turns printfs back on
[freebsd-src/fkvm-freebsd.git] / libexec / rtld-elf / rtld.c
blob7e0f8b181183e36d8a0ec625d89a4ed016e9dabf
1 /*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 * $FreeBSD$
30 * Dynamic linker for ELF.
32 * John Polstra <jdp@polstra.com>.
35 #ifndef __GNUC__
36 #error "GCC is needed to compile this file"
37 #endif
39 #include <sys/param.h>
40 #include <sys/mount.h>
41 #include <sys/mman.h>
42 #include <sys/stat.h>
43 #include <sys/uio.h>
44 #include <sys/ktrace.h>
46 #include <dlfcn.h>
47 #include <err.h>
48 #include <errno.h>
49 #include <fcntl.h>
50 #include <stdarg.h>
51 #include <stdio.h>
52 #include <stdlib.h>
53 #include <string.h>
54 #include <unistd.h>
56 #include "debug.h"
57 #include "rtld.h"
58 #include "libmap.h"
59 #include "rtld_tls.h"
61 #ifndef COMPAT_32BIT
62 #define PATH_RTLD "/libexec/ld-elf.so.1"
63 #else
64 #define PATH_RTLD "/libexec/ld-elf32.so.1"
65 #endif
67 /* Types. */
68 typedef void (*func_ptr_type)();
69 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
72 * This structure provides a reentrant way to keep a list of objects and
73 * check which ones have already been processed in some way.
75 typedef struct Struct_DoneList {
76 const Obj_Entry **objs; /* Array of object pointers */
77 unsigned int num_alloc; /* Allocated size of the array */
78 unsigned int num_used; /* Number of array slots used */
79 } DoneList;
82 * Function declarations.
84 static const char *basename(const char *);
85 static void die(void) __dead2;
86 static void digest_dynamic(Obj_Entry *, int);
87 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88 static Obj_Entry *dlcheck(void *);
89 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *);
90 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
91 static bool donelist_check(DoneList *, const Obj_Entry *);
92 static void errmsg_restore(char *);
93 static char *errmsg_save(void);
94 static void *fill_search_info(const char *, size_t, void *);
95 static char *find_library(const char *, const Obj_Entry *);
96 static const char *gethints(void);
97 static void init_dag(Obj_Entry *);
98 static void init_dag1(Obj_Entry *, Obj_Entry *, DoneList *);
99 static void init_rtld(caddr_t);
100 static void initlist_add_neededs(Needed_Entry *, Objlist *);
101 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
102 static bool is_exported(const Elf_Sym *);
103 static void linkmap_add(Obj_Entry *);
104 static void linkmap_delete(Obj_Entry *);
105 static int load_needed_objects(Obj_Entry *);
106 static int load_preload_objects(void);
107 static Obj_Entry *load_object(const char *, const Obj_Entry *);
108 static Obj_Entry *obj_from_addr(const void *);
109 static void objlist_call_fini(Objlist *, int *lockstate);
110 static void objlist_call_init(Objlist *, int *lockstate);
111 static void objlist_clear(Objlist *);
112 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
113 static void objlist_init(Objlist *);
114 static void objlist_push_head(Objlist *, Obj_Entry *);
115 static void objlist_push_tail(Objlist *, Obj_Entry *);
116 static void objlist_remove(Objlist *, Obj_Entry *);
117 static void objlist_remove_unref(Objlist *);
118 static void *path_enumerate(const char *, path_enum_proc, void *);
119 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *);
120 static int rtld_dirname(const char *, char *);
121 static void rtld_exit(void);
122 static char *search_library_path(const char *, const char *);
123 static const void **get_program_var_addr(const char *);
124 static void set_program_var(const char *, const void *);
125 static const Elf_Sym *symlook_default(const char *, unsigned long,
126 const Obj_Entry *, const Obj_Entry **, const Ver_Entry *, int);
127 static const Elf_Sym *symlook_list(const char *, unsigned long, const Objlist *,
128 const Obj_Entry **, const Ver_Entry *, int, DoneList *);
129 static const Elf_Sym *symlook_needed(const char *, unsigned long,
130 const Needed_Entry *, const Obj_Entry **, const Ver_Entry *,
131 int, DoneList *);
132 static void trace_loaded_objects(Obj_Entry *);
133 static void unlink_object(Obj_Entry *);
134 static void unload_object(Obj_Entry *);
135 static void unref_dag(Obj_Entry *);
136 static void ref_dag(Obj_Entry *);
137 static int rtld_verify_versions(const Objlist *);
138 static int rtld_verify_object_versions(Obj_Entry *);
139 static void object_add_name(Obj_Entry *, const char *);
140 static int object_match_name(const Obj_Entry *, const char *);
141 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
143 void r_debug_state(struct r_debug *, struct link_map *);
146 * Data declarations.
148 static char *error_message; /* Message for dlerror(), or NULL */
149 struct r_debug r_debug; /* for GDB; */
150 static bool libmap_disable; /* Disable libmap */
151 static char *libmap_override; /* Maps to use in addition to libmap.conf */
152 static bool trust; /* False for setuid and setgid programs */
153 static bool dangerous_ld_env; /* True if environment variables have been
154 used to affect the libraries loaded */
155 static char *ld_bind_now; /* Environment variable for immediate binding */
156 static char *ld_debug; /* Environment variable for debugging */
157 static char *ld_library_path; /* Environment variable for search path */
158 static char *ld_preload; /* Environment variable for libraries to
159 load first */
160 static char *ld_tracing; /* Called from ldd to print libs */
161 static char *ld_utrace; /* Use utrace() to log events. */
162 static Obj_Entry *obj_list; /* Head of linked list of shared objects */
163 static Obj_Entry **obj_tail; /* Link field of last object in list */
164 static Obj_Entry *obj_main; /* The main program shared object */
165 static Obj_Entry obj_rtld; /* The dynamic linker shared object */
166 static unsigned int obj_count; /* Number of objects in obj_list */
167 static unsigned int obj_loads; /* Number of objects in obj_list */
169 static Objlist list_global = /* Objects dlopened with RTLD_GLOBAL */
170 STAILQ_HEAD_INITIALIZER(list_global);
171 static Objlist list_main = /* Objects loaded at program startup */
172 STAILQ_HEAD_INITIALIZER(list_main);
173 static Objlist list_fini = /* Objects needing fini() calls */
174 STAILQ_HEAD_INITIALIZER(list_fini);
176 static Elf_Sym sym_zero; /* For resolving undefined weak refs. */
178 #define GDB_STATE(s,m) r_debug.r_state = s; r_debug_state(&r_debug,m);
180 extern Elf_Dyn _DYNAMIC;
181 #pragma weak _DYNAMIC
182 #ifndef RTLD_IS_DYNAMIC
183 #define RTLD_IS_DYNAMIC() (&_DYNAMIC != NULL)
184 #endif
187 * These are the functions the dynamic linker exports to application
188 * programs. They are the only symbols the dynamic linker is willing
189 * to export from itself.
191 static func_ptr_type exports[] = {
192 (func_ptr_type) &_rtld_error,
193 (func_ptr_type) &dlclose,
194 (func_ptr_type) &dlerror,
195 (func_ptr_type) &dlopen,
196 (func_ptr_type) &dlsym,
197 (func_ptr_type) &dlvsym,
198 (func_ptr_type) &dladdr,
199 (func_ptr_type) &dllockinit,
200 (func_ptr_type) &dlinfo,
201 (func_ptr_type) &_rtld_thread_init,
202 #ifdef __i386__
203 (func_ptr_type) &___tls_get_addr,
204 #endif
205 (func_ptr_type) &__tls_get_addr,
206 (func_ptr_type) &_rtld_allocate_tls,
207 (func_ptr_type) &_rtld_free_tls,
208 (func_ptr_type) &dl_iterate_phdr,
209 NULL
213 * Global declarations normally provided by crt1. The dynamic linker is
214 * not built with crt1, so we have to provide them ourselves.
216 char *__progname;
217 char **environ;
220 * Globals to control TLS allocation.
222 size_t tls_last_offset; /* Static TLS offset of last module */
223 size_t tls_last_size; /* Static TLS size of last module */
224 size_t tls_static_space; /* Static TLS space allocated */
225 int tls_dtv_generation = 1; /* Used to detect when dtv size changes */
226 int tls_max_index = 1; /* Largest module index allocated */
229 * Fill in a DoneList with an allocation large enough to hold all of
230 * the currently-loaded objects. Keep this as a macro since it calls
231 * alloca and we want that to occur within the scope of the caller.
233 #define donelist_init(dlp) \
234 ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]), \
235 assert((dlp)->objs != NULL), \
236 (dlp)->num_alloc = obj_count, \
237 (dlp)->num_used = 0)
239 #define UTRACE_DLOPEN_START 1
240 #define UTRACE_DLOPEN_STOP 2
241 #define UTRACE_DLCLOSE_START 3
242 #define UTRACE_DLCLOSE_STOP 4
243 #define UTRACE_LOAD_OBJECT 5
244 #define UTRACE_UNLOAD_OBJECT 6
245 #define UTRACE_ADD_RUNDEP 7
246 #define UTRACE_PRELOAD_FINISHED 8
247 #define UTRACE_INIT_CALL 9
248 #define UTRACE_FINI_CALL 10
250 struct utrace_rtld {
251 char sig[4]; /* 'RTLD' */
252 int event;
253 void *handle;
254 void *mapbase; /* Used for 'parent' and 'init/fini' */
255 size_t mapsize;
256 int refcnt; /* Used for 'mode' */
257 char name[MAXPATHLEN];
260 #define LD_UTRACE(e, h, mb, ms, r, n) do { \
261 if (ld_utrace != NULL) \
262 ld_utrace_log(e, h, mb, ms, r, n); \
263 } while (0)
265 static void
266 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
267 int refcnt, const char *name)
269 struct utrace_rtld ut;
271 ut.sig[0] = 'R';
272 ut.sig[1] = 'T';
273 ut.sig[2] = 'L';
274 ut.sig[3] = 'D';
275 ut.event = event;
276 ut.handle = handle;
277 ut.mapbase = mapbase;
278 ut.mapsize = mapsize;
279 ut.refcnt = refcnt;
280 bzero(ut.name, sizeof(ut.name));
281 if (name)
282 strlcpy(ut.name, name, sizeof(ut.name));
283 utrace(&ut, sizeof(ut));
287 * Main entry point for dynamic linking. The first argument is the
288 * stack pointer. The stack is expected to be laid out as described
289 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
290 * Specifically, the stack pointer points to a word containing
291 * ARGC. Following that in the stack is a null-terminated sequence
292 * of pointers to argument strings. Then comes a null-terminated
293 * sequence of pointers to environment strings. Finally, there is a
294 * sequence of "auxiliary vector" entries.
296 * The second argument points to a place to store the dynamic linker's
297 * exit procedure pointer and the third to a place to store the main
298 * program's object.
300 * The return value is the main program's entry point.
302 func_ptr_type
303 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
305 Elf_Auxinfo *aux_info[AT_COUNT];
306 int i;
307 int argc;
308 char **argv;
309 char **env;
310 Elf_Auxinfo *aux;
311 Elf_Auxinfo *auxp;
312 const char *argv0;
313 Objlist_Entry *entry;
314 Obj_Entry *obj;
315 Obj_Entry **preload_tail;
316 Objlist initlist;
317 int lockstate;
320 * On entry, the dynamic linker itself has not been relocated yet.
321 * Be very careful not to reference any global data until after
322 * init_rtld has returned. It is OK to reference file-scope statics
323 * and string constants, and to call static and global functions.
326 /* Find the auxiliary vector on the stack. */
327 argc = *sp++;
328 argv = (char **) sp;
329 sp += argc + 1; /* Skip over arguments and NULL terminator */
330 env = (char **) sp;
331 while (*sp++ != 0) /* Skip over environment, and NULL terminator */
333 aux = (Elf_Auxinfo *) sp;
335 /* Digest the auxiliary vector. */
336 for (i = 0; i < AT_COUNT; i++)
337 aux_info[i] = NULL;
338 for (auxp = aux; auxp->a_type != AT_NULL; auxp++) {
339 if (auxp->a_type < AT_COUNT)
340 aux_info[auxp->a_type] = auxp;
343 /* Initialize and relocate ourselves. */
344 assert(aux_info[AT_BASE] != NULL);
345 init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
347 __progname = obj_rtld.path;
348 argv0 = argv[0] != NULL ? argv[0] : "(null)";
349 environ = env;
351 trust = !issetugid();
353 ld_bind_now = getenv(LD_ "BIND_NOW");
355 * If the process is tainted, then we un-set the dangerous environment
356 * variables. The process will be marked as tainted until setuid(2)
357 * is called. If any child process calls setuid(2) we do not want any
358 * future processes to honor the potentially un-safe variables.
