Ignore machine-check MSRs
[freebsd-src/fkvm-freebsd.git] / sys / vm / vm_fault.c
blob6950c82e4f8f343e0bd6dbfc3757da9e1e1ae957
1 /*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 * Carnegie Mellon requests users of this software to return to
61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
62 * School of Computer Science
63 * Carnegie Mellon University
64 * Pittsburgh PA 15213-3890
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
71 * Page fault handling module.
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
77 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/lock.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sysctl.h>
87 #include <sys/vmmeter.h>
88 #include <sys/vnode.h>
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/vm_extern.h>
102 #include <sys/mount.h> /* XXX Temporary for VFS_LOCK_GIANT() */
104 #define PFBAK 4
105 #define PFFOR 4
106 #define PAGEORDER_SIZE (PFBAK+PFFOR)
108 static int prefault_pageorder[] = {
109 -1 * PAGE_SIZE, 1 * PAGE_SIZE,
110 -2 * PAGE_SIZE, 2 * PAGE_SIZE,
111 -3 * PAGE_SIZE, 3 * PAGE_SIZE,
112 -4 * PAGE_SIZE, 4 * PAGE_SIZE
115 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
116 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
118 #define VM_FAULT_READ_AHEAD 8
119 #define VM_FAULT_READ_BEHIND 7
120 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
122 struct faultstate {
123 vm_page_t m;
124 vm_object_t object;
125 vm_pindex_t pindex;
126 vm_page_t first_m;
127 vm_object_t first_object;
128 vm_pindex_t first_pindex;
129 vm_map_t map;
130 vm_map_entry_t entry;
131 int lookup_still_valid;
132 struct vnode *vp;
135 static inline void
136 release_page(struct faultstate *fs)
138 vm_page_wakeup(fs->m);
139 vm_page_lock_queues();
140 vm_page_deactivate(fs->m);
141 vm_page_unlock_queues();
142 fs->m = NULL;
145 static inline void
146 unlock_map(struct faultstate *fs)
148 if (fs->lookup_still_valid) {
149 vm_map_lookup_done(fs->map, fs->entry);
150 fs->lookup_still_valid = FALSE;
154 static void
155 unlock_and_deallocate(struct faultstate *fs)
158 vm_object_pip_wakeup(fs->object);
159 VM_OBJECT_UNLOCK(fs->object);
160 if (fs->object != fs->first_object) {
161 VM_OBJECT_LOCK(fs->first_object);
162 vm_page_lock_queues();
163 vm_page_free(fs->first_m);
164 vm_page_unlock_queues();
165 vm_object_pip_wakeup(fs->first_object);
166 VM_OBJECT_UNLOCK(fs->first_object);
167 fs->first_m = NULL;
169 vm_object_deallocate(fs->first_object);
170 unlock_map(fs);
171 if (fs->vp != NULL) {
172 int vfslocked;
174 vfslocked = VFS_LOCK_GIANT(fs->vp->v_mount);
175 vput(fs->vp);
176 fs->vp = NULL;
177 VFS_UNLOCK_GIANT(vfslocked);
182 * TRYPAGER - used by vm_fault to calculate whether the pager for the
183 * current object *might* contain the page.
185 * default objects are zero-fill, there is no real pager.
187 #define TRYPAGER (fs.object->type != OBJT_DEFAULT && \
188 (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
191 * vm_fault:
193 * Handle a page fault occurring at the given address,
194 * requiring the given permissions, in the map specified.
195 * If successful, the page is inserted into the
196 * associated physical map.
198 * NOTE: the given address should be truncated to the
199 * proper page address.
201 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
202 * a standard error specifying why the fault is fatal is returned.
205 * The map in question must be referenced, and remains so.
206 * Caller may hold no locks.
209 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
210 int fault_flags)
212 vm_prot_t prot;
213 int is_first_object_locked, result;
214 boolean_t growstack, wired;
215 int map_generation;
216 vm_object_t next_object;
217 vm_page_t marray[VM_FAULT_READ];
218 int hardfault;
219 int faultcount;
220 struct faultstate fs;
222 hardfault = 0;
223 growstack = TRUE;
224 PCPU_INC(cnt.v_vm_faults);
226 RetryFault:;
229 * Find the backing store object and offset into it to begin the
230 * search.
