */
151 #define BITS_TO_L_FP(bits, baud) \
152 (((((bits)*2 +1) << (FRACTION_PREC-SAFETY_SHIFT)) / (2*baud)) << SAFETY_SHIFT)
153 #define INH_DELAY_CBREAK BITS_TO_L_FP(119, 9600)
154 #define INH_DELAY_PPS BITS_TO_L_FP( 0, 9600)
157 #define STREAM_PP1 "ppsclocd\0<-- patch space for module name1 -->"
160 #define STREAM_PP2 "ppsclock\0<-- patch space for module name2 -->"
163 /* Offsets of the bytes of the serial line code. The clock gives
164 * local time with a GMT/BST indication. The EESM_ definitions
165 * give offsets into ees->lastcode.
167 #define EESM_CSEC 0 /* centiseconds - always zero in our clock */
168 #define EESM_SEC 1 /* seconds in BCD */
169 #define EESM_MIN 2 /* minutes in BCD */
170 #define EESM_HOUR 3 /* hours in BCD */
171 #define EESM_DAYWK 4 /* day of week (Sun = 0 etc) */
172 #define EESM_DAY 5 /* day of month in BCD */
173 #define EESM_MON 6 /* month in BCD */
174 #define EESM_YEAR 7 /* year MOD 100 in BCD */
175 #define EESM_LEAP 8 /* 0x0f if leap year, otherwise zero */
176 #define EESM_BST 9 /* 0x03 if BST, 0x00 if GMT */
177 #define EESM_MSFOK 10 /* 0x3f if radio good, otherwise zero */
178 /* followed by a frame alignment byte (0xff) /
179 / which is not put into the lastcode buffer*/
181 /* Length of the serial time code, in characters. The first length
182 * is less the frame alignment byte.
184 #define LENEESPRT (EESM_MSFOK+1)
185 #define LENEESCODE (LENEESPRT+1)
188 #define EESCS_WAIT 0 /* waiting for start of timecode */
189 #define EESCS_GOTSOME 1 /* have an incomplete time code buffered */
191 /* Default fudge factor and character to receive */
192 #define DEFFUDGETIME 0 /* Default user supplied fudge factor */
194 #define DEFOSTIME 0 /* Default OS delay -- passed by Make ? */
196 #define DEFINHTIME INH_DELAY_PPS /* inherent delay due to sample point*/
198 /* Limits on things. Reduce the number of samples to SAMPLEREDUCE by median
199 * elimination. If we're running with an accurate clock, chose the BESTSAMPLE
200 * as the estimated offset, otherwise average the remainder.
202 #define FULLSHIFT 6 /* NCODES root 2 */
203 #define NCODES (1<< FULLSHIFT) /* 64 */
204 #define REDUCESHIFT (FULLSHIFT -1) /* SAMPLEREDUCE root 2 */
206 /* Towards the high ( Why ?) end of half */
207 #define BESTSAMPLE ((samplereduce * 3) /4) /* 24 */
209 /* Leap hold time. After a leap second the clock will no longer be
210 * reliable until it resynchronizes. Hope 40 minutes is enough. */
211 #define EESLEAPHOLD (40 * 60)
213 #define EES_STEP_F (1 << 24) /* the receiver steps in units of about 4ms */
214 #define EES_STEP_F_GRACE (EES_STEP_F/8) /*Allow for slop of 1/8 which is .5ms*/
215 #define EES_STEP_NOTE (1 << 21)/* Log any unexpected jumps, say .5 ms .... */
216 #define EES_STEP_NOTES 50 /* Only do a limited number */
217 #define MAX_STEP 16 /* Max number of steps to remember */
219 /* debug is a bit mask of debugging that is wanted */
220 #define DB_SYSLOG_SMPLI 0x0001
221 #define DB_SYSLOG_SMPLE 0x0002
222 #define DB_SYSLOG_SMTHI 0x0004
223 #define DB_SYSLOG_NSMTHE 0x0008
224 #define DB_SYSLOG_NSMTHI 0x0010
225 #define DB_SYSLOG_SMTHE 0x0020
226 #define DB_PRINT_EV 0x0040
227 #define DB_PRINT_CDT 0x0080
228 #define DB_PRINT_CDTC 0x0100
229 #define DB_SYSLOG_KEEPD 0x0800
230 #define DB_SYSLOG_KEEPE 0x1000
231 #define DB_LOG_DELTAS 0x2000
232 #define DB_PRINT_DELTAS 0x4000
233 #define DB_LOG_AWAITMORE 0x8000
234 #define DB_LOG_SAMPLES 0x10000
235 #define DB_NO_PPS 0x20000
236 #define DB_INC_PPS 0x40000
237 #define DB_DUMP_DELTAS 0x80000
239 struct eesunit
{ /* EES unit control structure. */
240 struct peer
*peer
; /* associated peer structure */
241 struct refclockio io
; /* given to the I/O handler */
242 l_fp reftime
; /* reference time */
243 l_fp lastsampletime
; /* time as in txt from last EES msg */
244 l_fp arrvtime
; /* Time at which pkt arrived */
245 l_fp codeoffsets
[NCODES
]; /* the time of arrival of 232 codes */
246 l_fp offset
; /* chosen offset (for clkbug) */
247 l_fp lowoffset
; /* lowest sample offset (for clkbug) */
248 l_fp highoffset
; /* highest " " (for clkbug) */
249 char lastcode
[LENEESCODE
+6]; /* last time code we received */
250 u_long lasttime
; /* last time clock heard from */
251 u_long clocklastgood
; /* last time good radio seen */
252 u_char lencode
; /* length of code in buffer */
253 u_char nsamples
; /* number of samples we've collected */
254 u_char codestate
; /* state of 232 code reception */
255 u_char unit
; /* unit number for this guy */
256 u_char status
; /* clock status */
257 u_char lastevent
; /* last clock event */
258 u_char reason
; /* reason for last abort */
259 u_char hour
; /* hour of day */
260 u_char minute
; /* minute of hour */
261 u_char second
; /* seconds of minute */
262 char tz
; /* timezone from clock */
263 u_char ttytype
; /* method used */
264 u_char dump_vals
; /* Should clock values be dumped */
265 u_char usealldata
; /* Use ALL samples */
266 u_short day
; /* day of year from last code */
267 u_long yearstart
; /* start of current year */
268 u_long leaphold
; /* time of leap hold expiry */
269 u_long badformat
; /* number of bad format codes */
270 u_long baddata
; /* number of invalid time codes */
271 u_long timestarted
; /* time we started this */
272 long last_pps_no
; /* The serial # of the last PPS */
273 char fix_pending
; /* Is a "sync to time" pending ? */
274 /* Fine tuning - compensate for 4 mS ramping .... */
275 l_fp last_l
; /* last time stamp */
276 u_char last_steps
[MAX_STEP
]; /* Most recent n steps */
277 int best_av_step
; /* Best guess at average step */
278 char best_av_step_count
; /* # of steps over used above */
279 char this_step
