2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
6 * Copyright (c) 1994 David Greenman
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 * Carnegie Mellon requests users of this software to return to
61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
62 * School of Computer Science
63 * Carnegie Mellon University
64 * Pittsburgh PA 15213-3890
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
71 * Page fault handling module.
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
83 #include <sys/mutex.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sysctl.h>
87 #include <sys/vmmeter.h>
88 #include <sys/vnode.h>
91 #include <vm/vm_param.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/vm_extern.h>
102 #include <sys/mount.h> /* XXX Temporary for VFS_LOCK_GIANT() */
106 #define PAGEORDER_SIZE (PFBAK+PFFOR)
108 static int prefault_pageorder
[] = {
109 -1 * PAGE_SIZE
, 1 * PAGE_SIZE
,
110 -2 * PAGE_SIZE
, 2 * PAGE_SIZE
,
111 -3 * PAGE_SIZE
, 3 * PAGE_SIZE
,
112 -4 * PAGE_SIZE
, 4 * PAGE_SIZE
115 static int vm_fault_additional_pages(vm_page_t
, int, int, vm_page_t
*, int *);
116 static void vm_fault_prefault(pmap_t
, vm_offset_t
, vm_map_entry_t
);
118 #define VM_FAULT_READ_AHEAD 8
119 #define VM_FAULT_READ_BEHIND 7
120 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
127 vm_object_t first_object
;
128 vm_pindex_t first_pindex
;
130 vm_map_entry_t entry
;
131 int lookup_still_valid
;
136 release_page(struct faultstate
*fs
)
138 vm_page_wakeup(fs
->m
);
139 vm_page_lock_queues();
140 vm_page_deactivate(fs
->m
);
141 vm_page_unlock_queues();
146 unlock_map(struct faultstate
*fs
)
148 if (fs
->lookup_still_valid
) {
149 vm_map_lookup_done(fs
->map
, fs
->entry
);
150 fs
->lookup_still_valid
= FALSE
;
155 unlock_and_deallocate(struct faultstate
*fs
)
158 vm_object_pip_wakeup(fs
->object
);
159 VM_OBJECT_UNLOCK(fs
->object
);
160 if (fs
->object
!= fs
->first_object
) {
161 VM_OBJECT_LOCK(fs
->first_object
);
162 vm_page_lock_queues();
163 vm_page_free(fs
->first_m
);
164 vm_page_unlock_queues();
165 vm_object_pip_wakeup(fs
->first_object
);
166 VM_OBJECT_UNLOCK(fs
->first_object
);
169 vm_object_deallocate(fs
->first_object
);
171 if (fs
->vp
!= NULL
) {
174 vfslocked
= VFS_LOCK_GIANT(fs
->vp
->v_mount
);
177 VFS_UNLOCK_GIANT(vfslocked
);
182 * TRYPAGER - used by vm_fault to calculate whether the pager for the
183 * current object *might* contain the page.
185 * default objects are zero-fill, there is no real pager.
187 #define TRYPAGER (fs.object->type != OBJT_DEFAULT && \
188 (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
193 * Handle a page fault occurring at the given address,
194 * requiring the given permissions, in the map specified.
195 * If successful, the page is inserted into the
196 * associated physical map.
198 * NOTE: the given address should be truncated to the
199 * proper page address.
201 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
202 * a standard error specifying why the fault is fatal is returned.
205 * The map in question must be referenced, and remains so.
206 * Caller may hold no locks.
209 vm_fault(vm_map_t map
, vm_offset_t vaddr
, vm_prot_t fault_type
,
213 int is_first_object_locked
, result
;
214 boolean_t growstack
, wired
;
216 vm_object_t next_object
;
217 vm_page_t marray
[VM_FAULT_READ
];
220 struct faultstate fs
;
224 PCPU_INC(cnt
.v_vm_faults
);
229 * Find the backing store object and offset into it to begin the
233 result
= vm_map_lookup(&fs
.map
, vaddr
, fault_type
, &fs
.entry
,
234 &fs
.first_object
, &fs
.first_pindex
, &prot
, &wired
);
235 if (result
!= KERN_SUCCESS
) {
236 if (result
!= KERN_PROTECTION_FAILURE
||
237 (fault_flags
& VM_FAULT_WIRE_MASK
) != VM_FAULT_USER_WIRE
) {
238 if (growstack
&& result
== KERN_INVALID_ADDRESS
&&
239 map
!= kernel_map
&& curproc
!= NULL
) {
240 result
= vm_map_growstack(curproc
, vaddr
);
241 if (result
!= KERN_SUCCESS
)
242 return (KERN_FAILURE
);
250 * If we are user-wiring a r/w segment, and it is COW, then
251 * we need to do the COW operation. Note that we don't COW
252 * currently RO sections now, because it is NOT desirable
253 * to COW .text. We simply keep .text from ever being COW'ed
254 * and take the heat that one cannot debug wired .text sections.
