Ignore machine-check MSRs
[freebsd-src/fkvm-freebsd.git] / sys / netinet6 / nd6.c
blob94c4401b6a3c1dd74a49d3bcb470ebeeb741a78a
1 /*-
2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the project nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
35 #include "opt_inet.h"
36 #include "opt_inet6.h"
37 #include "opt_mac.h"
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/callout.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 #include <sys/time.h>
47 #include <sys/kernel.h>
48 #include <sys/protosw.h>
49 #include <sys/errno.h>
50 #include <sys/syslog.h>
51 #include <sys/queue.h>
52 #include <sys/sysctl.h>
54 #include <net/if.h>
55 #include <net/if_arc.h>
56 #include <net/if_dl.h>
57 #include <net/if_types.h>
58 #include <net/iso88025.h>
59 #include <net/fddi.h>
60 #include <net/route.h>
62 #include <netinet/in.h>
63 #include <netinet/if_ether.h>
64 #include <netinet6/in6_var.h>
65 #include <netinet/ip6.h>
66 #include <netinet6/ip6_var.h>
67 #include <netinet6/scope6_var.h>
68 #include <netinet6/nd6.h>
69 #include <netinet/icmp6.h>
71 #include <sys/limits.h>
72 #include <sys/vimage.h>
74 #include <security/mac/mac_framework.h>
76 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
77 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
79 #define SIN6(s) ((struct sockaddr_in6 *)s)
80 #define SDL(s) ((struct sockaddr_dl *)s)
82 /* timer values */
83 int nd6_prune = 1; /* walk list every 1 seconds */
84 int nd6_delay = 5; /* delay first probe time 5 second */
85 int nd6_umaxtries = 3; /* maximum unicast query */
86 int nd6_mmaxtries = 3; /* maximum multicast query */
87 int nd6_useloopback = 1; /* use loopback interface for local traffic */
88 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
90 /* preventing too many loops in ND option parsing */
91 int nd6_maxndopt = 10; /* max # of ND options allowed */
93 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
94 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
96 #ifdef ND6_DEBUG
97 int nd6_debug = 1;
98 #else
99 int nd6_debug = 0;
100 #endif
102 /* for debugging? */
103 static int nd6_inuse, nd6_allocated;
105 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
106 struct nd_drhead nd_defrouter;
107 struct nd_prhead nd_prefix = { 0 };
109 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
110 static struct sockaddr_in6 all1_sa;
112 static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *,
113 struct ifnet *));
114 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
115 static void nd6_slowtimo(void *);
116 static int regen_tmpaddr(struct in6_ifaddr *);
117 static struct llinfo_nd6 *nd6_free(struct rtentry *, int);
118 static void nd6_llinfo_timer(void *);
119 static void clear_llinfo_pqueue(struct llinfo_nd6 *);
121 struct callout nd6_slowtimo_ch;
122 struct callout nd6_timer_ch;
123 extern struct callout in6_tmpaddrtimer_ch;
125 void
126 nd6_init(void)
128 static int nd6_init_done = 0;
129 int i;
131 if (nd6_init_done) {
132 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
133 return;
136 all1_sa.sin6_family = AF_INET6;
137 all1_sa.sin6_len = sizeof(struct sockaddr_in6);
138 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
139 all1_sa.sin6_addr.s6_addr[i] = 0xff;
141 /* initialization of the default router list */
142 TAILQ_INIT(&V_nd_defrouter);
143 /* start timer */
144 callout_init(&V_nd6_slowtimo_ch, 0);
145 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
146 nd6_slowtimo, NULL);
148 nd6_init_done = 1;
152 struct nd_ifinfo *
153 nd6_ifattach(struct ifnet *ifp)
155 struct nd_ifinfo *nd;
157 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
158 bzero(nd, sizeof(*nd));
160 nd->initialized = 1;
162 nd->chlim = IPV6_DEFHLIM;
163 nd->basereachable = REACHABLE_TIME;
164 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
165 nd->retrans = RETRANS_TIMER;
167 * Note that the default value of ip6_accept_rtadv is 0, which means
168 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
169 * here.
171 nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
173 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
174 nd6_setmtu0(ifp, nd);
176 return nd;
179 void
180 nd6_ifdetach(struct nd_ifinfo *nd)
183 free(nd, M_IP6NDP);
187 * Reset ND level link MTU. This function is called when the physical MTU
188 * changes, which means we might have to adjust the ND level MTU.
190 void
191 nd6_setmtu(struct ifnet *ifp)
194 nd6_setmtu0(ifp, ND_IFINFO(ifp));
197 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
198 void
199 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
201 u_int32_t omaxmtu;
203 omaxmtu = ndi->maxmtu;
205 switch (ifp->if_type) {
206 case IFT_ARCNET:
207 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
208 break;
209 case IFT_FDDI:
210 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
211 break;
212 case IFT_ISO88025:
213 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
214 break;
215 default:
216 ndi->maxmtu = ifp->if_mtu;
217 break;
221 * Decreasing the interface MTU under IPV6 minimum MTU may cause
222 * undesirable situation. We thus notify the operator of the change
223 * explicitly. The check for omaxmtu is necessary to restrict the
224 * log to the case of changing the MTU, not initializing it.
226 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
227 log(LOG_NOTICE, "nd6_setmtu0: "
228 "new link MTU on %s (%lu) is too small for IPv6\n",
229 if_name(ifp), (unsigned long)ndi->maxmtu);
232 if (ndi->maxmtu > V_in6_maxmtu)
233 in6_setmaxmtu(); /* check all interfaces just in case */
235 #undef MIN
238 void
239 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
242 bzero(ndopts, sizeof(*ndopts));
243 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
244 ndopts->nd_opts_last
245 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
247 if (icmp6len == 0) {
248 ndopts->nd_opts_done = 1;
249 ndopts->nd_opts_search = NULL;
254 * Take one ND option.
256 struct nd_opt_hdr *
257 nd6_option(union nd_opts *ndopts)
259 struct nd_opt_hdr *nd_opt;
260 int olen;
262 if (ndopts == NULL)
263 panic("ndopts == NULL in nd6_option");
264 if (ndopts->nd_opts_last == NULL)
265 panic("uninitialized ndopts in nd6_option");
266 if (ndopts->nd_opts_search == NULL)
267 return NULL;
268 if (ndopts->nd_opts_done)
269 return NULL;
271 nd_opt = ndopts->nd_opts_search;
273 /* make sure nd_opt_len is inside the buffer */
274 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
275 bzero(ndopts, sizeof(*ndopts));
276 return NULL;
279 olen = nd_opt->nd_opt_len << 3;
280 if (olen == 0) {
282 * Message validation requires that all included
283 * options have a length that is greater than zero.
285 bzero(ndopts, sizeof(*ndopts));
286 return NULL;
289 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
290 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
291 /* option overruns the end of buffer, invalid */
292 bzero(ndopts, sizeof(*ndopts));
293 return NULL;
294 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
295 /* reached the end of options chain */
296 ndopts->nd_opts_done = 1;
297 ndopts->nd_opts_search = NULL;
299 return nd_opt;
303 * Parse multiple ND options.
304 * This function is much easier to use, for ND routines that do not need
305 * multiple options of the same type.
308 nd6_options(union nd_opts *ndopts)
310 struct nd_opt_hdr *nd_opt;
311 int i = 0;
313 if (ndopts == NULL)
314 panic("ndopts == NULL in nd6_options");
315 if (ndopts->nd_opts_last == NULL)
316 panic("uninitialized ndopts in nd6_options");
317 if (ndopts->nd_opts_search == NULL)
318 return 0;
320 while (1) {
321 nd_opt = nd6_option(ndopts);
322 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
324 * Message validation requires that all included
325 * options have a length that is greater than zero.
327 V_icmp6stat.icp6s_nd_badopt++;
328 bzero(ndopts, sizeof(*ndopts));
329 return -1;
332 if (nd_opt == NULL)
333 goto skip1;
335 switch (nd_opt->nd_opt_type) {
336 case ND_OPT_SOURCE_LINKADDR:
337 case ND_OPT_TARGET_LINKADDR:
338 case ND_OPT_MTU:
339 case ND_OPT_REDIRECTED_HEADER:
340 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
341 nd6log((LOG_INFO,
342 "duplicated ND6 option found (type=%d)\n",
343 nd_opt->nd_opt_type));
344 /* XXX bark? */
345 } else {
346 ndopts->nd_opt_array[nd_opt->nd_opt_type]
347 = nd_opt;
349 break;
350 case ND_OPT_PREFIX_INFORMATION:
351 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
352 ndopts->nd_opt_array[nd_opt->nd_opt_type]
353 = nd_opt;
355 ndopts->nd_opts_pi_end =
356 (struct nd_opt_prefix_info *)nd_opt;
357 break;
358 default:
360 * Unknown options must be silently ignored,
361 * to accomodate future extension to the protocol.