232 fs.map = map;
233 result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
234 &fs.first_object, &fs.first_pindex, &prot, &wired);
235 if (result != KERN_SUCCESS) {
236 if (result != KERN_PROTECTION_FAILURE ||
237 (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
238 if (growstack && result == KERN_INVALID_ADDRESS &&
239 map != kernel_map && curproc != NULL) {
240 result = vm_map_growstack(curproc, vaddr);
241 if (result != KERN_SUCCESS)
242 return (KERN_FAILURE);
243 growstack = FALSE;
244 goto RetryFault;
246 return (result);
250 * If we are user-wiring a r/w segment, and it is COW, then
251 * we need to do the COW operation. Note that we don't COW
252 * currently RO sections now, because it is NOT desirable
253 * to COW .text. We simply keep .text from ever being COW'ed
254 * and take the heat that one cannot debug wired .text sections.
256 result = vm_map_lookup(&fs.map, vaddr,
257 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
258 &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
259 if (result != KERN_SUCCESS)
260 return (result);
263 * If we don't COW now, on a user wire, the user will never
264 * be able to write to the mapping. If we don't make this
265 * restriction, the bookkeeping would be nearly impossible.
267 * XXX The following assignment modifies the map without
268 * holding a write lock on it.
270 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
271 fs.entry->max_protection &= ~VM_PROT_WRITE;
274 map_generation = fs.map->timestamp;
276 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
277 panic("vm_fault: fault on nofault entry, addr: %lx",
278 (u_long)vaddr);
282 * Make a reference to this object to prevent its disposal while we
283 * are messing with it. Once we have the reference, the map is free
284 * to be diddled. Since objects reference their shadows (and copies),
285 * they will stay around as well.
287 * Bump the paging-in-progress count to prevent size changes (e.g.
288 * truncation operations) during I/O. This must be done after
289 * obtaining the vnode lock in order to avoid possible deadlocks.
291 * XXX vnode_pager_lock() can block without releasing the map lock.
293 if (fs.first_object->flags & OBJ_NEEDGIANT)
294 mtx_lock(&Giant);
295 VM_OBJECT_LOCK(fs.first_object);
296 vm_object_reference_locked(fs.first_object);
297 fs.vp = vnode_pager_lock(fs.first_object);
298 KASSERT(fs.vp == NULL || !fs.map->system_map,
299 ("vm_fault: vnode-backed object mapped by system map"));
300 KASSERT((fs.first_object->flags & OBJ_NEEDGIANT) == 0 ||
301 !fs.map->system_map,
302 ("vm_fault: Object requiring giant mapped by system map"));
303 if (fs.first_object->flags & OBJ_NEEDGIANT)
304 mtx_unlock(&Giant);
305 vm_object_pip_add(fs.first_object, 1);
307 fs.lookup_still_valid = TRUE;
309 if (wired)
310 fault_type = prot;
312 fs.first_m = NULL;
315 * Search for the page at object/offset.
317 fs.object = fs.first_object;
318 fs.pindex = fs.first_pindex;
319 while (TRUE) {
321 * If the object is dead, we stop here
323 if (fs.object->flags & OBJ_DEAD) {
324 unlock_and_deallocate(&fs);
325 return (KERN_PROTECTION_FAILURE);
329 * See if page is resident
331 fs.m = vm_page_lookup(fs.object, fs.pindex);
332 if (fs.m != NULL) {
334 * check for page-based copy on write.
335 * We check fs.object == fs.first_object so
336 * as to ensure the legacy COW mechanism is
337 * used when the page in question is part of
338 * a shadow object. Otherwise, vm_page_cowfault()
339 * removes the page from the backing object,
340 * which is not what we want.
342 vm_page_lock_queues();
343 if ((fs.m->cow) &&
344 (fault_type & VM_PROT_WRITE) &&
345 (fs.object == fs.first_object)) {
346 vm_page_cowfault(fs.m);
347 vm_page_unlock_queues();
348 unlock_and_deallocate(&fs);
349 goto RetryFault;
353 * Wait/Retry if the page is busy. We have to do this
354 * if the page is busy via either VPO_BUSY or
355 * vm_page_t->busy because the vm_pager may be using
356 * vm_page_t->busy for pageouts ( and even pageins if
357 * it is the vnode pager ), and we could end up trying
358 * to pagein and pageout the same page simultaneously.
360 * We can theoretically allow the busy case on a read
361 * fault if the page is marked valid, but since such
362 * pages are typically already pmap'd, putting that
363 * special case in might be more effort then it is
364 * worth. We cannot under any circumstances mess
365 * around with a vm_page_t->busy page except, perhaps,
366 * to pmap it.
