Ignore machine-check MSRs
[freebsd-src/fkvm-freebsd.git] / lib / libkvm / kvm_proc.c
bloba2265f99eb70bc5be24567d45f2bbd9ae6805f33
1 /*-
2 * Copyright (c) 1989, 1992, 1993
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
34 #if 0
35 #if defined(LIBC_SCCS) && !defined(lint)
36 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
37 #endif /* LIBC_SCCS and not lint */
38 #endif
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
44 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
45 * users of this code, so we've factored it out into a separate module.
46 * Thus, we keep this grunge out of the other kvm applications (i.e.,
47 * most other applications are interested only in open/close/read/nlist).
50 #include <sys/param.h>
51 #define _WANT_UCRED /* make ucred.h give us 'struct ucred' */
52 #include <sys/ucred.h>
53 #include <sys/queue.h>
54 #include <sys/_lock.h>
55 #include <sys/_mutex.h>
56 #include <sys/_task.h>
57 #define _WANT_PRISON /* make jail.h give us 'struct prison' */
58 #include <sys/jail.h>
59 #include <sys/user.h>
60 #include <sys/proc.h>
61 #include <sys/exec.h>
62 #include <sys/stat.h>
63 #include <sys/sysent.h>
64 #include <sys/ioctl.h>
65 #include <sys/tty.h>
66 #include <sys/file.h>
67 #include <sys/conf.h>
68 #include <stdio.h>
69 #include <stdlib.h>
70 #include <unistd.h>
71 #include <nlist.h>
72 #include <kvm.h>
74 #include <vm/vm.h>
75 #include <vm/vm_param.h>
77 #include <sys/sysctl.h>
79 #include <limits.h>
80 #include <memory.h>
81 #include <paths.h>
83 #include "kvm_private.h"
85 #define KREAD(kd, addr, obj) \
86 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
88 static int ticks;
89 static int hz;
92 * Read proc's from memory file into buffer bp, which has space to hold
93 * at most maxcnt procs.
95 static int
96 kvm_proclist(kd, what, arg, p, bp, maxcnt)
97 kvm_t *kd;
98 int what, arg;
99 struct proc *p;
100 struct kinfo_proc *bp;
101 int maxcnt;
103 int cnt = 0;
104 struct kinfo_proc kinfo_proc, *kp;
105 struct pgrp pgrp;
106 struct session sess;
107 struct cdev t_cdev;
108 struct tty tty;
109 struct vmspace vmspace;
110 struct sigacts sigacts;
111 struct pstats pstats;
112 struct ucred ucred;
113 struct prison pr;
114 struct thread mtd;
115 struct proc proc;
116 struct proc pproc;
117 struct timeval tv;
118 struct sysentvec sysent;
119 char svname[KI_EMULNAMELEN];
121 kp = &kinfo_proc;
122 kp->ki_structsize = sizeof(kinfo_proc);
124 * Loop on the processes. this is completely broken because we need to be
125 * able to loop on the threads and merge the ones that are the same process some how.
127 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
128 memset(kp, 0, sizeof *kp);
129 if (KREAD(kd, (u_long)p, &proc)) {
130 _kvm_err(kd, kd->program, "can't read proc at %x", p);
131 return (-1);
133 if (proc.p_state != PRS_ZOMBIE) {
134 if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
135 &mtd)) {
136 _kvm_err(kd, kd->program,
137 "can't read thread at %x",
138 TAILQ_FIRST(&proc.p_threads));
139 return (-1);
142 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
143 kp->ki_ruid = ucred.cr_ruid;
144 kp->ki_svuid = ucred.cr_svuid;
145 kp->ki_rgid = ucred.cr_rgid;
146 kp->ki_svgid = ucred.cr_svgid;
147 kp->ki_ngroups = ucred.cr_ngroups;
148 bcopy(ucred.cr_groups, kp->ki_groups,
149 NGROUPS * sizeof(gid_t));
150 kp->ki_uid = ucred.cr_uid;
151 if (ucred.cr_prison != NULL) {
152 if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) {
153 _kvm_err(kd, kd->program,
154 "can't read prison at %x",
155 ucred.cr_prison);
156 return (-1);
158 kp->ki_jid = pr.pr_id;
162 switch(what & ~KERN_PROC_INC_THREAD) {
164 case KERN_PROC_GID:
165 if (kp->ki_groups[0] != (gid_t)arg)
166 continue;
167 break;
169 case KERN_PROC_PID:
170 if (proc.p_pid != (pid_t)arg)
171 continue;
172 break;
174 case KERN_PROC_RGID:
175 if (kp->ki_rgid != (gid_t)arg)
176 continue;
177 break;
179 case KERN_PROC_UID:
180 if (kp->ki_uid != (uid_t)arg)
181 continue;
182 break;
184 case KERN_PROC_RUID:
185 if (kp->ki_ruid != (uid_t)arg)
186 continue;
187 break;
190 * We're going to add another proc to the set. If this
191 * will overflow the buffer, assume the reason is because
192 * nprocs (or the proc list) is corrupt and declare an error.