363 nd6log((LOG_DEBUG,
364 "nd6_options: unsupported option %d - "
365 "option ignored\n", nd_opt->nd_opt_type));
368 skip1:
369 i++;
370 if (i > V_nd6_maxndopt) {
371 V_icmp6stat.icp6s_nd_toomanyopt++;
372 nd6log((LOG_INFO, "too many loop in nd opt\n"));
373 break;
376 if (ndopts->nd_opts_done)
377 break;
380 return 0;
384 * ND6 timer routine to handle ND6 entries
386 void
387 nd6_llinfo_settimer(struct llinfo_nd6 *ln, long tick)
389 if (tick < 0) {
390 ln->ln_expire = 0;
391 ln->ln_ntick = 0;
392 callout_stop(&ln->ln_timer_ch);
393 } else {
394 ln->ln_expire = time_second + tick / hz;
395 if (tick > INT_MAX) {
396 ln->ln_ntick = tick - INT_MAX;
397 callout_reset(&ln->ln_timer_ch, INT_MAX,
398 nd6_llinfo_timer, ln);
399 } else {
400 ln->ln_ntick = 0;
401 callout_reset(&ln->ln_timer_ch, tick,
402 nd6_llinfo_timer, ln);
407 static void
408 nd6_llinfo_timer(void *arg)
410 struct llinfo_nd6 *ln;
411 struct rtentry *rt;
412 struct in6_addr *dst;
413 struct ifnet *ifp;
414 struct nd_ifinfo *ndi = NULL;
416 ln = (struct llinfo_nd6 *)arg;
418 if (ln->ln_ntick > 0) {
419 if (ln->ln_ntick > INT_MAX) {
420 ln->ln_ntick -= INT_MAX;
421 nd6_llinfo_settimer(ln, INT_MAX);
422 } else {
423 ln->ln_ntick = 0;
424 nd6_llinfo_settimer(ln, ln->ln_ntick);
426 return;
429 if ((rt = ln->ln_rt) == NULL)
430 panic("ln->ln_rt == NULL");
431 if ((ifp = rt->rt_ifp) == NULL)
432 panic("ln->ln_rt->rt_ifp == NULL");
433 ndi = ND_IFINFO(ifp);
435 /* sanity check */
436 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
437 panic("rt_llinfo(%p) is not equal to ln(%p)",
438 rt->rt_llinfo, ln);
439 if (rt_key(rt) == NULL)
440 panic("rt key is NULL in nd6_timer(ln=%p)", ln);
442 dst = &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
444 switch (ln->ln_state) {
445 case ND6_LLINFO_INCOMPLETE:
446 if (ln->ln_asked < V_nd6_mmaxtries) {
447 ln->ln_asked++;
448 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
449 nd6_ns_output(ifp, NULL, dst, ln, 0);
450 } else {
451 struct mbuf *m = ln->ln_hold;
452 if (m) {
453 struct mbuf *m0;
456 * assuming every packet in ln_hold has the
457 * same IP header
459 m0 = m->m_nextpkt;
460 m->m_nextpkt = NULL;
461 icmp6_error2(m, ICMP6_DST_UNREACH,
462 ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
464 ln->ln_hold = m0;
465 clear_llinfo_pqueue(ln);
467 if (rt && rt->rt_llinfo)
468 (void)nd6_free(rt, 0);
469 ln = NULL;
471 break;
472 case ND6_LLINFO_REACHABLE:
473 if (!ND6_LLINFO_PERMANENT(ln)) {
474 ln->ln_state = ND6_LLINFO_STALE;
475 nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz);
477 break;
479 case ND6_LLINFO_STALE:
480 /* Garbage Collection(RFC 2461 5.3) */
481 if (!ND6_LLINFO_PERMANENT(ln)) {
482 if (rt && rt->rt_llinfo)
483 (void)nd6_free(rt, 1);
484 ln = NULL;
486 break;
488 case ND6_LLINFO_DELAY:
489 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
490 /* We need NUD */
491 ln->ln_asked = 1;
492 ln->ln_state = ND6_LLINFO_PROBE;
493 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
494 nd6_ns_output(ifp, dst, dst, ln, 0);
495 } else {
496 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
497 nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz);
499 break;
500 case ND6_LLINFO_PROBE:
501 if (ln->ln_asked < V_nd6_umaxtries) {
502 ln->ln_asked++;
503 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
504 nd6_ns_output(ifp, dst, dst, ln, 0);
505 } else if (rt->rt_ifa != NULL &&
506 rt->rt_ifa->ifa_addr->sa_family == AF_INET6 &&
507 (((struct in6_ifaddr *)rt->rt_ifa)->ia_flags & IFA_ROUTE)) {
509 * This is an unreachable neighbor whose address is
510 * specified as the destination of a p2p interface
511 * (see in6_ifinit()). We should not free the entry
512 * since this is sort of a "static" entry generated
513 * via interface address configuration.
515 ln->ln_asked = 0;
516 ln->ln_expire = 0; /* make it permanent */
517 ln->ln_state = ND6_LLINFO_STALE;
518 } else {
519 if (rt && rt->rt_llinfo)
520 (void)nd6_free(rt, 0);
521 ln = NULL;
523 break;
529 * ND6 timer routine to expire default route list and prefix list
531 void
532 nd6_timer(void *ignored_arg)
534 int s;
535 struct nd_defrouter *dr;
536 struct nd_prefix *pr;
537 struct in6_ifaddr *ia6, *nia6;
538 struct in6_addrlifetime *lt6;
540 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz,
541 nd6_timer, NULL);
543 /* expire default router list */
544 s = splnet();
545 dr = TAILQ_FIRST(&V_nd_defrouter);
546 while (dr) {
547 if (dr->expire && dr->expire < time_second) {
548 struct nd_defrouter *t;
549 t = TAILQ_NEXT(dr, dr_entry);
550 defrtrlist_del(dr);
551 dr = t;
552 } else {
553 dr = TAILQ_NEXT(dr, dr_entry);
558 * expire interface addresses.
559 * in the past the loop was inside prefix expiry processing.
560 * However, from a stricter speci-confrmance standpoint, we should
561 * rather separate address lifetimes and prefix lifetimes.
563 addrloop:
564 for (ia6 = V_in6_ifaddr; ia6; ia6 = nia6) {
565 nia6 = ia6->ia_next;
566 /* check address lifetime */
567 lt6 = &ia6->ia6_lifetime;
568 if (IFA6_IS_INVALID(ia6)) {
569 int regen = 0;
572 * If the expiring address is temporary, try
573 * regenerating a new one. This would be useful when
574 * we suspended a laptop PC, then turned it on after a
575 * period that could invalidate all temporary
576 * addresses. Although we may have to restart the
577 * loop (see below), it must be after purging the
578 * address. Otherwise, we'd see an infinite loop of
579 * regeneration.
581 if (V_ip6_use_tempaddr &&
582 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
583 if (regen_tmpaddr(ia6) == 0)
584 regen = 1;
587 in6_purgeaddr(&ia6->ia_ifa);
589 if (regen)
590 goto addrloop; /* XXX: see below */
591 } else if (IFA6_IS_DEPRECATED(ia6)) {
592 int oldflags = ia6->ia6_flags;
594 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
597 * If a temporary address has just become deprecated,
598 * regenerate a new one if possible.
600 if (V_ip6_use_tempaddr &&
601 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
602 (oldflags & IN6_IFF_DEPRECATED) == 0) {
604 if (regen_tmpaddr(ia6) == 0) {
606 * A new temporary address is
607 * generated.
608 * XXX: this means the address chain
609 * has changed while we are still in
610 * the loop. Although the change
611 * would not cause disaster (because
612 * it's not a deletion, but an
613 * addition,) we'd rather restart the
614 * loop just for safety. Or does this
615 * significantly reduce performance??
617 goto addrloop;
620 } else {
622 * A new RA might have made a deprecated address
623 * preferred.
625 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
629 /* expire prefix list */
630 pr = V_nd_prefix.lh_first;
631 while (pr) {
633 * check prefix lifetime.
634 * since pltime is just for autoconf, pltime processing for
635 * prefix is not necessary.
637 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
638 time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
639 struct nd_prefix *t;
640 t = pr->ndpr_next;
643 * address expiration and prefix expiration are
644 * separate. NEVER perform in6_purgeaddr here.