; /* Current pos in buffer */
280 int last_step_late
; /* How late the last step was (0-59) */
281 long jump_fsecs
; /* # of fractions of a sec last jump */
282 u_long last_step
; /* time of last step */
283 int last_step_secs
; /* Number of seconds in last step */
284 int using_ramp
; /* 1 -> noemal, -1 -> over stepped */
286 #define last_sec last_l.l_ui
287 #define last_sfsec last_l.l_f
288 #define this_uisec ((ees->arrvtime).l_ui)
289 #define this_sfsec ((ees->arrvtime).l_f)
290 #define msec(x) ((x) / (1<<22))
291 #define LAST_STEPS (sizeof ees->last_steps / sizeof ees->last_steps[0])
292 #define subms(x) ((((((x < 0) ? (-(x)) : (x)) % (1<<22))/2) * 625) / (1<<(22 -5)))
294 /* Bitmask for what methods to try to use -- currently only PPS enabled */
297 /* macros to test above */
298 #define is_cbreak(x) ((x)->ttytype & T_CBREAK)
299 #define is_pps(x) ((x)->ttytype & T_PPS)
300 #define is_any(x) ((x)->ttytype)
302 #define CODEREASON 20 /* reason codes */
304 /* Data space for the unit structures. Note that we allocate these on
305 * the fly, but never give them back. */
306 static struct eesunit
*eesunits
[MAXUNITS
];
307 static u_char unitinuse
[MAXUNITS
];
309 /* Keep the fudge factors separately so they can be set even
310 * when no clock is configured. */
311 static l_fp inherent_delay
[MAXUNITS
]; /* when time stamp is taken */
312 static l_fp fudgefactor
[MAXUNITS
]; /* fudgetime1 */
313 static l_fp os_delay
[MAXUNITS
]; /* fudgetime2 */
314 static l_fp offset_fudge
[MAXUNITS
]; /* Sum of above */
315 static u_char stratumtouse
[MAXUNITS
];
316 static u_char sloppyclockflag
[MAXUNITS
];
318 static int deltas
[60];
320 static l_fp acceptable_slop
; /* = { 0, 1 << (FRACTION_PREC -2) }; */
321 static l_fp onesec
; /* = { 1, 0 }; */
323 #ifndef DUMP_BUF_SIZE /* Size of buffer to be used by dump_buf */
324 #define DUMP_BUF_SIZE 10112
327 /* ees_reset - reset the count back to zero */
328 #define ees_reset(ees) (ees)->nsamples = 0; \
329 (ees)->codestate = EESCS_WAIT
331 /* ees_event - record and report an event */
332 #define ees_event(ees, evcode) if ((ees)->status != (u_char)(evcode)) \
333 ees_report_event((ees), (evcode))
335 /* Find the precision of the system clock by reading it */
336 #define USECS 1000000
337 #define MINSTEP 5 /* some systems increment uS on each call */
338 #define MAXLOOPS (USECS/9)
341 * Function prototypes
344 static int msfees_start
P((int unit
, struct peer
*peer
));
345 static void msfees_shutdown
P((int unit
, struct peer
*peer
));
346 static void msfees_poll
P((int unit
, struct peer
*peer
));
347 static void msfees_init
P((void));
348 static void dump_buf
P((l_fp
*coffs
, int from
, int to
, char *text
));
349 static void ees_report_event
P((struct eesunit
*ees
, int code
));
350 static void ees_receive
P((struct recvbuf
*rbufp
));
351 static void ees_process
P((struct eesunit
*ees
));
352 #ifdef QSORT_USES_VOID_P
353 static int offcompare
P((const void *va
, const void *vb
));
355 static int offcompare
P((const l_fp
*a
, const l_fp
*b
));
356 #endif /* QSORT_USES_VOID_P */
362 struct refclock refclock_msfees
= {
363 msfees_start
, /* start up driver */
364 msfees_shutdown
, /* shut down driver */
365 msfees_poll
, /* transmit poll message */
366 noentry
, /* not used */
367 msfees_init
, /* initialize driver */
368 noentry
, /* not used */
369 NOFLAGS
/* not used */
381 char buff
[DUMP_BUF_SIZE
+ 80];
383 register char *ptr
= buff
;
386 for (i
=from
; i
<to
; i
++)
387 { while (*ptr
) ptr
++;
388 if ((ptr
-buff
) > DUMP_BUF_SIZE
) msyslog(LOG_DEBUG
, "D: %s", ptr
=buff
);
389 sprintf(ptr
, " %06d", ((int)coffs
[i
].l_f
) / 4295);
391 msyslog(LOG_DEBUG
, "D: %s", buff
);
394 /* msfees_init - initialize internal ees driver data */
399 /* Just zero the data arrays */
400 memset((char *)eesunits
, 0, sizeof eesunits
);
401 memset((char *)unitinuse
, 0, sizeof unitinuse
);
403 acceptable_slop
.l_ui
= 0;
404 acceptable_slop
.l_uf
= 1 << (FRACTION_PREC
-2);
409 /* Initialize fudge factors to default. */
410 for (i
= 0; i
< MAXUNITS
; i
++) {
411 fudgefactor
[i
].l_ui
= 0;
412 fudgefactor
[i
].l_uf
= DEFFUDGETIME
;
413 os_delay
[i
].l_ui
= 0;
414 os_delay
[i
].l_uf
= DEFOSTIME
;
415 inherent_delay
[i
].l_ui
= 0;
416 inherent_delay
[i
].l_uf
= DEFINHTIME
;
417 offset_fudge
[i
] = os_delay
[i
];
418 L_ADD(&offset_fudge
[i
], &fudgefactor
[i
]);
419 L_ADD(&offset_fudge
[i
], &inherent_delay
[i
]);
421 sloppyclockflag
[i
] = 0;
426 /* msfees_start - open the EES devices and initialize data for processing */
433 register struct eesunit
*ees
;
437 struct termios ttyb
, *ttyp
;
438 struct refclockproc
*pp
;
441 if (unit
>= MAXUNITS
) {
442 msyslog(LOG_ERR
, "ees clock: unit number %d invalid (max %d)",
446 if (unitinuse
[unit
]) {
447 msyslog(LOG_ERR
, "ees clock: unit number %d in use", unit
);
451 /* Unit okay, attempt to open the devices. We do them both at
452 * once to make sure we can */
453 (void) sprintf(eesdev
, EES232
, unit
);
455 fd232
= open(eesdev
, O_RDWR
, 0777);
457 msyslog(LOG_ERR
, "ees clock: open of %s failed: %m", eesdev
);
462 /* Set for exclusive use */
463 if (ioctl(fd232
, TIOCEXCL
, (char *)0) < 0) {
464 msyslog(LOG_ERR
, "ees clock: ioctl(%s, TIOCEXCL): %m", eesdev
);
469 /* STRIPPED DOWN VERSION: Only PPS CD is supported at the moment */
471 /* Set port characteristics. If we don't have a STREAMS module or
472 * a clock line discipline, cooked mode is just usable, even though it
473 * strips the top bit. The only EES byte which uses the top
474 * bit is the year, and we don't use that anyway. If we do
475 * have the line discipline, we choose raw mode, and the
476 * line discipline code will block up the messages.
