2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the project nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
36 #include "opt_inet6.h"
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/callout.h>
42 #include <sys/malloc.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
47 #include <sys/kernel.h>
48 #include <sys/protosw.h>
49 #include <sys/errno.h>
50 #include <sys/syslog.h>
51 #include <sys/queue.h>
52 #include <sys/sysctl.h>
55 #include <net/if_arc.h>
56 #include <net/if_dl.h>
57 #include <net/if_types.h>
58 #include <net/iso88025.h>
60 #include <net/route.h>
62 #include <netinet/in.h>
63 #include <netinet/if_ether.h>
64 #include <netinet6/in6_var.h>
65 #include <netinet/ip6.h>
66 #include <netinet6/ip6_var.h>
67 #include <netinet6/scope6_var.h>
68 #include <netinet6/nd6.h>
69 #include <netinet/icmp6.h>
71 #include <sys/limits.h>
72 #include <sys/vimage.h>
74 #include <security/mac/mac_framework.h>
76 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
77 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
79 #define SIN6(s) ((struct sockaddr_in6 *)s)
80 #define SDL(s) ((struct sockaddr_dl *)s)
83 int nd6_prune
= 1; /* walk list every 1 seconds */
84 int nd6_delay
= 5; /* delay first probe time 5 second */
85 int nd6_umaxtries
= 3; /* maximum unicast query */
86 int nd6_mmaxtries
= 3; /* maximum multicast query */
87 int nd6_useloopback
= 1; /* use loopback interface for local traffic */
88 int nd6_gctimer
= (60 * 60 * 24); /* 1 day: garbage collection timer */
90 /* preventing too many loops in ND option parsing */
91 int nd6_maxndopt
= 10; /* max # of ND options allowed */
93 int nd6_maxnudhint
= 0; /* max # of subsequent upper layer hints */
94 int nd6_maxqueuelen
= 1; /* max # of packets cached in unresolved ND entries */
103 static int nd6_inuse
, nd6_allocated
;
105 struct llinfo_nd6 llinfo_nd6
= {&llinfo_nd6
, &llinfo_nd6
};
106 struct nd_drhead nd_defrouter
;
107 struct nd_prhead nd_prefix
= { 0 };
109 int nd6_recalc_reachtm_interval
= ND6_RECALC_REACHTM_INTERVAL
;
110 static struct sockaddr_in6 all1_sa
;
112 static int nd6_is_new_addr_neighbor
__P((struct sockaddr_in6
*,
114 static void nd6_setmtu0(struct ifnet
*, struct nd_ifinfo
*);
115 static void nd6_slowtimo(void *);
116 static int regen_tmpaddr(struct in6_ifaddr
*);
117 static struct llinfo_nd6
*nd6_free(struct rtentry
*, int);
118 static void nd6_llinfo_timer(void *);
119 static void clear_llinfo_pqueue(struct llinfo_nd6
*);
121 struct callout nd6_slowtimo_ch
;
122 struct callout nd6_timer_ch
;
123 extern struct callout in6_tmpaddrtimer_ch
;
128 static int nd6_init_done
= 0;
132 log(LOG_NOTICE
, "nd6_init called more than once(ignored)\n");
136 all1_sa
.sin6_family
= AF_INET6
;
137 all1_sa
.sin6_len
= sizeof(struct sockaddr_in6
);
138 for (i
= 0; i
< sizeof(all1_sa
.sin6_addr
); i
++)
139 all1_sa
.sin6_addr
.s6_addr
[i
] = 0xff;
141 /* initialization of the default router list */
142 TAILQ_INIT(&V_nd_defrouter
);
144 callout_init(&V_nd6_slowtimo_ch
, 0);
145 callout_reset(&V_nd6_slowtimo_ch
, ND6_SLOWTIMER_INTERVAL
* hz
,
153 nd6_ifattach(struct ifnet
*ifp
)
155 struct nd_ifinfo
*nd
;
157 nd
= (struct nd_ifinfo
*)malloc(sizeof(*nd
), M_IP6NDP
, M_WAITOK
);
158 bzero(nd
, sizeof(*nd
));
162 nd
->chlim
= IPV6_DEFHLIM
;
163 nd
->basereachable
= REACHABLE_TIME
;
164 nd
->reachable
= ND_COMPUTE_RTIME(nd
->basereachable
);
165 nd
->retrans
= RETRANS_TIMER
;
167 * Note that the default value of ip6_accept_rtadv is 0, which means
168 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
171 nd
->flags
= (ND6_IFF_PERFORMNUD
| ND6_IFF_ACCEPT_RTADV
);
173 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
174 nd6_setmtu0(ifp
, nd
);
180 nd6_ifdetach(struct nd_ifinfo
*nd
)
187 * Reset ND level link MTU. This function is called when the physical MTU
188 * changes, which means we might have to adjust the ND level MTU.
191 nd6_setmtu(struct ifnet
*ifp
)
194 nd6_setmtu0(ifp
, ND_IFINFO(ifp
));
197 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
199 nd6_setmtu0(struct ifnet
*ifp
, struct nd_ifinfo
*ndi
)
203 omaxmtu
= ndi
->maxmtu
;
205 switch (ifp
->if_type
) {
207 ndi
->maxmtu
= MIN(ARC_PHDS_MAXMTU
, ifp
->if_mtu
); /* RFC2497 */
210 ndi
->maxmtu
= MIN(FDDIIPMTU
, ifp
->if_mtu
); /* RFC2467 */
213 ndi
->maxmtu
= MIN(ISO88025_MAX_MTU
, ifp
->if_mtu
);
216 ndi
->maxmtu
= ifp
->if_mtu
;
221 * Decreasing the interface MTU under IPV6 minimum MTU may cause
222 * undesirable situation. We thus notify the operator of the change
223 * explicitly. The check for omaxmtu is necessary to restrict the
224 * log to the case of changing the MTU, not initializing it.
226 if (omaxmtu
>= IPV6_MMTU
&& ndi
->maxmtu
< IPV6_MMTU
) {
227 log(LOG_NOTICE
, "nd6_setmtu0: "
228 "new link MTU on %s (%lu) is too small for IPv6\n",
229 if_name(ifp
), (unsigned long)ndi
->maxmtu
);
232 if (ndi
->maxmtu
> V_in6_maxmtu
)
233 in6_setmaxmtu(); /* check all interfaces just in case */
239 nd6_option_init(void *opt
, int icmp6len
, union nd_opts
*ndopts
)
242 bzero(ndopts
, sizeof(*ndopts
));
243 ndopts
->nd_opts_search
= (struct nd_opt_hdr
*)opt
;
245 = (struct nd_opt_hdr
*)(((u_char
*)opt
) + icmp6len
);
248 ndopts
->nd_opts_done
= 1;
249 ndopts
->nd_opts_search
= NULL
;
254 * Take one ND option.
257 nd6_option(union nd_opts
*ndopts
)
259 struct nd_opt_hdr
*nd_opt
;
263 panic("ndopts == NULL in nd6_option");
264 if (ndopts
->nd_opts_last
== NULL
)
265 panic("uninitialized ndopts in nd6_option");
266 if (ndopts
->nd_opts_search
== NULL
)
268 if (ndopts
->nd_opts_done
)
271 nd_opt
= ndopts
->nd_opts_search
;
273 /* make sure nd_opt_len is inside the buffer */
274 if ((caddr_t
)&nd_opt
->nd_opt_len
>= (caddr_t
)ndopts
->nd_opts_last
) {
275 bzero(ndopts
, sizeof(*ndopts
));
279 olen
= nd_opt
->nd_opt_len
<< 3;
282 * Message validation requires that all included
283 * options have a length that is greater than zero.
285 bzero(ndopts
, sizeof(*ndopts
));
289 ndopts
->nd_opts_search
= (struct nd_opt_hdr
*)((caddr_t
)nd_opt
+ olen
);
290 if (ndopts
->nd_opts_search
> ndopts
->nd_opts_last
) {
291 /* option overruns the end of buffer, invalid */
292 bzero(ndopts
, sizeof(*ndopts
));
294 } else if (ndopts
->nd_opts_search
== ndopts
->nd_opts_last
) {
295 /* reached the end of options chain */
296 ndopts
->nd_opts_done
= 1;
297 ndopts
->nd_opts_search
= NULL
;
303 * Parse multiple ND options.
304 * This function is much easier to use, for ND routines that do not need
305 * multiple options of the same type.
308 nd6_options(union nd_opts
*ndopts
)
310 struct nd_opt_hdr
*nd_opt
;
314 panic("ndopts == NULL in nd6_options");
315 if (ndopts
->nd_opts_last
== NULL
)
316 panic("uninitialized ndopts in nd6_options");
317 if (ndopts
->nd_opts_search
== NULL
)
321 nd_opt
= nd6_option(ndopts
);
322 if (nd_opt
== NULL
&& ndopts
->nd_opts_last
== NULL
) {
324 * Message validation requires that all included
325 * options have a length that is greater than zero.