647 prelist_remove(pr);
648 pr = t;
649 } else
650 pr = pr->ndpr_next;
652 splx(s);
656 * ia6 - deprecated/invalidated temporary address
658 static int
659 regen_tmpaddr(struct in6_ifaddr *ia6)
661 struct ifaddr *ifa;
662 struct ifnet *ifp;
663 struct in6_ifaddr *public_ifa6 = NULL;
665 ifp = ia6->ia_ifa.ifa_ifp;
666 for (ifa = ifp->if_addrlist.tqh_first; ifa;
667 ifa = ifa->ifa_list.tqe_next) {
668 struct in6_ifaddr *it6;
670 if (ifa->ifa_addr->sa_family != AF_INET6)
671 continue;
673 it6 = (struct in6_ifaddr *)ifa;
675 /* ignore no autoconf addresses. */
676 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
677 continue;
679 /* ignore autoconf addresses with different prefixes. */
680 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
681 continue;
684 * Now we are looking at an autoconf address with the same
685 * prefix as ours. If the address is temporary and is still
686 * preferred, do not create another one. It would be rare, but
687 * could happen, for example, when we resume a laptop PC after
688 * a long period.
690 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
691 !IFA6_IS_DEPRECATED(it6)) {
692 public_ifa6 = NULL;
693 break;
697 * This is a public autoconf address that has the same prefix
698 * as ours. If it is preferred, keep it. We can't break the
699 * loop here, because there may be a still-preferred temporary
700 * address with the prefix.
702 if (!IFA6_IS_DEPRECATED(it6))
703 public_ifa6 = it6;
706 if (public_ifa6 != NULL) {
707 int e;
709 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
710 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
711 " tmp addr,errno=%d\n", e);
712 return (-1);
714 return (0);
717 return (-1);
721 * Nuke neighbor cache/prefix/default router management table, right before
722 * ifp goes away.
724 void
725 nd6_purge(struct ifnet *ifp)
727 struct llinfo_nd6 *ln, *nln;
728 struct nd_defrouter *dr, *ndr;
729 struct nd_prefix *pr, *npr;
732 * Nuke default router list entries toward ifp.
733 * We defer removal of default router list entries that is installed
734 * in the routing table, in order to keep additional side effects as
735 * small as possible.
737 for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; dr = ndr) {
738 ndr = TAILQ_NEXT(dr, dr_entry);
739 if (dr->installed)
740 continue;
742 if (dr->ifp == ifp)
743 defrtrlist_del(dr);
746 for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; dr = ndr) {
747 ndr = TAILQ_NEXT(dr, dr_entry);
748 if (!dr->installed)
749 continue;
751 if (dr->ifp == ifp)
752 defrtrlist_del(dr);
755 /* Nuke prefix list entries toward ifp */
756 for (pr = V_nd_prefix.lh_first; pr; pr = npr) {
757 npr = pr->ndpr_next;
758 if (pr->ndpr_ifp == ifp) {
760 * Because if_detach() does *not* release prefixes
761 * while purging addresses the reference count will
762 * still be above zero. We therefore reset it to
763 * make sure that the prefix really gets purged.
765 pr->ndpr_refcnt = 0;
768 * Previously, pr->ndpr_addr is removed as well,
769 * but I strongly believe we don't have to do it.
770 * nd6_purge() is only called from in6_ifdetach(),
771 * which removes all the associated interface addresses
772 * by itself.
773 * (jinmei@kame.net 20010129)
775 prelist_remove(pr);
779 /* cancel default outgoing interface setting */
780 if (V_nd6_defifindex == ifp->if_index)
781 nd6_setdefaultiface(0);
783 if (!V_ip6_forwarding && V_ip6_accept_rtadv) { /* XXX: too restrictive? */
784 /* refresh default router list */
785 defrouter_select();
789 * Nuke neighbor cache entries for the ifp.
790 * Note that rt->rt_ifp may not be the same as ifp,
791 * due to KAME goto ours hack. See RTM_RESOLVE case in
792 * nd6_rtrequest(), and ip6_input().
794 ln = V_llinfo_nd6.ln_next;
795 while (ln && ln != &V_llinfo_nd6) {
796 struct rtentry *rt;
797 struct sockaddr_dl *sdl;
799 nln = ln->ln_next;
800 rt = ln->ln_rt;
801 if (rt && rt->rt_gateway &&
802 rt->rt_gateway->sa_family == AF_LINK) {
803 sdl = (struct sockaddr_dl *)rt->rt_gateway;
804 if (sdl->sdl_index == ifp->if_index)
805 nln = nd6_free(rt, 0);
807 ln = nln;
811 struct rtentry *
812 nd6_lookup(struct in6_addr *addr6, int create, struct ifnet *ifp)
814 struct rtentry *rt;
815 struct sockaddr_in6 sin6;
816 char ip6buf[INET6_ADDRSTRLEN];
818 bzero(&sin6, sizeof(sin6));
819 sin6.sin6_len = sizeof(struct sockaddr_in6);
820 sin6.sin6_family = AF_INET6;
821 sin6.sin6_addr = *addr6;
822 rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL);
823 if (rt) {
824 if ((rt->rt_flags & RTF_LLINFO) == 0 && create) {
826 * This is the case for the default route.
827 * If we want to create a neighbor cache for the
828 * address, we should free the route for the
829 * destination and allocate an interface route.
831 RTFREE_LOCKED(rt);
832 rt = NULL;
835 if (rt == NULL) {
836 if (create && ifp) {
837 int e;
840 * If no route is available and create is set,
841 * we allocate a host route for the destination
842 * and treat it like an interface route.
843 * This hack is necessary for a neighbor which can't
844 * be covered by our own prefix.
846 struct ifaddr *ifa =
847 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
848 if (ifa == NULL)
849 return (NULL);
852 * Create a new route. RTF_LLINFO is necessary
853 * to create a Neighbor Cache entry for the
854 * destination in nd6_rtrequest which will be
855 * called in rtrequest via ifa->ifa_rtrequest.
857 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
858 ifa->ifa_addr, (struct sockaddr *)&all1_sa,
859 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
860 ~RTF_CLONING, &rt)) != 0) {
861 log(LOG_ERR,
862 "nd6_lookup: failed to add route for a "
863 "neighbor(%s), errno=%d\n",
864 ip6_sprintf(ip6buf, addr6), e);
866 if (rt == NULL)
867 return (NULL);
868 RT_LOCK(rt);
869 if (rt->rt_llinfo) {
870 struct llinfo_nd6 *ln =
871 (struct llinfo_nd6 *)rt->rt_llinfo;
872 ln->ln_state = ND6_LLINFO_NOSTATE;
874 } else
875 return (NULL);
877 RT_LOCK_ASSERT(rt);
878 RT_REMREF(rt);
880 * Validation for the entry.
881 * Note that the check for rt_llinfo is necessary because a cloned
882 * route from a parent route that has the L flag (e.g. the default
883 * route to a p2p interface) may have the flag, too, while the
884 * destination is not actually a neighbor.
885 * XXX: we can't use rt->rt_ifp to check for the interface, since
886 * it might be the loopback interface if the entry is for our
887 * own address on a non-loopback interface. Instead, we should
888 * use rt->rt_ifa->ifa_ifp, which would specify the REAL
889 * interface.
890 * Note also that ifa_ifp and ifp may differ when we connect two
891 * interfaces to a same link, install a link prefix to an interface,
892 * and try to install a neighbor cache on an interface that does not
893 * have a route to the prefix.
895 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
896 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
897 (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
898 if (create) {
899 nd6log((LOG_DEBUG,
900 "nd6_lookup: failed to lookup %s (if = %s)\n",
901 ip6_sprintf(ip6buf, addr6),
902 ifp ? if_name(ifp) : "unspec"));
904 RT_UNLOCK(rt);
905 return (NULL);
907 RT_UNLOCK(rt); /* XXX not ready to return rt locked */
908 return (rt);
912 * Test whether a given IPv6 address is a neighbor or not, ignoring
913 * the actual neighbor cache. The neighbor cache is ignored in order
914 * to not reenter the routing code from within itself.
916 static int
917 nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
919 struct nd_prefix *pr;
920 struct ifaddr *dstaddr;
923 * A link-local address is always a neighbor.
924 * XXX: a link does not necessarily specify a single interface.
926 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
927 struct sockaddr_in6 sin6_copy;
928 u_int32_t zone;
931 * We need sin6_copy since sa6_recoverscope() may modify the
932 * content (XXX).
934 sin6_copy = *addr;
935 if (sa6_recoverscope(&sin6_copy))
936 return (0); /* XXX: should be impossible */
937 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
938 return (0);
939 if (sin6_copy.sin6_scope_id == zone)
940 return (1);
941 else
942 return (0);
946 * If the address matches one of our addresses,
947 * it should be a neighbor.
948 * If the address matches one of our on-link prefixes, it should be a
949 * neighbor.
951 for (pr = V_nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
952 if (pr->ndpr_ifp != ifp)
953 continue;
955 if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
956 continue;
958 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
959 &addr->sin6_addr, &pr->ndpr_mask))
960 return (1);
964 * If the address is assigned on the node of the other side of
965 * a p2p interface, the address should be a neighbor.