368 if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
369 vm_page_unlock_queues();
370 VM_OBJECT_UNLOCK(fs.object);
371 if (fs.object != fs.first_object) {
372 VM_OBJECT_LOCK(fs.first_object);
373 vm_page_lock_queues();
374 vm_page_free(fs.first_m);
375 vm_page_unlock_queues();
376 vm_object_pip_wakeup(fs.first_object);
377 VM_OBJECT_UNLOCK(fs.first_object);
378 fs.first_m = NULL;
380 unlock_map(&fs);
381 if (fs.vp != NULL) {
382 int vfslck;
384 vfslck = VFS_LOCK_GIANT(fs.vp->v_mount);
385 vput(fs.vp);
386 fs.vp = NULL;
387 VFS_UNLOCK_GIANT(vfslck);
389 VM_OBJECT_LOCK(fs.object);
390 if (fs.m == vm_page_lookup(fs.object,
391 fs.pindex)) {
392 vm_page_sleep_if_busy(fs.m, TRUE,
393 "vmpfw");
395 vm_object_pip_wakeup(fs.object);
396 VM_OBJECT_UNLOCK(fs.object);
397 PCPU_INC(cnt.v_intrans);
398 vm_object_deallocate(fs.first_object);
399 goto RetryFault;
401 vm_pageq_remove(fs.m);
402 vm_page_unlock_queues();
405 * Mark page busy for other processes, and the
406 * pagedaemon. If it still isn't completely valid
407 * (readable), jump to readrest, else break-out ( we
408 * found the page ).
410 vm_page_busy(fs.m);
411 if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
412 fs.m->object != kernel_object && fs.m->object != kmem_object) {
413 goto readrest;
416 break;
420 * Page is not resident, If this is the search termination
421 * or the pager might contain the page, allocate a new page.
423 if (TRYPAGER || fs.object == fs.first_object) {
424 if (fs.pindex >= fs.object->size) {
425 unlock_and_deallocate(&fs);
426 return (KERN_PROTECTION_FAILURE);
430 * Allocate a new page for this object/offset pair.
432 fs.m = NULL;
433 if (!vm_page_count_severe()) {
434 #if VM_NRESERVLEVEL > 0
435 if ((fs.object->flags & OBJ_COLORED) == 0) {
436 fs.object->flags |= OBJ_COLORED;
437 fs.object->pg_color = atop(vaddr) -
438 fs.pindex;
440 #endif
441 fs.m = vm_page_alloc(fs.object, fs.pindex,
442 (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
444 if (fs.m == NULL) {
445 unlock_and_deallocate(&fs);
446 VM_WAITPFAULT;
447 goto RetryFault;
448 } else if ((fs.m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL)
449 break;
452 readrest:
454 * We have found a valid page or we have allocated a new page.
455 * The page thus may not be valid or may not be entirely
456 * valid.
458 * Attempt to fault-in the page if there is a chance that the
459 * pager has it, and potentially fault in additional pages
460 * at the same time.
462 if (TRYPAGER) {
463 int rv;
464 int reqpage = 0;
465 int ahead, behind;
466 u_char behavior = vm_map_entry_behavior(fs.entry);
468 if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
469 ahead = 0;
470 behind = 0;
471 } else {
472 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
473 if (behind > VM_FAULT_READ_BEHIND)
474 behind = VM_FAULT_READ_BEHIND;
476 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
477 if (ahead > VM_FAULT_READ_AHEAD)
478 ahead = VM_FAULT_READ_AHEAD;
480 is_first_object_locked = FALSE;
481 if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
482 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
483 fs.pindex >= fs.entry->lastr &&
484 fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
485 (fs.first_object == fs.object ||
486 (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
487 fs.first_object->type != OBJT_DEVICE &&
488 fs.first_object->type != OBJT_PHYS) {
489 vm_pindex_t firstpindex, tmppindex;
491 if (fs.first_pindex < 2 * VM_FAULT_READ)
492 firstpindex = 0;
493 else
494 firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
496 vm_page_lock_queues();
498 * note: partially valid pages cannot be
499 * included in the lookahead - NFS piecemeal
500 * writes will barf on it badly.