256 result
= vm_map_lookup(&fs
.map
, vaddr
,
257 VM_PROT_READ
|VM_PROT_WRITE
|VM_PROT_OVERRIDE_WRITE
,
258 &fs
.entry
, &fs
.first_object
, &fs
.first_pindex
, &prot
, &wired
);
259 if (result
!= KERN_SUCCESS
)
263 * If we don't COW now, on a user wire, the user will never
264 * be able to write to the mapping. If we don't make this
265 * restriction, the bookkeeping would be nearly impossible.
267 * XXX The following assignment modifies the map without
268 * holding a write lock on it.
270 if ((fs
.entry
->protection
& VM_PROT_WRITE
) == 0)
271 fs
.entry
->max_protection
&= ~VM_PROT_WRITE
;
274 map_generation
= fs
.map
->timestamp
;
276 if (fs
.entry
->eflags
& MAP_ENTRY_NOFAULT
) {
277 panic("vm_fault: fault on nofault entry, addr: %lx",
282 * Make a reference to this object to prevent its disposal while we
283 * are messing with it. Once we have the reference, the map is free
284 * to be diddled. Since objects reference their shadows (and copies),
285 * they will stay around as well.
287 * Bump the paging-in-progress count to prevent size changes (e.g.
288 * truncation operations) during I/O. This must be done after
289 * obtaining the vnode lock in order to avoid possible deadlocks.
291 * XXX vnode_pager_lock() can block without releasing the map lock.
293 if (fs
.first_object
->flags
& OBJ_NEEDGIANT
)
295 VM_OBJECT_LOCK(fs
.first_object
);
296 vm_object_reference_locked(fs
.first_object
);
297 fs
.vp
= vnode_pager_lock(fs
.first_object
);
298 KASSERT(fs
.vp
== NULL
|| !fs
.map
->system_map
,
299 ("vm_fault: vnode-backed object mapped by system map"));
300 KASSERT((fs
.first_object
->flags
& OBJ_NEEDGIANT
) == 0 ||
302 ("vm_fault: Object requiring giant mapped by system map"));
303 if (fs
.first_object
->flags
& OBJ_NEEDGIANT
)
305 vm_object_pip_add(fs
.first_object
, 1);
307 fs
.lookup_still_valid
= TRUE
;
315 * Search for the page at object/offset.
317 fs
.object
= fs
.first_object
;
318 fs
.pindex
= fs
.first_pindex
;
321 * If the object is dead, we stop here
323 if (fs
.object
->flags
& OBJ_DEAD
) {
324 unlock_and_deallocate(&fs
);
325 return (KERN_PROTECTION_FAILURE
);
329 * See if page is resident
331 fs
.m
= vm_page_lookup(fs
.object
, fs
.pindex
);
334 * check for page-based copy on write.
335 * We check fs.object == fs.first_object so
336 * as to ensure the legacy COW mechanism is
337 * used when the page in question is part of
338 * a shadow object. Otherwise, vm_page_cowfault()
339 * removes the page from the backing object,
340 * which is not what we want.
342 vm_page_lock_queues();
344 (fault_type
& VM_PROT_WRITE
) &&
345 (fs
.object
== fs
.first_object
)) {
346 vm_page_cowfault(fs
.m
);
347 vm_page_unlock_queues();
348 unlock_and_deallocate(&fs
);
353 * Wait/Retry if the page is busy. We have to do this
354 * if the page is busy via either VPO_BUSY or
355 * vm_page_t->busy because the vm_pager may be using
356 * vm_page_t->busy for pageouts ( and even pageins if
357 * it is the vnode pager ), and we could end up trying
358 * to pagein and pageout the same page simultaneously.