194 if (cnt >= maxcnt) {
195 _kvm_err(kd, kd->program, "nprocs corrupt");
196 return (-1);
199 * gather kinfo_proc
201 kp->ki_paddr = p;
202 kp->ki_addr = 0; /* XXX uarea */
203 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
204 kp->ki_args = proc.p_args;
205 kp->ki_tracep = proc.p_tracevp;
206 kp->ki_textvp = proc.p_textvp;
207 kp->ki_fd = proc.p_fd;
208 kp->ki_vmspace = proc.p_vmspace;
209 if (proc.p_sigacts != NULL) {
210 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
211 _kvm_err(kd, kd->program,
212 "can't read sigacts at %x", proc.p_sigacts);
213 return (-1);
215 kp->ki_sigignore = sigacts.ps_sigignore;
216 kp->ki_sigcatch = sigacts.ps_sigcatch;
218 #if 0
219 if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) {
220 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
221 _kvm_err(kd, kd->program,
222 "can't read stats at %x", proc.p_stats);
223 return (-1);
225 kp->ki_start = pstats.p_start;
228 * XXX: The times here are probably zero and need
229 * to be calculated from the raw data in p_rux and
230 * p_crux.
232 kp->ki_rusage = pstats.p_ru;
233 kp->ki_childstime = pstats.p_cru.ru_stime;
234 kp->ki_childutime = pstats.p_cru.ru_utime;
235 /* Some callers want child-times in a single value */
236 timeradd(&kp->ki_childstime, &kp->ki_childutime,
237 &kp->ki_childtime);
239 #endif
240 if (proc.p_oppid)
241 kp->ki_ppid = proc.p_oppid;
242 else if (proc.p_pptr) {
243 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
244 _kvm_err(kd, kd->program,
245 "can't read pproc at %x", proc.p_pptr);
246 return (-1);
248 kp->ki_ppid = pproc.p_pid;
249 } else
250 kp->ki_ppid = 0;
251 if (proc.p_pgrp == NULL)
252 goto nopgrp;
253 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
254 _kvm_err(kd, kd->program, "can't read pgrp at %x",
255 proc.p_pgrp);
256 return (-1);
258 kp->ki_pgid = pgrp.pg_id;
259 kp->ki_jobc = pgrp.pg_jobc;
260 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
261 _kvm_err(kd, kd->program, "can't read session at %x",
262 pgrp.pg_session);
263 return (-1);
265 kp->ki_sid = sess.s_sid;
266 (void)memcpy(kp->ki_login, sess.s_login,
267 sizeof(kp->ki_login));
268 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
269 if (sess.s_leader == p)
270 kp->ki_kiflag |= KI_SLEADER;
271 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
272 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
273 _kvm_err(kd, kd->program,
274 "can't read tty at %x", sess.s_ttyp);
275 return (-1);
277 if (tty.t_dev != NULL) {
278 if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) {
279 _kvm_err(kd, kd->program,
280 "can't read cdev at %x",
281 tty.t_dev);
282 return (-1);
284 #if 0
285 kp->ki_tdev = t_cdev.si_udev;
286 #else
287 kp->ki_tdev = NODEV;
288 #endif
290 if (tty.t_pgrp != NULL) {
291 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
292 _kvm_err(kd, kd->program,
293 "can't read tpgrp at %x",
294 tty.t_pgrp);
295 return (-1);
297 kp->ki_tpgid = pgrp.pg_id;
298 } else
299 kp->ki_tpgid = -1;
300 if (tty.t_session != NULL) {
301 if (KREAD(kd, (u_long)tty.t_session, &sess)) {
302 _kvm_err(kd, kd->program,
303 "can't read session at %x",
304 tty.t_session);
305 return (-1);
307 kp->ki_tsid = sess.s_sid;
309 } else {
310 nopgrp:
311 kp->ki_tdev = NODEV;
313 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