502 for (tmppindex = fs.first_pindex - 1;
503 tmppindex >= firstpindex;
504 --tmppindex) {
505 vm_page_t mt;
507 mt = vm_page_lookup(fs.first_object, tmppindex);
508 if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
509 break;
510 if (mt->busy ||
511 (mt->oflags & VPO_BUSY) ||
512 mt->hold_count ||
513 mt->wire_count)
514 continue;
515 pmap_remove_all(mt);
516 if (mt->dirty) {
517 vm_page_deactivate(mt);
518 } else {
519 vm_page_cache(mt);
522 vm_page_unlock_queues();
523 ahead += behind;
524 behind = 0;
526 if (is_first_object_locked)
527 VM_OBJECT_UNLOCK(fs.first_object);
529 * now we find out if any other pages should be paged
530 * in at this time this routine checks to see if the
531 * pages surrounding this fault reside in the same
532 * object as the page for this fault. If they do,
533 * then they are faulted in also into the object. The
534 * array "marray" returned contains an array of
535 * vm_page_t structs where one of them is the
536 * vm_page_t passed to the routine. The reqpage
537 * return value is the index into the marray for the
538 * vm_page_t passed to the routine.
540 * fs.m plus the additional pages are VPO_BUSY'd.
542 * XXX vm_fault_additional_pages() can block
543 * without releasing the map lock.
545 faultcount = vm_fault_additional_pages(
546 fs.m, behind, ahead, marray, &reqpage);
549 * update lastr imperfectly (we do not know how much
550 * getpages will actually read), but good enough.
552 * XXX The following assignment modifies the map
553 * without holding a write lock on it.
555 fs.entry->lastr = fs.pindex + faultcount - behind;
558 * Call the pager to retrieve the data, if any, after
559 * releasing the lock on the map. We hold a ref on
560 * fs.object and the pages are VPO_BUSY'd.
562 unlock_map(&fs);
564 rv = faultcount ?
565 vm_pager_get_pages(fs.object, marray, faultcount,
566 reqpage) : VM_PAGER_FAIL;
568 if (rv == VM_PAGER_OK) {
570 * Found the page. Leave it busy while we play
571 * with it.
575 * Relookup in case pager changed page. Pager
576 * is responsible for disposition of old page
577 * if moved.
579 fs.m = vm_page_lookup(fs.object, fs.pindex);
580 if (!fs.m) {
581 unlock_and_deallocate(&fs);
582 goto RetryFault;
585 hardfault++;
586 break; /* break to PAGE HAS BEEN FOUND */
589 * Remove the bogus page (which does not exist at this
590 * object/offset); before doing so, we must get back
591 * our object lock to preserve our invariant.
593 * Also wake up any other process that may want to bring
594 * in this page.
596 * If this is the top-level object, we must leave the
597 * busy page to prevent another process from rushing
598 * past us, and inserting the page in that object at
599 * the same time that we are.
601 if (rv == VM_PAGER_ERROR)
602 printf("vm_fault: pager read error, pid %d (%s)\n",
603 curproc->p_pid, curproc->p_comm);
605 * Data outside the range of the pager or an I/O error
608 * XXX - the check for kernel_map is a kludge to work
609 * around having the machine panic on a kernel space
610 * fault w/ I/O error.
612 if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
613 (rv == VM_PAGER_BAD)) {
614 vm_page_lock_queues();
615 vm_page_free(fs.m);
616 vm_page_unlock_queues();
617 fs.m = NULL;
618 unlock_and_deallocate(&fs);
619 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
621 if (fs.object != fs.first_object) {
622 vm_page_lock_queues();
623 vm_page_free(fs.m);
624 vm_page_unlock_queues();
625 fs.m = NULL;
627 * XXX - we cannot just fall out at this
628 * point, m has been freed and is invalid!
634 * We get here if the object has default pager (or unwiring)
635 * or the pager doesn't have the page.
637 if (fs.object == fs.first_object)
638 fs.first_m = fs.m;
641 * Move on to the next object. Lock the next object before
642 * unlocking the current one.
644 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
645 next_object = fs.object->backing_object;
646 if (next_object == NULL) {
648 * If there's no object left, fill the page in the top
649 * object with zeros.
651 if (fs.object != fs.first_object) {
652 vm_object_pip_wakeup(fs.object);
653 VM_OBJECT_UNLOCK(fs.object);
655 fs.object = fs.first_object;
656 fs.pindex = fs.first_pindex;
657 fs.m = fs.first_m;
658 VM_OBJECT_LOCK(fs.object);
660 fs.first_m = NULL;
663 * Zero the page if necessary and mark it valid.