360 * We can theoretically allow the busy case on a read
361 * fault if the page is marked valid, but since such
362 * pages are typically already pmap'd, putting that
363 * special case in might be more effort then it is
364 * worth. We cannot under any circumstances mess
365 * around with a vm_page_t->busy page except, perhaps,
368 if ((fs
.m
->oflags
& VPO_BUSY
) || fs
.m
->busy
) {
369 vm_page_unlock_queues();
370 VM_OBJECT_UNLOCK(fs
.object
);
371 if (fs
.object
!= fs
.first_object
) {
372 VM_OBJECT_LOCK(fs
.first_object
);
373 vm_page_lock_queues();
374 vm_page_free(fs
.first_m
);
375 vm_page_unlock_queues();
376 vm_object_pip_wakeup(fs
.first_object
);
377 VM_OBJECT_UNLOCK(fs
.first_object
);
384 vfslck
= VFS_LOCK_GIANT(fs
.vp
->v_mount
);
387 VFS_UNLOCK_GIANT(vfslck
);
389 VM_OBJECT_LOCK(fs
.object
);
390 if (fs
.m
== vm_page_lookup(fs
.object
,
392 vm_page_sleep_if_busy(fs
.m
, TRUE
,
395 vm_object_pip_wakeup(fs
.object
);
396 VM_OBJECT_UNLOCK(fs
.object
);
397 PCPU_INC(cnt
.v_intrans
);
398 vm_object_deallocate(fs
.first_object
);
401 vm_pageq_remove(fs
.m
);
402 vm_page_unlock_queues();
405 * Mark page busy for other processes, and the
406 * pagedaemon. If it still isn't completely valid
407 * (readable), jump to readrest, else break-out ( we
411 if (((fs
.m
->valid
& VM_PAGE_BITS_ALL
) != VM_PAGE_BITS_ALL
) &&
412 fs
.m
->object
!= kernel_object
&& fs
.m
->object
!= kmem_object
) {
420 * Page is not resident, If this is the search termination
421 * or the pager might contain the page, allocate a new page.
423 if (TRYPAGER
|| fs
.object
== fs
.first_object
) {
424 if (fs
.pindex
>= fs
.object
->size
) {
425 unlock_and_deallocate(&fs
);
426 return (KERN_PROTECTION_FAILURE
);
430 * Allocate a new page for this object/offset pair.
433 if (!vm_page_count_severe()) {
434 #if VM_NRESERVLEVEL > 0
435 if ((fs
.object
->flags
& OBJ_COLORED
) == 0) {
436 fs
.object
->flags
|= OBJ_COLORED
;
437 fs
.object
->pg_color
= atop(vaddr
) -
441 fs
.m
= vm_page_alloc(fs
.object
, fs
.pindex
,
442 (fs
.vp
|| fs
.object
->backing_object
)? VM_ALLOC_NORMAL
: VM_ALLOC_ZERO
);
445 unlock_and_deallocate(&fs
);
448 } else if ((fs
.m
->valid
& VM_PAGE_BITS_ALL
) == VM_PAGE_BITS_ALL
)
454 * We have found a valid page or we have allocated a new page.
455 * The page thus may not be valid or may not be entirely
458 * Attempt to fault-in the page if there is a chance that the
459 * pager has it, and potentially fault in additional pages
466 u_char behavior
= vm_map_entry_behavior(fs
.entry
);
468 if (behavior
== MAP_ENTRY_BEHAV_RANDOM
) {
472 behind
= (vaddr
- fs
.entry
->start
) >> PAGE_SHIFT
;
473 if (behind
> VM_FAULT_READ_BEHIND
)
474 behind
= VM_FAULT_READ_BEHIND
;
476 ahead
= ((fs
.entry
->end
- vaddr
) >> PAGE_SHIFT
) - 1;
477 if (ahead
> VM_FAULT_READ_AHEAD
)
478 ahead
= VM_FAULT_READ_AHEAD
;
480 is_first_object_locked
= FALSE
;
481 if ((behavior
== MAP_ENTRY_BEHAV_SEQUENTIAL
||
482 (behavior
!= MAP_ENTRY_BEHAV_RANDOM
&&
483 fs
.pindex
>= fs
.entry
->lastr
&&
484 fs
.pindex
< fs
.entry
->lastr
+ VM_FAULT_READ
)) &&
485 (fs
.first_object
== fs
.object
||
486 (is_first_object_locked
= VM_OBJECT_TRYLOCK(fs
.first_object
))) &&
487 fs
.first_object
->type
!= OBJT_DEVICE
&&
488 fs
.first_object
->type
!= OBJT_PHYS
) {
489 vm_pindex_t firstpindex
, tmppindex
;
491 if (fs
.first_pindex
< 2 * VM_FAULT_READ
)
494 firstpindex
= fs
.first_pindex
- 2 * VM_FAULT_READ
;
496 vm_page_lock_queues();
498 * note: partially valid pages cannot be
499 * included in the lookahead - NFS piecemeal
500 * writes will barf on it badly.