967 dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr);
968 if ((dstaddr != NULL) && (dstaddr->ifa_ifp == ifp))
969 return (1);
972 * If the default router list is empty, all addresses are regarded
973 * as on-link, and thus, as a neighbor.
974 * XXX: we restrict the condition to hosts, because routers usually do
975 * not have the "default router list".
977 if (!V_ip6_forwarding && TAILQ_FIRST(&V_nd_defrouter) == NULL &&
978 V_nd6_defifindex == ifp->if_index) {
979 return (1);
982 return (0);
987 * Detect if a given IPv6 address identifies a neighbor on a given link.
988 * XXX: should take care of the destination of a p2p link?
991 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
994 if (nd6_is_new_addr_neighbor(addr, ifp))
995 return (1);
998 * Even if the address matches none of our addresses, it might be
999 * in the neighbor cache.
1001 if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
1002 return (1);
1004 return (0);
1008 * Free an nd6 llinfo entry.
1009 * Since the function would cause significant changes in the kernel, DO NOT
1010 * make it global, unless you have a strong reason for the change, and are sure
1011 * that the change is safe.
1013 static struct llinfo_nd6 *
1014 nd6_free(struct rtentry *rt, int gc)
1016 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
1017 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
1018 struct nd_defrouter *dr;
1021 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1022 * even though it is not harmful, it was not really necessary.
1025 /* cancel timer */
1026 nd6_llinfo_settimer(ln, -1);
1028 if (!V_ip6_forwarding) {
1029 int s;
1030 s = splnet();
1031 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1032 rt->rt_ifp);
1034 if (dr != NULL && dr->expire &&
1035 ln->ln_state == ND6_LLINFO_STALE && gc) {
1037 * If the reason for the deletion is just garbage
1038 * collection, and the neighbor is an active default
1039 * router, do not delete it. Instead, reset the GC
1040 * timer using the router's lifetime.
1041 * Simply deleting the entry would affect default
1042 * router selection, which is not necessarily a good
1043 * thing, especially when we're using router preference
1044 * values.
1045 * XXX: the check for ln_state would be redundant,
1046 * but we intentionally keep it just in case.
1048 if (dr->expire > time_second)
1049 nd6_llinfo_settimer(ln,
1050 (dr->expire - time_second) * hz);
1051 else
1052 nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz);
1053 splx(s);
1054 return (ln->ln_next);
1057 if (ln->ln_router || dr) {
1059 * rt6_flush must be called whether or not the neighbor
1060 * is in the Default Router List.
1061 * See a corresponding comment in nd6_na_input().
1063 rt6_flush(&in6, rt->rt_ifp);
1066 if (dr) {
1068 * Unreachablity of a router might affect the default
1069 * router selection and on-link detection of advertised
1070 * prefixes.
1074 * Temporarily fake the state to choose a new default
1075 * router and to perform on-link determination of
1076 * prefixes correctly.
1077 * Below the state will be set correctly,
1078 * or the entry itself will be deleted.
1080 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1083 * Since defrouter_select() does not affect the
1084 * on-link determination and MIP6 needs the check
1085 * before the default router selection, we perform
1086 * the check now.
1088 pfxlist_onlink_check();
1091 * refresh default router list
1093 defrouter_select();
1095 splx(s);
1099 * Before deleting the entry, remember the next entry as the
1100 * return value. We need this because pfxlist_onlink_check() above
1101 * might have freed other entries (particularly the old next entry) as
1102 * a side effect (XXX).
1104 next = ln->ln_next;
1107 * Detach the route from the routing tree and the list of neighbor
1108 * caches, and disable the route entry not to be used in already
1109 * cached routes.
1111 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
1112 rt_mask(rt), 0, (struct rtentry **)0);
1114 return (next);
1118 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1120 * XXX cost-effective methods?
1122 void
1123 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1125 struct llinfo_nd6 *ln;
1128 * If the caller specified "rt", use that. Otherwise, resolve the
1129 * routing table by supplied "dst6".
1131 if (rt == NULL) {
1132 if (dst6 == NULL)
1133 return;
1134 if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
1135 return;
1138 if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1139 (rt->rt_flags & RTF_LLINFO) == 0 ||
1140 rt->rt_llinfo == NULL || rt->rt_gateway == NULL ||
1141 rt->rt_gateway->sa_family != AF_LINK) {
1142 /* This is not a host route. */
1143 return;
1146 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1147 if (ln->ln_state < ND6_LLINFO_REACHABLE)
1148 return;
1151 * if we get upper-layer reachability confirmation many times,
1152 * it is possible we have false information.
1154 if (!force) {
1155 ln->ln_byhint++;
1156 if (ln->ln_byhint > V_nd6_maxnudhint)
1157 return;
1160 ln->ln_state = ND6_LLINFO_REACHABLE;
1161 if (!ND6_LLINFO_PERMANENT(ln)) {
1162 nd6_llinfo_settimer(ln,
1163 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1168 * info - XXX unused
1170 void
1171 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info)
1173 struct sockaddr *gate = rt->rt_gateway;
1174 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1175 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1176 struct ifnet *ifp = rt->rt_ifp;
1177 struct ifaddr *ifa;
1179 RT_LOCK_ASSERT(rt);
1181 if ((rt->rt_flags & RTF_GATEWAY) != 0)
1182 return;
1184 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1186 * This is probably an interface direct route for a link
1187 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1188 * We do not need special treatment below for such a route.
1189 * Moreover, the RTF_LLINFO flag which would be set below
1190 * would annoy the ndp(8) command.
1192 return;
1195 if (req == RTM_RESOLVE &&
1196 (nd6_need_cache(ifp) == 0 || /* stf case */
1197 !nd6_is_new_addr_neighbor((struct sockaddr_in6 *)rt_key(rt),
1198 ifp))) {
1200 * FreeBSD and BSD/OS often make a cloned host route based
1201 * on a less-specific route (e.g. the default route).
1202 * If the less specific route does not have a "gateway"
1203 * (this is the case when the route just goes to a p2p or an
1204 * stf interface), we'll mistakenly make a neighbor cache for
1205 * the host route, and will see strange neighbor solicitation
1206 * for the corresponding destination. In order to avoid the
1207 * confusion, we check if the destination of the route is
1208 * a neighbor in terms of neighbor discovery, and stop the
1209 * process if not. Additionally, we remove the LLINFO flag
1210 * so that ndp(8) will not try to get the neighbor information
1211 * of the destination.
1213 rt->rt_flags &= ~RTF_LLINFO;
1214 return;
1217 switch (req) {
1218 case RTM_ADD:
1220 * There is no backward compatibility :)
1222 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1223 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1224 * rt->rt_flags |= RTF_CLONING;
1226 if ((rt->rt_flags & RTF_CLONING) ||
1227 ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
1229 * Case 1: This route should come from a route to
1230 * interface (RTF_CLONING case) or the route should be
1231 * treated as on-link but is currently not
1232 * (RTF_LLINFO && ln == NULL case).
1234 rt_setgate(rt, rt_key(rt),
1235 (struct sockaddr *)&null_sdl);
1236 gate = rt->rt_gateway;
1237 SDL(gate)->sdl_type = ifp->if_type;
1238 SDL(gate)->sdl_index = ifp->if_index;
1239 if (ln)
1240 nd6_llinfo_settimer(ln, 0);
1241 if ((rt->rt_flags & RTF_CLONING) != 0)
1242 break;
1245 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1246 * We don't do that here since llinfo is not ready yet.
1248 * There are also couple of other things to be discussed:
1249 * - unsolicited NA code needs improvement beforehand
1250 * - RFC2461 says we MAY send multicast unsolicited NA
1251 * (7.2.6 paragraph 4), however, it also says that we
1252 * SHOULD provide a mechanism to prevent multicast NA storm.
1253 * we don't have anything like it right now.
1254 * note that the mechanism needs a mutual agreement
1255 * between proxies, which means that we need to implement
1256 * a new protocol, or a new kludge.
1257 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1258 * we need to check ip6forwarding before sending it.
1259 * (or should we allow proxy ND configuration only for
1260 * routers? there's no mention about proxy ND from hosts)
1262 /* FALLTHROUGH */
1263 case RTM_RESOLVE:
1264 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1266 * Address resolution isn't necessary for a point to
1267 * point link, so we can skip this test for a p2p link.
1269 if (gate->sa_family != AF_LINK ||
1270 gate->sa_len < sizeof(null_sdl)) {
1271 log(LOG_DEBUG,
1272 "nd6_rtrequest: bad gateway value: %s\n",
1273 if_name(ifp));
1274 break;
1276 SDL(gate)->sdl_type = ifp->if_type;
1277 SDL(gate)->sdl_index = ifp->if_index;
1279 if (ln != NULL)
1280 break; /* This happens on a route change */
1282 * Case 2: This route may come from cloning, or a manual route
1283 * add with a LL address.