665 if ((fs.m->flags & PG_ZERO) == 0) {
666 pmap_zero_page(fs.m);
667 } else {
668 PCPU_INC(cnt.v_ozfod);
670 PCPU_INC(cnt.v_zfod);
671 fs.m->valid = VM_PAGE_BITS_ALL;
672 break; /* break to PAGE HAS BEEN FOUND */
673 } else {
674 KASSERT(fs.object != next_object,
675 ("object loop %p", next_object));
676 VM_OBJECT_LOCK(next_object);
677 vm_object_pip_add(next_object, 1);
678 if (fs.object != fs.first_object)
679 vm_object_pip_wakeup(fs.object);
680 VM_OBJECT_UNLOCK(fs.object);
681 fs.object = next_object;
685 KASSERT((fs.m->oflags & VPO_BUSY) != 0,
686 ("vm_fault: not busy after main loop"));
689 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
690 * is held.]
694 * If the page is being written, but isn't already owned by the
695 * top-level object, we have to copy it into a new page owned by the
696 * top-level object.
698 if (fs.object != fs.first_object) {
700 * We only really need to copy if we want to write it.
702 if (fault_type & VM_PROT_WRITE) {
704 * This allows pages to be virtually copied from a
705 * backing_object into the first_object, where the
706 * backing object has no other refs to it, and cannot
707 * gain any more refs. Instead of a bcopy, we just
708 * move the page from the backing object to the
709 * first object. Note that we must mark the page
710 * dirty in the first object so that it will go out
711 * to swap when needed.
713 is_first_object_locked = FALSE;
714 if (
716 * Only one shadow object
718 (fs.object->shadow_count == 1) &&
720 * No COW refs, except us
722 (fs.object->ref_count == 1) &&
724 * No one else can look this object up
726 (fs.object->handle == NULL) &&
728 * No other ways to look the object up
730 ((fs.object->type == OBJT_DEFAULT) ||
731 (fs.object->type == OBJT_SWAP)) &&
732 (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
734 * We don't chase down the shadow chain
736 fs.object == fs.first_object->backing_object) {
737 vm_page_lock_queues();
739 * get rid of the unnecessary page
741 vm_page_free(fs.first_m);
743 * grab the page and put it into the
744 * process'es object. The page is
745 * automatically made dirty.
747 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
748 vm_page_unlock_queues();
749 vm_page_busy(fs.m);
750 fs.first_m = fs.m;
751 fs.m = NULL;
752 PCPU_INC(cnt.v_cow_optim);
753 } else {
755 * Oh, well, lets copy it.
757 pmap_copy_page(fs.m, fs.first_m);
758 fs.first_m->valid = VM_PAGE_BITS_ALL;
760 if (fs.m) {
762 * We no longer need the old page or object.
764 release_page(&fs);
767 * fs.object != fs.first_object due to above
768 * conditional
770 vm_object_pip_wakeup(fs.object);
771 VM_OBJECT_UNLOCK(fs.object);
773 * Only use the new page below...
775 fs.object = fs.first_object;
776 fs.pindex = fs.first_pindex;
777 fs.m = fs.first_m;
778 if (!is_first_object_locked)
779 VM_OBJECT_LOCK(fs.object);
780 PCPU_INC(cnt.v_cow_faults);
781 } else {
782 prot &= ~VM_PROT_WRITE;
787 * We must verify that the maps have not changed since our last
788 * lookup.
790 if (!fs.lookup_still_valid) {
791 vm_object_t retry_object;
792 vm_pindex_t retry_pindex;
793 vm_prot_t retry_prot;
795 if (!vm_map_trylock_read(fs.map)) {
796 release_page(&fs);
797 unlock_and_deallocate(&fs);
798 goto RetryFault;
800 fs.lookup_still_valid = TRUE;
801 if (fs.map->timestamp != map_generation) {
802 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
803 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
806 * If we don't need the page any longer, put it on the inactive
807 * list (the easiest thing to do here). If no one needs it,
808 * pageout will grab it eventually.
810 if (result != KERN_SUCCESS) {
811 release_page(&fs);
812 unlock_and_deallocate(&fs);
815 * If retry of map lookup would have blocked then
816 * retry fault from start.
818 if (result == KERN_FAILURE)
819 goto RetryFault;
820 return (result);
822 if ((retry_object != fs.first_object) ||
823 (retry_pindex != fs.first_pindex)) {
824 release_page(&fs);
825 unlock_and_deallocate(&fs);
826 goto RetryFault;
830 * Check whether the protection has changed or the object has
831 * been copied while we left the map unlocked. Changing from
832 * read to write permission is OK - we leave the page
833 * write-protected, and catch the write fault. Changing from
834 * write to read permission means that we can't mark the page
835 * write-enabled after all.