502 for (tmppindex
= fs
.first_pindex
- 1;
503 tmppindex
>= firstpindex
;
507 mt
= vm_page_lookup(fs
.first_object
, tmppindex
);
508 if (mt
== NULL
|| (mt
->valid
!= VM_PAGE_BITS_ALL
))
511 (mt
->oflags
& VPO_BUSY
) ||
517 vm_page_deactivate(mt
);
522 vm_page_unlock_queues();
526 if (is_first_object_locked
)
527 VM_OBJECT_UNLOCK(fs
.first_object
);
529 * now we find out if any other pages should be paged
530 * in at this time this routine checks to see if the
531 * pages surrounding this fault reside in the same
532 * object as the page for this fault. If they do,
533 * then they are faulted in also into the object. The
534 * array "marray" returned contains an array of
535 * vm_page_t structs where one of them is the
536 * vm_page_t passed to the routine. The reqpage
537 * return value is the index into the marray for the
538 * vm_page_t passed to the routine.
540 * fs.m plus the additional pages are VPO_BUSY'd.
542 * XXX vm_fault_additional_pages() can block
543 * without releasing the map lock.
545 faultcount
= vm_fault_additional_pages(
546 fs
.m
, behind
, ahead
, marray
, &reqpage
);
549 * update lastr imperfectly (we do not know how much
550 * getpages will actually read), but good enough.
552 * XXX The following assignment modifies the map
553 * without holding a write lock on it.
555 fs
.entry
->lastr
= fs
.pindex
+ faultcount
- behind
;
558 * Call the pager to retrieve the data, if any, after
559 * releasing the lock on the map. We hold a ref on
560 * fs.object and the pages are VPO_BUSY'd.
565 vm_pager_get_pages(fs
.object
, marray
, faultcount
,
566 reqpage
) : VM_PAGER_FAIL
;
568 if (rv
== VM_PAGER_OK
) {
570 * Found the page. Leave it busy while we play
575 * Relookup in case pager changed page. Pager
576 * is responsible for disposition of old page
579 fs
.m
= vm_page_lookup(fs
.object
, fs
.pindex
);
581 unlock_and_deallocate(&fs
);
586 break; /* break to PAGE HAS BEEN FOUND */
589 * Remove the bogus page (which does not exist at this
590 * object/offset); before doing so, we must get back
591 * our object lock to preserve our invariant.
593 * Also wake up any other process that may want to bring
596 * If this is the top-level object, we must leave the
597 * busy page to prevent another process from rushing
598 * past us, and inserting the page in that object at
599 * the same time that we are.
601 if (rv
== VM_PAGER_ERROR
)
602 printf("vm_fault: pager read error, pid %d (%s)\n",
603 curproc
->p_pid
, curproc
->p_comm
);
605 * Data outside the range of the pager or an I/O error
608 * XXX - the check for kernel_map is a kludge to work
609 * around having the machine panic on a kernel space
610 * fault w/ I/O error.
612 if (((fs
.map
!= kernel_map
) && (rv
== VM_PAGER_ERROR
)) ||
613 (rv
== VM_PAGER_BAD
)) {
614 vm_page_lock_queues();
616 vm_page_unlock_queues();
618 unlock_and_deallocate(&fs
);
619 return ((rv
== VM_PAGER_ERROR
) ? KERN_FAILURE
: KERN_PROTECTION_FAILURE
);
621 if (fs
.object
!= fs
.first_object
) {
622 vm_page_lock_queues();
624 vm_page_unlock_queues();
627 * XXX - we cannot just fall out at this
628 * point, m has been freed and is invalid!
634 * We get here if the object has default pager (or unwiring)
635 * or the pager doesn't have the page.
637 if (fs
.object
== fs
.first_object
)
641 * Move on to the next object. Lock the next object before
642 * unlocking the current one.
644 fs
.pindex
+= OFF_TO_IDX(fs
.object
->backing_object_offset
);
645 next_object
= fs
.object
->backing_object
;
646 if (next_object
== NULL
) {
648 * If there's no object left, fill the page in the top
651 if (fs
.object
!= fs
.first_object
) {
652 vm_object_pip_wakeup(fs
.object
);
653 VM_OBJECT_UNLOCK(fs
.object
);
655 fs
.object
= fs
.first_object
;
656 fs
.pindex
= fs
.first_pindex
;
658 VM_OBJECT_LOCK(fs
.object
);
663 * Zero the page if necessary and mark it valid.