314 (void)kvm_read(kd, (u_long)mtd.td_wmesg,
315 kp->ki_wmesg, WMESGLEN);
317 (void)kvm_read(kd, (u_long)proc.p_vmspace,
318 (char *)&vmspace, sizeof(vmspace));
319 kp->ki_size = vmspace.vm_map.size;
320 kp->ki_rssize = vmspace.vm_swrss; /* XXX */
321 kp->ki_swrss = vmspace.vm_swrss;
322 kp->ki_tsize = vmspace.vm_tsize;
323 kp->ki_dsize = vmspace.vm_dsize;
324 kp->ki_ssize = vmspace.vm_ssize;
326 switch (what & ~KERN_PROC_INC_THREAD) {
328 case KERN_PROC_PGRP:
329 if (kp->ki_pgid != (pid_t)arg)
330 continue;
331 break;
333 case KERN_PROC_SESSION:
334 if (kp->ki_sid != (pid_t)arg)
335 continue;
336 break;
338 case KERN_PROC_TTY:
339 if ((proc.p_flag & P_CONTROLT) == 0 ||
340 kp->ki_tdev != (dev_t)arg)
341 continue;
342 break;
344 if (proc.p_comm[0] != 0)
345 strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
346 (void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent,
347 sizeof(sysent));
348 (void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname,
349 sizeof(svname));
350 if (svname[0] != 0)
351 strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN);
352 if ((proc.p_state != PRS_ZOMBIE) &&
353 (mtd.td_blocked != 0)) {
354 kp->ki_kiflag |= KI_LOCKBLOCK;
355 if (mtd.td_lockname)
356 (void)kvm_read(kd,
357 (u_long)mtd.td_lockname,
358 kp->ki_lockname, LOCKNAMELEN);
359 kp->ki_lockname[LOCKNAMELEN] = 0;
362 * XXX: This is plain wrong, rux_runtime has nothing
363 * to do with struct bintime, rux_runtime is just a 64-bit
364 * integer counter of cputicks. What we need here is a way
365 * to convert cputicks to usecs. The kernel does it in
366 * kern/kern_tc.c, but the function can't be just copied.
368 bintime2timeval(&proc.p_rux.rux_runtime, &tv);
369 kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
370 kp->ki_pid = proc.p_pid;
371 kp->ki_siglist = proc.p_siglist;
372 SIGSETOR(kp->ki_siglist, mtd.td_siglist);
373 kp->ki_sigmask = mtd.td_sigmask;
374 kp->ki_xstat = proc.p_xstat;
375 kp->ki_acflag = proc.p_acflag;
376 kp->ki_lock = proc.p_lock;
377 if (proc.p_state != PRS_ZOMBIE) {
378 kp->ki_swtime = (ticks - proc.p_swtick) / hz;
379 kp->ki_flag = proc.p_flag;
380 kp->ki_sflag = 0;
381 kp->ki_nice = proc.p_nice;
382 kp->ki_traceflag = proc.p_traceflag;
383 if (proc.p_state == PRS_NORMAL) {
384 if (TD_ON_RUNQ(&mtd) ||
385 TD_CAN_RUN(&mtd) ||
386 TD_IS_RUNNING(&mtd)) {
387 kp->ki_stat = SRUN;
388 } else if (mtd.td_state ==
389 TDS_INHIBITED) {
390 if (P_SHOULDSTOP(&proc)) {
391 kp->ki_stat = SSTOP;
392 } else if (
393 TD_IS_SLEEPING(&mtd)) {
394 kp->ki_stat = SSLEEP;
395 } else if (TD_ON_LOCK(&mtd)) {
396 kp->ki_stat = SLOCK;
397 } else {
398 kp->ki_stat = SWAIT;
401 } else {
402 kp->ki_stat = SIDL;
404 /* Stuff from the thread */
405 kp->ki_pri.pri_level = mtd.td_priority;
406 kp->ki_pri.pri_native = mtd.td_base_pri;
407 kp->ki_lastcpu = mtd.td_lastcpu;
408 kp->ki_wchan = mtd.td_wchan;
409 if (mtd.td_name[0] != 0)
410 strlcpy(kp->ki_ocomm, mtd.td_name, MAXCOMLEN);
411 kp->ki_oncpu = mtd.td_oncpu;
412 if (mtd.td_name[0] != '\0')
413 strlcpy(kp->ki_ocomm, mtd.td_name, sizeof(kp->ki_ocomm));
414 kp->ki_pctcpu = 0;
415 kp->ki_rqindex = 0;
416 } else {
417 kp->ki_stat = SZOMB;
419 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
420 ++bp;
421 ++cnt;
423 return (cnt);
427 * Build proc info array by reading in proc list from a crash dump.
