2 * Copyright (c) 2008 David Schultz <das@FreeBSD.org>
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * Tests for corner cases in trigonometric functions. Some accuracy tests
29 * are included as well, but these are very basic sanity checks, not
30 * intended to be comprehensive.
32 * The program for generating representable numbers near multiples of pi is
33 * available at http://www.cs.berkeley.edu/~wkahan/testpi/ .
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
45 #define ALL_STD_EXCEPT (FE_DIVBYZERO | FE_INEXACT | FE_INVALID | \
46 FE_OVERFLOW | FE_UNDERFLOW)
48 #define LEN(a) (sizeof(a) / sizeof((a)[0]))
50 #pragma STDC FENV_ACCESS ON
53 * Test that a function returns the correct value and sets the
54 * exception flags correctly. The exceptmask specifies which
55 * exceptions we should check. We need to be lenient for several
56 * reasons, but mainly because on some architectures it's impossible
57 * to raise FE_OVERFLOW without raising FE_INEXACT.
59 * These are macros instead of functions so that assert provides more
60 * meaningful error messages.
62 * XXX The volatile here is to avoid gcc's bogus constant folding and work
63 * around the lack of support for the FENV_ACCESS pragma.
65 #define test(func, x, result, exceptmask, excepts) do { \
66 volatile long double _d = x; \
67 assert(feclearexcept(FE_ALL_EXCEPT) == 0); \
68 assert(fpequal((func)(_d), (result))); \
69 assert(((func), fetestexcept(exceptmask) == (excepts))); \
72 #define testall(prefix, x, result, exceptmask, excepts) do { \
73 test(prefix, x, (double)result, exceptmask, excepts); \
74 test(prefix##f, x, (float)result, exceptmask, excepts); \
75 test(prefix##l, x, result, exceptmask, excepts); \
78 #define testdf(prefix, x, result, exceptmask, excepts) do { \
79 test(prefix, x, (double)result, exceptmask, excepts); \
80 test(prefix##f, x, (float)result, exceptmask, excepts); \
86 * Determine whether x and y are equal, with two special rules:
91 fpequal(long double x
, long double y
)
93 return ((x
== y
&& signbit(x
) == signbit(y
)) || isnan(x
) && isnan(y
));
97 * Test special cases in sin(), cos(), and tan().
100 run_special_tests(void)
103 /* Values at 0 should be exact. */
104 testall(tan
, 0.0, 0.0, ALL_STD_EXCEPT
, 0);
105 testall(tan
, -0.0, -0.0, ALL_STD_EXCEPT
, 0);
106 testall(cos
, 0.0, 1.0, ALL_STD_EXCEPT
, 0);
107 testall(cos
, -0.0, 1.0, ALL_STD_EXCEPT
, 0);
108 testall(sin
, 0.0, 0.0, ALL_STD_EXCEPT
, 0);
109 testall(sin
, -0.0, -0.0, ALL_STD_EXCEPT
, 0);
111 /* func(+-Inf) == NaN */
112 testall(tan
, INFINITY
, NAN
, ALL_STD_EXCEPT
, FE_INVALID
);
113 testall(sin
, INFINITY
, NAN
, ALL_STD_EXCEPT
, FE_INVALID
);
114 testall(cos
, INFINITY
, NAN
, ALL_STD_EXCEPT
, FE_INVALID
);
115 testall(tan
, -INFINITY
, NAN
, ALL_STD_EXCEPT
, FE_INVALID
);
116 testall(sin
, -INFINITY
, NAN
, ALL_STD_EXCEPT
, FE_INVALID
);
117 testall(cos
, -INFINITY
, NAN
, ALL_STD_EXCEPT
, FE_INVALID
);
119 /* func(NaN) == NaN */
120 testall(tan
, NAN
, NAN
, ALL_STD_EXCEPT
, 0);
121 testall(sin
, NAN
, NAN
, ALL_STD_EXCEPT
, 0);
122 testall(cos
, NAN
, NAN
, ALL_STD_EXCEPT
, 0);
126 * Tests to ensure argument reduction for large arguments is accurate.