837 prot &= retry_prot;
840 if (prot & VM_PROT_WRITE) {
841 vm_object_set_writeable_dirty(fs.object);
844 * If the fault is a write, we know that this page is being
845 * written NOW so dirty it explicitly to save on
846 * pmap_is_modified() calls later.
848 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
849 * if the page is already dirty to prevent data written with
850 * the expectation of being synced from not being synced.
851 * Likewise if this entry does not request NOSYNC then make
852 * sure the page isn't marked NOSYNC. Applications sharing
853 * data should use the same flags to avoid ping ponging.
855 * Also tell the backing pager, if any, that it should remove
856 * any swap backing since the page is now dirty.
858 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
859 if (fs.m->dirty == 0)
860 fs.m->oflags |= VPO_NOSYNC;
861 } else {
862 fs.m->oflags &= ~VPO_NOSYNC;
864 if (fault_flags & VM_FAULT_DIRTY) {
865 vm_page_dirty(fs.m);
866 vm_pager_page_unswapped(fs.m);
871 * Page had better still be busy
873 KASSERT(fs.m->oflags & VPO_BUSY,
874 ("vm_fault: page %p not busy!", fs.m));
876 * Sanity check: page must be completely valid or it is not fit to
877 * map into user space. vm_pager_get_pages() ensures this.
879 if (fs.m->valid != VM_PAGE_BITS_ALL) {
880 vm_page_zero_invalid(fs.m, TRUE);
881 printf("Warning: page %p partially invalid on fault\n", fs.m);
883 VM_OBJECT_UNLOCK(fs.object);
886 * Put this page into the physical map. We had to do the unlock above
887 * because pmap_enter() may sleep. We don't put the page
888 * back on the active queue until later so that the pageout daemon
889 * won't find it (yet).
891 pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
892 if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
893 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
895 VM_OBJECT_LOCK(fs.object);
896 vm_page_lock_queues();
897 vm_page_flag_set(fs.m, PG_REFERENCED);
900 * If the page is not wired down, then put it where the pageout daemon
901 * can find it.
903 if (fault_flags & VM_FAULT_WIRE_MASK) {
904 if (wired)
905 vm_page_wire(fs.m);
906 else
907 vm_page_unwire(fs.m, 1);
908 } else {
909 vm_page_activate(fs.m);
911 vm_page_unlock_queues();
912 vm_page_wakeup(fs.m);
915 * Unlock everything, and return
917 unlock_and_deallocate(&fs);
918 if (hardfault)
919 curthread->td_ru.ru_majflt++;
920 else
921 curthread->td_ru.ru_minflt++;
923 return (KERN_SUCCESS);
927 * vm_fault_prefault provides a quick way of clustering
928 * pagefaults into a processes address space. It is a "cousin"
929 * of vm_map_pmap_enter, except it runs at page fault time instead
930 * of mmap time.
932 static void
933 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
935 int i;
936 vm_offset_t addr, starta;
937 vm_pindex_t pindex;
938 vm_page_t m;
939 vm_object_t object;
941 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
942 return;
944 object = entry->object.vm_object;
946 starta = addra - PFBAK * PAGE_SIZE;
947 if (starta < entry->start) {
948 starta = entry->start;
949 } else if (starta > addra) {
950 starta = 0;
953 for (i = 0; i < PAGEORDER_SIZE; i++) {
954 vm_object_t backing_object, lobject;
956 addr = addra + prefault_pageorder[i];
957 if (addr > addra + (PFFOR * PAGE_SIZE))
958 addr = 0;
960 if (addr < starta || addr >= entry->end)
961 continue;
963 if (!pmap_is_prefaultable(pmap, addr))
964 continue;
966 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
967 lobject = object;
968 VM_OBJECT_LOCK(lobject);
969 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
970 lobject->type == OBJT_DEFAULT &&
971 (backing_object = lobject->backing_object) != NULL) {
972 if (lobject->backing_object_offset & PAGE_MASK)
973 break;
974 pindex += lobject->backing_object_offset >> PAGE_SHIFT;
975 VM_OBJECT_LOCK(backing_object);
976 VM_OBJECT_UNLOCK(lobject);
977 lobject = backing_object;
980 * give-up when a page is not in memory
982 if (m == NULL) {
983 VM_OBJECT_UNLOCK(lobject);
984 break;
986 if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
987 (m->busy == 0) &&
988 (m->flags & PG_FICTITIOUS) == 0) {
990 vm_page_lock_queues();
991 pmap_enter_quick(pmap, addr, m, entry->protection);
992 vm_page_unlock_queues();
994 VM_OBJECT_UNLOCK(lobject);
999 * vm_fault_quick:
1001 * Ensure that the requested virtual address, which may be in userland,
1002 * is valid. Fault-in the page if necessary. Return -1 on failure.