428 * Return number of procs read. maxcnt is the max we will read.
430 static int
431 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
432 kvm_t *kd;
433 int what, arg;
434 u_long a_allproc;
435 u_long a_zombproc;
436 int maxcnt;
438 struct kinfo_proc *bp = kd->procbase;
439 int acnt, zcnt;
440 struct proc *p;
442 if (KREAD(kd, a_allproc, &p)) {
443 _kvm_err(kd, kd->program, "cannot read allproc");
444 return (-1);
446 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
447 if (acnt < 0)
448 return (acnt);
450 if (KREAD(kd, a_zombproc, &p)) {
451 _kvm_err(kd, kd->program, "cannot read zombproc");
452 return (-1);
454 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
455 if (zcnt < 0)
456 zcnt = 0;
458 return (acnt + zcnt);
461 struct kinfo_proc *
462 kvm_getprocs(kd, op, arg, cnt)
463 kvm_t *kd;
464 int op, arg;
465 int *cnt;
467 int mib[4], st, nprocs;
468 size_t size;
469 int temp_op;
471 if (kd->procbase != 0) {
472 free((void *)kd->procbase);
474 * Clear this pointer in case this call fails. Otherwise,
475 * kvm_close() will free it again.
477 kd->procbase = 0;
479 if (ISALIVE(kd)) {
480 size = 0;
481 mib[0] = CTL_KERN;
482 mib[1] = KERN_PROC;
483 mib[2] = op;
484 mib[3] = arg;
485 temp_op = op & ~KERN_PROC_INC_THREAD;
486 st = sysctl(mib,
487 temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ?
488 3 : 4, NULL, &size, NULL, 0);
489 if (st == -1) {
490 _kvm_syserr(kd, kd->program, "kvm_getprocs");
491 return (0);
494 * We can't continue with a size of 0 because we pass
495 * it to realloc() (via _kvm_realloc()), and passing 0
496 * to realloc() results in undefined behavior.
498 if (size == 0) {
500 * XXX: We should probably return an invalid,
501 * but non-NULL, pointer here so any client
502 * program trying to dereference it will
503 * crash. However, _kvm_freeprocs() calls
504 * free() on kd->procbase if it isn't NULL,
505 * and free()'ing a junk pointer isn't good.
506 * Then again, _kvm_freeprocs() isn't used
507 * anywhere . . .
509 kd->procbase = _kvm_malloc(kd, 1);
510 goto liveout;
512 do {
513 size += size / 10;
514 kd->procbase = (struct kinfo_proc *)
515 _kvm_realloc(kd, kd->procbase, size);
516 if (kd->procbase == 0)
517 return (0);
518 st = sysctl(mib, temp_op == KERN_PROC_ALL ||
519 temp_op == KERN_PROC_PROC ? 3 : 4,
520 kd->procbase, &size, NULL, 0);
521 } while (st == -1 && errno == ENOMEM);
522 if (st == -1) {
523 _kvm_syserr(kd, kd->program, "kvm_getprocs");
524 return (0);
527 * We have to check the size again because sysctl()
528 * may "round up" oldlenp if oldp is NULL; hence it
529 * might've told us that there was data to get when
530 * there really isn't any.