360 if (!trust) {
361 unsetenv(LD_ "PRELOAD");
362 unsetenv(LD_ "LIBMAP");
363 unsetenv(LD_ "LIBRARY_PATH");
364 unsetenv(LD_ "LIBMAP_DISABLE");
365 unsetenv(LD_ "DEBUG");
367 ld_debug = getenv(LD_ "DEBUG");
368 libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
369 libmap_override = getenv(LD_ "LIBMAP");
370 ld_library_path = getenv(LD_ "LIBRARY_PATH");
371 ld_preload = getenv(LD_ "PRELOAD");
372 dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
373 (ld_library_path != NULL) || (ld_preload != NULL);
374 ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
375 ld_utrace = getenv(LD_ "UTRACE");
377 if (ld_debug != NULL && *ld_debug != '\0')
378 debug = 1;
379 dbg("%s is initialized, base address = %p", __progname,
380 (caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
381 dbg("RTLD dynamic = %p", obj_rtld.dynamic);
382 dbg("RTLD pltgot = %p", obj_rtld.pltgot);
385 * Load the main program, or process its program header if it is
386 * already loaded.
388 if (aux_info[AT_EXECFD] != NULL) { /* Load the main program. */
389 int fd = aux_info[AT_EXECFD]->a_un.a_val;
390 dbg("loading main program");
391 obj_main = map_object(fd, argv0, NULL);
392 close(fd);
393 if (obj_main == NULL)
394 die();
395 } else { /* Main program already loaded. */
396 const Elf_Phdr *phdr;
397 int phnum;
398 caddr_t entry;
400 dbg("processing main program's program header");
401 assert(aux_info[AT_PHDR] != NULL);
402 phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
403 assert(aux_info[AT_PHNUM] != NULL);
404 phnum = aux_info[AT_PHNUM]->a_un.a_val;
405 assert(aux_info[AT_PHENT] != NULL);
406 assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
407 assert(aux_info[AT_ENTRY] != NULL);
408 entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
409 if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
410 die();
413 obj_main->path = xstrdup(argv0);
414 obj_main->mainprog = true;
417 * Get the actual dynamic linker pathname from the executable if
418 * possible. (It should always be possible.) That ensures that
419 * gdb will find the right dynamic linker even if a non-standard
420 * one is being used.
422 if (obj_main->interp != NULL &&
423 strcmp(obj_main->interp, obj_rtld.path) != 0) {
424 free(obj_rtld.path);
425 obj_rtld.path = xstrdup(obj_main->interp);
426 __progname = obj_rtld.path;
429 digest_dynamic(obj_main, 0);
431 linkmap_add(obj_main);
432 linkmap_add(&obj_rtld);
434 /* Link the main program into the list of objects. */
435 *obj_tail = obj_main;
436 obj_tail = &obj_main->next;
437 obj_count++;
438 obj_loads++;
439 /* Make sure we don't call the main program's init and fini functions. */
440 obj_main->init = obj_main->fini = (Elf_Addr)NULL;
442 /* Initialize a fake symbol for resolving undefined weak references. */
443 sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
444 sym_zero.st_shndx = SHN_UNDEF;
446 if (!libmap_disable)
447 libmap_disable = (bool)lm_init(libmap_override);
449 dbg("loading LD_PRELOAD libraries");
450 if (load_preload_objects() == -1)
451 die();
452 preload_tail = obj_tail;
454 dbg("loading needed objects");
455 if (load_needed_objects(obj_main) == -1)
456 die();
458 /* Make a list of all objects loaded at startup. */
459 for (obj = obj_list; obj != NULL; obj = obj->next) {
460 objlist_push_tail(&list_main, obj);
461 obj->refcount++;
464 dbg("checking for required versions");
465 if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
466 die();
468 if (ld_tracing) { /* We're done */
469 trace_loaded_objects(obj_main);
470 exit(0);
473 if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
474 dump_relocations(obj_main);
475 exit (0);
478 /* setup TLS for main thread */
479 dbg("initializing initial thread local storage");
480 STAILQ_FOREACH(entry, &list_main, link) {
482 * Allocate all the initial objects out of the static TLS
483 * block even if they didn't ask for it.
485 allocate_tls_offset(entry->obj);
487 allocate_initial_tls(obj_list);
489 if (relocate_objects(obj_main,
490 ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld) == -1)
491 die();
493 dbg("doing copy relocations");
494 if (do_copy_relocations(obj_main) == -1)
495 die();
497 if (getenv(LD_ "DUMP_REL_POST") != NULL) {
498 dump_relocations(obj_main);
499 exit (0);
502 dbg("initializing key program variables");
503 set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
504 set_program_var("environ", env);
506 dbg("initializing thread locks");
507 lockdflt_init();
509 /* Make a list of init functions to call. */
510 objlist_init(&initlist);
511 initlist_add_objects(obj_list, preload_tail, &initlist);
513 r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
515 lockstate = wlock_acquire(rtld_bind_lock);
516 objlist_call_init(&initlist, &lockstate);
517 objlist_clear(&initlist);
518 wlock_release(rtld_bind_lock, lockstate);
520 dbg("transferring control to program entry point = %p", obj_main->entry);
522 /* Return the exit procedure and the program entry point. */
523 *exit_proc = rtld_exit;
524 *objp = obj_main;
525 return (func_ptr_type) obj_main->entry;
528 Elf_Addr
529 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
531 const Elf_Rel *rel;
532 const Elf_Sym *def;
533 const Obj_Entry *defobj;
534 Elf_Addr *where;
535 Elf_Addr target;
536 int lockstate;
538 lockstate = rlock_acquire(rtld_bind_lock);
539 if (obj->pltrel)
540 rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
541 else
542 rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
544 where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
545 def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL);
546 if (def == NULL)
547 die();
549 target = (Elf_Addr)(defobj->relocbase + def->st_value);
551 dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
552 defobj->strtab + def->st_name, basename(obj->path),
553 (void *)target, basename(defobj->path));
556 * Write the new contents for the jmpslot. Note that depending on
557 * architecture, the value which we need to return back to the
558 * lazy binding trampoline may or may not be the target
559 * address. The value returned from reloc_jmpslot() is the value
560 * that the trampoline needs.
562 target = reloc_jmpslot(where, target, defobj, obj, rel);
563 rlock_release(rtld_bind_lock, lockstate);
564 return target;
568 * Error reporting function. Use it like printf. If formats the message
569 * into a buffer, and sets things up so that the next call to dlerror()
570 * will return the message.
572 void
573 _rtld_error(const char *fmt, ...)
575 static char buf[512];
576 va_list ap;
578 va_start(ap, fmt);
579 vsnprintf(buf, sizeof buf, fmt, ap);
580 error_message = buf;
581 va_end(ap);
585 * Return a dynamically-allocated copy of the current error message, if any.
587 static char *
588 errmsg_save(void)
590 return error_message == NULL ? NULL : xstrdup(error_message);
594 * Restore the current error message from a copy which was previously saved
595 * by errmsg_save(). The copy is freed.
597 static void
598 errmsg_restore(char *saved_msg)
600 if (saved_msg == NULL)
601 error_message = NULL;
602 else {
603 _rtld_error("%s", saved_msg);
604 free(saved_msg);
608 static const char *
609 basename(const char *name)
611 const char *p = strrchr(name, '/');
612 return p != NULL ? p + 1 : name;
615 static void
616 die(void)
618 const char *msg = dlerror();
620 if (msg == NULL)
621 msg = "Fatal error";
622 errx(1, "%s", msg);
626 * Process a shared object's DYNAMIC section, and save the important
627 * information in its Obj_Entry structure.
629 static void
630 digest_dynamic(Obj_Entry *obj, int early)
632 const Elf_Dyn *dynp;
633 Needed_Entry **needed_tail = &obj->needed;
634 const Elf_Dyn *dyn_rpath = NULL;
635 const Elf_Dyn *dyn_soname = NULL;
636 int plttype = DT_REL;
638 obj->bind_now = false;
639 for (dynp = obj->dynamic; dynp->d_tag != DT_NULL; dynp++) {
640 switch (dynp->d_tag) {
642 case DT_REL:
643 obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
644 break;
646 case DT_RELSZ:
647 obj->relsize = dynp->d_un.d_val;
648 break;
650 case DT_RELENT:
651 assert(dynp->d_un.d_val == sizeof(Elf_Rel));
652 break;
654 case DT_JMPREL:
655 obj->pltrel = (const Elf_Rel *)
656 (obj->relocbase + dynp->d_un.d_ptr);
657 break;
659 case DT_PLTRELSZ:
660 obj->pltrelsize = dynp->d_un.d_val;
661 break;
663 case DT_RELA:
664 obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
665 break;
667 case DT_RELASZ:
668 obj->relasize = dynp->d_un.d_val;
669 break;
671 case DT_RELAENT:
672 assert(dynp->d_un.d_val == sizeof(Elf_Rela));
673 break;
675 case DT_PLTREL:
676 plttype = dynp->d_un.d_val;
677 assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
678 break;
680 case DT_SYMTAB:
681 obj->symtab = (const Elf_Sym *)
682 (obj->relocbase + dynp->d_un.d_ptr);
683 break;
685 case DT_SYMENT:
686 assert(dynp->d_un.d_val == sizeof(Elf_Sym));
687 break;
689 case DT_STRTAB:
690 obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
691 break;
693 case DT_STRSZ:
694 obj->strsize = dynp->d_un.d_val;
695 break;
697 case DT_VERNEED:
698 obj->verneed = (const Elf_Verneed *) (obj->relocbase +
699 dynp->d_un.d_val);
700 break;
702 case DT_VERNEEDNUM:
703 obj->verneednum = dynp->d_un.d_val;
704 break;
706 case DT_VERDEF:
707 obj->verdef = (const Elf_Verdef *) (obj->relocbase +
708 dynp->d_un.d_val);
709 break;
711 case DT_VERDEFNUM:
712 obj->verdefnum = dynp->d_un.d_val;
713 break;
715 case DT_VERSYM:
716 obj->versyms = (const Elf_Versym *)(obj->relocbase +
717 dynp->d_un.d_val);
718 break;
720 case DT_HASH:
722 const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
723 (obj->relocbase + dynp->d_un.d_ptr);
724 obj->nbuckets = hashtab[0];
725 obj->nchains = hashtab[1];
726 obj->buckets = hashtab + 2;
727 obj->chains = obj->buckets + obj->nbuckets;
729 break;
731 case DT_NEEDED:
732 if (!obj->rtld) {
733 Needed_Entry *nep = NEW(Needed_Entry);
734 nep->name = dynp->d_un.d_val;
735 nep->obj = NULL;
736 nep->next = NULL;
738 *needed_tail = nep;
739 needed_tail = &nep->next;
741 break;
743 case DT_PLTGOT:
744 obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
745 break;
747 case DT_TEXTREL:
748 obj->textrel = true;
749 break;
751 case DT_SYMBOLIC:
752 obj->symbolic = true;
753 break;
755 case DT_RPATH:
756 case DT_RUNPATH: /* XXX: process separately */
758 * We have to wait until later to process this, because we
759 * might not have gotten the address of the string table yet.