479 /* STIPPED DOWN VERSION: Only PPS CD is supported at the moment */
482 if (tcgetattr(fd232
, ttyp
) < 0) {
483 msyslog(LOG_ERR
, "msfees_start: tcgetattr(%s): %m", eesdev
);
487 ttyp
->c_iflag
= IGNBRK
|IGNPAR
|ICRNL
;
488 ttyp
->c_cflag
= SPEED232
|CS8
|CLOCAL
|CREAD
;
490 ttyp
->c_lflag
= ICANON
;
491 ttyp
->c_cc
[VERASE
] = ttyp
->c_cc
[VKILL
] = '\0';
492 if (tcsetattr(fd232
, TCSANOW
, ttyp
) < 0) {
493 msyslog(LOG_ERR
, "msfees_start: tcsetattr(%s): %m", eesdev
);
497 if (tcflush(fd232
, TCIOFLUSH
) < 0) {
498 msyslog(LOG_ERR
, "msfees_start: tcflush(%s): %m", eesdev
);
502 inherent_delay
[unit
].l_uf
= INH_DELAY_PPS
;
504 /* offset fudge (how *late* the timestamp is) = fudge + os delays */
505 offset_fudge
[unit
] = os_delay
[unit
];
506 L_ADD(&offset_fudge
[unit
], &fudgefactor
[unit
]);
507 L_ADD(&offset_fudge
[unit
], &inherent_delay
[unit
]);
509 /* Looks like this might succeed. Find memory for the structure.
510 * Look to see if there are any unused ones, if not we malloc() one.
512 if (eesunits
[unit
] != 0) /* The one we want is okay */
513 ees
= eesunits
[unit
];
515 /* Look for an unused, but allocated struct */
516 for (i
= 0; i
< MAXUNITS
; i
++) {
517 if (!unitinuse
[i
] && eesunits
[i
] != 0)
521 if (i
< MAXUNITS
) { /* Reclaim this one */
524 } /* no spare -- make a new one */
525 else ees
= (struct eesunit
*) emalloc(sizeof(struct eesunit
));
527 memset((char *)ees
, 0, sizeof(struct eesunit
));
528 eesunits
[unit
] = ees
;
530 /* Set up the structures */
532 ees
->unit
= (u_char
)unit
;
533 ees
->timestarted
= current_time
;
535 ees
->io
.clock_recv
= ees_receive
;
536 ees
->io
.srcclock
= (caddr_t
)ees
;
540 /* Okay. Push one of the two (linked into the kernel, or dynamically
541 * loaded) STREAMS module, and give it to the I/O code to start
548 /* Pop any existing onews first ... */
549 while (ioctl(fd232
, I_POP
, 0 ) >= 0) ;
551 /* Now try pushing either of the possible modules */
552 if ((rc1
=ioctl(fd232
, I_PUSH
, STREAM_PP1
)) < 0 &&
553 ioctl(fd232
, I_PUSH
, STREAM_PP2
) < 0) {
555 "ees clock: Push of `%s' and `%s' to %s failed %m",
556 STREAM_PP1
, STREAM_PP2
, eesdev
);
560 NLOG(NLOG_CLOCKINFO
) /* conditional if clause for conditional syslog */
561 msyslog(LOG_INFO
, "I: ees clock: PUSHed %s on %s",
562 (rc1
>= 0) ? STREAM_PP1
: STREAM_PP2
, eesdev
);
563 ees
->ttytype
|= T_PPS
;
569 if (!io_addclock(&ees
->io
)) {
570 /* Oh shit. Just close and return. */
571 msyslog(LOG_ERR
, "ees clock: io_addclock(%s): %m", eesdev
);
576 /* All done. Initialize a few random peer variables, then
578 peer
->precision
= sys_precision
;
579 peer
->stratum
= stratumtouse
[unit
];
580 if (stratumtouse
[unit
] <= 1) {
581 memcpy((char *)&pp
->refid
, EESREFID
, 4);
582 if (unit
> 0 && unit
< 10)
583 ((char *)&pp
->refid
)[3] = '0' + unit
;
585 peer
->refid
= htonl(EESHSREFID
);
588 pp
->unitptr
= (caddr_t
) &eesunits
[unit
];
589 pp
->clockdesc
= EESDESCRIPTION
;
590 msyslog(LOG_ERR
, "ees clock: %s OK on %d", eesdev
, unit
);
600 /* msfees_shutdown - shut down a EES clock */
607 register struct eesunit
*ees
;
609 if (unit
>= MAXUNITS
) {
611 "ees clock: INTERNAL ERROR, unit number %d invalid (max %d)",
615 if (!unitinuse
[unit
]) {
617 "ees clock: INTERNAL ERROR, unit number %d not in use", unit
);
621 /* Tell the I/O module to turn us off. We're history. */
622 ees
= eesunits
[unit
];
623 io_closeclock(&ees
->io
);
628 /* ees_report_event - note the occurance of an event */
635 if (ees
->status
!= (u_char
)code
) {
636 ees
->status
= (u_char
)code
;
637 if (code
!= CEVNT_NOMINAL
)
638 ees
->lastevent
= (u_char
)code
;
639 /* Should report event to trap handler in here.
646 /* ees_receive - receive data from the serial interface on an EES clock */
649 struct recvbuf
*rbufp
652 register int n_sample
;
654 register struct eesunit
*ees
;
655 register u_char
*dpt
; /* Data PoinTeR: move along ... */
656 register u_char
*dpend
; /* Points just *after* last data char */
659 int call_pps_sample
= 0;
663 int suspect_4ms_step
= 0;
664 struct ppsclockev ppsclockev
;
665 long *ptr
= (long *) &ppsclockev
;
671 #ifdef HAVE_TIOCGPPSEV
672 request
= TIOCGPPSEV
;
675 /* Get the clock this applies to and a pointer to the data */
676 ees
= (struct eesunit
*)rbufp
->recv_srcclock
;
677 dpt
= (u_char
*)&rbufp
->recv_space
;
678 dpend
= dpt
+ rbufp
->recv_length
;
679 if ((dbg
& DB_LOG_AWAITMORE
) && (rbufp
->recv_length
!= LENEESCODE
))
680 printf("[%d] ", rbufp
->recv_length
);
682 /* Check out our state and process appropriately */
683 switch (ees
->codestate
) {
685 /* Set an initial guess at the timestamp as the recv time.