1285 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1286 rt->rt_llinfo = (caddr_t)ln;
1287 if (ln == NULL) {
1288 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1289 break;
1291 V_nd6_inuse++;
1292 V_nd6_allocated++;
1293 bzero(ln, sizeof(*ln));
1294 RT_ADDREF(rt);
1295 ln->ln_rt = rt;
1296 callout_init(&ln->ln_timer_ch, 0);
1298 /* this is required for "ndp" command. - shin */
1299 if (req == RTM_ADD) {
1301 * gate should have some valid AF_LINK entry,
1302 * and ln->ln_expire should have some lifetime
1303 * which is specified by ndp command.
1305 ln->ln_state = ND6_LLINFO_REACHABLE;
1306 ln->ln_byhint = 0;
1307 } else {
1309 * When req == RTM_RESOLVE, rt is created and
1310 * initialized in rtrequest(), so rt_expire is 0.
1312 ln->ln_state = ND6_LLINFO_NOSTATE;
1313 nd6_llinfo_settimer(ln, 0);
1315 rt->rt_flags |= RTF_LLINFO;
1316 ln->ln_next = V_llinfo_nd6.ln_next;
1317 V_llinfo_nd6.ln_next = ln;
1318 ln->ln_prev = &V_llinfo_nd6;
1319 ln->ln_next->ln_prev = ln;
1322 * check if rt_key(rt) is one of my address assigned
1323 * to the interface.
1325 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1326 &SIN6(rt_key(rt))->sin6_addr);
1327 if (ifa) {
1328 caddr_t macp = nd6_ifptomac(ifp);
1329 nd6_llinfo_settimer(ln, -1);
1330 ln->ln_state = ND6_LLINFO_REACHABLE;
1331 ln->ln_byhint = 0;
1332 if (macp) {
1333 bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1334 SDL(gate)->sdl_alen = ifp->if_addrlen;
1336 if (V_nd6_useloopback) {
1337 rt->rt_ifp = &V_loif[0]; /* XXX */
1339 * Make sure rt_ifa be equal to the ifaddr
1340 * corresponding to the address.
1341 * We need this because when we refer
1342 * rt_ifa->ia6_flags in ip6_input, we assume
1343 * that the rt_ifa points to the address instead
1344 * of the loopback address.
1346 if (ifa != rt->rt_ifa) {
1347 IFAFREE(rt->rt_ifa);
1348 IFAREF(ifa);
1349 rt->rt_ifa = ifa;
1352 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1353 nd6_llinfo_settimer(ln, -1);
1354 ln->ln_state = ND6_LLINFO_REACHABLE;
1355 ln->ln_byhint = 0;
1357 /* join solicited node multicast for proxy ND */
1358 if (ifp->if_flags & IFF_MULTICAST) {
1359 struct in6_addr llsol;
1360 int error;
1362 llsol = SIN6(rt_key(rt))->sin6_addr;
1363 llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1364 llsol.s6_addr32[1] = 0;
1365 llsol.s6_addr32[2] = htonl(1);
1366 llsol.s6_addr8[12] = 0xff;
1367 if (in6_setscope(&llsol, ifp, NULL))
1368 break;
1369 if (in6_addmulti(&llsol, ifp,
1370 &error, 0) == NULL) {
1371 char ip6buf[INET6_ADDRSTRLEN];
1372 nd6log((LOG_ERR, "%s: failed to join "
1373 "%s (errno=%d)\n", if_name(ifp),
1374 ip6_sprintf(ip6buf, &llsol),
1375 error));
1379 break;
1381 case RTM_DELETE:
1382 if (ln == NULL)
1383 break;
1384 /* leave from solicited node multicast for proxy ND */
1385 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1386 (ifp->if_flags & IFF_MULTICAST) != 0) {
1387 struct in6_addr llsol;
1388 struct in6_multi *in6m;
1390 llsol = SIN6(rt_key(rt))->sin6_addr;
1391 llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1392 llsol.s6_addr32[1] = 0;
1393 llsol.s6_addr32[2] = htonl(1);
1394 llsol.s6_addr8[12] = 0xff;
1395 if (in6_setscope(&llsol, ifp, NULL) == 0) {
1396 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1397 if (in6m)
1398 in6_delmulti(in6m);
1399 } else
1400 ; /* XXX: should not happen. bark here? */
1402 V_nd6_inuse--;
1403 ln->ln_next->ln_prev = ln->ln_prev;
1404 ln->ln_prev->ln_next = ln->ln_next;
1405 ln->ln_prev = NULL;
1406 nd6_llinfo_settimer(ln, -1);
1407 RT_REMREF(rt);
1408 rt->rt_llinfo = 0;
1409 rt->rt_flags &= ~RTF_LLINFO;
1410 clear_llinfo_pqueue(ln);
1411 Free((caddr_t)ln);
1416 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
1418 struct in6_drlist *drl = (struct in6_drlist *)data;
1419 struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1420 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1421 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1422 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1423 struct nd_defrouter *dr;
1424 struct nd_prefix *pr;
1425 struct rtentry *rt;
1426 int i = 0, error = 0;
1427 int s;
1429 switch (cmd) {
1430 case SIOCGDRLST_IN6:
1432 * obsolete API, use sysctl under net.inet6.icmp6
1434 bzero(drl, sizeof(*drl));
1435 s = splnet();
1436 dr = TAILQ_FIRST(&V_nd_defrouter);
1437 while (dr && i < DRLSTSIZ) {
1438 drl->defrouter[i].rtaddr = dr->rtaddr;
1439 in6_clearscope(&drl->defrouter[i].rtaddr);
1441 drl->defrouter[i].flags = dr->flags;
1442 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1443 drl->defrouter[i].expire = dr->expire;
1444 drl->defrouter[i].if_index = dr->ifp->if_index;
1445 i++;
1446 dr = TAILQ_NEXT(dr, dr_entry);
1448 splx(s);
1449 break;
1450 case SIOCGPRLST_IN6:
1452 * obsolete API, use sysctl under net.inet6.icmp6
1454 * XXX the structure in6_prlist was changed in backward-
1455 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
1456 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1459 * XXX meaning of fields, especialy "raflags", is very
1460 * differnet between RA prefix list and RR/static prefix list.
1461 * how about separating ioctls into two?
1463 bzero(oprl, sizeof(*oprl));
1464 s = splnet();
1465 pr = V_nd_prefix.lh_first;
1466 while (pr && i < PRLSTSIZ) {
1467 struct nd_pfxrouter *pfr;
1468 int j;
1470 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1471 oprl->prefix[i].raflags = pr->ndpr_raf;
1472 oprl->prefix[i].prefixlen = pr->ndpr_plen;
1473 oprl->prefix[i].vltime = pr->ndpr_vltime;
1474 oprl->prefix[i].pltime = pr->ndpr_pltime;
1475 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1476 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1477 oprl->prefix[i].expire = 0;
1478 else {
1479 time_t maxexpire;
1481 /* XXX: we assume time_t is signed. */
1482 maxexpire = (-1) &
1483 ~((time_t)1 <<
1484 ((sizeof(maxexpire) * 8) - 1));
1485 if (pr->ndpr_vltime <
1486 maxexpire - pr->ndpr_lastupdate) {
1487 oprl->prefix[i].expire =
1488 pr->ndpr_lastupdate +
1489 pr->ndpr_vltime;
1490 } else
1491 oprl->prefix[i].expire = maxexpire;
1494 pfr = pr->ndpr_advrtrs.lh_first;
1495 j = 0;
1496 while (pfr) {
1497 if (j < DRLSTSIZ) {
1498 #define RTRADDR oprl->prefix[i].advrtr[j]
1499 RTRADDR = pfr->router->rtaddr;
1500 in6_clearscope(&RTRADDR);
1501 #undef RTRADDR
1503 j++;
1504 pfr = pfr->pfr_next;
1506 oprl->prefix[i].advrtrs = j;
1507 oprl->prefix[i].origin = PR_ORIG_RA;
1509 i++;
1510 pr = pr->ndpr_next;
1512 splx(s);
1514 break;
1515 case OSIOCGIFINFO_IN6:
1516 #define ND ndi->ndi
1517 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1518 bzero(&ND, sizeof(ND));
1519 ND.linkmtu = IN6_LINKMTU(ifp);
1520 ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1521 ND.basereachable = ND_IFINFO(ifp)->basereachable;
1522 ND.reachable = ND_IFINFO(ifp)->reachable;
1523 ND.retrans = ND_IFINFO(ifp)->retrans;
1524 ND.flags = ND_IFINFO(ifp)->flags;
1525 ND.recalctm = ND_IFINFO(ifp)->recalctm;
1526 ND.chlim = ND_IFINFO(ifp)->chlim;
1527 break;
1528 case SIOCGIFINFO_IN6:
1529 ND = *ND_IFINFO(ifp);
1530 break;
1531 case SIOCSIFINFO_IN6:
1533 * used to change host variables from userland.