761 dyn_rpath = dynp;
762 break;
764 case DT_SONAME:
765 dyn_soname = dynp;
766 break;
768 case DT_INIT:
769 obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
770 break;
772 case DT_FINI:
773 obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
774 break;
777 * Don't process DT_DEBUG on MIPS as the dynamic section
778 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
781 #ifndef __mips__
782 case DT_DEBUG:
783 /* XXX - not implemented yet */
784 if (!early)
785 dbg("Filling in DT_DEBUG entry");
786 ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
787 break;
788 #endif
790 case DT_FLAGS:
791 if (dynp->d_un.d_val & DF_ORIGIN) {
792 obj->origin_path = xmalloc(PATH_MAX);
793 if (rtld_dirname(obj->path, obj->origin_path) == -1)
794 die();
796 if (dynp->d_un.d_val & DF_SYMBOLIC)
797 obj->symbolic = true;
798 if (dynp->d_un.d_val & DF_TEXTREL)
799 obj->textrel = true;
800 if (dynp->d_un.d_val & DF_BIND_NOW)
801 obj->bind_now = true;
802 if (dynp->d_un.d_val & DF_STATIC_TLS)
804 break;
805 #ifdef __mips__
806 case DT_MIPS_LOCAL_GOTNO:
807 obj->local_gotno = dynp->d_un.d_val;
808 break;
810 case DT_MIPS_SYMTABNO:
811 obj->symtabno = dynp->d_un.d_val;
812 break;
814 case DT_MIPS_GOTSYM:
815 obj->gotsym = dynp->d_un.d_val;
816 break;
818 case DT_MIPS_RLD_MAP:
819 #ifdef notyet
820 if (!early)
821 dbg("Filling in DT_DEBUG entry");
822 ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
823 #endif
824 break;
825 #endif
827 default:
828 if (!early) {
829 dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
830 (long)dynp->d_tag);
832 break;
836 obj->traced = false;
838 if (plttype == DT_RELA) {
839 obj->pltrela = (const Elf_Rela *) obj->pltrel;
840 obj->pltrel = NULL;
841 obj->pltrelasize = obj->pltrelsize;
842 obj->pltrelsize = 0;
845 if (dyn_rpath != NULL)
846 obj->rpath = obj->strtab + dyn_rpath->d_un.d_val;
848 if (dyn_soname != NULL)
849 object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
853 * Process a shared object's program header. This is used only for the
854 * main program, when the kernel has already loaded the main program
855 * into memory before calling the dynamic linker. It creates and
856 * returns an Obj_Entry structure.
858 static Obj_Entry *
859 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
861 Obj_Entry *obj;
862 const Elf_Phdr *phlimit = phdr + phnum;
863 const Elf_Phdr *ph;
864 int nsegs = 0;
866 obj = obj_new();
867 for (ph = phdr; ph < phlimit; ph++) {
868 switch (ph->p_type) {
870 case PT_PHDR:
871 if ((const Elf_Phdr *)ph->p_vaddr != phdr) {
872 _rtld_error("%s: invalid PT_PHDR", path);
873 return NULL;
875 obj->phdr = (const Elf_Phdr *) ph->p_vaddr;
876 obj->phsize = ph->p_memsz;
877 break;
879 case PT_INTERP:
880 obj->interp = (const char *) ph->p_vaddr;
881 break;
883 case PT_LOAD:
884 if (nsegs == 0) { /* First load segment */
885 obj->vaddrbase = trunc_page(ph->p_vaddr);
886 obj->mapbase = (caddr_t) obj->vaddrbase;
887 obj->relocbase = obj->mapbase - obj->vaddrbase;
888 obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
889 obj->vaddrbase;
890 } else { /* Last load segment */
891 obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
892 obj->vaddrbase;
894 nsegs++;
895 break;
897 case PT_DYNAMIC:
898 obj->dynamic = (const Elf_Dyn *) ph->p_vaddr;
899 break;
901 case PT_TLS:
902 obj->tlsindex = 1;
903 obj->tlssize = ph->p_memsz;
904 obj->tlsalign = ph->p_align;
905 obj->tlsinitsize = ph->p_filesz;
906 obj->tlsinit = (void*) ph->p_vaddr;
907 break;
910 if (nsegs < 1) {
911 _rtld_error("%s: too few PT_LOAD segments", path);
912 return NULL;
915 obj->entry = entry;
916 return obj;
919 static Obj_Entry *
920 dlcheck(void *handle)
922 Obj_Entry *obj;
924 for (obj = obj_list; obj != NULL; obj = obj->next)
925 if (obj == (Obj_Entry *) handle)
926 break;
928 if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
929 _rtld_error("Invalid shared object handle %p", handle);
930 return NULL;
932 return obj;
936 * If the given object is already in the donelist, return true. Otherwise
937 * add the object to the list and return false.
939 static bool
940 donelist_check(DoneList *dlp, const Obj_Entry *obj)
942 unsigned int i;
944 for (i = 0; i < dlp->num_used; i++)
945 if (dlp->objs[i] == obj)
946 return true;
948 * Our donelist allocation should always be sufficient. But if
949 * our threads locking isn't working properly, more shared objects
950 * could have been loaded since we allocated the list. That should
951 * never happen, but we'll handle it properly just in case it does.
953 if (dlp->num_used < dlp->num_alloc)
954 dlp->objs[dlp->num_used++] = obj;
955 return false;
959 * Hash function for symbol table lookup. Don't even think about changing
960 * this. It is specified by the System V ABI.
962 unsigned long
963 elf_hash(const char *name)
965 const unsigned char *p = (const unsigned char *) name;
966 unsigned long h = 0;
967 unsigned long g;
969 while (*p != '\0') {
970 h = (h << 4) + *p++;
971 if ((g = h & 0xf0000000) != 0)
972 h ^= g >> 24;
973 h &= ~g;
975 return h;
979 * Find the library with the given name, and return its full pathname.
980 * The returned string is dynamically allocated. Generates an error
981 * message and returns NULL if the library cannot be found.
983 * If the second argument is non-NULL, then it refers to an already-
984 * loaded shared object, whose library search path will be searched.
986 * The search order is:
987 * LD_LIBRARY_PATH
988 * rpath in the referencing file
989 * ldconfig hints
990 * /lib:/usr/lib
992 static char *
993 find_library(const char *xname, const Obj_Entry *refobj)
995 char *pathname;
996 char *name;
998 if (strchr(xname, '/') != NULL) { /* Hard coded pathname */
999 if (xname[0] != '/' && !trust) {
1000 _rtld_error("Absolute pathname required for shared object \"%s\"",
1001 xname);
1002 return NULL;
1004 return xstrdup(xname);
1007 if (libmap_disable || (refobj == NULL) ||
1008 (name = lm_find(refobj->path, xname)) == NULL)
1009 name = (char *)xname;
1011 dbg(" Searching for \"%s\"", name);
1013 if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1014 (refobj != NULL &&
1015 (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1016 (pathname = search_library_path(name, gethints())) != NULL ||
1017 (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1018 return pathname;
1020 if(refobj != NULL && refobj->path != NULL) {
1021 _rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1022 name, basename(refobj->path));
1023 } else {
1024 _rtld_error("Shared object \"%s\" not found", name);
1026 return NULL;
1030 * Given a symbol number in a referencing object, find the corresponding
1031 * definition of the symbol. Returns a pointer to the symbol, or NULL if
1032 * no definition was found. Returns a pointer to the Obj_Entry of the
1033 * defining object via the reference parameter DEFOBJ_OUT.
1035 const Elf_Sym *
1036 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1037 const Obj_Entry **defobj_out, int flags, SymCache *cache)
1039 const Elf_Sym *ref;
1040 const Elf_Sym *def;
1041 const Obj_Entry *defobj;
1042 const Ver_Entry *ventry;
1043 const char *name;
1044 unsigned long hash;
1047 * If we have already found this symbol, get the information from
1048 * the cache.
1050 if (symnum >= refobj->nchains)
1051 return NULL; /* Bad object */
1052 if (cache != NULL && cache[symnum].sym != NULL) {
1053 *defobj_out = cache[symnum].obj;
1054 return cache[symnum].sym;
1057 ref = refobj->symtab + symnum;
1058 name = refobj->strtab + ref->st_name;
1059 defobj = NULL;
1062 * We don't have to do a full scale lookup if the symbol is local.
1063 * We know it will bind to the instance in this load module; to
1064 * which we already have a pointer (ie ref). By not doing a lookup,
1065 * we not only improve performance, but it also avoids unresolvable
1066 * symbols when local symbols are not in the hash table. This has
1067 * been seen with the ia64 toolchain.
1069 if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1070 if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1071 _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1072 symnum);
1074 ventry = fetch_ventry(refobj, symnum);
1075 hash = elf_hash(name);
1076 def = symlook_default(name, hash, refobj, &defobj, ventry, flags);
1077 } else {
1078 def = ref;
1079 defobj = refobj;
1083 * If we found no definition and the reference is weak, treat the
1084 * symbol as having the value zero.
1086 if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1087 def = &sym_zero;
1088 defobj = obj_main;
1091 if (def != NULL) {
1092 *defobj_out = defobj;
1093 /* Record the information in the cache to avoid subsequent lookups. */
1094 if (cache != NULL) {
1095 cache[symnum].sym = def;
1096 cache[symnum].obj = defobj;
1098 } else {
1099 if (refobj != &obj_rtld)
1100 _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1102 return def;
1106 * Return the search path from the ldconfig hints file, reading it if
1107 * necessary. Returns NULL if there are problems with the hints file,
1108 * or if the search path there is empty.
1110 static const char *
1111 gethints(void)
1113 static char *hints;
1115 if (hints == NULL) {
1116 int fd;
1117 struct elfhints_hdr hdr;
1118 char *p;
1120 /* Keep from trying again in case the hints file is bad. */
1121 hints = "";
1123 if ((fd = open(_PATH_ELF_HINTS, O_RDONLY)) == -1)
1124 return NULL;
1125 if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1126 hdr.magic != ELFHINTS_MAGIC ||
1127 hdr.version != 1) {
1128 close(fd);
1129 return NULL;
1131 p = xmalloc(hdr.dirlistlen + 1);
1132 if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1133 read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1134 free(p);
1135 close(fd);
1136 return NULL;
1138 hints = p;
1139 close(fd);
1141 return hints[0] != '\0' ? hints : NULL;
1144 static void
1145 init_dag(Obj_Entry *root)
1147 DoneList donelist;
1149 donelist_init(&donelist);
1150 init_dag1(root, root, &donelist);
1153 static void
1154 init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *dlp)
1156 const Needed_Entry *needed;
1158 if (donelist_check(dlp, obj))
1159 return;
1161 obj->refcount++;
1162 objlist_push_tail(&obj->dldags, root);
1163 objlist_push_tail(&root->dagmembers, obj);
1164 for (needed = obj->needed; needed != NULL; needed = needed->next)
1165 if (needed->obj != NULL)
1166 init_dag1(root, needed->obj, dlp);
1170 * Initialize the dynamic linker. The argument is the address at which
1171 * the dynamic linker has been mapped into memory. The primary task of
1172 * this function is to relocate the dynamic linker.
1174 static void
1175 init_rtld(caddr_t mapbase)
1177 Obj_Entry objtmp; /* Temporary rtld object */
1180 * Conjure up an Obj_Entry structure for the dynamic linker.
1182 * The "path" member can't be initialized yet because string constatns
1183 * cannot yet be acessed. Below we will set it correctly.
1185 memset(&objtmp, 0, sizeof(objtmp));
1186 objtmp.path = NULL;
1187 objtmp.rtld = true;
1188 objtmp.mapbase = mapbase;
1189 #ifdef PIC
1190 objtmp.relocbase = mapbase;
1191 #endif
1192 if (RTLD_IS_DYNAMIC()) {
1193 objtmp.dynamic = rtld_dynamic(&objtmp);
1194 digest_dynamic(&objtmp, 1);
1195 assert(objtmp.needed == NULL);
1196 #if !defined(__mips__)
1197 /* MIPS and SH{3,5} have a bogus DT_TEXTREL. */
1198 assert(!objtmp.textrel);
1199 #endif
1202 * Temporarily put the dynamic linker entry into the object list, so
1203 * that symbols can be found.
1206 relocate_objects(&objtmp, true, &objtmp);
1209 /* Initialize the object list. */
1210 obj_tail = &obj_list;
1212 /* Now that non-local variables can be accesses, copy out obj_rtld. */
1213 memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1215 /* Replace the path with a dynamically allocated copy. */
1216 obj_rtld.path = xstrdup(PATH_RTLD);
1218 r_debug.r_brk = r_debug_state;
1219 r_debug.r_state = RT_CONSISTENT;
1223 * Add the init functions from a needed object list (and its recursive
1224 * needed objects) to "list". This is not used directly; it is a helper
1225 * function for initlist_add_objects(). The write lock must be held
1226 * when this function is called.