327 V_icmp6stat
.icp6s_nd_badopt
++;
328 bzero(ndopts
, sizeof(*ndopts
));
335 switch (nd_opt
->nd_opt_type
) {
336 case ND_OPT_SOURCE_LINKADDR
:
337 case ND_OPT_TARGET_LINKADDR
:
339 case ND_OPT_REDIRECTED_HEADER
:
340 if (ndopts
->nd_opt_array
[nd_opt
->nd_opt_type
]) {
342 "duplicated ND6 option found (type=%d)\n",
343 nd_opt
->nd_opt_type
));
346 ndopts
->nd_opt_array
[nd_opt
->nd_opt_type
]
350 case ND_OPT_PREFIX_INFORMATION
:
351 if (ndopts
->nd_opt_array
[nd_opt
->nd_opt_type
] == 0) {
352 ndopts
->nd_opt_array
[nd_opt
->nd_opt_type
]
355 ndopts
->nd_opts_pi_end
=
356 (struct nd_opt_prefix_info
*)nd_opt
;
360 * Unknown options must be silently ignored,
361 * to accomodate future extension to the protocol.
364 "nd6_options: unsupported option %d - "
365 "option ignored\n", nd_opt
->nd_opt_type
));
370 if (i
> V_nd6_maxndopt
) {
371 V_icmp6stat
.icp6s_nd_toomanyopt
++;
372 nd6log((LOG_INFO
, "too many loop in nd opt\n"));
376 if (ndopts
->nd_opts_done
)
384 * ND6 timer routine to handle ND6 entries
387 nd6_llinfo_settimer(struct llinfo_nd6
*ln
, long tick
)
392 callout_stop(&ln
->ln_timer_ch
);
394 ln
->ln_expire
= time_second
+ tick
/ hz
;
395 if (tick
> INT_MAX
) {
396 ln
->ln_ntick
= tick
- INT_MAX
;
397 callout_reset(&ln
->ln_timer_ch
, INT_MAX
,
398 nd6_llinfo_timer
, ln
);
401 callout_reset(&ln
->ln_timer_ch
, tick
,
402 nd6_llinfo_timer
, ln
);
408 nd6_llinfo_timer(void *arg
)
410 struct llinfo_nd6
*ln
;
412 struct in6_addr
*dst
;
414 struct nd_ifinfo
*ndi
= NULL
;
416 ln
= (struct llinfo_nd6
*)arg
;
418 if (ln
->ln_ntick
> 0) {
419 if (ln
->ln_ntick
> INT_MAX
) {
420 ln
->ln_ntick
-= INT_MAX
;
421 nd6_llinfo_settimer(ln
, INT_MAX
);
424 nd6_llinfo_settimer(ln
, ln
->ln_ntick
);
429 if ((rt
= ln
->ln_rt
) == NULL
)
430 panic("ln->ln_rt == NULL");
431 if ((ifp
= rt
->rt_ifp
) == NULL
)
432 panic("ln->ln_rt->rt_ifp == NULL");
433 ndi
= ND_IFINFO(ifp
);
436 if (rt
->rt_llinfo
&& (struct llinfo_nd6
*)rt
->rt_llinfo
!= ln
)
437 panic("rt_llinfo(%p) is not equal to ln(%p)",
439 if (rt_key(rt
) == NULL
)
440 panic("rt key is NULL in nd6_timer(ln=%p)", ln
);
442 dst
= &((struct sockaddr_in6
*)rt_key(rt
))->sin6_addr
;
444 switch (ln
->ln_state
) {
445 case ND6_LLINFO_INCOMPLETE
:
446 if (ln
->ln_asked
< V_nd6_mmaxtries
) {
448 nd6_llinfo_settimer(ln
, (long)ndi
->retrans
* hz
/ 1000);
449 nd6_ns_output(ifp
, NULL
, dst
, ln
, 0);
451 struct mbuf
*m
= ln
->ln_hold
;
456 * assuming every packet in ln_hold has the
461 icmp6_error2(m
, ICMP6_DST_UNREACH
,
462 ICMP6_DST_UNREACH_ADDR
, 0, rt
->rt_ifp
);
465 clear_llinfo_pqueue(ln
);
467 if (rt
&& rt
->rt_llinfo
)
468 (void)nd6_free(rt
, 0);
472 case ND6_LLINFO_REACHABLE
:
473 if (!ND6_LLINFO_PERMANENT(ln
)) {
474 ln
->ln_state
= ND6_LLINFO_STALE
;
475 nd6_llinfo_settimer(ln
, (long)V_nd6_gctimer
* hz
);
479 case ND6_LLINFO_STALE
:
480 /* Garbage Collection(RFC 2461 5.3) */
481 if (!ND6_LLINFO_PERMANENT(ln
)) {
482 if (rt
&& rt
->rt_llinfo
)
483 (void)nd6_free(rt
, 1);
488 case ND6_LLINFO_DELAY
:
489 if (ndi
&& (ndi
->flags
& ND6_IFF_PERFORMNUD
) != 0) {
492 ln
->ln_state
= ND6_LLINFO_PROBE
;
493 nd6_llinfo_settimer(ln
, (long)ndi
->retrans
* hz
/ 1000);
494 nd6_ns_output(ifp
, dst
, dst
, ln
, 0);
496 ln
->ln_state
= ND6_LLINFO_STALE
; /* XXX */
497 nd6_llinfo_settimer(ln
, (long)V_nd6_gctimer
* hz
);
500 case ND6_LLINFO_PROBE
:
501 if (ln
->ln_asked
< V_nd6_umaxtries
) {
503 nd6_llinfo_settimer(ln
, (long)ndi
->retrans
* hz
/ 1000);
504 nd6_ns_output(ifp
, dst
, dst
, ln
, 0);
505 } else if (rt
->rt_ifa
!= NULL
&&
506 rt
->rt_ifa
->ifa_addr
->sa_family
== AF_INET6
&&
507 (((struct in6_ifaddr
*)rt
->rt_ifa
)->ia_flags
& IFA_ROUTE
)) {
509 * This is an unreachable neighbor whose address is
510 * specified as the destination of a p2p interface
511 * (see in6_ifinit()). We should not free the entry
512 * since this is sort of a "static" entry generated
513 * via interface address configuration.
516 ln
->ln_expire
= 0; /* make it permanent */
517 ln
->ln_state
= ND6_LLINFO_STALE
;
519 if (rt
&& rt
->rt_llinfo
)
520 (void)nd6_free(rt
, 0);
529 * ND6 timer routine to expire default route list and prefix list
532 nd6_timer(void *ignored_arg
)
535 struct nd_defrouter
*dr
;
536 struct nd_prefix
*pr
;
537 struct in6_ifaddr
*ia6
, *nia6
;
538 struct in6_addrlifetime
*lt6
;
540 callout_reset(&V_nd6_timer_ch
, V_nd6_prune
* hz
,
543 /* expire default router list */
545 dr
= TAILQ_FIRST(&V_nd_defrouter
);
547 if (dr
->expire
&& dr
->expire
< time_second
) {
548 struct nd_defrouter
*t
;
549 t
= TAILQ_NEXT(dr
, dr_entry
);
553 dr
= TAILQ_NEXT(dr
, dr_entry
);
558 * expire interface addresses.
559 * in the past the loop was inside prefix expiry processing.
560 * However, from a stricter speci-confrmance standpoint, we should
561 * rather separate address lifetimes and prefix lifetimes.
564 for (ia6
= V_in6_ifaddr
; ia6
; ia6
= nia6
) {
566 /* check address lifetime */
567 lt6
= &ia6
->ia6_lifetime
;
568 if (IFA6_IS_INVALID(ia6
)) {
572 * If the expiring address is temporary, try
573 * regenerating a new one. This would be useful when
574 * we suspended a laptop PC, then turned it on after a
575 * period that could invalidate all temporary
576 * addresses. Although we may have to restart the
577 * loop (see below), it must be after purging the
578 * address. Otherwise, we'd see an infinite loop of
581 if (V_ip6_use_tempaddr
&&
582 (ia6
->ia6_flags
& IN6_IFF_TEMPORARY
) != 0) {
583 if (regen_tmpaddr(ia6
) == 0)
587 in6_purgeaddr(&ia6
->ia_ifa
);
590 goto addrloop
; /* XXX: see below */
591 } else if (IFA6_IS_DEPRECATED(ia6
)) {
592 int oldflags
= ia6
->ia6_flags
;
594 ia6
->ia6_flags
|= IN6_IFF_DEPRECATED
;
597 * If a temporary address has just become deprecated,
598 * regenerate a new one if possible.
600 if (V_ip6_use_tempaddr
&&
601 (ia6
->ia6_flags
& IN6_IFF_TEMPORARY
) != 0 &&
602 (oldflags
& IN6_IFF_DEPRECATED
) == 0) {
604 if (regen_tmpaddr(ia6
) == 0) {
606 * A new temporary address is
608 * XXX: this means the address chain
609 * has changed while we are still in
610 * the loop. Although the change
611 * would not cause disaster (because
612 * it's not a deletion, but an
613 * addition,) we'd rather restart the
614 * loop just for safety. Or does this
615 * significantly reduce performance??
622 * A new RA might have made a deprecated address
625 ia6
->ia6_flags
&= ~IN6_IFF_DEPRECATED
;
629 /* expire prefix list */
630 pr
= V_nd_prefix
.lh_first
;
633 * check prefix lifetime.