686 * If just running in CBREAK mode, we can't improve this.
687 * If we have the CLOCK Line Discipline, PPSCD, or sime such,
688 * then we will do better later ....
690 ees
->arrvtime
= rbufp
->recv_time
;
691 ees
->codestate
= EESCS_GOTSOME
;
696 cp
= &(ees
->lastcode
[ees
->lencode
]);
698 /* Gobble the bytes until the final (possibly stripped) 0xff */
699 while (dpt
< dpend
&& (*dpt
& 0x7f) != 0x7f) {
700 *cp
++ = (char)*dpt
++;
702 /* Oh dear -- too many bytes .. */
703 if (ees
->lencode
> LENEESPRT
) {
704 NLOG(NLOG_CLOCKINFO
) /* conditional if clause for conditional syslog */
706 "I: ees clock: %d + %d > %d [%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x]",
707 ees
->lencode
, dpend
- dpt
, LENEESPRT
,
708 #define D(x) (ees->lastcode[x])
709 D(0), D(1), D(2), D(3), D(4), D(5), D(6),
710 D(7), D(8), D(9), D(10), D(11), D(12));
713 ees
->reason
= CODEREASON
+ 1;
714 ees_event(ees
, CEVNT_BADREPLY
);
719 /* Gave up because it was end of the buffer, rather than ff */
721 /* Incomplete. Wait for more. */
722 if (dbg
& DB_LOG_AWAITMORE
)
724 "I: ees clock %d: %p == %p: await more",
725 ees
->unit
, dpt
, dpend
);
729 /* This shouldn't happen ... ! */
730 if ((*dpt
& 0x7f) != 0x7f) {
731 msyslog(LOG_INFO
, "I: ees clock: %0x & 0x7f != 0x7f", *dpt
);
733 ees
->reason
= CODEREASON
+ 2;
734 ees_event(ees
, CEVNT_BADREPLY
);
742 /* Finally, got a complete buffer. Mainline code will
748 msyslog(LOG_ERR
, "ees clock: INTERNAL ERROR: %d state %d",
749 ees
->unit
, ees
->codestate
);
750 ees
->reason
= CODEREASON
+ 5;
751 ees_event(ees
, CEVNT_FAULT
);
756 /* Boy! After all that crap, the lastcode buffer now contains
757 * something we hope will be a valid time code. Do length
758 * checks and sanity checks on constant data.
760 ees
->codestate
= EESCS_WAIT
;
761 ees
->lasttime
= current_time
;
762 if (ees
->lencode
!= LENEESPRT
) {
764 ees
->reason
= CODEREASON
+ 6;
765 ees_event(ees
, CEVNT_BADREPLY
);
772 /* Check that centisecond is zero */
773 if (cp
[EESM_CSEC
] != 0) {
775 ees
->reason
= CODEREASON
+ 7;
776 ees_event(ees
, CEVNT_BADREPLY
);
781 /* Check flag formats */
782 if (cp
[EESM_LEAP
] != 0 && cp
[EESM_LEAP
] != 0x0f) {
784 ees
->reason
= CODEREASON
+ 8;
785 ees_event(ees
, CEVNT_BADREPLY
);
790 if (cp
[EESM_BST
] != 0 && cp
[EESM_BST
] != 0x03) {
792 ees
->reason
= CODEREASON
+ 9;
793 ees_event(ees
, CEVNT_BADREPLY
);
798 if (cp
[EESM_MSFOK
] != 0 && cp
[EESM_MSFOK
] != 0x3f) {
800 ees
->reason
= CODEREASON
+ 10;
801 ees_event(ees
, CEVNT_BADREPLY
);
806 /* So far, so good. Compute day, hours, minutes, seconds,
807 * time zone. Do range checks on these.
810 #define bcdunpack(val) ( (((val)>>4) & 0x0f) * 10 + ((val) & 0x0f) )
811 #define istrue(x) ((x)?1:0)
813 ees
->second
= bcdunpack(cp
[EESM_SEC
]); /* second */
814 ees
->minute
= bcdunpack(cp
[EESM_MIN
]); /* minute */
815 ees
->hour
= bcdunpack(cp
[EESM_HOUR
]); /* hour */
817 day
= bcdunpack(cp
[EESM_DAY
]); /* day of month */
819 switch (bcdunpack(cp
[EESM_MON
])) { /* month */
821 /* Add in lengths of all previous months. Add one more
822 if it is a leap year and after February.
824 case 12: day
+= NOV
; /*FALLSTHROUGH*/
825 case 11: day
+= OCT
; /*FALLSTHROUGH*/
826 case 10: day
+= SEP
; /*FALLSTHROUGH*/
827 case 9: day
+= AUG
; /*FALLSTHROUGH*/
828 case 8: day
+= JUL
; /*FALLSTHROUGH*/
829 case 7: day
+= JUN
; /*FALLSTHROUGH*/
830 case 6: day
+= MAY
; /*FALLSTHROUGH*/
831 case 5: day
+= APR
; /*FALLSTHROUGH*/
832 case 4: day
+= MAR
; /*FALLSTHROUGH*/
834 if (istrue(cp
[EESM_LEAP
])) day
++; /*FALLSTHROUGH*/
835 case 2: day
+= JAN
; /*FALLSTHROUGH*/
837 default: ees
->baddata
++;
838 ees
->reason
= CODEREASON
+ 11;
839 ees_event(ees
, CEVNT_BADDATE
);
846 /* Get timezone. The clocktime routine wants the number
847 * of hours to add to the delivered time to get UT.
848 * Currently -1 if BST flag set, 0 otherwise. This
849 * is the place to tweak things if double summer time
852 ees
->tz
= istrue(cp
[EESM_BST
]) ? -1 : 0;
854 if (ees
->day
> 366 || ees
->day
< 1 ||
855 ees
->hour
> 23 || ees
->minute
> 59 || ees
->second
> 59) {
857 ees
->reason
= CODEREASON
+ 12;
858 ees_event(ees
, CEVNT_BADDATE
);
863 n_sample
= ees
->nsamples
;
865 /* Now, compute the reference time value: text -> tmp.l_ui */
866 if (!clocktime(ees
->day
, ees
->hour
, ees
->minute
, ees
->second
,
867 ees
->tz
, rbufp
->recv_time
.l_ui
, &ees
->yearstart
,
870 ees
->reason
= CODEREASON
+ 13;
871 ees_event(ees
, CEVNT_BADDATE
);
877 /* DON'T use ees->arrvtime -- it may be < reftime */
878 ees
->lastsampletime
= tmp
;
880 /* If we are synchronised to the radio, update the reference time.