1228 static void
1229 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1231 /* Recursively process the successor needed objects. */
1232 if (needed->next != NULL)
1233 initlist_add_neededs(needed->next, list);
1235 /* Process the current needed object. */
1236 if (needed->obj != NULL)
1237 initlist_add_objects(needed->obj, &needed->obj->next, list);
1241 * Scan all of the DAGs rooted in the range of objects from "obj" to
1242 * "tail" and add their init functions to "list". This recurses over
1243 * the DAGs and ensure the proper init ordering such that each object's
1244 * needed libraries are initialized before the object itself. At the
1245 * same time, this function adds the objects to the global finalization
1246 * list "list_fini" in the opposite order. The write lock must be
1247 * held when this function is called.
1249 static void
1250 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1252 if (obj->init_done)
1253 return;
1254 obj->init_done = true;
1256 /* Recursively process the successor objects. */
1257 if (&obj->next != tail)
1258 initlist_add_objects(obj->next, tail, list);
1260 /* Recursively process the needed objects. */
1261 if (obj->needed != NULL)
1262 initlist_add_neededs(obj->needed, list);
1264 /* Add the object to the init list. */
1265 if (obj->init != (Elf_Addr)NULL)
1266 objlist_push_tail(list, obj);
1268 /* Add the object to the global fini list in the reverse order. */
1269 if (obj->fini != (Elf_Addr)NULL)
1270 objlist_push_head(&list_fini, obj);
1273 #ifndef FPTR_TARGET
1274 #define FPTR_TARGET(f) ((Elf_Addr) (f))
1275 #endif
1277 static bool
1278 is_exported(const Elf_Sym *def)
1280 Elf_Addr value;
1281 const func_ptr_type *p;
1283 value = (Elf_Addr)(obj_rtld.relocbase + def->st_value);
1284 for (p = exports; *p != NULL; p++)
1285 if (FPTR_TARGET(*p) == value)
1286 return true;
1287 return false;
1291 * Given a shared object, traverse its list of needed objects, and load
1292 * each of them. Returns 0 on success. Generates an error message and
1293 * returns -1 on failure.
1295 static int
1296 load_needed_objects(Obj_Entry *first)
1298 Obj_Entry *obj;
1300 for (obj = first; obj != NULL; obj = obj->next) {
1301 Needed_Entry *needed;
1303 for (needed = obj->needed; needed != NULL; needed = needed->next) {
1304 needed->obj = load_object(obj->strtab + needed->name, obj);
1305 if (needed->obj == NULL && !ld_tracing)
1306 return -1;
1310 return 0;
1313 static int
1314 load_preload_objects(void)
1316 char *p = ld_preload;
1317 static const char delim[] = " \t:;";
1319 if (p == NULL)
1320 return 0;
1322 p += strspn(p, delim);
1323 while (*p != '\0') {
1324 size_t len = strcspn(p, delim);
1325 char savech;
1327 savech = p[len];
1328 p[len] = '\0';
1329 if (load_object(p, NULL) == NULL)
1330 return -1; /* XXX - cleanup */
1331 p[len] = savech;
1332 p += len;
1333 p += strspn(p, delim);
1335 LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
1336 return 0;
1340 * Load a shared object into memory, if it is not already loaded.
1342 * Returns a pointer to the Obj_Entry for the object. Returns NULL
1343 * on failure.
1345 static Obj_Entry *
1346 load_object(const char *name, const Obj_Entry *refobj)
1348 Obj_Entry *obj;
1349 int fd = -1;
1350 struct stat sb;
1351 char *path;
1353 for (obj = obj_list->next; obj != NULL; obj = obj->next)
1354 if (object_match_name(obj, name))
1355 return obj;
1357 path = find_library(name, refobj);
1358 if (path == NULL)
1359 return NULL;
1362 * If we didn't find a match by pathname, open the file and check
1363 * again by device and inode. This avoids false mismatches caused
1364 * by multiple links or ".." in pathnames.
1366 * To avoid a race, we open the file and use fstat() rather than
1367 * using stat().
1369 if ((fd = open(path, O_RDONLY)) == -1) {
1370 _rtld_error("Cannot open \"%s\"", path);
1371 free(path);
1372 return NULL;
1374 if (fstat(fd, &sb) == -1) {
1375 _rtld_error("Cannot fstat \"%s\"", path);
1376 close(fd);
1377 free(path);
1378 return NULL;
1380 for (obj = obj_list->next; obj != NULL; obj = obj->next) {
1381 if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) {
1382 close(fd);
1383 break;
1386 if (obj != NULL) {
1387 object_add_name(obj, name);
1388 free(path);
1389 close(fd);
1390 return obj;
1393 /* First use of this object, so we must map it in */
1394 obj = do_load_object(fd, name, path, &sb);
1395 if (obj == NULL)
1396 free(path);
1397 close(fd);
1399 return obj;
1402 static Obj_Entry *
1403 do_load_object(int fd, const char *name, char *path, struct stat *sbp)
1405 Obj_Entry *obj;
1406 struct statfs fs;
1409 * but first, make sure that environment variables haven't been
1410 * used to circumvent the noexec flag on a filesystem.
1412 if (dangerous_ld_env) {
1413 if (fstatfs(fd, &fs) != 0) {
1414 _rtld_error("Cannot fstatfs \"%s\"", path);
1415 return NULL;
1417 if (fs.f_flags & MNT_NOEXEC) {
1418 _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
1419 return NULL;
1422 dbg("loading \"%s\"", path);
1423 obj = map_object(fd, path, sbp);
1424 if (obj == NULL)
1425 return NULL;
1427 object_add_name(obj, name);
1428 obj->path = path;
1429 digest_dynamic(obj, 0);
1431 *obj_tail = obj;
1432 obj_tail = &obj->next;
1433 obj_count++;
1434 obj_loads++;
1435 linkmap_add(obj); /* for GDB & dlinfo() */
1437 dbg(" %p .. %p: %s", obj->mapbase,
1438 obj->mapbase + obj->mapsize - 1, obj->path);
1439 if (obj->textrel)
1440 dbg(" WARNING: %s has impure text", obj->path);
1441 LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
1442 obj->path);
1444 return obj;
1447 static Obj_Entry *
1448 obj_from_addr(const void *addr)
1450 Obj_Entry *obj;
1452 for (obj = obj_list; obj != NULL; obj = obj->next) {
1453 if (addr < (void *) obj->mapbase)
1454 continue;
1455 if (addr < (void *) (obj->mapbase + obj->mapsize))
1456 return obj;
1458 return NULL;
1462 * Call the finalization functions for each of the objects in "list"
1463 * which are unreferenced. All of the objects are expected to have
1464 * non-NULL fini functions.
1466 static void
1467 objlist_call_fini(Objlist *list, int *lockstate)
1469 Objlist_Entry *elm;
1470 char *saved_msg;
1473 * Preserve the current error message since a fini function might
1474 * call into the dynamic linker and overwrite it.
1476 saved_msg = errmsg_save();
1477 wlock_release(rtld_bind_lock, *lockstate);
1478 STAILQ_FOREACH(elm, list, link) {
1479 if (elm->obj->refcount == 0) {
1480 dbg("calling fini function for %s at %p", elm->obj->path,
1481 (void *)elm->obj->fini);
1482 LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini, 0, 0,
1483 elm->obj->path);
1484 call_initfini_pointer(elm->obj, elm->obj->fini);
1487 *lockstate = wlock_acquire(rtld_bind_lock);
1488 errmsg_restore(saved_msg);
1492 * Call the initialization functions for each of the objects in
1493 * "list". All of the objects are expected to have non-NULL init
1494 * functions.
1496 static void
1497 objlist_call_init(Objlist *list, int *lockstate)
1499 Objlist_Entry *elm;
1500 char *saved_msg;
1503 * Preserve the current error message since an init function might
1504 * call into the dynamic linker and overwrite it.
1506 saved_msg = errmsg_save();
1507 wlock_release(rtld_bind_lock, *lockstate);
1508 STAILQ_FOREACH(elm, list, link) {
1509 dbg("calling init function for %s at %p", elm->obj->path,
1510 (void *)elm->obj->init);
1511 LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init, 0, 0,
1512 elm->obj->path);
1513 call_initfini_pointer(elm->obj, elm->obj->init);
1515 *lockstate = wlock_acquire(rtld_bind_lock);
1516 errmsg_restore(saved_msg);
1519 static void
1520 objlist_clear(Objlist *list)
1522 Objlist_Entry *elm;
1524 while (!STAILQ_EMPTY(list)) {
1525 elm = STAILQ_FIRST(list);
1526 STAILQ_REMOVE_HEAD(list, link);
1527 free(elm);
1531 static Objlist_Entry *
1532 objlist_find(Objlist *list, const Obj_Entry *obj)
1534 Objlist_Entry *elm;
1536 STAILQ_FOREACH(elm, list, link)
1537 if (elm->obj == obj)
1538 return elm;
1539 return NULL;
1542 static void
1543 objlist_init(Objlist *list)
1545 STAILQ_INIT(list);
1548 static void
1549 objlist_push_head(Objlist *list, Obj_Entry *obj)
1551 Objlist_Entry *elm;
1553 elm = NEW(Objlist_Entry);
1554 elm->obj = obj;
1555 STAILQ_INSERT_HEAD(list, elm, link);
1558 static void
1559 objlist_push_tail(Objlist *list, Obj_Entry *obj)
1561 Objlist_Entry *elm;
1563 elm = NEW(Objlist_Entry);
1564 elm->obj = obj;
1565 STAILQ_INSERT_TAIL(list, elm, link);
1568 static void
1569 objlist_remove(Objlist *list, Obj_Entry *obj)
1571 Objlist_Entry *elm;
1573 if ((elm = objlist_find(list, obj)) != NULL) {
1574 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1575 free(elm);
1580 * Remove all of the unreferenced objects from "list".
1582 static void
1583 objlist_remove_unref(Objlist *list)
1585 Objlist newlist;
1586 Objlist_Entry *elm;
1588 STAILQ_INIT(&newlist);
1589 while (!STAILQ_EMPTY(list)) {
1590 elm = STAILQ_FIRST(list);
1591 STAILQ_REMOVE_HEAD(list, link);
1592 if (elm->obj->refcount == 0)
1593 free(elm);
1594 else
1595 STAILQ_INSERT_TAIL(&newlist, elm, link);
1597 *list = newlist;
1601 * Relocate newly-loaded shared objects. The argument is a pointer to
1602 * the Obj_Entry for the first such object. All objects from the first
1603 * to the end of the list of objects are relocated. Returns 0 on success,
1604 * or -1 on failure.
1606 static int
1607 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj)
1609 Obj_Entry *obj;
1611 for (obj = first; obj != NULL; obj = obj->next) {
1612 if (obj != rtldobj)
1613 dbg("relocating \"%s\"", obj->path);
1614 if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1615 obj->symtab == NULL || obj->strtab == NULL) {
1616 _rtld_error("%s: Shared object has no run-time symbol table",
1617 obj->path);
1618 return -1;
1621 if (obj->textrel) {
1622 /* There are relocations to the write-protected text segment. */
1623 if (mprotect(obj->mapbase, obj->textsize,
1624 PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1625 _rtld_error("%s: Cannot write-enable text segment: %s",
1626 obj->path, strerror(errno));
1627 return -1;
1631 /* Process the non-PLT relocations. */
1632 if (reloc_non_plt(obj, rtldobj))
1633 return -1;
1635 if (obj->textrel) { /* Re-protected the text segment. */
1636 if (mprotect(obj->mapbase, obj->textsize,
1637 PROT_READ|PROT_EXEC) == -1) {
1638 _rtld_error("%s: Cannot write-protect text segment: %s",
1639 obj->path, strerror(errno));
1640 return -1;
1644 /* Process the PLT relocations. */
1645 if (reloc_plt(obj) == -1)
1646 return -1;
1647 /* Relocate the jump slots if we are doing immediate binding. */
1648 if (obj->bind_now || bind_now)
1649 if (reloc_jmpslots(obj) == -1)
1650 return -1;
1654 * Set up the magic number and version in the Obj_Entry. These
1655 * were checked in the crt1.o from the original ElfKit, so we
1656 * set them for backward compatibility.