634 * since pltime is just for autoconf, pltime processing for
635 * prefix is not necessary.
637 if (pr
->ndpr_vltime
!= ND6_INFINITE_LIFETIME
&&
638 time_second
- pr
->ndpr_lastupdate
> pr
->ndpr_vltime
) {
643 * address expiration and prefix expiration are
644 * separate. NEVER perform in6_purgeaddr here.
656 * ia6 - deprecated/invalidated temporary address
659 regen_tmpaddr(struct in6_ifaddr
*ia6
)
663 struct in6_ifaddr
*public_ifa6
= NULL
;
665 ifp
= ia6
->ia_ifa
.ifa_ifp
;
666 for (ifa
= ifp
->if_addrlist
.tqh_first
; ifa
;
667 ifa
= ifa
->ifa_list
.tqe_next
) {
668 struct in6_ifaddr
*it6
;
670 if (ifa
->ifa_addr
->sa_family
!= AF_INET6
)
673 it6
= (struct in6_ifaddr
*)ifa
;
675 /* ignore no autoconf addresses. */
676 if ((it6
->ia6_flags
& IN6_IFF_AUTOCONF
) == 0)
679 /* ignore autoconf addresses with different prefixes. */
680 if (it6
->ia6_ndpr
== NULL
|| it6
->ia6_ndpr
!= ia6
->ia6_ndpr
)
684 * Now we are looking at an autoconf address with the same
685 * prefix as ours. If the address is temporary and is still
686 * preferred, do not create another one. It would be rare, but
687 * could happen, for example, when we resume a laptop PC after
690 if ((it6
->ia6_flags
& IN6_IFF_TEMPORARY
) != 0 &&
691 !IFA6_IS_DEPRECATED(it6
)) {
697 * This is a public autoconf address that has the same prefix
698 * as ours. If it is preferred, keep it. We can't break the
699 * loop here, because there may be a still-preferred temporary
700 * address with the prefix.
702 if (!IFA6_IS_DEPRECATED(it6
))
706 if (public_ifa6
!= NULL
) {
709 if ((e
= in6_tmpifadd(public_ifa6
, 0, 0)) != 0) {
710 log(LOG_NOTICE
, "regen_tmpaddr: failed to create a new"
711 " tmp addr,errno=%d\n", e
);
721 * Nuke neighbor cache/prefix/default router management table, right before
725 nd6_purge(struct ifnet
*ifp
)
727 struct llinfo_nd6
*ln
, *nln
;
728 struct nd_defrouter
*dr
, *ndr
;
729 struct nd_prefix
*pr
, *npr
;
732 * Nuke default router list entries toward ifp.
733 * We defer removal of default router list entries that is installed
734 * in the routing table, in order to keep additional side effects as
737 for (dr
= TAILQ_FIRST(&V_nd_defrouter
); dr
; dr
= ndr
) {
738 ndr
= TAILQ_NEXT(dr
, dr_entry
);
746 for (dr
= TAILQ_FIRST(&V_nd_defrouter
); dr
; dr
= ndr
) {
747 ndr
= TAILQ_NEXT(dr
, dr_entry
);
755 /* Nuke prefix list entries toward ifp */
756 for (pr
= V_nd_prefix
.lh_first
; pr
; pr
= npr
) {
758 if (pr
->ndpr_ifp
== ifp
) {
760 * Because if_detach() does *not* release prefixes
761 * while purging addresses the reference count will
762 * still be above zero. We therefore reset it to
763 * make sure that the prefix really gets purged.
768 * Previously, pr->ndpr_addr is removed as well,
769 * but I strongly believe we don't have to do it.
770 * nd6_purge() is only called from in6_ifdetach(),
771 * which removes all the associated interface addresses
773 * (jinmei@kame.net 20010129)
779 /* cancel default outgoing interface setting */
780 if (V_nd6_defifindex
== ifp
->if_index
)
781 nd6_setdefaultiface(0);
783 if (!V_ip6_forwarding
&& V_ip6_accept_rtadv
) { /* XXX: too restrictive? */
784 /* refresh default router list */
789 * Nuke neighbor cache entries for the ifp.
790 * Note that rt->rt_ifp may not be the same as ifp,
791 * due to KAME goto ours hack. See RTM_RESOLVE case in
792 * nd6_rtrequest(), and ip6_input().
794 ln
= V_llinfo_nd6
.ln_next
;
795 while (ln
&& ln
!= &V_llinfo_nd6
) {
797 struct sockaddr_dl
*sdl
;
801 if (rt
&& rt
->rt_gateway
&&
802 rt
->rt_gateway
->sa_family
== AF_LINK
) {
803 sdl
= (struct sockaddr_dl
*)rt
->rt_gateway
;
804 if (sdl
->sdl_index
== ifp
->if_index
)
805 nln
= nd6_free(rt
, 0);
812 nd6_lookup(struct in6_addr
*addr6
, int create
, struct ifnet
*ifp
)
815 struct sockaddr_in6 sin6
;
816 char ip6buf
[INET6_ADDRSTRLEN
];
818 bzero(&sin6
, sizeof(sin6
));
819 sin6
.sin6_len
= sizeof(struct sockaddr_in6
);
820 sin6
.sin6_family
= AF_INET6
;
821 sin6
.sin6_addr
= *addr6
;
822 rt
= rtalloc1((struct sockaddr
*)&sin6
, create
, 0UL);
824 if ((rt
->rt_flags
& RTF_LLINFO
) == 0 && create
) {
826 * This is the case for the default route.
827 * If we want to create a neighbor cache for the
828 * address, we should free the route for the
829 * destination and allocate an interface route.
840 * If no route is available and create is set,
841 * we allocate a host route for the destination
842 * and treat it like an interface route.
843 * This hack is necessary for a neighbor which can't
844 * be covered by our own prefix.
847 ifaof_ifpforaddr((struct sockaddr
*)&sin6
, ifp
);
852 * Create a new route. RTF_LLINFO is necessary
853 * to create a Neighbor Cache entry for the
854 * destination in nd6_rtrequest which will be
855 * called in rtrequest via ifa->ifa_rtrequest.
857 if ((e
= rtrequest(RTM_ADD
, (struct sockaddr
*)&sin6
,
858 ifa
->ifa_addr
, (struct sockaddr
*)&all1_sa
,
859 (ifa
->ifa_flags
| RTF_HOST
| RTF_LLINFO
) &
860 ~RTF_CLONING
, &rt
)) != 0) {
862 "nd6_lookup: failed to add route for a "
863 "neighbor(%s), errno=%d\n",
864 ip6_sprintf(ip6buf
, addr6
), e
);
870 struct llinfo_nd6
*ln
=
871 (struct llinfo_nd6
*)rt
->rt_llinfo
;
872 ln
->ln_state
= ND6_LLINFO_NOSTATE
;
880 * Validation for the entry.
881 * Note that the check for rt_llinfo is necessary because a cloned
882 * route from a parent route that has the L flag (e.g. the default
883 * route to a p2p interface) may have the flag, too, while the
884 * destination is not actually a neighbor.
885 * XXX: we can't use rt->rt_ifp to check for the interface, since
886 * it might be the loopback interface if the entry is for our
887 * own address on a non-loopback interface. Instead, we should
888 * use rt->rt_ifa->ifa_ifp, which would specify the REAL
890 * Note also that ifa_ifp and ifp may differ when we connect two
891 * interfaces to a same link, install a link prefix to an interface,
892 * and try to install a neighbor cache on an interface that does not
893 * have a route to the prefix.
895 if ((rt
->rt_flags
& RTF_GATEWAY
) || (rt
->rt_flags
& RTF_LLINFO
) == 0 ||
896 rt
->rt_gateway
->sa_family
!= AF_LINK
|| rt
->rt_llinfo
== NULL
||
897 (ifp
&& rt
->rt_ifa
->ifa_ifp
!= ifp
)) {
900 "nd6_lookup: failed to lookup %s (if = %s)\n",
901 ip6_sprintf(ip6buf
, addr6
),
902 ifp
? if_name(ifp
) : "unspec"));
907 RT_UNLOCK(rt
); /* XXX not ready to return rt locked */
912 * Test whether a given IPv6 address is a neighbor or not, ignoring
913 * the actual neighbor cache. The neighbor cache is ignored in order
914 * to not reenter the routing code from within itself.
917 nd6_is_new_addr_neighbor(struct sockaddr_in6
*addr
, struct ifnet
*ifp
)
919 struct nd_prefix
*pr
;
920 struct ifaddr
*dstaddr
;
923 * A link-local address is always a neighbor.
924 * XXX: a link does not necessarily specify a single interface.
926 if (IN6_IS_ADDR_LINKLOCAL(&addr
->sin6_addr
)) {
927 struct sockaddr_in6 sin6_copy
;
931 * We need sin6_copy since sa6_recoverscope() may modify the
935 if (sa6_recoverscope(&sin6_copy
))
936 return (0); /* XXX: should be impossible */
937 if (in6_setscope(&sin6_copy
.sin6_addr
, ifp
, &zone
))
939 if (sin6_copy
.sin6_scope_id
== zone
)
946 * If the address matches one of our addresses,
947 * it should be a neighbor.