881 * Also keep a note of when clock was last good.
883 if (istrue(cp
[EESM_MSFOK
])) {
885 ees
->clocklastgood
= current_time
;
889 /* Compute the offset. For the fractional part of the
890 * offset we use the expected delay for the message.
892 ees
->codeoffsets
[n_sample
].l_ui
= tmp
.l_ui
;
893 ees
->codeoffsets
[n_sample
].l_uf
= 0;
895 /* Number of seconds since the last step */
896 sincelast
= this_uisec
- ees
->last_step
;
898 memset((char *) &ppsclockev
, 0, sizeof ppsclockev
);
900 rc
= ioctl(ees
->io
.fd
, request
, (char *) &ppsclockev
);
901 if (dbg
& DB_PRINT_EV
) fprintf(stderr
,
902 "[%x] CIOGETEV u%d %d (%x %d) gave %d (%d): %08lx %08lx %ld\n",
903 DB_PRINT_EV
, ees
->unit
, ees
->io
.fd
, request
, is_pps(ees
),
904 rc
, errno
, ptr
[0], ptr
[1], ptr
[2]);
906 /* If we managed to get the time of arrival, process the info */
909 pps_step
= ppsclockev
.serial
- ees
->last_pps_no
;
911 /* Possible that PPS triggered, but text message didn't */
912 if (pps_step
== 2) msyslog(LOG_ERR
, "pps step = 2 @ %02d", ees
->second
);
913 if (pps_step
== 2 && ees
->second
== 1) suspect_4ms_step
|= 1;
914 if (pps_step
== 2 && ees
->second
== 2) suspect_4ms_step
|= 4;
916 /* allow for single loss of PPS only */
917 if (pps_step
!= 1 && pps_step
!= 2)
918 fprintf(stderr
, "PPS step: %d too far off %ld (%d)\n",
919 ppsclockev
.serial
, ees
->last_pps_no
, pps_step
);
920 else if (!buftvtots((char *) &(ppsclockev
.tv
), &pps_arrvstamp
))
921 fprintf(stderr
, "buftvtots failed\n");
922 else { /* if ((ABS(time difference) - 0.25) < 0)
923 * then believe it ...
926 diff
= pps_arrvstamp
;
928 L_SUB(&diff
, &ees
->arrvtime
);
929 if (dbg
& DB_PRINT_CDT
)
930 printf("[%x] Have %lx.%08lx and %lx.%08lx -> %lx.%08lx @ %s",
931 DB_PRINT_CDT
, (long)ees
->arrvtime
.l_ui
, (long)ees
->arrvtime
.l_uf
,
932 (long)pps_arrvstamp
.l_ui
, (long)pps_arrvstamp
.l_uf
,
933 (long)diff
.l_ui
, (long)diff
.l_uf
,
934 ctime(&(ppsclockev
.tv
.tv_sec
)));
935 if (L_ISNEG(&diff
)) M_NEG(diff
.l_ui
, diff
.l_uf
);
936 L_SUB(&diff
, &acceptable_slop
);
937 if (L_ISNEG(&diff
)) { /* AOK -- pps_sample */
938 ees
->arrvtime
= pps_arrvstamp
;
942 /* Some loss of some signals around sec = 1 */
943 else if (ees
->second
== 1) {
944 diff
= pps_arrvstamp
;
945 L_ADD(&diff
, &onesec
);
946 L_SUB(&diff
, &ees
->arrvtime
);
947 if (L_ISNEG(&diff
)) M_NEG(diff
.l_ui
, diff
.l_uf
);
948 L_SUB(&diff
, &acceptable_slop
);
949 msyslog(LOG_ERR
, "Have sec==1 slip %ds a=%08x-p=%08x -> %x.%08x (u=%d) %s",
950 pps_arrvstamp
.l_ui
- ees
->arrvtime
.l_ui
,
953 diff
.l_ui
, diff
.l_uf
,
954 (int)ppsclockev
.tv
.tv_usec
,
955 ctime(&(ppsclockev
.tv
.tv_sec
)));
956 if (L_ISNEG(&diff
)) { /* AOK -- pps_sample */
957 suspect_4ms_step
|= 2;
958 ees
->arrvtime
= pps_arrvstamp
;
959 L_ADD(&ees
->arrvtime
, &onesec
);
965 ees
->last_pps_no
= ppsclockev
.serial
;
966 if (dbg
& DB_PRINT_CDTC
)
968 "[%x] %08lx %08lx %d u%d (%d %d)\n",
969 DB_PRINT_CDTC
, (long)pps_arrvstamp
.l_ui
,
970 (long)pps_arrvstamp
.l_uf
, conv
, ees
->unit
,
971 call_pps_sample
, pps_step
);
974 /* See if there has been a 4ms jump at a minute boundry */
976 #define delta_isec delta.l_ui
977 #define delta_ssec delta.l_i
978 #define delta_sfsec delta.l_f
981 delta
.l_i
= ees
->arrvtime
.l_i
;
982 delta
.l_f
= ees
->arrvtime
.l_f
;
984 L_SUB(&delta
, &ees
->last_l
);
985 delta_f_abs
= delta_sfsec
;
986 if (delta_f_abs
< 0) delta_f_abs
= -delta_f_abs
;
988 /* Dump the deltas each minute */
989 if (dbg
& DB_DUMP_DELTAS
)
990 { if (/*0 <= ees->second && */
991 ees
->second
< ((sizeof deltas
) / (sizeof deltas
[0]))) deltas
[ees
->second
] = delta_sfsec
;
992 /* Dump on second 1, as second 0 sometimes missed */
993 if (ees
->second
== 1) {
994 char text
[16 * ((sizeof deltas
) / (sizeof deltas
[0]))];
997 for (i
=0; i
<((sizeof deltas
) / (sizeof deltas
[0])); i
++) {
998 sprintf(cptr
, " %d.%04d",
999 msec(deltas
[i
]), subms(deltas
[i
]));
1000 while (*cptr
) cptr
++;
1002 msyslog(LOG_ERR
, "Deltas: %d.%04d<->%d.%04d: %s",
1003 msec(EES_STEP_F
- EES_STEP_F_GRACE
), subms(EES_STEP_F
- EES_STEP_F_GRACE
),
1004 msec(EES_STEP_F
+ EES_STEP_F_GRACE
), subms(EES_STEP_F
+ EES_STEP_F_GRACE
),
1006 for (i
=0; i
<((sizeof deltas
) / (sizeof deltas
[0])); i
++) deltas
[i
] = 0;
1010 /* Lets see if we have a 4 mS step at a minute boundaary */
1011 if ( ((EES_STEP_F
- EES_STEP_F_GRACE
) < delta_f_abs
) &&
1012 (delta_f_abs
< (EES_STEP_F
+ EES_STEP_F_GRACE
)) &&
1013 (ees