665 if ((fs
.m
->flags
& PG_ZERO
) == 0) {
666 pmap_zero_page(fs
.m
);
668 PCPU_INC(cnt
.v_ozfod
);
670 PCPU_INC(cnt
.v_zfod
);
671 fs
.m
->valid
= VM_PAGE_BITS_ALL
;
672 break; /* break to PAGE HAS BEEN FOUND */
674 KASSERT(fs
.object
!= next_object
,
675 ("object loop %p", next_object
));
676 VM_OBJECT_LOCK(next_object
);
677 vm_object_pip_add(next_object
, 1);
678 if (fs
.object
!= fs
.first_object
)
679 vm_object_pip_wakeup(fs
.object
);
680 VM_OBJECT_UNLOCK(fs
.object
);
681 fs
.object
= next_object
;
685 KASSERT((fs
.m
->oflags
& VPO_BUSY
) != 0,
686 ("vm_fault: not busy after main loop"));
689 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
694 * If the page is being written, but isn't already owned by the
695 * top-level object, we have to copy it into a new page owned by the
698 if (fs
.object
!= fs
.first_object
) {
700 * We only really need to copy if we want to write it.
702 if (fault_type
& VM_PROT_WRITE
) {
704 * This allows pages to be virtually copied from a
705 * backing_object into the first_object, where the
706 * backing object has no other refs to it, and cannot
707 * gain any more refs. Instead of a bcopy, we just
708 * move the page from the backing object to the
709 * first object. Note that we must mark the page
710 * dirty in the first object so that it will go out
711 * to swap when needed.
713 is_first_object_locked
= FALSE
;
716 * Only one shadow object
718 (fs
.object
->shadow_count
== 1) &&
720 * No COW refs, except us
722 (fs
.object
->ref_count
== 1) &&
724 * No one else can look this object up
726 (fs
.object
->handle
== NULL
) &&
728 * No other ways to look the object up
730 ((fs
.object
->type
== OBJT_DEFAULT
) ||
731 (fs
.object
->type
== OBJT_SWAP
)) &&
732 (is_first_object_locked
= VM_OBJECT_TRYLOCK(fs
.first_object
)) &&
734 * We don't chase down the shadow chain
736 fs
.object
== fs
.first_object
->backing_object
) {
737 vm_page_lock_queues();
739 * get rid of the unnecessary page
741 vm_page_free(fs
.first_m
);
743 * grab the page and put it into the
744 * process'es object. The page is
745 * automatically made dirty.
747 vm_page_rename(fs
.m
, fs
.first_object
, fs
.first_pindex
);
748 vm_page_unlock_queues();
752 PCPU_INC(cnt
.v_cow_optim
);
755 * Oh, well, lets copy it.
757 pmap_copy_page(fs
.m
, fs
.first_m
);
758 fs
.first_m
->valid
= VM_PAGE_BITS_ALL
;
762 * We no longer need the old page or object.
767 * fs.object != fs.first_object due to above
770 vm_object_pip_wakeup(fs
.object
);
771 VM_OBJECT_UNLOCK(fs
.object
);
773 * Only use the new page below...
775 fs
.object
= fs
.first_object
;
776 fs
.pindex
= fs
.first_pindex
;
778 if (!is_first_object_locked
)
779 VM_OBJECT_LOCK(fs
.object
);
780 PCPU_INC(cnt
.v_cow_faults
);
782 prot
&= ~VM_PROT_WRITE
;
787 * We must verify that the maps have not changed since our last
790 if (!fs
.lookup_still_valid
) {
791 vm_object_t retry_object
;
792 vm_pindex_t retry_pindex
;
793 vm_prot_t retry_prot
;
795 if (!vm_map_trylock_read(fs
.map
)) {
797 unlock_and_deallocate(&fs
);
800 fs
.lookup_still_valid
= TRUE
;
801 if (fs
.map
->timestamp
!= map_generation
) {
802 result
= vm_map_lookup_locked(&fs
.map
, vaddr
, fault_type
,
803 &fs
.entry
, &retry_object
, &retry_pindex
, &retry_prot
, &wired
);
806 * If we don't need the page any longer, put it on the inactive
807 * list (the easiest thing to do here). If no one needs it,
808 * pageout will grab it eventually.
810 if (result
!= KERN_SUCCESS
) {
812 unlock_and_deallocate(&fs
);
815 * If retry of map lookup would have blocked then
816 * retry fault from start.
818 if (result
== KERN_FAILURE
)
822 if ((retry_object
!= fs
.first_object
) ||
823 (retry_pindex
!= fs
.first_pindex
)) {
825 unlock_and_deallocate(&fs
);
830 * Check whether the protection has changed or the object has
831 * been copied while we left the map unlocked. Changing from
832 * read to write permission is OK - we leave the page
833 * write-protected, and catch the write fault. Changing from
834 * write to read permission means that we can't mark the page
835 * write-enabled after all.