1534 * intented for a use on router to reflect RA configurations.
1536 /* 0 means 'unspecified' */
1537 if (ND.linkmtu != 0) {
1538 if (ND.linkmtu < IPV6_MMTU ||
1539 ND.linkmtu > IN6_LINKMTU(ifp)) {
1540 error = EINVAL;
1541 break;
1543 ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1546 if (ND.basereachable != 0) {
1547 int obasereachable = ND_IFINFO(ifp)->basereachable;
1549 ND_IFINFO(ifp)->basereachable = ND.basereachable;
1550 if (ND.basereachable != obasereachable)
1551 ND_IFINFO(ifp)->reachable =
1552 ND_COMPUTE_RTIME(ND.basereachable);
1554 if (ND.retrans != 0)
1555 ND_IFINFO(ifp)->retrans = ND.retrans;
1556 if (ND.chlim != 0)
1557 ND_IFINFO(ifp)->chlim = ND.chlim;
1558 /* FALLTHROUGH */
1559 case SIOCSIFINFO_FLAGS:
1560 ND_IFINFO(ifp)->flags = ND.flags;
1561 break;
1562 #undef ND
1563 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1564 /* sync kernel routing table with the default router list */
1565 defrouter_reset();
1566 defrouter_select();
1567 break;
1568 case SIOCSPFXFLUSH_IN6:
1570 /* flush all the prefix advertised by routers */
1571 struct nd_prefix *pr, *next;
1573 s = splnet();
1574 for (pr = V_nd_prefix.lh_first; pr; pr = next) {
1575 struct in6_ifaddr *ia, *ia_next;
1577 next = pr->ndpr_next;
1579 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1580 continue; /* XXX */
1582 /* do we really have to remove addresses as well? */
1583 for (ia = V_in6_ifaddr; ia; ia = ia_next) {
1584 /* ia might be removed. keep the next ptr. */
1585 ia_next = ia->ia_next;
1587 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1588 continue;
1590 if (ia->ia6_ndpr == pr)
1591 in6_purgeaddr(&ia->ia_ifa);
1593 prelist_remove(pr);
1595 splx(s);
1596 break;
1598 case SIOCSRTRFLUSH_IN6:
1600 /* flush all the default routers */
1601 struct nd_defrouter *dr, *next;
1603 s = splnet();
1604 defrouter_reset();
1605 for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; dr = next) {
1606 next = TAILQ_NEXT(dr, dr_entry);
1607 defrtrlist_del(dr);
1609 defrouter_select();
1610 splx(s);
1611 break;
1613 case SIOCGNBRINFO_IN6:
1615 struct llinfo_nd6 *ln;
1616 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1618 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1619 return (error);
1621 s = splnet();
1622 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1623 error = EINVAL;
1624 splx(s);
1625 break;
1627 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1628 nbi->state = ln->ln_state;
1629 nbi->asked = ln->ln_asked;
1630 nbi->isrouter = ln->ln_router;
1631 nbi->expire = ln->ln_expire;
1632 splx(s);
1634 break;
1636 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1637 ndif->ifindex = V_nd6_defifindex;
1638 break;
1639 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1640 return (nd6_setdefaultiface(ndif->ifindex));
1642 return (error);
1646 * Create neighbor cache entry and cache link-layer address,
1647 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1649 * type - ICMP6 type
1650 * code - type dependent information
1652 struct rtentry *
1653 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1654 int lladdrlen, int type, int code)
1656 struct rtentry *rt = NULL;
1657 struct llinfo_nd6 *ln = NULL;
1658 int is_newentry;
1659 struct sockaddr_dl *sdl = NULL;
1660 int do_update;
1661 int olladdr;
1662 int llchange;
1663 int newstate = 0;
1665 if (ifp == NULL)
1666 panic("ifp == NULL in nd6_cache_lladdr");
1667 if (from == NULL)
1668 panic("from == NULL in nd6_cache_lladdr");
1670 /* nothing must be updated for unspecified address */
1671 if (IN6_IS_ADDR_UNSPECIFIED(from))
1672 return NULL;
1675 * Validation about ifp->if_addrlen and lladdrlen must be done in
1676 * the caller.
1678 * XXX If the link does not have link-layer adderss, what should
1679 * we do? (ifp->if_addrlen == 0)
1680 * Spec says nothing in sections for RA, RS and NA. There's small
1681 * description on it in NS section (RFC 2461 7.2.3).
1684 rt = nd6_lookup(from, 0, ifp);
1685 if (rt == NULL) {
1686 rt = nd6_lookup(from, 1, ifp);
1687 is_newentry = 1;
1688 } else {
1689 /* do nothing if static ndp is set */
1690 if (rt->rt_flags & RTF_STATIC)
1691 return NULL;
1692 is_newentry = 0;
1695 if (rt == NULL)
1696 return NULL;
1697 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1698 fail:
1699 (void)nd6_free(rt, 0);
1700 return NULL;
1702 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1703 if (ln == NULL)
1704 goto fail;
1705 if (rt->rt_gateway == NULL)
1706 goto fail;
1707 if (rt->rt_gateway->sa_family != AF_LINK)
1708 goto fail;
1709 sdl = SDL(rt->rt_gateway);
1711 olladdr = (sdl->sdl_alen) ? 1 : 0;
1712 if (olladdr && lladdr) {
1713 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1714 llchange = 1;
1715 else
1716 llchange = 0;
1717 } else
1718 llchange = 0;
1721 * newentry olladdr lladdr llchange (*=record)
1722 * 0 n n -- (1)
1723 * 0 y n -- (2)
1724 * 0 n y -- (3) * STALE
1725 * 0 y y n (4) *
1726 * 0 y y y (5) * STALE
1727 * 1 -- n -- (6) NOSTATE(= PASSIVE)
1728 * 1 -- y -- (7) * STALE
1731 if (lladdr) { /* (3-5) and (7) */
1733 * Record source link-layer address
1734 * XXX is it dependent to ifp->if_type?
1736 sdl->sdl_alen = ifp->if_addrlen;
1737 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1740 if (!is_newentry) {
1741 if ((!olladdr && lladdr != NULL) || /* (3) */
1742 (olladdr && lladdr != NULL && llchange)) { /* (5) */
1743 do_update = 1;
1744 newstate = ND6_LLINFO_STALE;
1745 } else /* (1-2,4) */
1746 do_update = 0;
1747 } else {
1748 do_update = 1;
1749 if (lladdr == NULL) /* (6) */
1750 newstate = ND6_LLINFO_NOSTATE;
1751 else /* (7) */
1752 newstate = ND6_LLINFO_STALE;
1755 if (do_update) {
1757 * Update the state of the neighbor cache.
1759 ln->ln_state = newstate;
1761 if (ln->ln_state == ND6_LLINFO_STALE) {
1763 * XXX: since nd6_output() below will cause
1764 * state tansition to DELAY and reset the timer,
1765 * we must set the timer now, although it is actually
1766 * meaningless.
1768 nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz);
1770 if (ln->ln_hold) {
1771 struct mbuf *m_hold, *m_hold_next;
1774 * reset the ln_hold in advance, to explicitly
1775 * prevent a ln_hold lookup in nd6_output()
1776 * (wouldn't happen, though...)
1778 for (m_hold = ln->ln_hold, ln->ln_hold = NULL;
1779 m_hold; m_hold = m_hold_next) {
1780 m_hold_next = m_hold->m_nextpkt;
1781 m_hold->m_nextpkt = NULL;
1784 * we assume ifp is not a p2p here, so
1785 * just set the 2nd argument as the
1786 * 1st one.
1788 nd6_output(ifp, ifp, m_hold,
1789 (struct sockaddr_in6 *)rt_key(rt),
1790 rt);
1793 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1794 /* probe right away */
1795 nd6_llinfo_settimer((void *)ln, 0);
1800 * ICMP6 type dependent behavior.
1802 * NS: clear IsRouter if new entry
1803 * RS: clear IsRouter
1804 * RA: set IsRouter if there's lladdr
1805 * redir: clear IsRouter if new entry
1807 * RA case, (1):
1808 * The spec says that we must set IsRouter in the following cases:
1809 * - If lladdr exist, set IsRouter. This means (1-5).
1810 * - If it is old entry (!newentry), set IsRouter. This means (7).
1811 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1812 * A quetion arises for (1) case. (1) case has no lladdr in the
1813 * neighbor cache, this is similar to (6).
1814 * This case is rare but we figured that we MUST NOT set IsRouter.