->second
== 0 || ees
->second
== 1 || ees
->second
== 2) &&
1014 (sincelast
< 0 || sincelast
> 122)
1015 ) { /* 4ms jump at min boundry */
1019 /* Yes -- so compute the ramp time */
1020 if (ees
->last_step
== 0) sincelast
= 0;
1021 old_sincelast
= sincelast
;
1023 /* First time in, just set "ees->last_step" */
1024 if(ees
->last_step
) {
1027 int this_step
= (sincelast
+ (60 /2)) / 60;
1028 int p_step
= ees
->this_step
;
1030 ees
->last_steps
[p_step
] = this_step
;
1033 if (p_step
>= LAST_STEPS
) p_step
= 0;
1034 ees
->this_step
= p_step
;
1035 /* Find the "average" interval */
1036 while (p
!= p_step
) {
1037 int this = ees
->last_steps
[p
];
1038 if (this == 0) break;
1039 if (this != this_step
) {
1040 if (other_step
== 0 && (
1041 this== (this_step
+2) ||
1042 this== (this_step
-2) ||
1043 this== (this_step
+1) ||
1044 this== (this_step
-1)))
1046 if (other_step
!= this) {
1047 int idelta
= (this_step
- other_step
);
1048 if (idelta
< 0) idelta
= - idelta
;
1049 if (third_step
== 0 && (
1051 this == (other_step
+1) ||
1052 this == (other_step
-1) ||
1053 this == (this_step
+1) ||
1054 this == (this_step
-1))
1057 this == (this_step
+ other_step
)/2
1059 )) third_step
= this;
1060 if (third_step
!= this) break;
1065 if (p
< 0) p
+= LAST_STEPS
;
1068 msyslog(LOG_ERR
, "MSF%d: %d: This=%d (%d), other=%d/%d, sum=%d, count=%d, pps_step=%d, suspect=%x", ees
->unit
, p
, ees
->last_steps
[p
], this_step
, other_step
, third_step
, sum
, count
, pps_step
, suspect_4ms_step
);
1069 if (count
!= 0) sum
= ((sum
* 60) + (count
/2)) / count
;
1070 #define SV(x) (ees->last_steps[(x + p_step) % LAST_STEPS])
1071 msyslog(LOG_ERR
, "MSF%d: %x steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d",
1072 ees
->unit
, suspect_4ms_step
, p_step
, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6),
1073 SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15));
1074 printf("MSF%d: steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d\n",
1075 ees
->unit
, p_step
, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6),
1076 SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15));
1078 ees
->jump_fsecs
= delta_sfsec
;
1079 ees
->using_ramp
= 1;
1080 if (sincelast
> 170)
1081 ees
->last_step_late
+= sincelast
- ((sum
) ? sum
: ees
->last_step_secs
);
1082 else ees
->last_step_late
= 30;
1083 if (ees
->last_step_late
< -60 || ees
->last_step_late
> 120) ees
->last_step_late
= 30;
1084 if (ees
->last_step_late
< 0) ees
->last_step_late
= 0;
1085 if (ees
->last_step_late
>= 60) ees
->last_step_late
= 59;
1088 else { /* First time in -- just save info */
1089 ees
->last_step_late
= 30;
1090 ees
->jump_fsecs
= delta_sfsec
;
1091 ees
->using_ramp
= 1;
1094 ees
->last_step
= this_uisec
;
1095 printf("MSF%d: d=%3ld.%04ld@%d :%d:%d:$%d:%d:%d\n",
1096 ees
->unit
, (long)msec(delta_sfsec
), (long)subms(delta_sfsec
),
1097 ees
->second
, old_sincelast
, ees
->last_step_late
, count
, sum
,
1098 ees
->last_step_secs
);
1099 msyslog(LOG_ERR
, "MSF%d: d=%3d.%04d@%d :%d:%d:%d:%d:%d",
1100 ees
->unit
, msec(delta_sfsec
), subms(delta_sfsec
), ees
->second
,
1101 old_sincelast
, ees
->last_step_late
, count
, sum
, ees
->last_step_secs
);
1102 if (sum
) ees
->last_step_secs
= sum
;
1104 /* OK, so not a 4ms step at a minute boundry */
1106 if (suspect_4ms_step
) msyslog(LOG_ERR
,
1107 "MSF%d: suspect = %x, but delta of %d.%04d [%d.%04d<%d.%04d<%d.%04d: %d %d]",
1108 ees
->unit
, suspect_4ms_step
, msec(delta_sfsec
), subms(delta_sfsec
),
1109 msec(EES_STEP_F
- EES_STEP_F_GRACE
),
1110 subms(EES_STEP_F
- EES_STEP_F_GRACE
),
1111 (int)msec(delta_f_abs
),
1112 (int)subms(delta_f_abs
),
1113 msec(EES_STEP_F
+ EES_STEP_F_GRACE
),
1114 subms(EES_STEP_F
+ EES_STEP_F_GRACE
),
1117 if ((delta_f_abs
> EES_STEP_NOTE
) && ees
->last_l
.l_i
) {
1118 static int ees_step_notes
= EES_STEP_NOTES
;
1119 if (ees_step_notes
> 0) {
1121 printf("MSF%d: D=%3ld.%04ld@%02d :%d%s\n",
1122 ees
->unit
, (long)msec(delta_sfsec
), (long)subms(delta_sfsec
),
1123 ees
->second
, sincelast
, ees_step_notes
? "" : " -- NO MORE !");
1124 msyslog(LOG_ERR
, "MSF%d: D=%3d.%04d@%02d :%d%s",
1125 ees
->unit
, msec(delta_sfsec
), subms(delta_sfsec
), ees
->second
, (ees
->last_step
) ? sincelast
: -1, ees_step_notes
? "" : " -- NO MORE !");
1130 ees
->last_l
= ees
->arrvtime
;
1132 /* IF we have found that it's ramping
1133 * && it's within twice the expected ramp period
1134 * && there is a non zero step size (avoid /0 !)
