2 * Copyright (c) 1991 Regents of the University of California.
4 * Copyright (c) 1994 John S. Dyson
6 * Copyright (c) 1994 David Greenman
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the University of
25 * California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 * may be used to endorse or promote products derived from this software
28 * without specific prior written permission.
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60 * Carnegie Mellon requests users of this software to return to
62 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
63 * School of Computer Science
64 * Carnegie Mellon University
65 * Pittsburgh PA 15213-3890
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
72 * The proverbial page-out daemon.
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
84 #include <sys/mutex.h>
86 #include <sys/kthread.h>
88 #include <sys/mount.h>
89 #include <sys/resourcevar.h>
90 #include <sys/sched.h>
91 #include <sys/signalvar.h>
92 #include <sys/vnode.h>
93 #include <sys/vmmeter.h>
95 #include <sys/sysctl.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_pager.h>
104 #include <vm/swap_pager.h>
105 #include <vm/vm_extern.h>
108 #include <machine/mutex.h>
111 * System initialization
114 /* the kernel process "vm_pageout"*/
115 static void vm_pageout(void);
116 static int vm_pageout_clean(vm_page_t
);
117 static void vm_pageout_scan(int pass
);
119 struct proc
*pageproc
;
121 static struct kproc_desc page_kp
= {
126 SYSINIT(pagedaemon
, SI_SUB_KTHREAD_PAGE
, SI_ORDER_FIRST
, kproc_start
,
129 #if !defined(NO_SWAPPING)
130 /* the kernel process "vm_daemon"*/
131 static void vm_daemon(void);
132 static struct proc
*vmproc
;
134 static struct kproc_desc vm_kp
= {
139 SYSINIT(vmdaemon
, SI_SUB_KTHREAD_VM
, SI_ORDER_FIRST
, kproc_start
, &vm_kp
);
143 int vm_pages_needed
; /* Event on which pageout daemon sleeps */
144 int vm_pageout_deficit
; /* Estimated number of pages deficit */
145 int vm_pageout_pages_needed
; /* flag saying that the pageout daemon needs pages */
147 #if !defined(NO_SWAPPING)
148 static int vm_pageout_req_swapout
; /* XXX */
149 static int vm_daemon_needed
;
150 static struct mtx vm_daemon_mtx
;
151 /* Allow for use by vm_pageout before vm_daemon is initialized. */
152 MTX_SYSINIT(vm_daemon
, &vm_daemon_mtx
, "vm daemon", MTX_DEF
);
154 static int vm_max_launder
= 32;
155 static int vm_pageout_stats_max
=0, vm_pageout_stats_interval
= 0;
156 static int vm_pageout_full_stats_interval
= 0;
157 static int vm_pageout_algorithm
=0;
158 static int defer_swap_pageouts
=0;
159 static int disable_swap_pageouts
=0;
161 #if defined(NO_SWAPPING)
162 static int vm_swap_enabled
=0;
163 static int vm_swap_idle_enabled
=0;
165 static int vm_swap_enabled
=1;
166 static int vm_swap_idle_enabled
=0;
169 SYSCTL_INT(_vm
, VM_PAGEOUT_ALGORITHM
, pageout_algorithm
,
170 CTLFLAG_RW
, &vm_pageout_algorithm
, 0, "LRU page mgmt");
172 SYSCTL_INT(_vm
, OID_AUTO
, max_launder
,
173 CTLFLAG_RW
, &vm_max_launder
, 0, "Limit dirty flushes in pageout");
175 SYSCTL_INT(_vm
, OID_AUTO
, pageout_stats_max
,
176 CTLFLAG_RW
, &vm_pageout_stats_max
, 0, "Max pageout stats scan length");
178 SYSCTL_INT(_vm
, OID_AUTO
, pageout_full_stats_interval
,
179 CTLFLAG_RW
, &vm_pageout_full_stats_interval
, 0, "Interval for full stats scan");
181 SYSCTL_INT(_vm
, OID_AUTO
, pageout_stats_interval
,
182 CTLFLAG_RW
, &vm_pageout_stats_interval
, 0, "Interval for partial stats scan");
184 #if defined(NO_SWAPPING)
185 SYSCTL_INT(_vm
, VM_SWAPPING_ENABLED
, swap_enabled
,
186 CTLFLAG_RD
, &vm_swap_enabled
, 0, "Enable entire process swapout");
187 SYSCTL_INT(_vm
, OID_AUTO
, swap_idle_enabled
