Ignore machine-check MSRs
[freebsd-src/fkvm-freebsd.git] / lib / msun / ld80 / k_cosl.c
blob6dde6adad2dd8c7f4b97c2e5d1e87b0c96c1c490
1 /* From: @(#)k_cos.c 1.3 95/01/18 */
2 /*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
7 * Developed at SunSoft, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
14 #include <sys/cdefs.h>
15 __FBSDID("$FreeBSD$");
18 * ld80 version of k_cos.c. See ../src/k_cos.c for most comments.
21 #include "math_private.h"
24 * Domain [-0.7854, 0.7854], range ~[-2.43e-23, 2.425e-23]:
25 * |cos(x) - c(x)| < 2**-75.1
27 * The coefficients of c(x) were generated by a pari-gp script using
28 * a Remez algorithm that searches for the best higher coefficients
29 * after rounding leading coefficients to a specified precision.
31 * Simpler methods like Chebyshev or basic Remez barely suffice for
32 * cos() in 64-bit precision, because we want the coefficient of x^2
33 * to be precisely -0.5 so that multiplying by it is exact, and plain
34 * rounding of the coefficients of a good polynomial approximation only
35 * gives this up to about 64-bit precision. Plain rounding also gives
36 * a mediocre approximation for the coefficient of x^4, but a rounding
37 * error of 0.5 ulps for this coefficient would only contribute ~0.01
38 * ulps to the final error, so this is unimportant. Rounding errors in
39 * higher coefficients are even less important.
41 * In fact, coefficients above the x^4 one only need to have 53-bit
42 * precision, and this is more efficient. We get this optimization
43 * almost for free from the complications needed to search for the best
44 * higher coefficients.
46 static const double
47 one = 1.0;
49 #if defined(__amd64__) || defined(__i386__)
50 /* Long double constants are slow on these arches, and broken on i386. */
51 static const volatile double
52 C1hi = 0.041666666666666664, /* 0x15555555555555.0p-57 */
53 C1lo = 2.2598839032744733e-18; /* 0x14d80000000000.0p-111 */
54 #define C1 ((long double)C1hi + C1lo)
55 #else
56 static const long double
57 C1 = 0.0416666666666666666136L; /* 0xaaaaaaaaaaaaaa9b.0p-68 */
58 #endif
60 static const double
61 C2 = -0.0013888888888888874, /* -0x16c16c16c16c10.0p-62 */
62 C3 = 0.000024801587301571716, /* 0x1a01a01a018e22.0p-68 */
63 C4 = -0.00000027557319215507120, /* -0x127e4fb7602f22.0p-74 */
64 C5 = 0.0000000020876754400407278, /* 0x11eed8caaeccf1.0p-81 */
65 C6 = -1.1470297442401303e-11, /* -0x19393412bd1529.0p-89 */
66 C7 = 4.7383039476436467e-14; /* 0x1aac9d9af5c43e.0p-97 */
68 long double
69 __kernel_cosl(long double x, long double y)
71 long double hz,z,r,w;
73 z = x*x;
74 r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*(C6+z*C7))))));
75 hz = 0.5*z;
76 w = one-hz;
77 return w + (((one-w)-hz) + (z*r-x*y));