532 if (size > 0 &&
533 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
534 _kvm_err(kd, kd->program,
535 "kinfo_proc size mismatch (expected %d, got %d)",
536 sizeof(struct kinfo_proc),
537 kd->procbase->ki_structsize);
538 return (0);
540 liveout:
541 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
542 } else {
543 struct nlist nl[6], *p;
545 nl[0].n_name = "_nprocs";
546 nl[1].n_name = "_allproc";
547 nl[2].n_name = "_zombproc";
548 nl[3].n_name = "_ticks";
549 nl[4].n_name = "_hz";
550 nl[5].n_name = 0;
552 if (kvm_nlist(kd, nl) != 0) {
553 for (p = nl; p->n_type != 0; ++p)
555 _kvm_err(kd, kd->program,
556 "%s: no such symbol", p->n_name);
557 return (0);
559 if (KREAD(kd, nl[0].n_value, &nprocs)) {
560 _kvm_err(kd, kd->program, "can't read nprocs");
561 return (0);
563 if (KREAD(kd, nl[3].n_value, &ticks)) {
564 _kvm_err(kd, kd->program, "can't read ticks");
565 return (0);
567 if (KREAD(kd, nl[4].n_value, &hz)) {
568 _kvm_err(kd, kd->program, "can't read hz");
569 return (0);
571 size = nprocs * sizeof(struct kinfo_proc);
572 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
573 if (kd->procbase == 0)
574 return (0);
576 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
577 nl[2].n_value, nprocs);
578 #ifdef notdef
579 size = nprocs * sizeof(struct kinfo_proc);
580 (void)realloc(kd->procbase, size);
581 #endif
583 *cnt = nprocs;
584 return (kd->procbase);
587 void
588 _kvm_freeprocs(kd)
589 kvm_t *kd;
591 if (kd->procbase) {
592 free(kd->procbase);
593 kd->procbase = 0;
597 void *
598 _kvm_realloc(kd, p, n)
599 kvm_t *kd;
600 void *p;
601 size_t n;
603 void *np = (void *)realloc(p, n);
605 if (np == 0) {
606 free(p);
607 _kvm_err(kd, kd->program, "out of memory");
609 return (np);
612 #ifndef MAX
613 #define MAX(a, b) ((a) > (b) ? (a) : (b))
614 #endif
617 * Read in an argument vector from the user address space of process kp.
618 * addr if the user-space base address of narg null-terminated contiguous
619 * strings. This is used to read in both the command arguments and
620 * environment strings. Read at most maxcnt characters of strings.
622 static char **
623 kvm_argv(kd, kp, addr, narg, maxcnt)
624 kvm_t *kd;
625 struct kinfo_proc *kp;
626 u_long addr;
627 int narg;
628 int maxcnt;
630 char *np, *cp, *ep, *ap;
631 u_long oaddr = -1;
632 int len, cc;
633 char **argv;
636 * Check that there aren't an unreasonable number of agruments,
637 * and that the address is in user space.
639 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
640 return (0);
643 * kd->argv : work space for fetching the strings from the target
644 * process's space, and is converted for returning to caller
646 if (kd->argv == 0) {
648 * Try to avoid reallocs.
650 kd->argc = MAX(narg + 1, 32);
651 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
652 sizeof(*kd->argv));
653 if (kd->argv == 0)
654 return (0);
655 } else if (narg + 1 > kd->argc) {
656 kd->argc = MAX(2 * kd->argc, narg + 1);
657 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
658 sizeof(*kd->argv));
659 if (kd->argv == 0)
660 return (0);
663 * kd->argspc : returned to user, this is where the kd->argv
664 * arrays are left pointing to the collected strings.
666 if (kd->argspc == 0) {
667 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
668 if (kd->argspc == 0)
669 return (0);
670 kd->arglen = PAGE_SIZE;
673 * kd->argbuf : used to pull in pages from the target process.
674 * the strings are copied out of here.
676 if (kd->argbuf == 0) {
677 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
678 if (kd->argbuf == 0)
679 return (0);
682 /* Pull in the target process'es argv vector */
683 cc = sizeof(char *) * narg;
684 if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
685 return (0);
687 * ap : saved start address of string we're working on in kd->argspc
688 * np : pointer to next place to write in kd->argspc
689 * len: length of data in kd->argspc
690 * argv: pointer to the argv vector that we are hunting around the
691 * target process space for, and converting to addresses in
692 * our address space (kd->argspc).