948 * If the address matches one of our on-link prefixes, it should be a
951 for (pr
= V_nd_prefix
.lh_first
; pr
; pr
= pr
->ndpr_next
) {
952 if (pr
->ndpr_ifp
!= ifp
)
955 if (!(pr
->ndpr_stateflags
& NDPRF_ONLINK
))
958 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr
->ndpr_prefix
.sin6_addr
,
959 &addr
->sin6_addr
, &pr
->ndpr_mask
))
964 * If the address is assigned on the node of the other side of
965 * a p2p interface, the address should be a neighbor.
967 dstaddr
= ifa_ifwithdstaddr((struct sockaddr
*)addr
);
968 if ((dstaddr
!= NULL
) && (dstaddr
->ifa_ifp
== ifp
))
972 * If the default router list is empty, all addresses are regarded
973 * as on-link, and thus, as a neighbor.
974 * XXX: we restrict the condition to hosts, because routers usually do
975 * not have the "default router list".
977 if (!V_ip6_forwarding
&& TAILQ_FIRST(&V_nd_defrouter
) == NULL
&&
978 V_nd6_defifindex
== ifp
->if_index
) {
987 * Detect if a given IPv6 address identifies a neighbor on a given link.
988 * XXX: should take care of the destination of a p2p link?
991 nd6_is_addr_neighbor(struct sockaddr_in6
*addr
, struct ifnet
*ifp
)
994 if (nd6_is_new_addr_neighbor(addr
, ifp
))
998 * Even if the address matches none of our addresses, it might be
999 * in the neighbor cache.
1001 if (nd6_lookup(&addr
->sin6_addr
, 0, ifp
) != NULL
)
1008 * Free an nd6 llinfo entry.
1009 * Since the function would cause significant changes in the kernel, DO NOT
1010 * make it global, unless you have a strong reason for the change, and are sure
1011 * that the change is safe.
1013 static struct llinfo_nd6
*
1014 nd6_free(struct rtentry
*rt
, int gc
)
1016 struct llinfo_nd6
*ln
= (struct llinfo_nd6
*)rt
->rt_llinfo
, *next
;
1017 struct in6_addr in6
= ((struct sockaddr_in6
*)rt_key(rt
))->sin6_addr
;
1018 struct nd_defrouter
*dr
;
1021 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1022 * even though it is not harmful, it was not really necessary.
1026 nd6_llinfo_settimer(ln
, -1);
1028 if (!V_ip6_forwarding
) {
1031 dr
= defrouter_lookup(&((struct sockaddr_in6
*)rt_key(rt
))->sin6_addr
,
1034 if (dr
!= NULL
&& dr
->expire
&&
1035 ln
->ln_state
== ND6_LLINFO_STALE
&& gc
) {
1037 * If the reason for the deletion is just garbage
1038 * collection, and the neighbor is an active default
1039 * router, do not delete it. Instead, reset the GC
1040 * timer using the router's lifetime.
1041 * Simply deleting the entry would affect default
1042 * router selection, which is not necessarily a good
1043 * thing, especially when we're using router preference
1045 * XXX: the check for ln_state would be redundant,
1046 * but we intentionally keep it just in case.
1048 if (dr
->expire
> time_second
)
1049 nd6_llinfo_settimer(ln
,
1050 (dr
->expire
- time_second
) * hz
);
1052 nd6_llinfo_settimer(ln
, (long)V_nd6_gctimer
* hz
);
1054 return (ln
->ln_next
);
1057 if (ln
->ln_router
|| dr
) {
1059 * rt6_flush must be called whether or not the neighbor
1060 * is in the Default Router List.
1061 * See a corresponding comment in nd6_na_input().
1063 rt6_flush(&in6
, rt
->rt_ifp
);
1068 * Unreachablity of a router might affect the default
1069 * router selection and on-link detection of advertised
1074 * Temporarily fake the state to choose a new default
1075 * router and to perform on-link determination of
1076 * prefixes correctly.
1077 * Below the state will be set correctly,
1078 * or the entry itself will be deleted.
1080 ln
->ln_state
= ND6_LLINFO_INCOMPLETE
;
1083 * Since defrouter_select() does not affect the
1084 * on-link determination and MIP6 needs the check
1085 * before the default router selection, we perform
1088 pfxlist_onlink_check();
1091 * refresh default router list
1099 * Before deleting the entry, remember the next entry as the
1100 * return value. We need this because pfxlist_onlink_check() above
1101 * might have freed other entries (particularly the old next entry) as
1102 * a side effect (XXX).
1107 * Detach the route from the routing tree and the list of neighbor
1108 * caches, and disable the route entry not to be used in already
1111 rtrequest(RTM_DELETE
, rt_key(rt
), (struct sockaddr
*)0,
1112 rt_mask(rt
), 0, (struct rtentry
**)0);
1118 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1120 * XXX cost-effective methods?
1123 nd6_nud_hint(struct rtentry
*rt
, struct in6_addr
*dst6
, int force
)
1125 struct llinfo_nd6
*ln
;
1128 * If the caller specified "rt", use that. Otherwise, resolve the
1129 * routing table by supplied "dst6".
1134 if ((rt
= nd6_lookup(dst6
, 0, NULL
)) == NULL
)
1138 if ((rt
->rt_flags
& RTF_GATEWAY
) != 0 ||
1139 (rt
->rt_flags
& RTF_LLINFO
) == 0 ||
1140 rt
->rt_llinfo
== NULL
|| rt
->rt_gateway
== NULL
||
1141 rt
->rt_gateway
->sa_family
!= AF_LINK
) {
1142 /* This is not a host route. */
1146 ln
= (struct llinfo_nd6
*)rt
->rt_llinfo
;
1147 if (ln
->ln_state
< ND6_LLINFO_REACHABLE
)
1151 * if we get upper-layer reachability confirmation many times,
1152 * it is possible we have false information.
1156 if (ln
->ln_byhint
> V_nd6_maxnudhint
)
1160 ln
->ln_state
= ND6_LLINFO_REACHABLE
;
1161 if (!ND6_LLINFO_PERMANENT(ln
)) {
1162 nd6_llinfo_settimer(ln
,
1163 (long)ND_IFINFO(rt
->rt_ifp
)->reachable
* hz
);
1171 nd6_rtrequest(int req
, struct rtentry
*rt
, struct rt_addrinfo
*info
)
1173 struct sockaddr
*gate
= rt
->rt_gateway
;
1174 struct llinfo_nd6
*ln
= (struct llinfo_nd6
*)rt
->rt_llinfo
;
1175 static struct sockaddr_dl null_sdl
= {sizeof(null_sdl
), AF_LINK
};
1176 struct ifnet
*ifp
= rt
->rt_ifp
;
1181 if ((rt
->rt_flags
& RTF_GATEWAY
) != 0)
1184 if (nd6_need_cache(ifp
) == 0 && (rt
->rt_flags
& RTF_HOST
) == 0) {
1186 * This is probably an interface direct route for a link
1187 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1188 * We do not need special treatment below for such a route.
1189 * Moreover, the RTF_LLINFO flag which would be set below
1190 * would annoy the ndp(8) command.
1195 if (req
== RTM_RESOLVE
&&
1196 (nd6_need_cache(ifp
) == 0 || /* stf case */
1197 !nd6_is_new_addr_neighbor((struct sockaddr_in6
*)rt_key(rt
),
1200 * FreeBSD and BSD/OS often make a cloned host route based
1201 * on a less-specific route (e.g. the default route).
1202 * If the less specific route does not have a "gateway"
1203 * (this is the case when the route just goes to a p2p or an
1204 * stf interface), we'll mistakenly make a neighbor cache for
1205 * the host route, and will see strange neighbor solicitation
1206 * for the corresponding destination. In order to avoid the
1207 * confusion, we check if the destination of the route is
1208 * a neighbor in terms of neighbor discovery, and stop the
1209 * process if not. Additionally, we remove the LLINFO flag
1210 * so that ndp(8) will not try to get the neighbor information
1211 * of the destination.
1213 rt
->rt_flags
&= ~RTF_LLINFO
;
1220 * There is no backward compatibility :)
1222 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1223 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1224 * rt->rt_flags |= RTF_CLONING;
1226 if ((rt
->rt_flags
& RTF_CLONING
) ||
1227 ((rt
->rt_flags
& RTF_LLINFO
) && ln
== NULL
)) {
1229 * Case 1: This route should come from a route to
1230 * interface (RTF_CLONING case) or the route should be
1231 * treated as on-link but is currently not
1232 * (RTF_LLINFO && ln == NULL case).
1234 rt_setgate(rt
, rt_key(rt
),
1235 (struct sockaddr
*)&null_sdl
);
1236 gate
= rt
->rt_gateway
;
1237 SDL(gate
)->sdl_type
= ifp
->if_type
;
1238 SDL(gate
)->sdl_index
= ifp
->if_index
;
1240 nd6_llinfo_settimer(ln
, 0);
1241 if ((rt
->rt_flags
& RTF_CLONING
) != 0)
1245 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1246 * We don't do that here since llinfo is not ready yet.