1005 vm_fault_quick(caddr_t v, int prot)
1007 int r;
1009 if (prot & VM_PROT_WRITE)
1010 r = subyte(v, fubyte(v));
1011 else
1012 r = fubyte(v);
1013 return(r);
1017 * vm_fault_wire:
1019 * Wire down a range of virtual addresses in a map.
1022 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1023 boolean_t user_wire, boolean_t fictitious)
1025 vm_offset_t va;
1026 int rv;
1029 * We simulate a fault to get the page and enter it in the physical
1030 * map. For user wiring, we only ask for read access on currently
1031 * read-only sections.
1033 for (va = start; va < end; va += PAGE_SIZE) {
1034 rv = vm_fault(map, va,
1035 user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
1036 user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
1037 if (rv) {
1038 if (va != start)
1039 vm_fault_unwire(map, start, va, fictitious);
1040 return (rv);
1043 return (KERN_SUCCESS);
1047 * vm_fault_unwire:
1049 * Unwire a range of virtual addresses in a map.
1051 void
1052 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1053 boolean_t fictitious)
1055 vm_paddr_t pa;
1056 vm_offset_t va;
1057 pmap_t pmap;
1059 pmap = vm_map_pmap(map);
1062 * Since the pages are wired down, we must be able to get their
1063 * mappings from the physical map system.
1065 for (va = start; va < end; va += PAGE_SIZE) {
1066 pa = pmap_extract(pmap, va);
1067 if (pa != 0) {
1068 pmap_change_wiring(pmap, va, FALSE);
1069 if (!fictitious) {
1070 vm_page_lock_queues();
1071 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1072 vm_page_unlock_queues();
1079 * Routine:
1080 * vm_fault_copy_entry
1081 * Function:
1082 * Copy all of the pages from a wired-down map entry to another.
1084 * In/out conditions:
1085 * The source and destination maps must be locked for write.
1086 * The source map entry must be wired down (or be a sharing map
1087 * entry corresponding to a main map entry that is wired down).
1089 void
1090 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
1091 vm_map_t dst_map;
1092 vm_map_t src_map;
1093 vm_map_entry_t dst_entry;
1094 vm_map_entry_t src_entry;
1096 vm_object_t backing_object, dst_object, object;
1097 vm_object_t src_object;
1098 vm_ooffset_t dst_offset;
1099 vm_ooffset_t src_offset;
1100 vm_pindex_t pindex;
1101 vm_prot_t prot;
1102 vm_offset_t vaddr;
1103 vm_page_t dst_m;
1104 vm_page_t src_m;
1106 #ifdef lint
1107 src_map++;
1108 #endif /* lint */
1110 src_object = src_entry->object.vm_object;
1111 src_offset = src_entry->offset;
1114 * Create the top-level object for the destination entry. (Doesn't
1115 * actually shadow anything - we copy the pages directly.)
1117 dst_object = vm_object_allocate(OBJT_DEFAULT,
1118 OFF_TO_IDX(dst_entry->end - dst_entry->start));
1119 #if VM_NRESERVLEVEL > 0
1120 dst_object->flags |= OBJ_COLORED;
1121 dst_object->pg_color = atop(dst_entry->start);
1122 #endif
1124 VM_OBJECT_LOCK(dst_object);
1125 dst_entry->object.vm_object = dst_object;
1126 dst_entry->offset = 0;
1128 prot = dst_entry->max_protection;
1131 * Loop through all of the pages in the entry's range, copying each
1132 * one from the source object (it should be there) to the destination
1133 * object.
1135 for (vaddr = dst_entry->start, dst_offset = 0;
1136 vaddr < dst_entry->end;
1137 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1140 * Allocate a page in the destination object
1142 do {
1143 dst_m = vm_page_alloc(dst_object,
1144 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1145 if (dst_m == NULL) {
1146 VM_OBJECT_UNLOCK(dst_object);
1147 VM_WAIT;
1148 VM_OBJECT_LOCK(dst_object);
1150 } while (dst_m == NULL);
1153 * Find the page in the source object, and copy it in.