1135 * THEN we twiddle things
1137 if (ees
->using_ramp
&&
1138 sincelast
< (ees
->last_step_secs
)*2 &&
1139 ees
->last_step_secs
)
1140 { long sec_of_ramp
= sincelast
+ ees
->last_step_late
;
1144 /* Ramp time may vary, so may ramp for longer than last time */
1145 if (sec_of_ramp
> (ees
->last_step_secs
+ 120))
1146 sec_of_ramp
= ees
->last_step_secs
;
1148 /* sec_of_ramp * ees->jump_fsecs may overflow 2**32 */
1149 fsecs
= sec_of_ramp
* (ees
->jump_fsecs
/ ees
->last_step_secs
);
1151 if (dbg
& DB_LOG_DELTAS
) msyslog(LOG_ERR
,
1152 "[%x] MSF%d: %3ld/%03d -> d=%11ld (%d|%ld)",
1154 ees
->unit
, sec_of_ramp
, ees
->last_step_secs
, fsecs
,
1155 pps_arrvstamp
.l_f
, pps_arrvstamp
.l_f
+ fsecs
);
1156 if (dbg
& DB_PRINT_DELTAS
) printf(
1157 "MSF%d: %3ld/%03d -> d=%11ld (%ld|%ld)\n",
1158 ees
->unit
, sec_of_ramp
, ees
->last_step_secs
, fsecs
,
1159 (long)pps_arrvstamp
.l_f
, pps_arrvstamp
.l_f
+ fsecs
);
1161 /* Must sign extend the result */
1162 inc
.l_i
= (fsecs
< 0) ? -1 : 0;
1164 if (dbg
& DB_INC_PPS
)
1165 { L_SUB(&pps_arrvstamp
, &inc
);
1166 L_SUB(&ees
->arrvtime
, &inc
);
1169 { L_ADD(&pps_arrvstamp
, &inc
);
1170 L_ADD(&ees
->arrvtime
, &inc
);
1174 if (dbg
& DB_LOG_DELTAS
) msyslog(LOG_ERR
,
1175 "[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x",
1177 ees
->unit
, ees
->using_ramp
,
1179 (ees
->last_step_secs
)*2,
1180 ees
->last_step_secs
);
1181 if (dbg
& DB_PRINT_DELTAS
) printf(
1182 "[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x\n",
1184 ees
->unit
, ees
->using_ramp
,
1186 (ees
->last_step_secs
)*2,
1187 ees
->last_step_secs
);
1190 L_SUB(&ees
->arrvtime
, &offset_fudge
[ees
->unit
]);
1191 L_SUB(&pps_arrvstamp
, &offset_fudge
[ees
->unit
]);
1193 if (call_pps_sample
&& !(dbg
& DB_NO_PPS
)) {
1194 /* Sigh -- it expects its args negated */
1195 L_NEG(&pps_arrvstamp
);
1197 * I had to disable this here, since it appears there is no pointer to the
1200 (void) pps_sample(peer, &pps_arrvstamp);
1204 /* Subtract off the local clock time stamp */
1205 L_SUB(&ees
->codeoffsets
[n_sample
], &ees
->arrvtime
);
1206 if (dbg
& DB_LOG_SAMPLES
) msyslog(LOG_ERR
,
1207 "MSF%d: [%x] %d (ees: %d %d) (pps: %d %d)%s",
1208 ees
->unit
, DB_LOG_DELTAS
, n_sample
,
1209 ees
->codeoffsets
[n_sample
].l_f
,
1210 ees
->codeoffsets
[n_sample
].l_f
/ 4295,
1212 pps_arrvstamp
.l_f
/4295,
1213 (dbg
& DB_NO_PPS
) ? " [no PPS]" : "");
1215 if (ees
->nsamples
++ == NCODES
-1) ees_process(ees
);
1221 /* offcompare - auxiliary comparison routine for offset sort */
1223 #ifdef QSORT_USES_VOID_P
1230 const l_fp
*a
= (const l_fp
*)va
;
1231 const l_fp
*b
= (const l_fp
*)vb
;
1232 return(L_ISGEQ(a
, b
) ? (L_ISEQU(a
, b
) ? 0 : 1) : -1);
1241 return(L_ISGEQ(a
, b
) ? (L_ISEQU(a
, b
) ? 0 : 1) : -1);
1243 #endif /* QSORT_USES_VOID_P */
1246 /* ees_process - process a pile of samples from the clock */
1252 static int last_samples
= -1;
1255 register l_fp
*coffs
= ees
->codeoffsets
;
1257 double dispersion
; /* ++++ */
1258 int lostsync
, isinsync
;
1259 int samples
= ees
->nsamples
;
1260 int samplelog
= 0; /* keep "gcc -Wall" happy ! */
1261 int samplereduce
= (samples
+ 1) / 2;
1264 /* Reset things to zero so we don't have to worry later */
1267 if (sloppyclockflag
[ees
->unit
]) {
1268 samplelog
= (samples
< 2) ? 0 :
1271 (samples
< 17) ? 3 :
1272 (samples
< 33) ? 4 : 5;
1273 samplereduce
= (1 << samplelog
);
1276 if (samples
!= last_samples
&&
1277 ((samples
!= (last_samples
-1)) || samples
< 3)) {
1278 msyslog(LOG_ERR
, "Samples=%d (%d), samplereduce=%d ....",
1279 samples
, last_samples
, samplereduce
);
1280 last_samples
= samples
;
1282 if (samples
< 1) return;
1284 /* If requested, dump the raw data we have in the buffer */
1285 if (ees
->dump_vals
) dump_buf(coffs
, 0, samples
, "Raw data is:");
1287 /* Sort the offsets, trim off the extremes, then choose one. */
1289 #ifdef QSORT_USES_VOID_P
1294 coffs
, (size_t)samples
, sizeof(l_fp
), offcompare
);
1298 while ((noff
- i
) > samplereduce
) {
1299 /* Trim off the sample which is further away
1300 * from the median. We work this out by doubling
1301 * the median, subtracting off the end samples, and
1302 * looking at the sign of the answer, using the
1303 * identity (c-b)-(b-a) == 2*b-a-c
1305 tmp
= coffs
[(noff
+ i
)/2];
1307 L_SUB(&tmp
, &coffs
[i
]);
1308 L_SUB(&tmp
, &coffs
[noff
-1]);
1309 if (L_ISNEG(&tmp
)) noff
--; else i
++;
1312 /* If requested, dump the reduce data we have in the buffer */
1313 if (ees
->dump_vals
) dump_buf(coffs
, i
, noff
, "Reduced to:");
1315 /* What we do next depends on the setting of the sloppy clock flag.
1316 * If it is on, average the remainder to derive our estimate.
1317 * Otherwise, just pick a representative value from the remaining stuff
1319 if (sloppyclockflag
[ees
->unit
]) {
1320 offset
.l_ui
= offset
.l_uf
= 0;
1321 for (j
= i
; j
< noff
; j
++)
1322 L_ADD(&offset
, &coffs
[j
]);
1323 for (j
= samplelog
; j
> 0; j
--)
1326 else offset
= coffs
[i
+BESTSAMPLE
];
1328 /* Compute the dispersion as the difference between the
1329 * lowest and highest offsets that remain in the
1330 * consideration list.
1332 * It looks like MOST clocks have MOD (max error), so halve it !