694 ap = np = kd->argspc;
695 argv = kd->argv;
696 len = 0;
698 * Loop over pages, filling in the argument vector.
699 * Note that the argv strings could be pointing *anywhere* in
700 * the user address space and are no longer contiguous.
701 * Note that *argv is modified when we are going to fetch a string
702 * that crosses a page boundary. We copy the next part of the string
703 * into to "np" and eventually convert the pointer.
705 while (argv < kd->argv + narg && *argv != 0) {
707 /* get the address that the current argv string is on */
708 addr = (u_long)*argv & ~(PAGE_SIZE - 1);
710 /* is it the same page as the last one? */
711 if (addr != oaddr) {
712 if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
713 PAGE_SIZE)
714 return (0);
715 oaddr = addr;
718 /* offset within the page... kd->argbuf */
719 addr = (u_long)*argv & (PAGE_SIZE - 1);
721 /* cp = start of string, cc = count of chars in this chunk */
722 cp = kd->argbuf + addr;
723 cc = PAGE_SIZE - addr;
725 /* dont get more than asked for by user process */
726 if (maxcnt > 0 && cc > maxcnt - len)
727 cc = maxcnt - len;
729 /* pointer to end of string if we found it in this page */
730 ep = memchr(cp, '\0', cc);
731 if (ep != 0)
732 cc = ep - cp + 1;
734 * at this point, cc is the count of the chars that we are
735 * going to retrieve this time. we may or may not have found
736 * the end of it. (ep points to the null if the end is known)
739 /* will we exceed the malloc/realloced buffer? */
740 if (len + cc > kd->arglen) {
741 int off;
742 char **pp;
743 char *op = kd->argspc;
745 kd->arglen *= 2;
746 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
747 kd->arglen);
748 if (kd->argspc == 0)
749 return (0);
751 * Adjust argv pointers in case realloc moved
752 * the string space.
754 off = kd->argspc - op;
755 for (pp = kd->argv; pp < argv; pp++)
756 *pp += off;
757 ap += off;
758 np += off;
760 /* np = where to put the next part of the string in kd->argspc*/
761 /* np is kinda redundant.. could use "kd->argspc + len" */
762 memcpy(np, cp, cc);
763 np += cc; /* inc counters */
764 len += cc;
767 * if end of string found, set the *argv pointer to the
768 * saved beginning of string, and advance. argv points to
769 * somewhere in kd->argv.. This is initially relative
770 * to the target process, but when we close it off, we set
771 * it to point in our address space.
773 if (ep != 0) {
774 *argv++ = ap;
775 ap = np;
776 } else {
777 /* update the address relative to the target process */
778 *argv += cc;
781 if (maxcnt > 0 && len >= maxcnt) {
783 * We're stopping prematurely. Terminate the
784 * current string.
786 if (ep == 0) {
787 *np = '\0';
788 *argv++ = ap;
790 break;
793 /* Make sure argv is terminated. */
794 *argv = 0;
795 return (kd->argv);
798 static void
799 ps_str_a(p, addr, n)
800 struct ps_strings *p;
801 u_long *addr;
802 int *n;
804 *addr = (u_long)p->ps_argvstr;
805 *n = p->ps_nargvstr;
808 static void
809 ps_str_e(p, addr, n)
810 struct ps_strings *p;
811 u_long *addr;
812 int *n;
814 *addr = (u_long)p->ps_envstr;
815 *n = p->ps_nenvstr;
819 * Determine if the proc indicated by p is still active.
820 * This test is not 100% foolproof in theory, but chances of
821 * being wrong are very low.
823 static int
824 proc_verify(curkp)
825 struct kinfo_proc *curkp;
827 struct kinfo_proc newkp;
828 int mib[4];
829 size_t len;
831 mib[0] = CTL_KERN;
832 mib[1] = KERN_PROC;
833 mib[2] = KERN_PROC_PID;
834 mib[3] = curkp->ki_pid;
835 len = sizeof(newkp);
836 if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
837 return (0);
838 return (curkp->ki_pid == newkp.ki_pid &&
839 (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
842 static char **
843 kvm_doargv(kd, kp, nchr, info)
844 kvm_t *kd;
845 struct kinfo_proc *kp;
846 int nchr;
847 void (*info)(struct ps_strings *, u_long *, int *);
849 char **ap;
850 u_long addr;
851 int cnt;
852 static struct ps_strings arginfo;
853 static u_long ps_strings;
854 size_t len;
856 if (ps_strings == 0) {
857 len = sizeof(ps_strings);
858 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
859 0) == -1)
860 ps_strings = PS_STRINGS;
864 * Pointers are stored at the top of the user stack.