840 if (prot
& VM_PROT_WRITE
) {
841 vm_object_set_writeable_dirty(fs
.object
);
844 * If the fault is a write, we know that this page is being
845 * written NOW so dirty it explicitly to save on
846 * pmap_is_modified() calls later.
848 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
849 * if the page is already dirty to prevent data written with
850 * the expectation of being synced from not being synced.
851 * Likewise if this entry does not request NOSYNC then make
852 * sure the page isn't marked NOSYNC. Applications sharing
853 * data should use the same flags to avoid ping ponging.
855 * Also tell the backing pager, if any, that it should remove
856 * any swap backing since the page is now dirty.
858 if (fs
.entry
->eflags
& MAP_ENTRY_NOSYNC
) {
859 if (fs
.m
->dirty
== 0)
860 fs
.m
->oflags
|= VPO_NOSYNC
;
862 fs
.m
->oflags
&= ~VPO_NOSYNC
;
864 if (fault_flags
& VM_FAULT_DIRTY
) {
866 vm_pager_page_unswapped(fs
.m
);
871 * Page had better still be busy
873 KASSERT(fs
.m
->oflags
& VPO_BUSY
,
874 ("vm_fault: page %p not busy!", fs
.m
));
876 * Sanity check: page must be completely valid or it is not fit to
877 * map into user space. vm_pager_get_pages() ensures this.
879 if (fs
.m
->valid
!= VM_PAGE_BITS_ALL
) {
880 vm_page_zero_invalid(fs
.m
, TRUE
);
881 printf("Warning: page %p partially invalid on fault\n", fs
.m
);
883 VM_OBJECT_UNLOCK(fs
.object
);
886 * Put this page into the physical map. We had to do the unlock above
887 * because pmap_enter() may sleep. We don't put the page
888 * back on the active queue until later so that the pageout daemon
889 * won't find it (yet).
891 pmap_enter(fs
.map
->pmap
, vaddr
, fault_type
, fs
.m
, prot
, wired
);
892 if (((fault_flags
& VM_FAULT_WIRE_MASK
) == 0) && (wired
== 0)) {
893 vm_fault_prefault(fs
.map
->pmap
, vaddr
, fs
.entry
);
895 VM_OBJECT_LOCK(fs
.object
);
896 vm_page_lock_queues();
897 vm_page_flag_set(fs
.m
, PG_REFERENCED
);
900 * If the page is not wired down, then put it where the pageout daemon
903 if (fault_flags
& VM_FAULT_WIRE_MASK
) {
907 vm_page_unwire(fs
.m
, 1);
909 vm_page_activate(fs
.m
);
911 vm_page_unlock_queues();
912 vm_page_wakeup(fs
.m
);
915 * Unlock everything, and return
917 unlock_and_deallocate(&fs
);
919 curthread
->td_ru
.ru_majflt
++;
921 curthread
->td_ru
.ru_minflt
++;
923 return (KERN_SUCCESS
);
927 * vm_fault_prefault provides a quick way of clustering
928 * pagefaults into a processes address space. It is a "cousin"
929 * of vm_map_pmap_enter, except it runs at page fault time instead
933 vm_fault_prefault(pmap_t pmap
, vm_offset_t addra
, vm_map_entry_t entry
)
936 vm_offset_t addr
, starta
;
941 if (pmap
!= vmspace_pmap(curthread
->td_proc
->p_vmspace
))
944 object
= entry
->object
.vm_object
;
946 starta
= addra
- PFBAK
* PAGE_SIZE
;
947 if (starta
< entry
->start
) {
948 starta
= entry
->start
;
949 } else if (starta
> addra
) {
953 for (i
= 0; i
< PAGEORDER_SIZE
; i
++) {
954 vm_object_t backing_object
, lobject
;
956 addr
= addra
+ prefault_pageorder
[i
];
957 if (addr
> addra
+ (PFFOR
* PAGE_SIZE
))
960 if (addr
< starta
|| addr
>= entry
->end
)
963 if (!pmap_is_prefaultable(pmap
, addr
))
966 pindex
= ((addr
- entry
->start
) + entry
->offset
) >> PAGE_SHIFT
;
968 VM_OBJECT_LOCK(lobject
);
969 while ((m
= vm_page_lookup(lobject
, pindex
)) == NULL
&&
970 lobject
->type
== OBJT_DEFAULT
&&
971 (backing_object
= lobject
->backing_object
) != NULL
) {
972 if (lobject
->backing_object_offset
& PAGE_MASK
)
974 pindex
+= lobject
->backing_object_offset
>> PAGE_SHIFT
;
975 VM_OBJECT_LOCK(backing_object
);
976 VM_OBJECT_UNLOCK(lobject
);
977 lobject
= backing_object
;
980 * give-up when a page is not in memory
983 VM_OBJECT_UNLOCK(lobject
);
986 if (((m
->valid
& VM_PAGE_BITS_ALL
) == VM_PAGE_BITS_ALL
) &&
988 (m
->flags
& PG_FICTITIOUS
) == 0) {
990 vm_page_lock_queues();
991 pmap_enter_quick(pmap
, addr
, m
, entry
->protection
);
992 vm_page_unlock_queues();
994 VM_OBJECT_UNLOCK(lobject
);
1001 * Ensure that the requested virtual address, which may be in userland,
1002 * is valid. Fault-in the page if necessary. Return -1 on failure.