129 run_reduction_tests(void)
131 /* floats very close to odd multiples of pi */
132 static const float f_pi_odd
[] = {
135 9.2763667655669323e+25f
,
136 1.5458357838905804e+29f
,
138 /* doubles very close to odd multiples of pi */
139 static const double d_pi_odd
[] = {
145 3.0213551960457761e+43,
146 1.2646209897993783e+295,
147 6.2083625380677099e+307,
149 /* long doubles very close to odd multiples of pi */
150 #if LDBL_MANT_DIG == 64
151 static const long double ld_pi_odd
[] = {
152 1.1891886960373841596e+101L,
153 1.07999475322710967206e+2087L,
154 6.522151627890431836e+2147L,
155 8.9368974898260328229e+2484L,
156 9.2961044110572205863e+2555L,
157 4.90208421886578286e+3189L,
158 1.5275546401232615884e+3317L,
159 1.7227465626338900093e+3565L,
160 2.4160090594000745334e+3808L,
161 9.8477555741888350649e+4314L,
162 1.6061597222105160737e+4326L,
164 #elif LDBL_MANT_DIG == 113
165 static const long double ld_pi_odd
[] = {
172 for (i
= 0; i
< LEN(f_pi_odd
); i
++) {
173 assert(fabs(sinf(f_pi_odd
[i
])) < FLT_EPSILON
);
174 assert(cosf(f_pi_odd
[i
]) == -1.0);
175 assert(fabs(tan(f_pi_odd
[i
])) < FLT_EPSILON
);
177 assert(fabs(sinf(-f_pi_odd
[i
])) < FLT_EPSILON
);
178 assert(cosf(-f_pi_odd
[i
]) == -1.0);
179 assert(fabs(tanf(-f_pi_odd
[i
])) < FLT_EPSILON
);
181 assert(fabs(sinf(f_pi_odd
[i
] * 2)) < FLT_EPSILON
);
182 assert(cosf(f_pi_odd
[i
] * 2) == 1.0);
183 assert(fabs(tanf(f_pi_odd
[i
] * 2)) < FLT_EPSILON
);
185 assert(fabs(sinf(-f_pi_odd
[i
] * 2)) < FLT_EPSILON
);
186 assert(cosf(-f_pi_odd
[i
] * 2) == 1.0);
187 assert(fabs(tanf(-f_pi_odd
[i
] * 2)) < FLT_EPSILON
);
190 for (i
= 0; i
< LEN(d_pi_odd
); i
++) {
191 assert(fabs(sin(d_pi_odd
[i
])) < 2 * DBL_EPSILON
);
192 assert(cos(d_pi_odd
[i
]) == -1.0);
193 assert(fabs(tan(d_pi_odd
[i
])) < 2 * DBL_EPSILON
);
195 assert(fabs(sin(-d_pi_odd
[i
])) < 2 * DBL_EPSILON
);
196 assert(cos(-d_pi_odd
[i
]) == -1.0);
197 assert(fabs(tan(-d_pi_odd
[i
])) < 2 * DBL_EPSILON
);
199 assert(fabs(sin(d_pi_odd
[i
] * 2)) < 2 * DBL_EPSILON
);
200 assert(cos(d_pi_odd
[i
] * 2) == 1.0);
201 assert(fabs(tan(d_pi_odd
[i
] * 2)) < 2 * DBL_EPSILON
);
203 assert(fabs(sin(-d_pi_odd
[i
] * 2)) < 2 * DBL_EPSILON
);
204 assert(cos(-d_pi_odd
[i
] * 2) == 1.0);
205 assert(fabs(tan(-d_pi_odd
[i
] * 2)) < 2 * DBL_EPSILON
);
208 #if LDBL_MANT_DIG > 53
209 for (i
= 0; i
< LEN(ld_pi_odd
); i
++) {
210 assert(fabsl(sinl(ld_pi_odd
[i
])) < LDBL_EPSILON
);
211 assert(cosl(ld_pi_odd
[i
]) == -1.0);
212 assert(fabsl(tanl(ld_pi_odd
[i
])) < LDBL_EPSILON
);
214 assert(fabsl(sinl(-ld_pi_odd
[i
])) < LDBL_EPSILON
);
215 assert(cosl(-ld_pi_odd
[i
]) == -1.0);
216 assert(fabsl(tanl(-ld_pi_odd
[i
])) < LDBL_EPSILON
);
218 assert(fabsl(sinl(ld_pi_odd
[i
] * 2)) < LDBL_EPSILON
);
219 assert(cosl(ld_pi_odd
[i
] * 2) == 1.0);
220 assert(fabsl(tanl(ld_pi_odd
[i
] * 2)) < LDBL_EPSILON
);
222 assert(fabsl(sinl(-ld_pi_odd
[i
] * 2)) < LDBL_EPSILON
);
223 assert(cosl(-ld_pi_odd
[i
] * 2) == 1.0);
224 assert(fabsl(tanl(-ld_pi_odd
[i
] * 2)) < LDBL_EPSILON
);
230 * Tests the accuracy of these functions over the primary range.
233 run_accuracy_tests(void)
236 /* For small args, sin(x) = tan(x) = x, and cos(x) = 1. */
237 testall(sin
, 0xd.50ee515fe4aea16p
-114L, 0xd.50ee515fe4aea16p
-114L,
238 ALL_STD_EXCEPT
, FE_INEXACT
);
239 testall(tan
, 0xd.50ee515fe4aea16p
-114L, 0xd.50ee515fe4aea16p
-114L,
240 ALL_STD_EXCEPT
, FE_INEXACT
);
241 testall(cos
, 0xd.50ee515fe4aea16p
-114L, 1.0,
242 ALL_STD_EXCEPT
, FE_INEXACT
);
245 * These tests should pass for f32, d64, and ld80 as long as
246 * the error is <= 0.75 ulp (round to nearest)
248 #if LDBL_MANT_DIG <= 64
249 #define testacc testall
251 #define testacc testdf
253 testacc(sin
, 0.17255452780841205174L, 0.17169949801444412683L,
254 ALL_STD_EXCEPT
, FE_INEXACT
);
255 testacc(sin
, -0.75431944555904520893L, -0.68479288156557286353L,
256 ALL_STD_EXCEPT
, FE_INEXACT
);
257 testacc(cos
, 0.70556358769838947292L, 0.76124620693117771850L,
258 ALL_STD_EXCEPT
, FE_INEXACT
);
259 testacc(cos
, -0.34061437849088045332L, 0.94254960031831729956L,
260 ALL_STD_EXCEPT
, FE_INEXACT
);
261 testacc(tan
, -0.15862817413325692897L, -0.15997221861309522115L,
262 ALL_STD_EXCEPT
, FE_INEXACT
);
263 testacc(tan
, 0.38374784931303813530L, 0.40376500259976759951L,
264 ALL_STD_EXCEPT
, FE_INEXACT
);
269 * - tests for other rounding modes (probably won't pass for now)
270 * - tests for large numbers that get reduced to hi+lo with lo!=0
275 main(int argc
, char *argv
[])
281 printf("ok 1 - trig\n");
284 run_reduction_tests();
286 printf("ok 2 - trig\n");
289 run_accuracy_tests();
291 printf("ok 3 - trig\n");