866 if (kp->ki_stat == SZOMB ||
867 kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
868 sizeof(arginfo)) != sizeof(arginfo))
869 return (0);
871 (*info)(&arginfo, &addr, &cnt);
872 if (cnt == 0)
873 return (0);
874 ap = kvm_argv(kd, kp, addr, cnt, nchr);
876 * For live kernels, make sure this process didn't go away.
878 if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
879 ap = 0;
880 return (ap);
884 * Get the command args. This code is now machine independent.
886 char **
887 kvm_getargv(kd, kp, nchr)
888 kvm_t *kd;
889 const struct kinfo_proc *kp;
890 int nchr;
892 int oid[4];
893 int i;
894 size_t bufsz;
895 static unsigned long buflen;
896 static char *buf, *p;
897 static char **bufp;
898 static int argc;
900 if (!ISALIVE(kd)) {
901 _kvm_err(kd, kd->program,
902 "cannot read user space from dead kernel");
903 return (0);
906 if (!buflen) {
907 bufsz = sizeof(buflen);
908 i = sysctlbyname("kern.ps_arg_cache_limit",
909 &buflen, &bufsz, NULL, 0);
910 if (i == -1) {
911 buflen = 0;
912 } else {
913 buf = malloc(buflen);
914 if (buf == NULL)
915 buflen = 0;
916 argc = 32;
917 bufp = malloc(sizeof(char *) * argc);
920 if (buf != NULL) {
921 oid[0] = CTL_KERN;
922 oid[1] = KERN_PROC;
923 oid[2] = KERN_PROC_ARGS;
924 oid[3] = kp->ki_pid;
925 bufsz = buflen;
926 i = sysctl(oid, 4, buf, &bufsz, 0, 0);
927 if (i == 0 && bufsz > 0) {
928 i = 0;
929 p = buf;
930 do {
931 bufp[i++] = p;
932 p += strlen(p) + 1;
933 if (i >= argc) {
934 argc += argc;
935 bufp = realloc(bufp,
936 sizeof(char *) * argc);
938 } while (p < buf + bufsz);
939 bufp[i++] = 0;
940 return (bufp);
943 if (kp->ki_flag & P_SYSTEM)
944 return (NULL);
945 return (kvm_doargv(kd, kp, nchr, ps_str_a));
948 char **
949 kvm_getenvv(kd, kp, nchr)
950 kvm_t *kd;
951 const struct kinfo_proc *kp;
952 int nchr;
954 return (kvm_doargv(kd, kp, nchr, ps_str_e));
958 * Read from user space. The user context is given by p.
960 ssize_t
961 kvm_uread(kd, kp, uva, buf, len)
962 kvm_t *kd;
963 struct kinfo_proc *kp;
964 u_long uva;
965 char *buf;
966 size_t len;
968 char *cp;
969 char procfile[MAXPATHLEN];
970 ssize_t amount;
971 int fd;
973 if (!ISALIVE(kd)) {
974 _kvm_err(kd, kd->program,
975 "cannot read user space from dead kernel");
976 return (0);
979 sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
980 fd = open(procfile, O_RDONLY, 0);
981 if (fd < 0) {
982 _kvm_err(kd, kd->program, "cannot open %s", procfile);
983 return (0);
986 cp = buf;
987 while (len > 0) {
988 errno = 0;
989 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
990 _kvm_err(kd, kd->program, "invalid address (%x) in %s",
991 uva, procfile);
992 break;
994 amount = read(fd, cp, len);
995 if (amount < 0) {
996 _kvm_syserr(kd, kd->program, "error reading %s",
997 procfile);
998 break;
1000 if (amount == 0) {
1001 _kvm_err(kd, kd->program, "EOF reading %s", procfile);
1002 break;
1004 cp += amount;
1005 uva += amount;
1006 len -= amount;
1009 close(fd);
1010 return ((ssize_t)(cp - buf));