1658 obj->magic = RTLD_MAGIC;
1659 obj->version = RTLD_VERSION;
1661 /* Set the special PLT or GOT entries. */
1662 init_pltgot(obj);
1665 return 0;
1669 * Cleanup procedure. It will be called (by the atexit mechanism) just
1670 * before the process exits.
1672 static void
1673 rtld_exit(void)
1675 Obj_Entry *obj;
1676 int lockstate;
1678 lockstate = wlock_acquire(rtld_bind_lock);
1679 dbg("rtld_exit()");
1680 /* Clear all the reference counts so the fini functions will be called. */
1681 for (obj = obj_list; obj != NULL; obj = obj->next)
1682 obj->refcount = 0;
1683 objlist_call_fini(&list_fini, &lockstate);
1684 /* No need to remove the items from the list, since we are exiting. */
1685 if (!libmap_disable)
1686 lm_fini();
1687 wlock_release(rtld_bind_lock, lockstate);
1690 static void *
1691 path_enumerate(const char *path, path_enum_proc callback, void *arg)
1693 #ifdef COMPAT_32BIT
1694 const char *trans;
1695 #endif
1696 if (path == NULL)
1697 return (NULL);
1699 path += strspn(path, ":;");
1700 while (*path != '\0') {
1701 size_t len;
1702 char *res;
1704 len = strcspn(path, ":;");
1705 #ifdef COMPAT_32BIT
1706 trans = lm_findn(NULL, path, len);
1707 if (trans)
1708 res = callback(trans, strlen(trans), arg);
1709 else
1710 #endif
1711 res = callback(path, len, arg);
1713 if (res != NULL)
1714 return (res);
1716 path += len;
1717 path += strspn(path, ":;");
1720 return (NULL);
1723 struct try_library_args {
1724 const char *name;
1725 size_t namelen;
1726 char *buffer;
1727 size_t buflen;
1730 static void *
1731 try_library_path(const char *dir, size_t dirlen, void *param)
1733 struct try_library_args *arg;
1735 arg = param;
1736 if (*dir == '/' || trust) {
1737 char *pathname;
1739 if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
1740 return (NULL);
1742 pathname = arg->buffer;
1743 strncpy(pathname, dir, dirlen);
1744 pathname[dirlen] = '/';
1745 strcpy(pathname + dirlen + 1, arg->name);
1747 dbg(" Trying \"%s\"", pathname);
1748 if (access(pathname, F_OK) == 0) { /* We found it */
1749 pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
1750 strcpy(pathname, arg->buffer);
1751 return (pathname);
1754 return (NULL);
1757 static char *
1758 search_library_path(const char *name, const char *path)
1760 char *p;
1761 struct try_library_args arg;
1763 if (path == NULL)
1764 return NULL;
1766 arg.name = name;
1767 arg.namelen = strlen(name);
1768 arg.buffer = xmalloc(PATH_MAX);
1769 arg.buflen = PATH_MAX;
1771 p = path_enumerate(path, try_library_path, &arg);
1773 free(arg.buffer);
1775 return (p);
1779 dlclose(void *handle)
1781 Obj_Entry *root;
1782 int lockstate;
1784 lockstate = wlock_acquire(rtld_bind_lock);
1785 root = dlcheck(handle);
1786 if (root == NULL) {
1787 wlock_release(rtld_bind_lock, lockstate);
1788 return -1;
1790 LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
1791 root->path);
1793 /* Unreference the object and its dependencies. */
1794 root->dl_refcount--;
1796 unref_dag(root);
1798 if (root->refcount == 0) {
1800 * The object is no longer referenced, so we must unload it.
1801 * First, call the fini functions.
1803 objlist_call_fini(&list_fini, &lockstate);
1804 objlist_remove_unref(&list_fini);
1806 /* Finish cleaning up the newly-unreferenced objects. */
1807 GDB_STATE(RT_DELETE,&root->linkmap);
1808 unload_object(root);
1809 GDB_STATE(RT_CONSISTENT,NULL);
1811 LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
1812 wlock_release(rtld_bind_lock, lockstate);
1813 return 0;
1816 const char *
1817 dlerror(void)
1819 char *msg = error_message;
1820 error_message = NULL;
1821 return msg;
1825 * This function is deprecated and has no effect.
1827 void
1828 dllockinit(void *context,
1829 void *(*lock_create)(void *context),
1830 void (*rlock_acquire)(void *lock),
1831 void (*wlock_acquire)(void *lock),
1832 void (*lock_release)(void *lock),
1833 void (*lock_destroy)(void *lock),
1834 void (*context_destroy)(void *context))
1836 static void *cur_context;
1837 static void (*cur_context_destroy)(void *);
1839 /* Just destroy the context from the previous call, if necessary. */
1840 if (cur_context_destroy != NULL)
1841 cur_context_destroy(cur_context);
1842 cur_context = context;
1843 cur_context_destroy = context_destroy;
1846 void *
1847 dlopen(const char *name, int mode)
1849 Obj_Entry **old_obj_tail;
1850 Obj_Entry *obj;
1851 Objlist initlist;
1852 int result, lockstate;
1854 LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
1855 ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
1856 if (ld_tracing != NULL)
1857 environ = (char **)*get_program_var_addr("environ");
1859 objlist_init(&initlist);
1861 lockstate = wlock_acquire(rtld_bind_lock);
1862 GDB_STATE(RT_ADD,NULL);
1864 old_obj_tail = obj_tail;
1865 obj = NULL;
1866 if (name == NULL) {
1867 obj = obj_main;
1868 obj->refcount++;
1869 } else {
1870 obj = load_object(name, obj_main);
1873 if (obj) {
1874 obj->dl_refcount++;
1875 if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
1876 objlist_push_tail(&list_global, obj);
1877 mode &= RTLD_MODEMASK;
1878 if (*old_obj_tail != NULL) { /* We loaded something new. */
1879 assert(*old_obj_tail == obj);
1880 result = load_needed_objects(obj);
1881 init_dag(obj);
1882 if (result != -1)
1883 result = rtld_verify_versions(&obj->dagmembers);
1884 if (result != -1 && ld_tracing)
1885 goto trace;
1886 if (result == -1 ||
1887 (relocate_objects(obj, mode == RTLD_NOW, &obj_rtld)) == -1) {
1888 obj->dl_refcount--;
1889 unref_dag(obj);
1890 if (obj->refcount == 0)
1891 unload_object(obj);
1892 obj = NULL;
1893 } else {
1894 /* Make list of init functions to call. */
1895 initlist_add_objects(obj, &obj->next, &initlist);
1897 } else {
1899 /* Bump the reference counts for objects on this DAG. */
1900 ref_dag(obj);
1902 if (ld_tracing)
1903 goto trace;
1907 LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
1908 name);
1909 GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
1911 /* Call the init functions. */
1912 objlist_call_init(&initlist, &lockstate);
1913 objlist_clear(&initlist);
1914 wlock_release(rtld_bind_lock, lockstate);
1915 return obj;
1916 trace:
1917 trace_loaded_objects(obj);
1918 wlock_release(rtld_bind_lock, lockstate);
1919 exit(0);
1922 static void *
1923 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
1924 int flags)
1926 DoneList donelist;
1927 const Obj_Entry *obj, *defobj;
1928 const Elf_Sym *def;
1929 unsigned long hash;
1930 int lockstate;
1932 hash = elf_hash(name);
1933 def = NULL;
1934 defobj = NULL;
1935 flags |= SYMLOOK_IN_PLT;
1937 lockstate = rlock_acquire(rtld_bind_lock);
1938 if (handle == NULL || handle == RTLD_NEXT ||
1939 handle == RTLD_DEFAULT || handle == RTLD_SELF) {
1941 if ((obj = obj_from_addr(retaddr)) == NULL) {
1942 _rtld_error("Cannot determine caller's shared object");
1943 rlock_release(rtld_bind_lock, lockstate);
1944 return NULL;
1946 if (handle == NULL) { /* Just the caller's shared object. */
1947 def = symlook_obj(name, hash, obj, ve, flags);
1948 defobj = obj;
1949 } else if (handle == RTLD_NEXT || /* Objects after caller's */
1950 handle == RTLD_SELF) { /* ... caller included */
1951 if (handle == RTLD_NEXT)
1952 obj = obj->next;
1953 for (; obj != NULL; obj = obj->next) {
1954 if ((def = symlook_obj(name, hash, obj, ve, flags)) != NULL) {
1955 defobj = obj;
1956 break;
1959 } else {
1960 assert(handle == RTLD_DEFAULT);
1961 def = symlook_default(name, hash, obj, &defobj, ve, flags);
1963 } else {
1964 if ((obj = dlcheck(handle)) == NULL) {
1965 rlock_release(rtld_bind_lock, lockstate);
1966 return NULL;
1969 donelist_init(&donelist);
1970 if (obj->mainprog) {
1971 /* Search main program and all libraries loaded by it. */
1972 def = symlook_list(name, hash, &list_main, &defobj, ve, flags,
1973 &donelist);
1974 } else {
1975 Needed_Entry fake;
1977 /* Search the whole DAG rooted at the given object. */
1978 fake.next = NULL;
1979 fake.obj = (Obj_Entry *)obj;
1980 fake.name = 0;
1981 def = symlook_needed(name, hash, &fake, &defobj, ve, flags,
1982 &donelist);
1986 if (def != NULL) {
1987 rlock_release(rtld_bind_lock, lockstate);
1990 * The value required by the caller is derived from the value
1991 * of the symbol. For the ia64 architecture, we need to
1992 * construct a function descriptor which the caller can use to
1993 * call the function with the right 'gp' value. For other
1994 * architectures and for non-functions, the value is simply
1995 * the relocated value of the symbol.
1997 if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
1998 return make_function_pointer(def, defobj);
1999 else
2000 return defobj->relocbase + def->st_value;
2003 _rtld_error("Undefined symbol \"%s\"", name);
2004 rlock_release(rtld_bind_lock, lockstate);
2005 return NULL;
2008 void *
2009 dlsym(void *handle, const char *name)
2011 return do_dlsym(handle, name, __builtin_return_address(0), NULL,
2012 SYMLOOK_DLSYM);
2015 void *
2016 dlvsym(void *handle, const char *name, const char *version)
2018 Ver_Entry ventry;
2020 ventry.name = version;
2021 ventry.file = NULL;
2022 ventry.hash = elf_hash(version);
2023 ventry.flags= 0;
2024 return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
2025 SYMLOOK_DLSYM);
2029 dladdr(const void *addr, Dl_info *info)
2031 const Obj_Entry *obj;
2032 const Elf_Sym *def;
2033 void *symbol_addr;
2034 unsigned long symoffset;
2035 int lockstate;
2037 lockstate = rlock_acquire(rtld_bind_lock);
2038 obj = obj_from_addr(addr);
2039 if (obj == NULL) {
2040 _rtld_error("No shared object contains address");
2041 rlock_release(rtld_bind_lock, lockstate);
2042 return 0;
2044 info->dli_fname = obj->path;
2045 info->dli_fbase = obj->mapbase;
2046 info->dli_saddr = (void *)0;
2047 info->dli_sname = NULL;
2050 * Walk the symbol list looking for the symbol whose address is
2051 * closest to the address sent in.
2053 for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
2054 def = obj->symtab + symoffset;
2057 * For skip the symbol if st_shndx is either SHN_UNDEF or
2058 * SHN_COMMON.
2060 if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
2061 continue;
2064 * If the symbol is greater than the specified address, or if it
2065 * is further away from addr than the current nearest symbol,
2066 * then reject it.