1334 tmp
= coffs
[noff
-1];
1335 L_SUB(&tmp
, &coffs
[i
]);
1336 #define FRACT_SEC(n) ((1 << 30) / (n/2))
1337 dispersion
= LFPTOFP(&tmp
) / 2; /* ++++ */
1338 if (dbg
& (DB_SYSLOG_SMPLI
| DB_SYSLOG_SMPLE
)) msyslog(
1339 (dbg
& DB_SYSLOG_SMPLE
) ? LOG_ERR
: LOG_INFO
,
1340 "I: [%x] Offset=%06d (%d), disp=%f%s [%d], %d %d=%d %d:%d %d=%d %d",
1341 dbg
& (DB_SYSLOG_SMPLI
| DB_SYSLOG_SMPLE
),
1342 offset
.l_f
/ 4295, offset
.l_f
,
1343 (dispersion
* 1526) / 100,
1344 (sloppyclockflag
[ees
->unit
]) ? " by averaging" : "",
1345 FRACT_SEC(10) / 4295,
1346 (coffs
[0].l_f
) / 4295,
1348 (coffs
[i
].l_f
) / 4295,
1349 (coffs
[samples
/2].l_f
) / 4295,
1350 (coffs
[i
+BESTSAMPLE
].l_f
) / 4295,
1352 (coffs
[noff
-1].l_f
) / 4295,
1353 (coffs
[samples
-1].l_f
) / 4295);
1355 /* Are we playing silly wotsits ?
1356 * If we are using all data, see if there is a "small" delta,
1357 * and if so, blurr this with 3/4 of the delta from the last value
1359 if (ees
->usealldata
&& ees
->offset
.l_uf
) {
1360 long diff
= (long) (ees
->offset
.l_uf
- offset
.l_uf
);
1362 /* is the delta small enough ? */
1363 if ((- FRACT_SEC(100)) < diff
&& diff
< FRACT_SEC(100)) {
1364 int samd
= (64 * 4) / samples
;
1366 if (samd
< 2) samd
= 2;
1367 new = offset
.l_uf
+ ((diff
* (samd
-1)) / samd
);
1369 /* Sign change -> need to fix up int part */
1370 if ((new & 0x80000000) !=
1371 (((long) offset
.l_uf
) & 0x80000000))
1372 { NLOG(NLOG_CLOCKINFO
) /* conditional if clause for conditional syslog */
1373 msyslog(LOG_INFO
, "I: %lx != %lx (%lx %lx), so add %d",
1375 ((long) offset
.l_uf
) & 0x80000000,
1376 new, (long) offset
.l_uf
,
1377 (new < 0) ? -1 : 1);
1378 offset
.l_ui
+= (new < 0) ? -1 : 1;
1381 if (dbg
& (DB_SYSLOG_SMTHI
| DB_SYSLOG_SMTHE
)) msyslog(
1382 (dbg
& DB_SYSLOG_SMTHE
) ? LOG_ERR
: LOG_INFO
,
1383 "I: [%x] Smooth data: %ld -> %ld, dispersion now %f",
1384 dbg
& (DB_SYSLOG_SMTHI
| DB_SYSLOG_SMTHE
),
1385 ((long) offset
.l_uf
) / 4295, new / 4295,
1386 (dispersion
* 1526) / 100);
1387 offset
.l_uf
= (unsigned long) new;
1389 else if (dbg
& (DB_SYSLOG_NSMTHI
| DB_SYSLOG_NSMTHE
)) msyslog(
1390 (dbg
& DB_SYSLOG_NSMTHE
) ? LOG_ERR
: LOG_INFO
,
1391 "[%x] No smooth as delta not %d < %ld < %d",
1392 dbg
& (DB_SYSLOG_NSMTHI
| DB_SYSLOG_NSMTHE
),
1393 - FRACT_SEC(100), diff
, FRACT_SEC(100));
1395 else if (dbg
& (DB_SYSLOG_NSMTHI
| DB_SYSLOG_NSMTHE
)) msyslog(
1396 (dbg
& DB_SYSLOG_NSMTHE
) ? LOG_ERR
: LOG_INFO
,
1397 "I: [%x] No smooth as flag=%x and old=%x=%d (%d:%d)",
1398 dbg
& (DB_SYSLOG_NSMTHI
| DB_SYSLOG_NSMTHE
),
1399 ees
->usealldata
, ees
->offset
.l_f
, ees
->offset
.l_uf
,
1400 offset
.l_f
, ees
->offset
.l_f
- offset
.l_f
);
1402 /* Collect offset info for debugging info */
1403 ees
->offset
= offset
;
1404 ees
->lowoffset
= coffs
[i
];
1405 ees
->highoffset
= coffs
[noff
-1];
1407 /* Determine synchronization status. Can be unsync'd either
1408 * by a report from the clock or by a leap hold.
1410 * Loss of the radio signal for a short time does not cause
1411 * us to go unsynchronised, since the receiver keeps quite
1412 * good time on its own. The spec says 20ms in 4 hours; the
1413 * observed drift in our clock (Cambridge) is about a second
1414 * a day, but even that keeps us within the inherent tolerance
1415 * of the clock for about 15 minutes. Observation shows that
1416 * the typical "short" outage is 3 minutes, so to allow us
1417 * to ride out those, we will give it 5 minutes.
1419 lostsync
= current_time
- ees
->clocklastgood
> 300 ? 1 : 0;
1420 isinsync
= (lostsync
|| ees
->leaphold
> current_time
) ? 0 : 1;
1422 /* Done. Use time of last good, synchronised code as the
1423 * reference time, and lastsampletime as the receive time.
1425 if (ees
->fix_pending
) {
1426 msyslog(LOG_ERR
, "MSF%d: fix_pending=%d -> jump %x.%08x\n",
1427 ees
->fix_pending
, ees
->unit
, offset
.l_i
, offset
.l_f
);
1428 ees
->fix_pending
= 0;
1430 LFPTOD(&offset
, doffset
);
1431 refclock_receive(ees
->peer
);
1432 ees_event(ees
, lostsync
? CEVNT_PROP
: CEVNT_NOMINAL
);
1435 /* msfees_poll - called by the transmit procedure */
1442 if (unit
>= MAXUNITS
) {
1443 msyslog(LOG_ERR
, "ees clock poll: INTERNAL: unit %d invalid",
1447 if (!unitinuse
[unit
]) {
1448 msyslog(LOG_ERR
, "ees clock poll: INTERNAL: unit %d unused",
1453 ees_process(eesunits
[unit
]);
1455 if ((current_time
- eesunits
[unit
]->lasttime
) > 150)
1456 ees_event(eesunits
[unit
], CEVNT_FAULT
);
1461 int refclock_msfees_bs
;
1462 #endif /* REFCLOCK */