1816 * newentry olladdr lladdr llchange NS RS RA redir
1817 * D R
1818 * 0 n n -- (1) c ? s
1819 * 0 y n -- (2) c s s
1820 * 0 n y -- (3) c s s
1821 * 0 y y n (4) c s s
1822 * 0 y y y (5) c s s
1823 * 1 -- n -- (6) c c c s
1824 * 1 -- y -- (7) c c s c s
1826 * (c=clear s=set)
1828 switch (type & 0xff) {
1829 case ND_NEIGHBOR_SOLICIT:
1831 * New entry must have is_router flag cleared.
1833 if (is_newentry) /* (6-7) */
1834 ln->ln_router = 0;
1835 break;
1836 case ND_REDIRECT:
1838 * If the icmp is a redirect to a better router, always set the
1839 * is_router flag. Otherwise, if the entry is newly created,
1840 * clear the flag. [RFC 2461, sec 8.3]
1842 if (code == ND_REDIRECT_ROUTER)
1843 ln->ln_router = 1;
1844 else if (is_newentry) /* (6-7) */
1845 ln->ln_router = 0;
1846 break;
1847 case ND_ROUTER_SOLICIT:
1849 * is_router flag must always be cleared.
1851 ln->ln_router = 0;
1852 break;
1853 case ND_ROUTER_ADVERT:
1855 * Mark an entry with lladdr as a router.
1857 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
1858 (is_newentry && lladdr)) { /* (7) */
1859 ln->ln_router = 1;
1861 break;
1865 * When the link-layer address of a router changes, select the
1866 * best router again. In particular, when the neighbor entry is newly
1867 * created, it might affect the selection policy.
1868 * Question: can we restrict the first condition to the "is_newentry"
1869 * case?
1870 * XXX: when we hear an RA from a new router with the link-layer
1871 * address option, defrouter_select() is called twice, since
1872 * defrtrlist_update called the function as well. However, I believe
1873 * we can compromise the overhead, since it only happens the first
1874 * time.
1875 * XXX: although defrouter_select() should not have a bad effect
1876 * for those are not autoconfigured hosts, we explicitly avoid such
1877 * cases for safety.
1879 if (do_update && ln->ln_router && !V_ip6_forwarding && V_ip6_accept_rtadv)
1880 defrouter_select();
1882 return rt;
1885 static void
1886 nd6_slowtimo(void *ignored_arg)
1888 struct nd_ifinfo *nd6if;
1889 struct ifnet *ifp;
1891 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1892 nd6_slowtimo, NULL);
1893 IFNET_RLOCK();
1894 for (ifp = TAILQ_FIRST(&V_ifnet); ifp;
1895 ifp = TAILQ_NEXT(ifp, if_list)) {
1896 nd6if = ND_IFINFO(ifp);
1897 if (nd6if->basereachable && /* already initialized */
1898 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1900 * Since reachable time rarely changes by router
1901 * advertisements, we SHOULD insure that a new random
1902 * value gets recomputed at least once every few hours.
1903 * (RFC 2461, 6.3.4)
1905 nd6if->recalctm = V_nd6_recalc_reachtm_interval;
1906 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1909 IFNET_RUNLOCK();
1912 #define senderr(e) { error = (e); goto bad;}
1914 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
1915 struct sockaddr_in6 *dst, struct rtentry *rt0)
1917 struct mbuf *m = m0;
1918 struct rtentry *rt = rt0;
1919 struct sockaddr_in6 *gw6 = NULL;
1920 struct llinfo_nd6 *ln = NULL;
1921 int error = 0;
1923 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1924 goto sendpkt;
1926 if (nd6_need_cache(ifp) == 0)
1927 goto sendpkt;
1930 * next hop determination. This routine is derived from ether_output.
1932 /* NB: the locking here is tortuous... */
1933 if (rt != NULL)
1934 RT_LOCK(rt);
1935 again:
1936 if (rt != NULL) {
1937 if ((rt->rt_flags & RTF_UP) == 0) {
1938 RT_UNLOCK(rt);
1939 rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL);
1940 if (rt != NULL) {
1941 RT_REMREF(rt);
1942 if (rt->rt_ifp != ifp)
1944 * XXX maybe we should update ifp too,
1945 * but the original code didn't and I
1946 * don't know what is correct here.
1948 goto again;
1949 } else
1950 senderr(EHOSTUNREACH);
1953 if (rt->rt_flags & RTF_GATEWAY) {
1954 gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1957 * We skip link-layer address resolution and NUD
1958 * if the gateway is not a neighbor from ND point
1959 * of view, regardless of the value of nd_ifinfo.flags.
1960 * The second condition is a bit tricky; we skip
1961 * if the gateway is our own address, which is
1962 * sometimes used to install a route to a p2p link.
1964 if (!nd6_is_addr_neighbor(gw6, ifp) ||
1965 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1966 RT_UNLOCK(rt);
1968 * We allow this kind of tricky route only
1969 * when the outgoing interface is p2p.
1970 * XXX: we may need a more generic rule here.
1972 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1973 senderr(EHOSTUNREACH);
1975 goto sendpkt;
1978 if (rt->rt_gwroute == NULL)
1979 goto lookup;
1980 rt = rt->rt_gwroute;
1981 RT_LOCK(rt); /* NB: gwroute */
1982 if ((rt->rt_flags & RTF_UP) == 0) {
1983 RTFREE_LOCKED(rt); /* unlock gwroute */
1984 rt = rt0;
1985 rt0->rt_gwroute = NULL;
1986 lookup:
1987 RT_UNLOCK(rt0);
1988 rt = rtalloc1(rt->rt_gateway, 1, 0UL);
1989 if (rt == rt0) {
1990 RT_REMREF(rt0);
1991 RT_UNLOCK(rt0);
1992 senderr(EHOSTUNREACH);
1994 RT_LOCK(rt0);
1995 if (rt0->rt_gwroute != NULL)
1996 RTFREE(rt0->rt_gwroute);
1997 rt0->rt_gwroute = rt;
1998 if (rt == NULL) {
1999 RT_UNLOCK(rt0);
2000 senderr(EHOSTUNREACH);
2003 RT_UNLOCK(rt0);
2005 RT_UNLOCK(rt);
2009 * Address resolution or Neighbor Unreachability Detection
2010 * for the next hop.
2011 * At this point, the destination of the packet must be a unicast
2012 * or an anycast address(i.e. not a multicast).
2015 /* Look up the neighbor cache for the nexthop */
2016 if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
2017 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2018 else {
2020 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2021 * the condition below is not very efficient. But we believe
2022 * it is tolerable, because this should be a rare case.
2024 if (nd6_is_addr_neighbor(dst, ifp) &&
2025 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
2026 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2028 if (ln == NULL || rt == NULL) {
2029 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2030 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2031 char ip6buf[INET6_ADDRSTRLEN];
2032 log(LOG_DEBUG,
2033 "nd6_output: can't allocate llinfo for %s "
2034 "(ln=%p, rt=%p)\n",
2035 ip6_sprintf(ip6buf, &dst->sin6_addr), ln, rt);
2036 senderr(EIO); /* XXX: good error? */
2039 goto sendpkt; /* send anyway */
2042 /* We don't have to do link-layer address resolution on a p2p link. */
2043 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2044 ln->ln_state < ND6_LLINFO_REACHABLE) {
2045 ln->ln_state = ND6_LLINFO_STALE;
2046 nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz);
2050 * The first time we send a packet to a neighbor whose entry is
2051 * STALE, we have to change the state to DELAY and a sets a timer to
2052 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2053 * neighbor unreachability detection on expiration.
2054 * (RFC 2461 7.3.3)
2056 if (ln->ln_state == ND6_LLINFO_STALE) {
2057 ln->ln_asked = 0;
2058 ln->ln_state = ND6_LLINFO_DELAY;
2059 nd6_llinfo_settimer(ln, (long)V_nd6_delay * hz);
2063 * If the neighbor cache entry has a state other than INCOMPLETE
2064 * (i.e. its link-layer address is already resolved), just
2065 * send the packet.
2067 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2068 goto sendpkt;
2071 * There is a neighbor cache entry, but no ethernet address
2072 * response yet. Append this latest packet to the end of the
2073 * packet queue in the mbuf, unless the number of the packet
2074 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen,
2075 * the oldest packet in the queue will be removed.
2077 if (ln->ln_state == ND6_LLINFO_NOSTATE)
2078 ln->ln_state = ND6_LLINFO_INCOMPLETE;
2079 if (ln->ln_hold) {
2080 struct mbuf *m_hold;
2081 int i;
2083 i = 0;
2084 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2085 i++;
2086 if (m_hold->m_nextpkt == NULL) {
2087 m_hold->m_nextpkt = m;
2088 break;
2091 while (i >= V_nd6_maxqueuelen) {
2092 m_hold = ln->ln_hold;
2093 ln->ln_hold = ln->ln_hold->m_nextpkt;
2094 m_freem(m_hold);
2095 i--;
2097 } else {
2098 ln->ln_hold = m;
2102 * If there has been no NS for the neighbor after entering the
2103 * INCOMPLETE state, send the first solicitation.