2068 symbol_addr = obj->relocbase + def->st_value;
2069 if (symbol_addr > addr || symbol_addr < info->dli_saddr)
2070 continue;
2072 /* Update our idea of the nearest symbol. */
2073 info->dli_sname = obj->strtab + def->st_name;
2074 info->dli_saddr = symbol_addr;
2076 /* Exact match? */
2077 if (info->dli_saddr == addr)
2078 break;
2080 rlock_release(rtld_bind_lock, lockstate);
2081 return 1;
2085 dlinfo(void *handle, int request, void *p)
2087 const Obj_Entry *obj;
2088 int error, lockstate;
2090 lockstate = rlock_acquire(rtld_bind_lock);
2092 if (handle == NULL || handle == RTLD_SELF) {
2093 void *retaddr;
2095 retaddr = __builtin_return_address(0); /* __GNUC__ only */
2096 if ((obj = obj_from_addr(retaddr)) == NULL)
2097 _rtld_error("Cannot determine caller's shared object");
2098 } else
2099 obj = dlcheck(handle);
2101 if (obj == NULL) {
2102 rlock_release(rtld_bind_lock, lockstate);
2103 return (-1);
2106 error = 0;
2107 switch (request) {
2108 case RTLD_DI_LINKMAP:
2109 *((struct link_map const **)p) = &obj->linkmap;
2110 break;
2111 case RTLD_DI_ORIGIN:
2112 error = rtld_dirname(obj->path, p);
2113 break;
2115 case RTLD_DI_SERINFOSIZE:
2116 case RTLD_DI_SERINFO:
2117 error = do_search_info(obj, request, (struct dl_serinfo *)p);
2118 break;
2120 default:
2121 _rtld_error("Invalid request %d passed to dlinfo()", request);
2122 error = -1;
2125 rlock_release(rtld_bind_lock, lockstate);
2127 return (error);
2131 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
2133 struct dl_phdr_info phdr_info;
2134 const Obj_Entry *obj;
2135 int error, bind_lockstate, phdr_lockstate;
2137 phdr_lockstate = wlock_acquire(rtld_phdr_lock);
2138 bind_lockstate = rlock_acquire(rtld_bind_lock);
2140 error = 0;
2142 for (obj = obj_list; obj != NULL; obj = obj->next) {
2143 phdr_info.dlpi_addr = (Elf_Addr)obj->relocbase;
2144 phdr_info.dlpi_name = STAILQ_FIRST(&obj->names) ?
2145 STAILQ_FIRST(&obj->names)->name : obj->path;
2146 phdr_info.dlpi_phdr = obj->phdr;
2147 phdr_info.dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
2148 phdr_info.dlpi_tls_modid = obj->tlsindex;
2149 phdr_info.dlpi_tls_data = obj->tlsinit;
2150 phdr_info.dlpi_adds = obj_loads;
2151 phdr_info.dlpi_subs = obj_loads - obj_count;
2153 if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
2154 break;
2157 rlock_release(rtld_bind_lock, bind_lockstate);
2158 wlock_release(rtld_phdr_lock, phdr_lockstate);
2160 return (error);
2163 struct fill_search_info_args {
2164 int request;
2165 unsigned int flags;
2166 Dl_serinfo *serinfo;
2167 Dl_serpath *serpath;
2168 char *strspace;
2171 static void *
2172 fill_search_info(const char *dir, size_t dirlen, void *param)
2174 struct fill_search_info_args *arg;
2176 arg = param;
2178 if (arg->request == RTLD_DI_SERINFOSIZE) {
2179 arg->serinfo->dls_cnt ++;
2180 arg->serinfo->dls_size += sizeof(Dl_serpath) + dirlen + 1;
2181 } else {
2182 struct dl_serpath *s_entry;
2184 s_entry = arg->serpath;
2185 s_entry->dls_name = arg->strspace;
2186 s_entry->dls_flags = arg->flags;
2188 strncpy(arg->strspace, dir, dirlen);
2189 arg->strspace[dirlen] = '\0';
2191 arg->strspace += dirlen + 1;
2192 arg->serpath++;
2195 return (NULL);
2198 static int
2199 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
2201 struct dl_serinfo _info;
2202 struct fill_search_info_args args;
2204 args.request = RTLD_DI_SERINFOSIZE;
2205 args.serinfo = &_info;
2207 _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2208 _info.dls_cnt = 0;
2210 path_enumerate(ld_library_path, fill_search_info, &args);
2211 path_enumerate(obj->rpath, fill_search_info, &args);
2212 path_enumerate(gethints(), fill_search_info, &args);
2213 path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
2216 if (request == RTLD_DI_SERINFOSIZE) {
2217 info->dls_size = _info.dls_size;
2218 info->dls_cnt = _info.dls_cnt;
2219 return (0);
2222 if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
2223 _rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
2224 return (-1);
2227 args.request = RTLD_DI_SERINFO;
2228 args.serinfo = info;
2229 args.serpath = &info->dls_serpath[0];
2230 args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
2232 args.flags = LA_SER_LIBPATH;
2233 if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
2234 return (-1);
2236 args.flags = LA_SER_RUNPATH;
2237 if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
2238 return (-1);
2240 args.flags = LA_SER_CONFIG;
2241 if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
2242 return (-1);
2244 args.flags = LA_SER_DEFAULT;
2245 if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
2246 return (-1);
2247 return (0);
2250 static int
2251 rtld_dirname(const char *path, char *bname)
2253 const char *endp;
2255 /* Empty or NULL string gets treated as "." */
2256 if (path == NULL || *path == '\0') {
2257 bname[0] = '.';
2258 bname[1] = '\0';
2259 return (0);
2262 /* Strip trailing slashes */
2263 endp = path + strlen(path) - 1;
2264 while (endp > path && *endp == '/')
2265 endp--;
2267 /* Find the start of the dir */
2268 while (endp > path && *endp != '/')
2269 endp--;
2271 /* Either the dir is "/" or there are no slashes */
2272 if (endp == path) {
2273 bname[0] = *endp == '/' ? '/' : '.';
2274 bname[1] = '\0';
2275 return (0);
2276 } else {
2277 do {
2278 endp--;
2279 } while (endp > path && *endp == '/');
2282 if (endp - path + 2 > PATH_MAX)
2284 _rtld_error("Filename is too long: %s", path);
2285 return(-1);
2288 strncpy(bname, path, endp - path + 1);
2289 bname[endp - path + 1] = '\0';
2290 return (0);
2293 static void
2294 linkmap_add(Obj_Entry *obj)
2296 struct link_map *l = &obj->linkmap;
2297 struct link_map *prev;
2299 obj->linkmap.l_name = obj->path;
2300 obj->linkmap.l_addr = obj->mapbase;
2301 obj->linkmap.l_ld = obj->dynamic;
2302 #ifdef __mips__
2303 /* GDB needs load offset on MIPS to use the symbols */
2304 obj->linkmap.l_offs = obj->relocbase;
2305 #endif
2307 if (r_debug.r_map == NULL) {
2308 r_debug.r_map = l;
2309 return;
2313 * Scan to the end of the list, but not past the entry for the
2314 * dynamic linker, which we want to keep at the very end.
2316 for (prev = r_debug.r_map;
2317 prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
2318 prev = prev->l_next)
2321 /* Link in the new entry. */
2322 l->l_prev = prev;
2323 l->l_next = prev->l_next;
2324 if (l->l_next != NULL)
2325 l->l_next->l_prev = l;
2326 prev->l_next = l;
2329 static void
2330 linkmap_delete(Obj_Entry *obj)
2332 struct link_map *l = &obj->linkmap;
2334 if (l->l_prev == NULL) {
2335 if ((r_debug.r_map = l->l_next) != NULL)
2336 l->l_next->l_prev = NULL;
2337 return;
2340 if ((l->l_prev->l_next = l->l_next) != NULL)
2341 l->l_next->l_prev = l->l_prev;
2345 * Function for the debugger to set a breakpoint on to gain control.
2347 * The two parameters allow the debugger to easily find and determine
2348 * what the runtime loader is doing and to whom it is doing it.
2350 * When the loadhook trap is hit (r_debug_state, set at program
2351 * initialization), the arguments can be found on the stack:
2353 * +8 struct link_map *m
2354 * +4 struct r_debug *rd
2355 * +0 RetAddr
2357 void
2358 r_debug_state(struct r_debug* rd, struct link_map *m)
2363 * Get address of the pointer variable in the main program.
2365 static const void **
2366 get_program_var_addr(const char *name)
2368 const Obj_Entry *obj;
2369 unsigned long hash;
2371 hash = elf_hash(name);
2372 for (obj = obj_main; obj != NULL; obj = obj->next) {
2373 const Elf_Sym *def;
2375 if ((def = symlook_obj(name, hash, obj, NULL, 0)) != NULL) {
2376 const void **addr;
2378 addr = (const void **)(obj->relocbase + def->st_value);
2379 return addr;
2382 return NULL;
2386 * Set a pointer variable in the main program to the given value. This
2387 * is used to set key variables such as "environ" before any of the
2388 * init functions are called.
2390 static void
2391 set_program_var(const char *name, const void *value)
2393 const void **addr;
2395 if ((addr = get_program_var_addr(name)) != NULL) {
2396 dbg("\"%s\": *%p <-- %p", name, addr, value);
2397 *addr = value;
2402 * Given a symbol name in a referencing object, find the corresponding
2403 * definition of the symbol. Returns a pointer to the symbol, or NULL if
2404 * no definition was found. Returns a pointer to the Obj_Entry of the
2405 * defining object via the reference parameter DEFOBJ_OUT.
2407 static const Elf_Sym *
2408 symlook_default(const char *name, unsigned long hash, const Obj_Entry *refobj,
2409 const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags)
2411 DoneList donelist;
2412 const Elf_Sym *def;
2413 const Elf_Sym *symp;
2414 const Obj_Entry *obj;
2415 const Obj_Entry *defobj;
2416 const Objlist_Entry *elm;
2417 def = NULL;
2418 defobj = NULL;
2419 donelist_init(&donelist);
2421 /* Look first in the referencing object if linked symbolically. */
2422 if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
2423 symp = symlook_obj(name, hash, refobj, ventry, flags);
2424 if (symp != NULL) {
2425 def = symp;
2426 defobj = refobj;
2430 /* Search all objects loaded at program start up. */
2431 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2432 symp = symlook_list(name, hash, &list_main, &obj, ventry, flags,
2433 &donelist);
2434 if (symp != NULL &&
2435 (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2436 def = symp;
2437 defobj = obj;
2441 /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
2442 STAILQ_FOREACH(elm, &list_global, link) {
2443 if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2444 break;
2445 symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, ventry,
2446 flags, &donelist);
2447 if (symp != NULL &&
2448 (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2449 def = symp;
2450 defobj = obj;
2454 /* Search all dlopened DAGs containing the referencing object. */
2455 STAILQ_FOREACH(elm, &refobj->dldags, link) {
2456 if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2457 break;
2458 symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, ventry,
2459 flags, &donelist);
2460 if (symp != NULL &&
2461 (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2462 def = symp;
2463 defobj = obj;
2468 * Search the dynamic linker itself, and possibly resolve the
2469 * symbol from there. This is how the application links to
2470 * dynamic linker services such as dlopen. Only the values listed
2471 * in the "exports" array can be resolved from the dynamic linker.
2473 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2474 symp = symlook_obj(name, hash, &obj_rtld, ventry, flags);
2475 if (symp != NULL && is_exported(symp)) {
2476 def = symp;
2477 defobj = &obj_rtld;
2481 if (def != NULL)
2482 *defobj_out = defobj;
2483 return def;
2486 static const Elf_Sym *
2487 symlook_list(const char *name, unsigned long hash, const Objlist *objlist,
2488 const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags,
2489 DoneList *dlp)
2491 const Elf_Sym *symp;
2492 const Elf_Sym *def;
2493 const Obj_Entry *defobj;
2494 const Objlist_Entry *elm;
2496 def = NULL;
2497 defobj = NULL;
2498 STAILQ_FOREACH(elm, objlist, link) {
2499 if (donelist_check(dlp, elm->obj))
2500 continue;
2501 if ((symp = symlook_obj(name, hash, elm->obj, ventry, flags)) != NULL) {
2502 if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
2503 def = symp;
2504 defobj = elm->obj;
2505 if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2506 break;
2510 if (def != NULL)
2511 *defobj_out = defobj;
2512 return def;
2516 * Search the symbol table of a shared object and all objects needed
2517 * by it for a symbol of the given name. Search order is
2518 * breadth-first. Returns a pointer to the symbol, or NULL if no
2519 * definition was found.
2521 static const Elf_Sym *
2522 symlook_needed(const char *name, unsigned long hash, const Needed_Entry *needed,
2523 const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags,
2524 DoneList *dlp)
2526 const Elf_Sym *def, *def_w;
2527 const Needed_Entry *n;
2528 const Obj_Entry *obj, *defobj, *defobj1;
2530 def = def_w = NULL;
2531 defobj = NULL;
2532 for (n = needed; n != NULL; n = n->next) {
2533 if ((obj = n->obj) == NULL ||
2534 donelist_check(dlp, obj) ||
2535 (def = symlook_obj(name, hash, obj, ventry, flags)) == NULL)
2536 continue;
2537 defobj = obj;
2538 if (ELF_ST_BIND(def->st_info) != STB_WEAK) {
2539 *defobj_out = defobj;
2540 return (def);
2544 * There we come when either symbol definition is not found in
2545 * directly needed objects, or found symbol is weak.