1005 vm_fault_quick(caddr_t v
, int prot
)
1009 if (prot
& VM_PROT_WRITE
)
1010 r
= subyte(v
, fubyte(v
));
1019 * Wire down a range of virtual addresses in a map.
1022 vm_fault_wire(vm_map_t map
, vm_offset_t start
, vm_offset_t end
,
1023 boolean_t user_wire
, boolean_t fictitious
)
1029 * We simulate a fault to get the page and enter it in the physical
1030 * map. For user wiring, we only ask for read access on currently
1031 * read-only sections.
1033 for (va
= start
; va
< end
; va
+= PAGE_SIZE
) {
1034 rv
= vm_fault(map
, va
,
1035 user_wire
? VM_PROT_READ
: VM_PROT_READ
| VM_PROT_WRITE
,
1036 user_wire
? VM_FAULT_USER_WIRE
: VM_FAULT_CHANGE_WIRING
);
1039 vm_fault_unwire(map
, start
, va
, fictitious
);
1043 return (KERN_SUCCESS
);
1049 * Unwire a range of virtual addresses in a map.
1052 vm_fault_unwire(vm_map_t map
, vm_offset_t start
, vm_offset_t end
,
1053 boolean_t fictitious
)
1059 pmap
= vm_map_pmap(map
);
1062 * Since the pages are wired down, we must be able to get their
1063 * mappings from the physical map system.
1065 for (va
= start
; va
< end
; va
+= PAGE_SIZE
) {
1066 pa
= pmap_extract(pmap
, va
);
1068 pmap_change_wiring(pmap
, va
, FALSE
);
1070 vm_page_lock_queues();
1071 vm_page_unwire(PHYS_TO_VM_PAGE(pa
), 1);
1072 vm_page_unlock_queues();
1080 * vm_fault_copy_entry
1082 * Copy all of the pages from a wired-down map entry to another.
1084 * In/out conditions:
1085 * The source and destination maps must be locked for write.
1086 * The source map entry must be wired down (or be a sharing map
1087 * entry corresponding to a main map entry that is wired down).
1090 vm_fault_copy_entry(dst_map
, src_map
, dst_entry
, src_entry
)
1093 vm_map_entry_t dst_entry
;
1094 vm_map_entry_t src_entry
;
1096 vm_object_t backing_object
, dst_object
, object
;
1097 vm_object_t src_object
;
1098 vm_ooffset_t dst_offset
;
1099 vm_ooffset_t src_offset
;
1110 src_object
= src_entry
->object
.vm_object
;
1111 src_offset
= src_entry
->offset
;
1114 * Create the top-level object for the destination entry. (Doesn't
1115 * actually shadow anything - we copy the pages directly.)
1117 dst_object
= vm_object_allocate(OBJT_DEFAULT
,
1118 OFF_TO_IDX(dst_entry
->end
- dst_entry
->start
));
1119 #if VM_NRESERVLEVEL > 0
1120 dst_object
->flags
|= OBJ_COLORED
;
1121 dst_object
->pg_color
= atop(dst_entry
->start
);
1124 VM_OBJECT_LOCK(dst_object
);
1125 dst_entry
->object
.vm_object
= dst_object
;
1126 dst_entry
->offset
= 0;
1128 prot
= dst_entry
->max_protection
;
1131 * Loop through all of the pages in the entry's range, copying each
1132 * one from the source object (it should be there) to the destination
1135 for (vaddr
= dst_entry
->start
, dst_offset
= 0;
1136 vaddr
< dst_entry
->end
;
1137 vaddr
+= PAGE_SIZE
, dst_offset
+= PAGE_SIZE
) {
1140 * Allocate a page in the destination object
1143 dst_m
= vm_page_alloc(dst_object
,
1144 OFF_TO_IDX(dst_offset
), VM_ALLOC_NORMAL
);
1145 if (dst_m
== NULL
) {
1146 VM_OBJECT_UNLOCK(dst_object
);
1148 VM_OBJECT_LOCK(dst_object
);
1150 } while (dst_m
== NULL
);
1153 * Find the page in the source object, and copy it in.