1248 * There are also couple of other things to be discussed:
1249 * - unsolicited NA code needs improvement beforehand
1250 * - RFC2461 says we MAY send multicast unsolicited NA
1251 * (7.2.6 paragraph 4), however, it also says that we
1252 * SHOULD provide a mechanism to prevent multicast NA storm.
1253 * we don't have anything like it right now.
1254 * note that the mechanism needs a mutual agreement
1255 * between proxies, which means that we need to implement
1256 * a new protocol, or a new kludge.
1257 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1258 * we need to check ip6forwarding before sending it.
1259 * (or should we allow proxy ND configuration only for
1260 * routers? there's no mention about proxy ND from hosts)
1264 if ((ifp
->if_flags
& (IFF_POINTOPOINT
| IFF_LOOPBACK
)) == 0) {
1266 * Address resolution isn't necessary for a point to
1267 * point link, so we can skip this test for a p2p link.
1269 if (gate
->sa_family
!= AF_LINK
||
1270 gate
->sa_len
< sizeof(null_sdl
)) {
1272 "nd6_rtrequest: bad gateway value: %s\n",
1276 SDL(gate
)->sdl_type
= ifp
->if_type
;
1277 SDL(gate
)->sdl_index
= ifp
->if_index
;
1280 break; /* This happens on a route change */
1282 * Case 2: This route may come from cloning, or a manual route
1283 * add with a LL address.
1285 R_Malloc(ln
, struct llinfo_nd6
*, sizeof(*ln
));
1286 rt
->rt_llinfo
= (caddr_t
)ln
;
1288 log(LOG_DEBUG
, "nd6_rtrequest: malloc failed\n");
1293 bzero(ln
, sizeof(*ln
));
1296 callout_init(&ln
->ln_timer_ch
, 0);
1298 /* this is required for "ndp" command. - shin */
1299 if (req
== RTM_ADD
) {
1301 * gate should have some valid AF_LINK entry,
1302 * and ln->ln_expire should have some lifetime
1303 * which is specified by ndp command.
1305 ln
->ln_state
= ND6_LLINFO_REACHABLE
;
1309 * When req == RTM_RESOLVE, rt is created and
1310 * initialized in rtrequest(), so rt_expire is 0.
1312 ln
->ln_state
= ND6_LLINFO_NOSTATE
;
1313 nd6_llinfo_settimer(ln
, 0);
1315 rt
->rt_flags
|= RTF_LLINFO
;
1316 ln
->ln_next
= V_llinfo_nd6
.ln_next
;
1317 V_llinfo_nd6
.ln_next
= ln
;
1318 ln
->ln_prev
= &V_llinfo_nd6
;
1319 ln
->ln_next
->ln_prev
= ln
;
1322 * check if rt_key(rt) is one of my address assigned
1325 ifa
= (struct ifaddr
*)in6ifa_ifpwithaddr(rt
->rt_ifp
,
1326 &SIN6(rt_key(rt
))->sin6_addr
);
1328 caddr_t macp
= nd6_ifptomac(ifp
);
1329 nd6_llinfo_settimer(ln
, -1);
1330 ln
->ln_state
= ND6_LLINFO_REACHABLE
;
1333 bcopy(macp
, LLADDR(SDL(gate
)), ifp
->if_addrlen
);
1334 SDL(gate
)->sdl_alen
= ifp
->if_addrlen
;
1336 if (V_nd6_useloopback
) {
1337 rt
->rt_ifp
= &V_loif
[0]; /* XXX */
1339 * Make sure rt_ifa be equal to the ifaddr
1340 * corresponding to the address.
1341 * We need this because when we refer
1342 * rt_ifa->ia6_flags in ip6_input, we assume
1343 * that the rt_ifa points to the address instead
1344 * of the loopback address.
1346 if (ifa
!= rt
->rt_ifa
) {
1347 IFAFREE(rt
->rt_ifa
);
1352 } else if (rt
->rt_flags
& RTF_ANNOUNCE
) {
1353 nd6_llinfo_settimer(ln
, -1);
1354 ln
->ln_state
= ND6_LLINFO_REACHABLE
;
1357 /* join solicited node multicast for proxy ND */
1358 if (ifp
->if_flags
& IFF_MULTICAST
) {
1359 struct in6_addr llsol
;
1362 llsol
= SIN6(rt_key(rt
))->sin6_addr
;
1363 llsol
.s6_addr32
[0] = IPV6_ADDR_INT32_MLL
;
1364 llsol
.s6_addr32
[1] = 0;
1365 llsol
.s6_addr32
[2] = htonl(1);
1366 llsol
.s6_addr8
[12] = 0xff;
1367 if (in6_setscope(&llsol
, ifp
, NULL
))
1369 if (in6_addmulti(&llsol
, ifp
,
1370 &error
, 0) == NULL
) {
1371 char ip6buf
[INET6_ADDRSTRLEN
];
1372 nd6log((LOG_ERR
, "%s: failed to join "
1373 "%s (errno=%d)\n", if_name(ifp
),
1374 ip6_sprintf(ip6buf
, &llsol
),
1384 /* leave from solicited node multicast for proxy ND */
1385 if ((rt
->rt_flags
& RTF_ANNOUNCE
) != 0 &&
1386 (ifp
->if_flags
& IFF_MULTICAST
) != 0) {
1387 struct in6_addr llsol
;
1388 struct in6_multi
*in6m
;
1390 llsol
= SIN6(rt_key(rt
))->sin6_addr
;
1391 llsol
.s6_addr32
[0] = IPV6_ADDR_INT32_MLL
;
1392 llsol
.s6_addr32
[1] = 0;
1393 llsol
.s6_addr32
[2] = htonl(1);
1394 llsol
.s6_addr8
[12] = 0xff;
1395 if (in6_setscope(&llsol
, ifp
, NULL
) == 0) {
1396 IN6_LOOKUP_MULTI(llsol
, ifp
, in6m
);
1400 ; /* XXX: should not happen. bark here? */
1403 ln
->ln_next
->ln_prev
= ln
->ln_prev
;
1404 ln
->ln_prev
->ln_next
= ln
->ln_next
;
1406 nd6_llinfo_settimer(ln
, -1);
1409 rt
->rt_flags
&= ~RTF_LLINFO
;
1410 clear_llinfo_pqueue(ln
);
1416 nd6_ioctl(u_long cmd
, caddr_t data
, struct ifnet
*ifp
)
1418 struct in6_drlist
*drl
= (struct in6_drlist
*)data
;
1419 struct in6_oprlist
*oprl
= (struct in6_oprlist
*)data
;
1420 struct in6_ndireq
*ndi
= (struct in6_ndireq
*)data
;
1421 struct in6_nbrinfo
*nbi
= (struct in6_nbrinfo
*)data
;
1422 struct in6_ndifreq
*ndif
= (struct in6_ndifreq
*)data
;
1423 struct nd_defrouter
*dr
;
1424 struct nd_prefix
*pr
;
1426 int i
= 0, error
= 0;
1430 case SIOCGDRLST_IN6
:
1432 * obsolete API, use sysctl under net.inet6.icmp6
1434 bzero(drl
, sizeof(*drl
));
1436 dr
= TAILQ_FIRST(&V_nd_defrouter
);
1437 while (dr
&& i
< DRLSTSIZ
) {
1438 drl
->defrouter
[i
].rtaddr
= dr
->rtaddr
;
1439 in6_clearscope(&drl
->defrouter
[i
].rtaddr
);
1441 drl
->defrouter
[i
].flags
= dr
->flags
;
1442 drl
->defrouter
[i
].rtlifetime
= dr
->rtlifetime
;
1443 drl
->defrouter
[i
].expire
= dr
->expire
;
1444 drl
->defrouter
[i
].if_index
= dr
->ifp
->if_index
;
1446 dr
= TAILQ_NEXT(dr
, dr_entry
);
1450 case SIOCGPRLST_IN6
:
1452 * obsolete API, use sysctl under net.inet6.icmp6
1454 * XXX the structure in6_prlist was changed in backward-
1455 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
1456 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1459 * XXX meaning of fields, especialy "raflags", is very
1460 * differnet between RA prefix list and RR/static prefix list.
1461 * how about separating ioctls into two?