2547 for (n = needed; n != NULL; n = n->next) {
2548 if ((obj = n->obj) == NULL)
2549 continue;
2550 def_w = symlook_needed(name, hash, obj->needed, &defobj1,
2551 ventry, flags, dlp);
2552 if (def_w == NULL)
2553 continue;
2554 if (def == NULL || ELF_ST_BIND(def_w->st_info) != STB_WEAK) {
2555 def = def_w;
2556 defobj = defobj1;
2558 if (ELF_ST_BIND(def_w->st_info) != STB_WEAK)
2559 break;
2561 if (def != NULL)
2562 *defobj_out = defobj;
2563 return (def);
2567 * Search the symbol table of a single shared object for a symbol of
2568 * the given name and version, if requested. Returns a pointer to the
2569 * symbol, or NULL if no definition was found.
2571 * The symbol's hash value is passed in for efficiency reasons; that
2572 * eliminates many recomputations of the hash value.
2574 const Elf_Sym *
2575 symlook_obj(const char *name, unsigned long hash, const Obj_Entry *obj,
2576 const Ver_Entry *ventry, int flags)
2578 unsigned long symnum;
2579 const Elf_Sym *vsymp;
2580 Elf_Versym verndx;
2581 int vcount;
2583 if (obj->buckets == NULL)
2584 return NULL;
2586 vsymp = NULL;
2587 vcount = 0;
2588 symnum = obj->buckets[hash % obj->nbuckets];
2590 for (; symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
2591 const Elf_Sym *symp;
2592 const char *strp;
2594 if (symnum >= obj->nchains)
2595 return NULL; /* Bad object */
2597 symp = obj->symtab + symnum;
2598 strp = obj->strtab + symp->st_name;
2600 switch (ELF_ST_TYPE(symp->st_info)) {
2601 case STT_FUNC:
2602 case STT_NOTYPE:
2603 case STT_OBJECT:
2604 if (symp->st_value == 0)
2605 continue;
2606 /* fallthrough */
2607 case STT_TLS:
2608 if (symp->st_shndx != SHN_UNDEF)
2609 break;
2610 #ifndef __mips__
2611 else if (((flags & SYMLOOK_IN_PLT) == 0) &&
2612 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
2613 break;
2614 /* fallthrough */
2615 #endif
2616 default:
2617 continue;
2619 if (name[0] != strp[0] || strcmp(name, strp) != 0)
2620 continue;
2622 if (ventry == NULL) {
2623 if (obj->versyms != NULL) {
2624 verndx = VER_NDX(obj->versyms[symnum]);
2625 if (verndx > obj->vernum) {
2626 _rtld_error("%s: symbol %s references wrong version %d",
2627 obj->path, obj->strtab + symnum, verndx);
2628 continue;
2631 * If we are not called from dlsym (i.e. this is a normal
2632 * relocation from unversioned binary, accept the symbol
2633 * immediately if it happens to have first version after
2634 * this shared object became versioned. Otherwise, if
2635 * symbol is versioned and not hidden, remember it. If it
2636 * is the only symbol with this name exported by the
2637 * shared object, it will be returned as a match at the
2638 * end of the function. If symbol is global (verndx < 2)
2639 * accept it unconditionally.
2641 if ((flags & SYMLOOK_DLSYM) == 0 && verndx == VER_NDX_GIVEN)
2642 return symp;
2643 else if (verndx >= VER_NDX_GIVEN) {
2644 if ((obj->versyms[symnum] & VER_NDX_HIDDEN) == 0) {
2645 if (vsymp == NULL)
2646 vsymp = symp;
2647 vcount ++;
2649 continue;
2652 return symp;
2653 } else {
2654 if (obj->versyms == NULL) {
2655 if (object_match_name(obj, ventry->name)) {
2656 _rtld_error("%s: object %s should provide version %s for "
2657 "symbol %s", obj_rtld.path, obj->path, ventry->name,
2658 obj->strtab + symnum);
2659 continue;
2661 } else {
2662 verndx = VER_NDX(obj->versyms[symnum]);
2663 if (verndx > obj->vernum) {
2664 _rtld_error("%s: symbol %s references wrong version %d",
2665 obj->path, obj->strtab + symnum, verndx);
2666 continue;
2668 if (obj->vertab[verndx].hash != ventry->hash ||
2669 strcmp(obj->vertab[verndx].name, ventry->name)) {
2671 * Version does not match. Look if this is a global symbol
2672 * and if it is not hidden. If global symbol (verndx < 2)
2673 * is available, use it. Do not return symbol if we are
2674 * called by dlvsym, because dlvsym looks for a specific
2675 * version and default one is not what dlvsym wants.
2677 if ((flags & SYMLOOK_DLSYM) ||
2678 (obj->versyms[symnum] & VER_NDX_HIDDEN) ||
2679 (verndx >= VER_NDX_GIVEN))
2680 continue;
2683 return symp;
2686 return (vcount == 1) ? vsymp : NULL;
2689 static void
2690 trace_loaded_objects(Obj_Entry *obj)
2692 char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
2693 int c;
2695 if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
2696 main_local = "";
2698 if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
2699 fmt1 = "\t%o => %p (%x)\n";
2701 if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
2702 fmt2 = "\t%o (%x)\n";
2704 list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
2706 for (; obj; obj = obj->next) {
2707 Needed_Entry *needed;
2708 char *name, *path;
2709 bool is_lib;
2711 if (list_containers && obj->needed != NULL)
2712 printf("%s:\n", obj->path);
2713 for (needed = obj->needed; needed; needed = needed->next) {
2714 if (needed->obj != NULL) {
2715 if (needed->obj->traced && !list_containers)
2716 continue;
2717 needed->obj->traced = true;
2718 path = needed->obj->path;
2719 } else
2720 path = "not found";
2722 name = (char *)obj->strtab + needed->name;
2723 is_lib = strncmp(name, "lib", 3) == 0; /* XXX - bogus */
2725 fmt = is_lib ? fmt1 : fmt2;
2726 while ((c = *fmt++) != '\0') {
2727 switch (c) {
2728 default:
2729 putchar(c);
2730 continue;
2731 case '\\':
2732 switch (c = *fmt) {
2733 case '\0':
2734 continue;
2735 case 'n':
2736 putchar('\n');
2737 break;
2738 case 't':
2739 putchar('\t');
2740 break;
2742 break;
2743 case '%':
2744 switch (c = *fmt) {
2745 case '\0':
2746 continue;
2747 case '%':
2748 default:
2749 putchar(c);
2750 break;
2751 case 'A':
2752 printf("%s", main_local);
2753 break;
2754 case 'a':
2755 printf("%s", obj_main->path);
2756 break;
2757 case 'o':
2758 printf("%s", name);
2759 break;
2760 #if 0
2761 case 'm':
2762 printf("%d", sodp->sod_major);
2763 break;
2764 case 'n':
2765 printf("%d", sodp->sod_minor);
2766 break;
2767 #endif
2768 case 'p':
2769 printf("%s", path);
2770 break;
2771 case 'x':
2772 printf("%p", needed->obj ? needed->obj->mapbase : 0);
2773 break;
2775 break;
2777 ++fmt;
2784 * Unload a dlopened object and its dependencies from memory and from
2785 * our data structures. It is assumed that the DAG rooted in the
2786 * object has already been unreferenced, and that the object has a
2787 * reference count of 0.
2789 static void
2790 unload_object(Obj_Entry *root)
2792 Obj_Entry *obj;
2793 Obj_Entry **linkp;
2795 assert(root->refcount == 0);
2798 * Pass over the DAG removing unreferenced objects from
2799 * appropriate lists.
2801 unlink_object(root);
2803 /* Unmap all objects that are no longer referenced. */
2804 linkp = &obj_list->next;
2805 while ((obj = *linkp) != NULL) {
2806 if (obj->refcount == 0) {
2807 LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2808 obj->path);
2809 dbg("unloading \"%s\"", obj->path);
2810 munmap(obj->mapbase, obj->mapsize);
2811 linkmap_delete(obj);
2812 *linkp = obj->next;
2813 obj_count--;
2814 obj_free(obj);
2815 } else
2816 linkp = &obj->next;
2818 obj_tail = linkp;
2821 static void
2822 unlink_object(Obj_Entry *root)
2824 Objlist_Entry *elm;
2826 if (root->refcount == 0) {
2827 /* Remove the object from the RTLD_GLOBAL list. */
2828 objlist_remove(&list_global, root);
2830 /* Remove the object from all objects' DAG lists. */
2831 STAILQ_FOREACH(elm, &root->dagmembers, link) {
2832 objlist_remove(&elm->obj->dldags, root);
2833 if (elm->obj != root)
2834 unlink_object(elm->obj);
2839 static void
2840 ref_dag(Obj_Entry *root)
2842 Objlist_Entry *elm;
2844 STAILQ_FOREACH(elm, &root->dagmembers, link)
2845 elm->obj->refcount++;
2848 static void
2849 unref_dag(Obj_Entry *root)
2851 Objlist_Entry *elm;
2853 STAILQ_FOREACH(elm, &root->dagmembers, link)
2854 elm->obj->refcount--;
2858 * Common code for MD __tls_get_addr().
2860 void *
2861 tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
2863 Elf_Addr* dtv = *dtvp;
2864 int lockstate;
2866 /* Check dtv generation in case new modules have arrived */
2867 if (dtv[0] != tls_dtv_generation) {
2868 Elf_Addr* newdtv;
2869 int to_copy;
2871 lockstate = wlock_acquire(rtld_bind_lock);
2872 newdtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
2873 to_copy = dtv[1];
2874 if (to_copy > tls_max_index)
2875 to_copy = tls_max_index;
2876 memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
2877 newdtv[0] = tls_dtv_generation;
2878 newdtv[1] = tls_max_index;
2879 free(dtv);
2880 wlock_release(rtld_bind_lock, lockstate);
2881 *dtvp = newdtv;
2884 /* Dynamically allocate module TLS if necessary */
2885 if (!dtv[index + 1]) {
2886 /* Signal safe, wlock will block out signals. */
2887 lockstate = wlock_acquire(rtld_bind_lock);
2888 if (!dtv[index + 1])
2889 dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
2890 wlock_release(rtld_bind_lock, lockstate);
2892 return (void*) (dtv[index + 1] + offset);
2895 /* XXX not sure what variants to use for arm. */
2897 #if defined(__ia64__) || defined(__powerpc__)
2900 * Allocate Static TLS using the Variant I method.
2902 void *
2903 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
2905 Obj_Entry *obj;
2906 char *tcb;
2907 Elf_Addr **tls;
2908 Elf_Addr *dtv;
2909 Elf_Addr addr;
2910 int i;
2912 if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
2913 return (oldtcb);
2915 assert(tcbsize >= TLS_TCB_SIZE);
2916 tcb = calloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
2917 tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
2919 if (oldtcb != NULL) {
2920 memcpy(tls, oldtcb, tls_static_space);
2921 free(oldtcb);
2923 /* Adjust the DTV. */
2924 dtv = tls[0];
2925 for (i = 0; i < dtv[1]; i++) {
2926 if (dtv[i+2] >= (Elf_Addr)oldtcb &&
2927 dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
2928 dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
2931 } else {
2932 dtv = calloc(tls_max_index + 2, sizeof(Elf_Addr));
2933 tls[0] = dtv;
2934 dtv[0] = tls_dtv_generation;
2935 dtv[1] = tls_max_index;
2937 for (obj = objs; obj; obj = obj->next) {
2938 if (obj->tlsoffset) {
2939 addr = (Elf_Addr)tls + obj->tlsoffset;
2940 memset((void*) (addr + obj->tlsinitsize),
2941 0, obj->tlssize - obj->tlsinitsize);
2942 if (obj->tlsinit)
2943 memcpy((void*) addr, obj->tlsinit,
2944 obj->tlsinitsize);
2945 dtv[obj->tlsindex + 1] = addr;
2950 return (tcb);
2953 void
2954 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
2956 Elf_Addr *dtv;
2957 Elf_Addr tlsstart, tlsend;
2958 int dtvsize, i;
2960 assert(tcbsize >= TLS_TCB_SIZE);
2962 tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
2963 tlsend = tlsstart + tls_static_space;
2965 dtv = *(Elf_Addr **)tlsstart;
2966 dtvsize = dtv[1];
2967 for (i = 0; i < dtvsize; i++) {
2968 if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
2969 free((void*)dtv[i+2]);
2972 free(dtv);
2973 free(tcb);
2976 #endif
2978 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) || \
2979 defined(__arm__) || defined(__mips__)
2982 * Allocate Static TLS using the Variant II method.