1154 * (Because the source is wired down, the page will be in
1157 VM_OBJECT_LOCK(src_object
);
1158 object
= src_object
;
1160 while ((src_m
= vm_page_lookup(object
, pindex
+
1161 OFF_TO_IDX(dst_offset
+ src_offset
))) == NULL
&&
1162 (src_entry
->protection
& VM_PROT_WRITE
) == 0 &&
1163 (backing_object
= object
->backing_object
) != NULL
) {
1165 * Allow fallback to backing objects if we are reading.
1167 VM_OBJECT_LOCK(backing_object
);
1168 pindex
+= OFF_TO_IDX(object
->backing_object_offset
);
1169 VM_OBJECT_UNLOCK(object
);
1170 object
= backing_object
;
1173 panic("vm_fault_copy_wired: page missing");
1174 pmap_copy_page(src_m
, dst_m
);
1175 VM_OBJECT_UNLOCK(object
);
1176 dst_m
->valid
= VM_PAGE_BITS_ALL
;
1177 VM_OBJECT_UNLOCK(dst_object
);
1180 * Enter it in the pmap as a read and/or execute access.
1182 pmap_enter(dst_map
->pmap
, vaddr
, prot
& ~VM_PROT_WRITE
, dst_m
,
1186 * Mark it no longer busy, and put it on the active list.
1188 VM_OBJECT_LOCK(dst_object
);
1189 vm_page_lock_queues();
1190 vm_page_activate(dst_m
);
1191 vm_page_unlock_queues();
1192 vm_page_wakeup(dst_m
);
1194 VM_OBJECT_UNLOCK(dst_object
);
1199 * This routine checks around the requested page for other pages that
1200 * might be able to be faulted in. This routine brackets the viable
1201 * pages for the pages to be paged in.
1204 * m, rbehind, rahead
1207 * marray (array of vm_page_t), reqpage (index of requested page)
1210 * number of pages in marray
1212 * This routine can't block.
1215 vm_fault_additional_pages(m
, rbehind
, rahead
, marray
, reqpage
)
1224 vm_pindex_t pindex
, startpindex
, endpindex
, tpindex
;
1226 int cbehind
, cahead
;
1228 VM_OBJECT_LOCK_ASSERT(m
->object
, MA_OWNED
);
1232 cbehind
= cahead
= 0;
1235 * if the requested page is not available, then give up now
1237 if (!vm_pager_has_page(object
, pindex
, &cbehind
, &cahead
)) {
1241 if ((cbehind
== 0) && (cahead
== 0)) {
1247 if (rahead
> cahead
) {
1251 if (rbehind
> cbehind
) {
1256 * scan backward for the read behind pages -- in memory
1259 if (rbehind
> pindex
) {
1263 startpindex
= pindex
- rbehind
;
1266 if ((rtm
= TAILQ_PREV(m
, pglist
, listq
)) != NULL
&&
1267 rtm
->pindex
>= startpindex
)
1268 startpindex
= rtm
->pindex
+ 1;
1270 /* tpindex is unsigned; beware of numeric underflow. */
1271 for (i
= 0, tpindex
= pindex
- 1; tpindex
>= startpindex
&&
1272 tpindex
< pindex
; i
++, tpindex
--) {
1274 rtm
= vm_page_alloc(object
, tpindex
, VM_ALLOC_NORMAL
|
1275 VM_ALLOC_IFNOTCACHED
);
1278 * Shift the allocated pages to the
1279 * beginning of the array.
1281 for (j
= 0; j
< i
; j
++) {
1282 marray
[j
] = marray
[j
+ tpindex
+ 1 -
1288 marray
[tpindex
- startpindex
] = rtm
;
1296 /* page offset of the required page */
1299 tpindex
= pindex
+ 1;
1303 * scan forward for the read ahead pages
1305 endpindex
= tpindex
+ rahead
;
1306 if ((rtm
= TAILQ_NEXT(m
, listq
)) != NULL
&& rtm
->pindex
< endpindex
)
1307 endpindex
= rtm
->pindex
;
1308 if (endpindex
> object
->size
)
1309 endpindex
= object
->size
;
1311 for (; tpindex
< endpindex
; i
++, tpindex
++) {
1313 rtm
= vm_page_alloc(object
, tpindex
, VM_ALLOC_NORMAL
|
1314 VM_ALLOC_IFNOTCACHED
);
1322 /* return number of pages */