1463 bzero(oprl
, sizeof(*oprl
));
1465 pr
= V_nd_prefix
.lh_first
;
1466 while (pr
&& i
< PRLSTSIZ
) {
1467 struct nd_pfxrouter
*pfr
;
1470 oprl
->prefix
[i
].prefix
= pr
->ndpr_prefix
.sin6_addr
;
1471 oprl
->prefix
[i
].raflags
= pr
->ndpr_raf
;
1472 oprl
->prefix
[i
].prefixlen
= pr
->ndpr_plen
;
1473 oprl
->prefix
[i
].vltime
= pr
->ndpr_vltime
;
1474 oprl
->prefix
[i
].pltime
= pr
->ndpr_pltime
;
1475 oprl
->prefix
[i
].if_index
= pr
->ndpr_ifp
->if_index
;
1476 if (pr
->ndpr_vltime
== ND6_INFINITE_LIFETIME
)
1477 oprl
->prefix
[i
].expire
= 0;
1481 /* XXX: we assume time_t is signed. */
1484 ((sizeof(maxexpire
) * 8) - 1));
1485 if (pr
->ndpr_vltime
<
1486 maxexpire
- pr
->ndpr_lastupdate
) {
1487 oprl
->prefix
[i
].expire
=
1488 pr
->ndpr_lastupdate
+
1491 oprl
->prefix
[i
].expire
= maxexpire
;
1494 pfr
= pr
->ndpr_advrtrs
.lh_first
;
1498 #define RTRADDR oprl->prefix[i].advrtr[j]
1499 RTRADDR
= pfr
->router
->rtaddr
;
1500 in6_clearscope(&RTRADDR
);
1504 pfr
= pfr
->pfr_next
;
1506 oprl
->prefix
[i
].advrtrs
= j
;
1507 oprl
->prefix
[i
].origin
= PR_ORIG_RA
;
1515 case OSIOCGIFINFO_IN6
:
1517 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1518 bzero(&ND
, sizeof(ND
));
1519 ND
.linkmtu
= IN6_LINKMTU(ifp
);
1520 ND
.maxmtu
= ND_IFINFO(ifp
)->maxmtu
;
1521 ND
.basereachable
= ND_IFINFO(ifp
)->basereachable
;
1522 ND
.reachable
= ND_IFINFO(ifp
)->reachable
;
1523 ND
.retrans
= ND_IFINFO(ifp
)->retrans
;
1524 ND
.flags
= ND_IFINFO(ifp
)->flags
;
1525 ND
.recalctm
= ND_IFINFO(ifp
)->recalctm
;
1526 ND
.chlim
= ND_IFINFO(ifp
)->chlim
;
1528 case SIOCGIFINFO_IN6
:
1529 ND
= *ND_IFINFO(ifp
);
1531 case SIOCSIFINFO_IN6
:
1533 * used to change host variables from userland.
1534 * intented for a use on router to reflect RA configurations.
1536 /* 0 means 'unspecified' */
1537 if (ND
.linkmtu
!= 0) {
1538 if (ND
.linkmtu
< IPV6_MMTU
||
1539 ND
.linkmtu
> IN6_LINKMTU(ifp
)) {
1543 ND_IFINFO(ifp
)->linkmtu
= ND
.linkmtu
;
1546 if (ND
.basereachable
!= 0) {
1547 int obasereachable
= ND_IFINFO(ifp
)->basereachable
;
1549 ND_IFINFO(ifp
)->basereachable
= ND
.basereachable
;
1550 if (ND
.basereachable
!= obasereachable
)
1551 ND_IFINFO(ifp
)->reachable
=
1552 ND_COMPUTE_RTIME(ND
.basereachable
);
1554 if (ND
.retrans
!= 0)
1555 ND_IFINFO(ifp
)->retrans
= ND
.retrans
;
1557 ND_IFINFO(ifp
)->chlim
= ND
.chlim
;
1559 case SIOCSIFINFO_FLAGS
:
1560 ND_IFINFO(ifp
)->flags
= ND
.flags
;
1563 case SIOCSNDFLUSH_IN6
: /* XXX: the ioctl name is confusing... */
1564 /* sync kernel routing table with the default router list */
1568 case SIOCSPFXFLUSH_IN6
:
1570 /* flush all the prefix advertised by routers */
1571 struct nd_prefix
*pr
, *next
;
1574 for (pr
= V_nd_prefix
.lh_first
; pr
; pr
= next
) {
1575 struct in6_ifaddr
*ia
, *ia_next
;
1577 next
= pr
->ndpr_next
;
1579 if (IN6_IS_ADDR_LINKLOCAL(&pr
->ndpr_prefix
.sin6_addr
))
1582 /* do we really have to remove addresses as well? */
1583 for (ia
= V_in6_ifaddr
; ia
; ia
= ia_next
) {
1584 /* ia might be removed. keep the next ptr. */
1585 ia_next
= ia
->ia_next
;
1587 if ((ia
->ia6_flags
& IN6_IFF_AUTOCONF
) == 0)
1590 if (ia
->ia6_ndpr
== pr
)
1591 in6_purgeaddr(&ia
->ia_ifa
);
1598 case SIOCSRTRFLUSH_IN6
:
1600 /* flush all the default routers */
1601 struct nd_defrouter
*dr
, *next
;
1605 for (dr
= TAILQ_FIRST(&V_nd_defrouter
); dr
; dr
= next
) {
1606 next
= TAILQ_NEXT(dr
, dr_entry
);
1613 case SIOCGNBRINFO_IN6
:
1615 struct llinfo_nd6
*ln
;
1616 struct in6_addr nb_addr
= nbi
->addr
; /* make local for safety */
1618 if ((error
= in6_setscope(&nb_addr
, ifp
, NULL
)) != 0)
1622 if ((rt
= nd6_lookup(&nb_addr
, 0, ifp
)) == NULL
) {
1627 ln
= (struct llinfo_nd6
*)rt
->rt_llinfo
;
1628 nbi
->state
= ln
->ln_state
;
1629 nbi
->asked
= ln
->ln_asked
;
1630 nbi
->isrouter
= ln
->ln_router
;
1631 nbi
->expire
= ln
->ln_expire
;
1636 case SIOCGDEFIFACE_IN6
: /* XXX: should be implemented as a sysctl? */
1637 ndif
->ifindex
= V_nd6_defifindex
;
1639 case SIOCSDEFIFACE_IN6
: /* XXX: should be implemented as a sysctl? */
1640 return (nd6_setdefaultiface(ndif
->ifindex
));
1646 * Create neighbor cache entry and cache link-layer address,
1647 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1650 * code - type dependent information
1653 nd6_cache_lladdr(struct ifnet
*ifp
, struct in6_addr
*from
, char *lladdr
,
1654 int lladdrlen
, int type
, int code
)
1656 struct rtentry
*rt
= NULL
;
1657 struct llinfo_nd6
*ln
= NULL
;
1659 struct sockaddr_dl
*sdl
= NULL
;
1666 panic("ifp == NULL in nd6_cache_lladdr");
1668 panic("from == NULL in nd6_cache_lladdr");
1670 /* nothing must be updated for unspecified address */
1671 if (IN6_IS_ADDR_UNSPECIFIED(from
))
1675 * Validation about ifp->if_addrlen and lladdrlen must be done in
1678 * XXX If the link does not have link-layer adderss, what should
1679 * we do? (ifp->if_addrlen == 0)
1680 * Spec says nothing in sections for RA, RS and NA. There's small
1681 * description on it in NS section (RFC 2461 7.2.3).
1684 rt
= nd6_lookup(from
, 0, ifp
);
1686 rt
= nd6_lookup(from
, 1, ifp
);
1689 /* do nothing if static ndp is set */
1690 if (rt
->rt_flags
& RTF_STATIC
)
1697 if ((rt
->rt_flags
& (RTF_GATEWAY
| RTF_LLINFO
)) != RTF_LLINFO
) {
1699 (void)nd6_free(rt
, 0);
1702 ln
= (struct llinfo_nd6
*)rt
->rt_llinfo
;
1705 if (rt
->rt_gateway
== NULL
)
1707 if (rt
->rt_gateway
->sa_family
!= AF_LINK
)
1709 sdl
= SDL(rt
->rt_gateway
);
1711 olladdr
= (sdl
->sdl_alen
) ? 1 : 0;
1712 if (olladdr
&& lladdr
) {
1713 if (bcmp(lladdr
, LLADDR(sdl
), ifp
->if_addrlen
))
1721 * newentry olladdr lladdr llchange (*=record)
1724 * 0 n y -- (3) * STALE
1726 * 0 y y y (5) * STALE
1727 * 1 -- n -- (6) NOSTATE(= PASSIVE)
1728 * 1 -- y -- (7) * STALE
1731 if (lladdr
) { /* (3-5) and (7) */
1733 * Record source link-layer address
1734 * XXX is it dependent to ifp->if_type?
1736 sdl
->sdl_alen
= ifp
->if_addrlen
;
1737 bcopy(lladdr
, LLADDR(sdl
), ifp
->if_addrlen
);
1741 if ((!olladdr
&& lladdr
!= NULL
) || /* (3) */
1742 (olladdr
&& lladdr
!= NULL
&& llchange
)) { /* (5) */
1744 newstate
= ND6_LLINFO_STALE
;
1745 } else /* (1-2,4) */
1749 if (lladdr
== NULL
) /* (6) */
1750 newstate
= ND6_LLINFO_NOSTATE
;
1752 newstate
= ND6_LLINFO_STALE
;
1757 * Update the state of the neighbor cache.
1759 ln
->ln_state
= newstate
;
1761 if (ln
->ln_state
== ND6_LLINFO_STALE
) {
1763 * XXX: since nd6_output() below will cause
1764 * state tansition to DELAY and reset the timer,
1765 * we must set the timer now, although it is actually
1768 nd6_llinfo_settimer(ln
, (long)V_nd6_gctimer
* hz
);
1771 struct mbuf
*m_hold
, *m_hold_next
;
1774 * reset the ln_hold in advance, to explicitly
1775 * prevent a ln_hold lookup in nd6_output()
1776 * (wouldn't happen, though...)