2105 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2106 ln->ln_asked++;
2107 nd6_llinfo_settimer(ln,
2108 (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2109 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2111 return (0);
2113 sendpkt:
2114 /* discard the packet if IPv6 operation is disabled on the interface */
2115 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2116 error = ENETDOWN; /* better error? */
2117 goto bad;
2120 #ifdef MAC
2121 mac_netinet6_nd6_send(ifp, m);
2122 #endif
2123 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
2124 return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
2125 rt));
2127 return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
2129 bad:
2130 if (m)
2131 m_freem(m);
2132 return (error);
2134 #undef senderr
2137 nd6_need_cache(struct ifnet *ifp)
2140 * XXX: we currently do not make neighbor cache on any interface
2141 * other than ARCnet, Ethernet, FDDI and GIF.
2143 * RFC2893 says:
2144 * - unidirectional tunnels needs no ND
2146 switch (ifp->if_type) {
2147 case IFT_ARCNET:
2148 case IFT_ETHER:
2149 case IFT_FDDI:
2150 case IFT_IEEE1394:
2151 #ifdef IFT_L2VLAN
2152 case IFT_L2VLAN:
2153 #endif
2154 #ifdef IFT_IEEE80211
2155 case IFT_IEEE80211:
2156 #endif
2157 #ifdef IFT_CARP
2158 case IFT_CARP:
2159 #endif
2160 case IFT_GIF: /* XXX need more cases? */
2161 case IFT_PPP:
2162 case IFT_TUNNEL:
2163 case IFT_BRIDGE:
2164 case IFT_PROPVIRTUAL:
2165 return (1);
2166 default:
2167 return (0);
2172 nd6_storelladdr(struct ifnet *ifp, struct rtentry *rt0, struct mbuf *m,
2173 struct sockaddr *dst, u_char *desten)
2175 struct sockaddr_dl *sdl;
2176 struct rtentry *rt;
2177 int error;
2179 if (m->m_flags & M_MCAST) {
2180 int i;
2182 switch (ifp->if_type) {
2183 case IFT_ETHER:
2184 case IFT_FDDI:
2185 #ifdef IFT_L2VLAN
2186 case IFT_L2VLAN:
2187 #endif
2188 #ifdef IFT_IEEE80211
2189 case IFT_IEEE80211:
2190 #endif
2191 case IFT_BRIDGE:
2192 case IFT_ISO88025:
2193 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2194 desten);
2195 return (0);
2196 case IFT_IEEE1394:
2198 * netbsd can use if_broadcastaddr, but we don't do so
2199 * to reduce # of ifdef.
2201 for (i = 0; i < ifp->if_addrlen; i++)
2202 desten[i] = ~0;
2203 return (0);
2204 case IFT_ARCNET:
2205 *desten = 0;
2206 return (0);
2207 default:
2208 m_freem(m);
2209 return (EAFNOSUPPORT);
2213 if (rt0 == NULL) {
2214 /* this could happen, if we could not allocate memory */
2215 m_freem(m);
2216 return (ENOMEM);
2219 error = rt_check(&rt, &rt0, dst);
2220 if (error) {
2221 m_freem(m);
2222 return (error);
2224 RT_UNLOCK(rt);
2226 if (rt->rt_gateway->sa_family != AF_LINK) {
2227 printf("nd6_storelladdr: something odd happens\n");
2228 m_freem(m);
2229 return (EINVAL);
2231 sdl = SDL(rt->rt_gateway);
2232 if (sdl->sdl_alen == 0) {
2233 /* this should be impossible, but we bark here for debugging */
2234 printf("nd6_storelladdr: sdl_alen == 0\n");
2235 m_freem(m);
2236 return (EINVAL);
2239 bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2240 return (0);
2243 static void
2244 clear_llinfo_pqueue(struct llinfo_nd6 *ln)
2246 struct mbuf *m_hold, *m_hold_next;
2248 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2249 m_hold_next = m_hold->m_nextpkt;
2250 m_hold->m_nextpkt = NULL;
2251 m_freem(m_hold);
2254 ln->ln_hold = NULL;
2255 return;
2258 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2259 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2260 #ifdef SYSCTL_DECL
2261 SYSCTL_DECL(_net_inet6_icmp6);
2262 #endif
2263 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2264 CTLFLAG_RD, nd6_sysctl_drlist, "");
2265 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2266 CTLFLAG_RD, nd6_sysctl_prlist, "");
2267 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2268 CTLFLAG_RW, &nd6_maxqueuelen, 1, "");
2270 static int
2271 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2273 int error;
2274 char buf[1024] __aligned(4);
2275 struct in6_defrouter *d, *de;
2276 struct nd_defrouter *dr;
2278 if (req->newptr)
2279 return EPERM;
2280 error = 0;
2282 for (dr = TAILQ_FIRST(&V_nd_defrouter); dr;
2283 dr = TAILQ_NEXT(dr, dr_entry)) {
2284 d = (struct in6_defrouter *)buf;
2285 de = (struct in6_defrouter *)(buf + sizeof(buf));
2287 if (d + 1 <= de) {
2288 bzero(d, sizeof(*d));
2289 d->rtaddr.sin6_family = AF_INET6;
2290 d->rtaddr.sin6_len = sizeof(d->rtaddr);
2291 d->rtaddr.sin6_addr = dr->rtaddr;
2292 error = sa6_recoverscope(&d->rtaddr);
2293 if (error != 0)
2294 return (error);
2295 d->flags = dr->flags;
2296 d->rtlifetime = dr->rtlifetime;
2297 d->expire = dr->expire;
2298 d->if_index = dr->ifp->if_index;
2299 } else
2300 panic("buffer too short");
2302 error = SYSCTL_OUT(req, buf, sizeof(*d));
2303 if (error)
2304 break;
2307 return (error);
2310 static int
2311 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2313 int error;
2314 char buf[1024] __aligned(4);
2315 struct in6_prefix *p, *pe;
2316 struct nd_prefix *pr;
2317 char ip6buf[INET6_ADDRSTRLEN];
2319 if (req->newptr)
2320 return EPERM;
2321 error = 0;
2323 for (pr = V_nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2324 u_short advrtrs;
2325 size_t advance;
2326 struct sockaddr_in6 *sin6, *s6;
2327 struct nd_pfxrouter *pfr;
2329 p = (struct in6_prefix *)buf;
2330 pe = (struct in6_prefix *)(buf + sizeof(buf));
2332 if (p + 1 <= pe) {
2333 bzero(p, sizeof(*p));
2334 sin6 = (struct sockaddr_in6 *)(p + 1);
2336 p->prefix = pr->ndpr_prefix;
2337 if (sa6_recoverscope(&p->prefix)) {
2338 log(LOG_ERR,
2339 "scope error in prefix list (%s)\n",
2340 ip6_sprintf(ip6buf, &p->prefix.sin6_addr));
2341 /* XXX: press on... */
2343 p->raflags = pr->ndpr_raf;
2344 p->prefixlen = pr->ndpr_plen;
2345 p->vltime = pr->ndpr_vltime;
2346 p->pltime = pr->ndpr_pltime;
2347 p->if_index = pr->ndpr_ifp->if_index;
2348 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2349 p->expire = 0;
2350 else {
2351 time_t maxexpire;
2353 /* XXX: we assume time_t is signed. */
2354 maxexpire = (-1) &
2355 ~((time_t)1 <<
2356 ((sizeof(maxexpire) * 8) - 1));
2357 if (pr->ndpr_vltime <
2358 maxexpire - pr->ndpr_lastupdate) {
2359 p->expire = pr->ndpr_lastupdate +
2360 pr->ndpr_vltime;
2361 } else
2362 p->expire = maxexpire;
2364 p->refcnt = pr->ndpr_refcnt;
2365 p->flags = pr->ndpr_stateflags;
2366 p->origin = PR_ORIG_RA;
2367 advrtrs = 0;
2368 for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2369 pfr = pfr->pfr_next) {
2370 if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2371 advrtrs++;
2372 continue;
2374 s6 = &sin6[advrtrs];
2375 bzero(s6, sizeof(*s6));
2376 s6->sin6_family = AF_INET6;
2377 s6->sin6_len = sizeof(*sin6);
2378 s6->sin6_addr = pfr->router->rtaddr;
2379 if (sa6_recoverscope(s6)) {
2380 log(LOG_ERR,
2381 "scope error in "
2382 "prefix list (%s)\n",
2383 ip6_sprintf(ip6buf,
2384 &pfr->router->rtaddr));
2386 advrtrs++;
2388 p->advrtrs = advrtrs;
2389 } else
2390 panic("buffer too short");
2392 advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2393 error = SYSCTL_OUT(req, buf, advance);
2394 if (error)
2395 break;
2398 return (error);