,
188 CTLFLAG_RD
, &vm_swap_idle_enabled
, 0, "Allow swapout on idle criteria");
190 SYSCTL_INT(_vm
, VM_SWAPPING_ENABLED
, swap_enabled
,
191 CTLFLAG_RW
, &vm_swap_enabled
, 0, "Enable entire process swapout");
192 SYSCTL_INT(_vm
, OID_AUTO
, swap_idle_enabled
,
193 CTLFLAG_RW
, &vm_swap_idle_enabled
, 0, "Allow swapout on idle criteria");
196 SYSCTL_INT(_vm
, OID_AUTO
, defer_swapspace_pageouts
,
197 CTLFLAG_RW
, &defer_swap_pageouts
, 0, "Give preference to dirty pages in mem");
199 SYSCTL_INT(_vm
, OID_AUTO
, disable_swapspace_pageouts
,
200 CTLFLAG_RW
, &disable_swap_pageouts
, 0, "Disallow swapout of dirty pages");
202 static int pageout_lock_miss
;
203 SYSCTL_INT(_vm
, OID_AUTO
, pageout_lock_miss
,
204 CTLFLAG_RD
, &pageout_lock_miss
, 0, "vget() lock misses during pageout");
206 #define VM_PAGEOUT_PAGE_COUNT 16
207 int vm_pageout_page_count
= VM_PAGEOUT_PAGE_COUNT
;
209 int vm_page_max_wired
; /* XXX max # of wired pages system-wide */
210 SYSCTL_INT(_vm
, OID_AUTO
, max_wired
,
211 CTLFLAG_RW
, &vm_page_max_wired
, 0, "System-wide limit to wired page count");
213 #if !defined(NO_SWAPPING)
214 static void vm_pageout_map_deactivate_pages(vm_map_t
, long);
215 static void vm_pageout_object_deactivate_pages(pmap_t
, vm_object_t
, long);
216 static void vm_req_vmdaemon(int req
);
218 static void vm_pageout_page_stats(void);
221 * vm_pageout_fallback_object_lock:
223 * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
224 * known to have failed and page queue must be either PQ_ACTIVE or
225 * PQ_INACTIVE. To avoid lock order violation, unlock the page queues
226 * while locking the vm object. Use marker page to detect page queue
227 * changes and maintain notion of next page on page queue. Return
228 * TRUE if no changes were detected, FALSE otherwise. vm object is
231 * This function depends on both the lock portion of struct vm_object
232 * and normal struct vm_page being type stable.
235 vm_pageout_fallback_object_lock(vm_page_t m
, vm_page_t
*next
)
237 struct vm_page marker
;
243 * Initialize our marker
245 bzero(&marker
, sizeof(marker
));
246 marker
.flags
= PG_FICTITIOUS
| PG_MARKER
;
247 marker
.oflags
= VPO_BUSY
;
248 marker
.queue
= m
->queue
;
249 marker
.wire_count
= 1;
254 TAILQ_INSERT_AFTER(&vm_page_queues
[queue
].pl
,
256 vm_page_unlock_queues();
257 VM_OBJECT_LOCK(object
);
258 vm_page_lock_queues();
260 /* Page queue might have changed. */
261 *next
= TAILQ_NEXT(&marker
, pageq
);
262 unchanged
= (m
->queue
== queue
&&
263 m
->object
== object
&&
264 &marker
== TAILQ_NEXT(m
, pageq
));
265 TAILQ_REMOVE(&vm_page_queues
[queue
].pl
,
273 * Clean the page and remove it from the laundry.
275 * We set the busy bit to cause potential page faults on this page to
276 * block. Note the careful timing, however, the busy bit isn't set till
277 * late and we cannot do anything that will mess with the page.
284 vm_page_t mc
[2*vm_pageout_page_count
];
286 int ib
, is
, page_base
;
287 vm_pindex_t pindex
= m
->pindex
;
289 mtx_assert(&vm_page_queue_mtx
, MA_OWNED
);
290 VM_OBJECT_LOCK_ASSERT(m
->object
, MA_OWNED
);
293 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
294 * with the new swapper, but we could have serious problems paging
295 * out other object types if there is insufficient memory.
297 * Unfortunately, checking free memory here is far too late, so the
298 * check has been moved up a procedural level.
302 * Can't clean the page if it's busy or held.
304 if ((m
->hold_count
!= 0) ||
305 ((m
->busy
!= 0) || (m
->oflags
& VPO_BUSY
))) {
309 mc
[vm_pageout_page_count
] = m
;
311 page_base
= vm_pageout_page_count
;
316 * Scan object for clusterable pages.