1778 for (m_hold
= ln
->ln_hold
, ln
->ln_hold
= NULL
;
1779 m_hold
; m_hold
= m_hold_next
) {
1780 m_hold_next
= m_hold
->m_nextpkt
;
1781 m_hold
->m_nextpkt
= NULL
;
1784 * we assume ifp is not a p2p here, so
1785 * just set the 2nd argument as the
1788 nd6_output(ifp
, ifp
, m_hold
,
1789 (struct sockaddr_in6
*)rt_key(rt
),
1793 } else if (ln
->ln_state
== ND6_LLINFO_INCOMPLETE
) {
1794 /* probe right away */
1795 nd6_llinfo_settimer((void *)ln
, 0);
1800 * ICMP6 type dependent behavior.
1802 * NS: clear IsRouter if new entry
1803 * RS: clear IsRouter
1804 * RA: set IsRouter if there's lladdr
1805 * redir: clear IsRouter if new entry
1808 * The spec says that we must set IsRouter in the following cases:
1809 * - If lladdr exist, set IsRouter. This means (1-5).
1810 * - If it is old entry (!newentry), set IsRouter. This means (7).
1811 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1812 * A quetion arises for (1) case. (1) case has no lladdr in the
1813 * neighbor cache, this is similar to (6).
1814 * This case is rare but we figured that we MUST NOT set IsRouter.
1816 * newentry olladdr lladdr llchange NS RS RA redir
1818 * 0 n n -- (1) c ? s
1819 * 0 y n -- (2) c s s
1820 * 0 n y -- (3) c s s
1823 * 1 -- n -- (6) c c c s
1824 * 1 -- y -- (7) c c s c s
1828 switch (type
& 0xff) {
1829 case ND_NEIGHBOR_SOLICIT
:
1831 * New entry must have is_router flag cleared.
1833 if (is_newentry
) /* (6-7) */
1838 * If the icmp is a redirect to a better router, always set the
1839 * is_router flag. Otherwise, if the entry is newly created,
1840 * clear the flag. [RFC 2461, sec 8.3]
1842 if (code
== ND_REDIRECT_ROUTER
)
1844 else if (is_newentry
) /* (6-7) */
1847 case ND_ROUTER_SOLICIT
:
1849 * is_router flag must always be cleared.
1853 case ND_ROUTER_ADVERT
:
1855 * Mark an entry with lladdr as a router.
1857 if ((!is_newentry
&& (olladdr
|| lladdr
)) || /* (2-5) */
1858 (is_newentry
&& lladdr
)) { /* (7) */
1865 * When the link-layer address of a router changes, select the
1866 * best router again. In particular, when the neighbor entry is newly
1867 * created, it might affect the selection policy.
1868 * Question: can we restrict the first condition to the "is_newentry"
1870 * XXX: when we hear an RA from a new router with the link-layer
1871 * address option, defrouter_select() is called twice, since
1872 * defrtrlist_update called the function as well. However, I believe
1873 * we can compromise the overhead, since it only happens the first
1875 * XXX: although defrouter_select() should not have a bad effect
1876 * for those are not autoconfigured hosts, we explicitly avoid such
1879 if (do_update
&& ln
->ln_router
&& !V_ip6_forwarding
&& V_ip6_accept_rtadv
)
1886 nd6_slowtimo(void *ignored_arg
)
1888 struct nd_ifinfo
*nd6if
;
1891 callout_reset(&V_nd6_slowtimo_ch
, ND6_SLOWTIMER_INTERVAL
* hz
,
1892 nd6_slowtimo
, NULL
);
1894 for (ifp
= TAILQ_FIRST(&V_ifnet
); ifp
;
1895 ifp
= TAILQ_NEXT(ifp
, if_list
)) {
1896 nd6if
= ND_IFINFO(ifp
);
1897 if (nd6if
->basereachable
&& /* already initialized */
1898 (nd6if
->recalctm
-= ND6_SLOWTIMER_INTERVAL
) <= 0) {
1900 * Since reachable time rarely changes by router
1901 * advertisements, we SHOULD insure that a new random
1902 * value gets recomputed at least once every few hours.
1905 nd6if
->recalctm
= V_nd6_recalc_reachtm_interval
;
1906 nd6if
->reachable
= ND_COMPUTE_RTIME(nd6if
->basereachable
);
1912 #define senderr(e) { error = (e); goto bad;}
1914 nd6_output(struct ifnet
*ifp
, struct ifnet
*origifp
, struct mbuf
*m0
,
1915 struct sockaddr_in6
*dst
, struct rtentry
*rt0
)
1917 struct mbuf
*m
= m0
;
1918 struct rtentry
*rt
= rt0
;
1919 struct sockaddr_in6
*gw6
= NULL
;
1920 struct llinfo_nd6
*ln
= NULL
;
1923 if (IN6_IS_ADDR_MULTICAST(&dst
->sin6_addr
))
1926 if (nd6_need_cache(ifp
) == 0)
1930 * next hop determination. This routine is derived from ether_output.
1932 /* NB: the locking here is tortuous... */
1937 if ((rt
->rt_flags
& RTF_UP
) == 0) {
1939 rt0
= rt
= rtalloc1((struct sockaddr
*)dst
, 1, 0UL);
1942 if (rt
->rt_ifp
!= ifp
)
1944 * XXX maybe we should update ifp too,
1945 * but the original code didn't and I
1946 * don't know what is correct here.
1950 senderr(EHOSTUNREACH
);
1953 if (rt
->rt_flags
& RTF_GATEWAY
) {
1954 gw6
= (struct sockaddr_in6
*)rt
->rt_gateway
;
1957 * We skip link-layer address resolution and NUD
1958 * if the gateway is not a neighbor from ND point
1959 * of view, regardless of the value of nd_ifinfo.flags.
1960 * The second condition is a bit tricky; we skip
1961 * if the gateway is our own address, which is
1962 * sometimes used to install a route to a p2p link.
1964 if (!nd6_is_addr_neighbor(gw6
, ifp
) ||
1965 in6ifa_ifpwithaddr(ifp
, &gw6
->sin6_addr
)) {
1968 * We allow this kind of tricky route only
1969 * when the outgoing interface is p2p.
1970 * XXX: we may need a more generic rule here.
1972 if ((ifp
->if_flags
& IFF_POINTOPOINT
) == 0)
1973 senderr(EHOSTUNREACH
);
1978 if (rt
->rt_gwroute
== NULL
)
1980 rt
= rt
->rt_gwroute
;
1981 RT_LOCK(rt
); /* NB: gwroute */
1982 if ((rt
->rt_flags
& RTF_UP
) == 0) {
1983 RTFREE_LOCKED(rt
); /* unlock gwroute */
1985 rt0
->rt_gwroute
= NULL
;
1988 rt
= rtalloc1(rt
->rt_gateway
, 1, 0UL);
1992 senderr(EHOSTUNREACH
);
1995 if (rt0
->rt_gwroute
!= NULL
)
1996 RTFREE(rt0
->rt_gwroute
);
1997 rt0
->rt_gwroute
= rt
;
2000 senderr(EHOSTUNREACH
);
2009 * Address resolution or Neighbor Unreachability Detection
2011 * At this point, the destination of the packet must be a unicast
2012 * or an anycast address(i.e. not a multicast).
2015 /* Look up the neighbor cache for the nexthop */
2016 if (rt
&& (rt
->rt_flags
& RTF_LLINFO
) != 0)
2017 ln
= (struct llinfo_nd6
*)rt
->rt_llinfo
;
2020 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2021 * the condition below is not very efficient. But we believe
2022 * it is tolerable, because this should be a rare case.
2024 if (nd6_is_addr_neighbor(dst
, ifp
) &&
2025 (rt
= nd6_lookup(&dst
->sin6_addr
, 1, ifp
)) != NULL
)
2026 ln
= (struct llinfo_nd6
*)rt
->rt_llinfo
;
2028 if (ln
== NULL
|| rt
== NULL
) {
2029 if ((ifp
->if_flags
& IFF_POINTOPOINT
) == 0 &&
2030 !(ND_IFINFO(ifp
)->flags
& ND6_IFF_PERFORMNUD
)) {
2031 char ip6buf
[INET6_ADDRSTRLEN
];
2033 "nd6_output: can't allocate llinfo for %s "
2035 ip6_sprintf(ip6buf
, &dst
->sin6_addr
), ln
, rt
);
2036 senderr(EIO
); /* XXX: good error? */
2039 goto sendpkt
; /* send anyway */
2042 /* We don't have to do link-layer address resolution on a p2p link. */
2043 if ((ifp
->if_flags
& IFF_POINTOPOINT
) != 0 &&
2044 ln
->ln_state
< ND6_LLINFO_REACHABLE
) {
2045 ln
->ln_state
= ND6_LLINFO_STALE
;
2046 nd6_llinfo_settimer(ln
, (long)V_nd6_gctimer
* hz
);
2050 * The first time we send a packet to a neighbor whose entry is
2051 * STALE, we have to change the state to DELAY and a sets a timer to
2052 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2053 * neighbor unreachability detection on expiration.