1154 * (Because the source is wired down, the page will be in
1155 * memory.)
1157 VM_OBJECT_LOCK(src_object);
1158 object = src_object;
1159 pindex = 0;
1160 while ((src_m = vm_page_lookup(object, pindex +
1161 OFF_TO_IDX(dst_offset + src_offset))) == NULL &&
1162 (src_entry->protection & VM_PROT_WRITE) == 0 &&
1163 (backing_object = object->backing_object) != NULL) {
1165 * Allow fallback to backing objects if we are reading.
1167 VM_OBJECT_LOCK(backing_object);
1168 pindex += OFF_TO_IDX(object->backing_object_offset);
1169 VM_OBJECT_UNLOCK(object);
1170 object = backing_object;
1172 if (src_m == NULL)
1173 panic("vm_fault_copy_wired: page missing");
1174 pmap_copy_page(src_m, dst_m);
1175 VM_OBJECT_UNLOCK(object);
1176 dst_m->valid = VM_PAGE_BITS_ALL;
1177 VM_OBJECT_UNLOCK(dst_object);
1180 * Enter it in the pmap as a read and/or execute access.
1182 pmap_enter(dst_map->pmap, vaddr, prot & ~VM_PROT_WRITE, dst_m,
1183 prot, FALSE);
1186 * Mark it no longer busy, and put it on the active list.
1188 VM_OBJECT_LOCK(dst_object);
1189 vm_page_lock_queues();
1190 vm_page_activate(dst_m);
1191 vm_page_unlock_queues();
1192 vm_page_wakeup(dst_m);
1194 VM_OBJECT_UNLOCK(dst_object);
1199 * This routine checks around the requested page for other pages that
1200 * might be able to be faulted in. This routine brackets the viable
1201 * pages for the pages to be paged in.
1203 * Inputs:
1204 * m, rbehind, rahead
1206 * Outputs:
1207 * marray (array of vm_page_t), reqpage (index of requested page)
1209 * Return value:
1210 * number of pages in marray
1212 * This routine can't block.
1214 static int
1215 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1216 vm_page_t m;
1217 int rbehind;
1218 int rahead;
1219 vm_page_t *marray;
1220 int *reqpage;
1222 int i,j;
1223 vm_object_t object;
1224 vm_pindex_t pindex, startpindex, endpindex, tpindex;
1225 vm_page_t rtm;
1226 int cbehind, cahead;
1228 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1230 object = m->object;
1231 pindex = m->pindex;
1232 cbehind = cahead = 0;
1235 * if the requested page is not available, then give up now
1237 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1238 return 0;
1241 if ((cbehind == 0) && (cahead == 0)) {
1242 *reqpage = 0;
1243 marray[0] = m;
1244 return 1;
1247 if (rahead > cahead) {
1248 rahead = cahead;
1251 if (rbehind > cbehind) {
1252 rbehind = cbehind;
1256 * scan backward for the read behind pages -- in memory
1258 if (pindex > 0) {
1259 if (rbehind > pindex) {
1260 rbehind = pindex;
1261 startpindex = 0;
1262 } else {
1263 startpindex = pindex - rbehind;
1266 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1267 rtm->pindex >= startpindex)
1268 startpindex = rtm->pindex + 1;
1270 /* tpindex is unsigned; beware of numeric underflow. */
1271 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1272 tpindex < pindex; i++, tpindex--) {
1274 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1275 VM_ALLOC_IFNOTCACHED);
1276 if (rtm == NULL) {
1278 * Shift the allocated pages to the
1279 * beginning of the array.
1281 for (j = 0; j < i; j++) {
1282 marray[j] = marray[j + tpindex + 1 -
1283 startpindex];
1285 break;
1288 marray[tpindex - startpindex] = rtm;
1290 } else {
1291 startpindex = 0;
1292 i = 0;
1295 marray[i] = m;
1296 /* page offset of the required page */
1297 *reqpage = i;
1299 tpindex = pindex + 1;
1300 i++;
1303 * scan forward for the read ahead pages
1305 endpindex = tpindex + rahead;
1306 if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1307 endpindex = rtm->pindex;
1308 if (endpindex > object->size)
1309 endpindex = object->size;
1311 for (; tpindex < endpindex; i++, tpindex++) {
1313 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1314 VM_ALLOC_IFNOTCACHED);
1315 if (rtm == NULL) {
1316 break;
1319 marray[i] = rtm;
1322 /* return number of pages */
1323 return i;