2984 void *
2985 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
2987 Obj_Entry *obj;
2988 size_t size;
2989 char *tls;
2990 Elf_Addr *dtv, *olddtv;
2991 Elf_Addr segbase, oldsegbase, addr;
2992 int i;
2994 size = round(tls_static_space, tcbalign);
2996 assert(tcbsize >= 2*sizeof(Elf_Addr));
2997 tls = calloc(1, size + tcbsize);
2998 dtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3000 segbase = (Elf_Addr)(tls + size);
3001 ((Elf_Addr*)segbase)[0] = segbase;
3002 ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
3004 dtv[0] = tls_dtv_generation;
3005 dtv[1] = tls_max_index;
3007 if (oldtls) {
3009 * Copy the static TLS block over whole.
3011 oldsegbase = (Elf_Addr) oldtls;
3012 memcpy((void *)(segbase - tls_static_space),
3013 (const void *)(oldsegbase - tls_static_space),
3014 tls_static_space);
3017 * If any dynamic TLS blocks have been created tls_get_addr(),
3018 * move them over.
3020 olddtv = ((Elf_Addr**)oldsegbase)[1];
3021 for (i = 0; i < olddtv[1]; i++) {
3022 if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
3023 dtv[i+2] = olddtv[i+2];
3024 olddtv[i+2] = 0;
3029 * We assume that this block was the one we created with
3030 * allocate_initial_tls().
3032 free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
3033 } else {
3034 for (obj = objs; obj; obj = obj->next) {
3035 if (obj->tlsoffset) {
3036 addr = segbase - obj->tlsoffset;
3037 memset((void*) (addr + obj->tlsinitsize),
3038 0, obj->tlssize - obj->tlsinitsize);
3039 if (obj->tlsinit)
3040 memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3041 dtv[obj->tlsindex + 1] = addr;
3046 return (void*) segbase;
3049 void
3050 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
3052 size_t size;
3053 Elf_Addr* dtv;
3054 int dtvsize, i;
3055 Elf_Addr tlsstart, tlsend;
3058 * Figure out the size of the initial TLS block so that we can
3059 * find stuff which ___tls_get_addr() allocated dynamically.
3061 size = round(tls_static_space, tcbalign);
3063 dtv = ((Elf_Addr**)tls)[1];
3064 dtvsize = dtv[1];
3065 tlsend = (Elf_Addr) tls;
3066 tlsstart = tlsend - size;
3067 for (i = 0; i < dtvsize; i++) {
3068 if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] > tlsend)) {
3069 free((void*) dtv[i+2]);
3073 free((void*) tlsstart);
3074 free((void*) dtv);
3077 #endif
3080 * Allocate TLS block for module with given index.
3082 void *
3083 allocate_module_tls(int index)
3085 Obj_Entry* obj;
3086 char* p;
3088 for (obj = obj_list; obj; obj = obj->next) {
3089 if (obj->tlsindex == index)
3090 break;
3092 if (!obj) {
3093 _rtld_error("Can't find module with TLS index %d", index);
3094 die();
3097 p = malloc(obj->tlssize);
3098 memcpy(p, obj->tlsinit, obj->tlsinitsize);
3099 memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
3101 return p;
3104 bool
3105 allocate_tls_offset(Obj_Entry *obj)
3107 size_t off;
3109 if (obj->tls_done)
3110 return true;
3112 if (obj->tlssize == 0) {
3113 obj->tls_done = true;
3114 return true;
3117 if (obj->tlsindex == 1)
3118 off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
3119 else
3120 off = calculate_tls_offset(tls_last_offset, tls_last_size,
3121 obj->tlssize, obj->tlsalign);
3124 * If we have already fixed the size of the static TLS block, we
3125 * must stay within that size. When allocating the static TLS, we
3126 * leave a small amount of space spare to be used for dynamically
3127 * loading modules which use static TLS.
3129 if (tls_static_space) {
3130 if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
3131 return false;
3134 tls_last_offset = obj->tlsoffset = off;
3135 tls_last_size = obj->tlssize;
3136 obj->tls_done = true;
3138 return true;
3141 void
3142 free_tls_offset(Obj_Entry *obj)
3144 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) || \
3145 defined(__arm__) || defined(__mips__)
3147 * If we were the last thing to allocate out of the static TLS
3148 * block, we give our space back to the 'allocator'. This is a
3149 * simplistic workaround to allow libGL.so.1 to be loaded and
3150 * unloaded multiple times. We only handle the Variant II
3151 * mechanism for now - this really needs a proper allocator.
3153 if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
3154 == calculate_tls_end(tls_last_offset, tls_last_size)) {
3155 tls_last_offset -= obj->tlssize;
3156 tls_last_size = 0;
3158 #endif
3161 void *
3162 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
3164 void *ret;
3165 int lockstate;
3167 lockstate = wlock_acquire(rtld_bind_lock);
3168 ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
3169 wlock_release(rtld_bind_lock, lockstate);
3170 return (ret);
3173 void
3174 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3176 int lockstate;
3178 lockstate = wlock_acquire(rtld_bind_lock);
3179 free_tls(tcb, tcbsize, tcbalign);
3180 wlock_release(rtld_bind_lock, lockstate);
3183 static void
3184 object_add_name(Obj_Entry *obj, const char *name)
3186 Name_Entry *entry;
3187 size_t len;
3189 len = strlen(name);
3190 entry = malloc(sizeof(Name_Entry) + len);
3192 if (entry != NULL) {
3193 strcpy(entry->name, name);
3194 STAILQ_INSERT_TAIL(&obj->names, entry, link);
3198 static int
3199 object_match_name(const Obj_Entry *obj, const char *name)
3201 Name_Entry *entry;
3203 STAILQ_FOREACH(entry, &obj->names, link) {
3204 if (strcmp(name, entry->name) == 0)
3205 return (1);
3207 return (0);
3210 static Obj_Entry *
3211 locate_dependency(const Obj_Entry *obj, const char *name)
3213 const Objlist_Entry *entry;
3214 const Needed_Entry *needed;
3216 STAILQ_FOREACH(entry, &list_main, link) {
3217 if (object_match_name(entry->obj, name))
3218 return entry->obj;
3221 for (needed = obj->needed; needed != NULL; needed = needed->next) {
3222 if (needed->obj == NULL)
3223 continue;
3224 if (object_match_name(needed->obj, name))
3225 return needed->obj;
3227 _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
3228 obj->path, name);
3229 die();
3232 static int
3233 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
3234 const Elf_Vernaux *vna)
3236 const Elf_Verdef *vd;
3237 const char *vername;
3239 vername = refobj->strtab + vna->vna_name;
3240 vd = depobj->verdef;
3241 if (vd == NULL) {
3242 _rtld_error("%s: version %s required by %s not defined",
3243 depobj->path, vername, refobj->path);
3244 return (-1);
3246 for (;;) {
3247 if (vd->vd_version != VER_DEF_CURRENT) {
3248 _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3249 depobj->path, vd->vd_version);
3250 return (-1);
3252 if (vna->vna_hash == vd->vd_hash) {
3253 const Elf_Verdaux *aux = (const Elf_Verdaux *)
3254 ((char *)vd + vd->vd_aux);
3255 if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
3256 return (0);
3258 if (vd->vd_next == 0)
3259 break;
3260 vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3262 if (vna->vna_flags & VER_FLG_WEAK)
3263 return (0);
3264 _rtld_error("%s: version %s required by %s not found",
3265 depobj->path, vername, refobj->path);
3266 return (-1);
3269 static int
3270 rtld_verify_object_versions(Obj_Entry *obj)
3272 const Elf_Verneed *vn;
3273 const Elf_Verdef *vd;
3274 const Elf_Verdaux *vda;
3275 const Elf_Vernaux *vna;
3276 const Obj_Entry *depobj;
3277 int maxvernum, vernum;
3279 maxvernum = 0;
3281 * Walk over defined and required version records and figure out
3282 * max index used by any of them. Do very basic sanity checking
3283 * while there.
3285 vn = obj->verneed;
3286 while (vn != NULL) {
3287 if (vn->vn_version != VER_NEED_CURRENT) {
3288 _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
3289 obj->path, vn->vn_version);
3290 return (-1);
3292 vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3293 for (;;) {
3294 vernum = VER_NEED_IDX(vna->vna_other);
3295 if (vernum > maxvernum)
3296 maxvernum = vernum;
3297 if (vna->vna_next == 0)
3298 break;
3299 vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3301 if (vn->vn_next == 0)
3302 break;
3303 vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3306 vd = obj->verdef;
3307 while (vd != NULL) {
3308 if (vd->vd_version != VER_DEF_CURRENT) {
3309 _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3310 obj->path, vd->vd_version);
3311 return (-1);
3313 vernum = VER_DEF_IDX(vd->vd_ndx);
3314 if (vernum > maxvernum)
3315 maxvernum = vernum;
3316 if (vd->vd_next == 0)
3317 break;
3318 vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3321 if (maxvernum == 0)
3322 return (0);
3325 * Store version information in array indexable by version index.
3326 * Verify that object version requirements are satisfied along the
3327 * way.
3329 obj->vernum = maxvernum + 1;
3330 obj->vertab = calloc(obj->vernum, sizeof(Ver_Entry));
3332 vd = obj->verdef;
3333 while (vd != NULL) {
3334 if ((vd->vd_flags & VER_FLG_BASE) == 0) {
3335 vernum = VER_DEF_IDX(vd->vd_ndx);
3336 assert(vernum <= maxvernum);
3337 vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
3338 obj->vertab[vernum].hash = vd->vd_hash;
3339 obj->vertab[vernum].name = obj->strtab + vda->vda_name;
3340 obj->vertab[vernum].file = NULL;
3341 obj->vertab[vernum].flags = 0;
3343 if (vd->vd_next == 0)
3344 break;
3345 vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3348 vn = obj->verneed;
3349 while (vn != NULL) {
3350 depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
3351 vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3352 for (;;) {
3353 if (check_object_provided_version(obj, depobj, vna))
3354 return (-1);
3355 vernum = VER_NEED_IDX(vna->vna_other);
3356 assert(vernum <= maxvernum);
3357 obj->vertab[vernum].hash = vna->vna_hash;
3358 obj->vertab[vernum].name = obj->strtab + vna->vna_name;
3359 obj->vertab[vernum].file = obj->strtab + vn->vn_file;
3360 obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
3361 VER_INFO_HIDDEN : 0;
3362 if (vna->vna_next == 0)
3363 break;
3364 vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3366 if (vn->vn_next == 0)
3367 break;
3368 vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3370 return 0;
3373 static int
3374 rtld_verify_versions(const Objlist *objlist)
3376 Objlist_Entry *entry;
3377 int rc;
3379 rc = 0;
3380 STAILQ_FOREACH(entry, objlist, link) {
3382 * Skip dummy objects or objects that have their version requirements
3383 * already checked.
3385 if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
3386 continue;
3387 if (rtld_verify_object_versions(entry->obj) == -1) {
3388 rc = -1;
3389 if (ld_tracing == NULL)
3390 break;
3393 if (rc == 0 || ld_tracing != NULL)
3394 rc = rtld_verify_object_versions(&obj_rtld);
3395 return rc;
3398 const Ver_Entry *
3399 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
3401 Elf_Versym vernum;
3403 if (obj->vertab) {
3404 vernum = VER_NDX(obj->versyms[symnum]);
3405 if (vernum >= obj->vernum) {
3406 _rtld_error("%s: symbol %s has wrong verneed value %d",
3407 obj->path, obj->strtab + symnum, vernum);
3408 } else if (obj->vertab[vernum].hash != 0) {
3409 return &obj->vertab[vernum];
3412 return NULL;