2056 if (ln
->ln_state
== ND6_LLINFO_STALE
) {
2058 ln
->ln_state
= ND6_LLINFO_DELAY
;
2059 nd6_llinfo_settimer(ln
, (long)V_nd6_delay
* hz
);
2063 * If the neighbor cache entry has a state other than INCOMPLETE
2064 * (i.e. its link-layer address is already resolved), just
2067 if (ln
->ln_state
> ND6_LLINFO_INCOMPLETE
)
2071 * There is a neighbor cache entry, but no ethernet address
2072 * response yet. Append this latest packet to the end of the
2073 * packet queue in the mbuf, unless the number of the packet
2074 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen,
2075 * the oldest packet in the queue will be removed.
2077 if (ln
->ln_state
== ND6_LLINFO_NOSTATE
)
2078 ln
->ln_state
= ND6_LLINFO_INCOMPLETE
;
2080 struct mbuf
*m_hold
;
2084 for (m_hold
= ln
->ln_hold
; m_hold
; m_hold
= m_hold
->m_nextpkt
) {
2086 if (m_hold
->m_nextpkt
== NULL
) {
2087 m_hold
->m_nextpkt
= m
;
2091 while (i
>= V_nd6_maxqueuelen
) {
2092 m_hold
= ln
->ln_hold
;
2093 ln
->ln_hold
= ln
->ln_hold
->m_nextpkt
;
2102 * If there has been no NS for the neighbor after entering the
2103 * INCOMPLETE state, send the first solicitation.
2105 if (!ND6_LLINFO_PERMANENT(ln
) && ln
->ln_asked
== 0) {
2107 nd6_llinfo_settimer(ln
,
2108 (long)ND_IFINFO(ifp
)->retrans
* hz
/ 1000);
2109 nd6_ns_output(ifp
, NULL
, &dst
->sin6_addr
, ln
, 0);
2114 /* discard the packet if IPv6 operation is disabled on the interface */
2115 if ((ND_IFINFO(ifp
)->flags
& ND6_IFF_IFDISABLED
)) {
2116 error
= ENETDOWN
; /* better error? */
2121 mac_netinet6_nd6_send(ifp
, m
);
2123 if ((ifp
->if_flags
& IFF_LOOPBACK
) != 0) {
2124 return ((*ifp
->if_output
)(origifp
, m
, (struct sockaddr
*)dst
,
2127 return ((*ifp
->if_output
)(ifp
, m
, (struct sockaddr
*)dst
, rt
));
2137 nd6_need_cache(struct ifnet
*ifp
)
2140 * XXX: we currently do not make neighbor cache on any interface
2141 * other than ARCnet, Ethernet, FDDI and GIF.
2144 * - unidirectional tunnels needs no ND
2146 switch (ifp
->if_type
) {
2154 #ifdef IFT_IEEE80211
2160 case IFT_GIF
: /* XXX need more cases? */
2164 case IFT_PROPVIRTUAL
:
2172 nd6_storelladdr(struct ifnet
*ifp
, struct rtentry
*rt0
, struct mbuf
*m
,
2173 struct sockaddr
*dst
, u_char
*desten
)
2175 struct sockaddr_dl
*sdl
;
2179 if (m
->m_flags
& M_MCAST
) {
2182 switch (ifp
->if_type
) {
2188 #ifdef IFT_IEEE80211
2193 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst
)->sin6_addr
,
2198 * netbsd can use if_broadcastaddr, but we don't do so
2199 * to reduce # of ifdef.
2201 for (i
= 0; i
< ifp
->if_addrlen
; i
++)
2209 return (EAFNOSUPPORT
);
2214 /* this could happen, if we could not allocate memory */
2219 error
= rt_check(&rt
, &rt0
, dst
);
2226 if (rt
->rt_gateway
->sa_family
!= AF_LINK
) {
2227 printf("nd6_storelladdr: something odd happens\n");
2231 sdl
= SDL(rt
->rt_gateway
);
2232 if (sdl
->sdl_alen
== 0) {
2233 /* this should be impossible, but we bark here for debugging */
2234 printf("nd6_storelladdr: sdl_alen == 0\n");
2239 bcopy(LLADDR(sdl
), desten
, sdl
->sdl_alen
);
2244 clear_llinfo_pqueue(struct llinfo_nd6
*ln
)
2246 struct mbuf
*m_hold
, *m_hold_next
;
2248 for (m_hold
= ln
->ln_hold
; m_hold
; m_hold
= m_hold_next
) {
2249 m_hold_next
= m_hold
->m_nextpkt
;
2250 m_hold
->m_nextpkt
= NULL
;
2258 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS
);
2259 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS
);
2261 SYSCTL_DECL(_net_inet6_icmp6
);
2263 SYSCTL_NODE(_net_inet6_icmp6
, ICMPV6CTL_ND6_DRLIST
, nd6_drlist
,
2264 CTLFLAG_RD
, nd6_sysctl_drlist
, "");
2265 SYSCTL_NODE(_net_inet6_icmp6
, ICMPV6CTL_ND6_PRLIST
, nd6_prlist
,
2266 CTLFLAG_RD
, nd6_sysctl_prlist
, "");
2267 SYSCTL_INT(_net_inet6_icmp6
, ICMPV6CTL_ND6_MAXQLEN
, nd6_maxqueuelen
,
2268 CTLFLAG_RW
, &nd6_maxqueuelen
, 1, "");
2271 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS
)
2274 char buf
[1024] __aligned(4);
2275 struct in6_defrouter
*d
, *de
;
2276 struct nd_defrouter
*dr
;
2282 for (dr
= TAILQ_FIRST(&V_nd_defrouter
); dr
;
2283 dr
= TAILQ_NEXT(dr
, dr_entry
)) {
2284 d
= (struct in6_defrouter
*)buf
;
2285 de
= (struct in6_defrouter
*)(buf
+ sizeof(buf
));
2288 bzero(d
, sizeof(*d
));
2289 d
->rtaddr
.sin6_family
= AF_INET6
;
2290 d
->rtaddr
.sin6_len
= sizeof(d
->rtaddr
);
2291 d
->rtaddr
.sin6_addr
= dr
->rtaddr
;
2292 error
= sa6_recoverscope(&d
->rtaddr
);
2295 d
->flags
= dr
->flags
;
2296 d
->rtlifetime
= dr
->rtlifetime
;
2297 d
->expire
= dr
->expire
;
2298 d
->if_index
= dr
->ifp
->if_index
;
2300 panic("buffer too short");
2302 error
= SYSCTL_OUT(req
, buf
, sizeof(*d
));
2311 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS
)
2314 char buf
[1024] __aligned(4);
2315 struct in6_prefix
*p
, *pe
;
2316 struct nd_prefix
*pr
;
2317 char ip6buf
[INET6_ADDRSTRLEN
];
2323 for (pr
= V_nd_prefix
.lh_first
; pr
; pr
= pr
->ndpr_next
) {
2326 struct sockaddr_in6
*sin6
, *s6
;
2327 struct nd_pfxrouter
*pfr
;
2329 p
= (struct in6_prefix
*)buf
;
2330 pe
= (struct in6_prefix
*)(buf
+ sizeof(buf
));
2333 bzero(p
, sizeof(*p
));
2334 sin6
= (struct sockaddr_in6
*)(p
+ 1);
2336 p
->prefix
= pr
->ndpr_prefix
;
2337 if (sa6_recoverscope(&p
->prefix
)) {
2339 "scope error in prefix list (%s)\n",
2340 ip6_sprintf(ip6buf
, &p
->prefix
.sin6_addr
));
2341 /* XXX: press on... */
2343 p
->raflags
= pr
->ndpr_raf
;
2344 p
->prefixlen
= pr
->ndpr_plen
;
2345 p
->vltime
= pr
->ndpr_vltime
;
2346 p
->pltime
= pr
->ndpr_pltime
;
2347 p
->if_index
= pr
->ndpr_ifp
->if_index
;
2348 if (pr
->ndpr_vltime
== ND6_INFINITE_LIFETIME
)
2353 /* XXX: we assume time_t is signed. */
2356 ((sizeof(maxexpire
) * 8) - 1));
2357 if (pr
->ndpr_vltime
<
2358 maxexpire
- pr
->ndpr_lastupdate
) {
2359 p
->expire
= pr
->ndpr_lastupdate
+
2362 p
->expire
= maxexpire
;
2364 p
->refcnt
= pr
->ndpr_refcnt
;
2365 p
->flags
= pr
->ndpr_stateflags
;
2366 p
->origin
= PR_ORIG_RA
;
2368 for (pfr
= pr
->ndpr_advrtrs
.lh_first
; pfr
;
2369 pfr
= pfr
->pfr_next
) {
2370 if ((void *)&sin6
[advrtrs
+ 1] > (void *)pe
) {
2374 s6
= &sin6
[advrtrs
];
2375 bzero(s6
, sizeof(*s6
));
2376 s6
->sin6_family
= AF_INET6
;
2377 s6
->sin6_len
= sizeof(*sin6
);
2378 s6
->sin6_addr
= pfr
->router
->rtaddr
;
2379 if (sa6_recoverscope(s6
)) {
2382 "prefix list (%s)\n",
2384 &pfr
->router
->rtaddr
));
2388 p
->advrtrs
= advrtrs
;
2390 panic("buffer too short");
2392 advance
= sizeof(*p
) + sizeof(*sin6
) * advrtrs
;
2393 error
= SYSCTL_OUT(req
, buf
, advance
);