318 * We can cluster ONLY if: ->> the page is NOT
319 * clean, wired, busy, held, or mapped into a
320 * buffer, and one of the following:
321 * 1) The page is inactive, or a seldom used
324 * 2) we force the issue.
326 * During heavy mmap/modification loads the pageout
327 * daemon can really fragment the underlying file
328 * due to flushing pages out of order and not trying
329 * align the clusters (which leave sporatic out-of-order
330 * holes). To solve this problem we do the reverse scan
331 * first and attempt to align our cluster, then do a
332 * forward scan if room remains.
336 while (ib
&& pageout_count
< vm_pageout_page_count
) {
344 if ((p
= vm_page_lookup(object
, pindex
- ib
)) == NULL
) {
348 if ((p
->oflags
& VPO_BUSY
) || p
->busy
) {
352 vm_page_test_dirty(p
);
353 if ((p
->dirty
& p
->valid
) == 0 ||
354 p
->queue
!= PQ_INACTIVE
||
355 p
->wire_count
!= 0 || /* may be held by buf cache */
356 p
->hold_count
!= 0) { /* may be undergoing I/O */
364 * alignment boundry, stop here and switch directions. Do
367 if ((pindex
- (ib
- 1)) % vm_pageout_page_count
== 0)
371 while (pageout_count
< vm_pageout_page_count
&&
372 pindex
+ is
< object
->size
) {
375 if ((p
= vm_page_lookup(object
, pindex
+ is
)) == NULL
)
377 if ((p
->oflags
& VPO_BUSY
) || p
->busy
) {
380 vm_page_test_dirty(p
);
381 if ((p
->dirty
& p
->valid
) == 0 ||
382 p
->queue
!= PQ_INACTIVE
||
383 p
->wire_count
!= 0 || /* may be held by buf cache */
384 p
->hold_count
!= 0) { /* may be undergoing I/O */
387 mc
[page_base
+ pageout_count
] = p
;
393 * If we exhausted our forward scan, continue with the reverse scan
394 * when possible, even past a page boundry. This catches boundry
397 if (ib
&& pageout_count
< vm_pageout_page_count
)
401 * we allow reads during pageouts...
403 return (vm_pageout_flush(&mc
[page_base
], pageout_count
, 0));
407 * vm_pageout_flush() - launder the given pages
409 * The given pages are laundered. Note that we setup for the start of
410 * I/O ( i.e. busy the page ), mark it read-only, and bump the object
411 * reference count all in here rather then in the parent. If we want
412 * the parent to do more sophisticated things we may have to change
416 vm_pageout_flush(vm_page_t
*mc
, int count
, int flags
)
418 vm_object_t object
= mc
[0]->object
;
419 int pageout_status
[count
];
423 mtx_assert(&vm_page_queue_mtx
, MA_OWNED
);
424 VM_OBJECT_LOCK_ASSERT(object
, MA_OWNED
);
426 * Initiate I/O. Bump the vm_page_t->busy counter and
427 * mark the pages read-only.
429 * We do not have to fixup the clean/dirty bits here... we can
430 * allow the pager to do it after the I/O completes.
432 * NOTE! mc[i]->dirty may be partial or fragmented due to an
433 * edge case with file fragments.
435 for (i
= 0; i
< count
; i
++) {
436 KASSERT(mc
[i
]->valid
== VM_PAGE_BITS_ALL
,
437 ("vm_pageout_flush: partially invalid page %p index %d/%d",
439 vm_page_io_start(mc
[i
]);
440 pmap_remove_write(mc
[i
]);
442 vm_page_unlock_queues();
443 vm_object_pip_add(object
, count
);
445 vm_pager_put_pages(object
, mc
, count
, flags
, pageout_status
);
447 vm_page_lock_queues();
448 for (i
= 0; i
< count
; i
++) {
449 vm_page_t mt
= mc
[i
];
451 KASSERT(pageout_status
[i
] == VM_PAGER_PEND
||
452 (mt
->flags
& PG_WRITEABLE
) == 0,
453 ("vm_pageout_flush: page %p is not write protected", mt
));
454 switch (pageout_status
[i
]) {
461 * Page outside of range of object. Right now we
462 * essentially lose the changes by pretending it
465 pmap_clear_modify(mt
);
471 * If page couldn't be paged out, then reactivate the
472 * page so it doesn't clog the inactive list. (We
473 * will try paging out it again later).
475 vm_page_activate(mt
);
482 * If the operation is still going, leave the page busy to
483 * block all other accesses. Also, leave the paging in
484 * progress indicator set so that we don't attempt an object
487 if (pageout_status
[i
] != VM_PAGER_PEND
) {
488 vm_object_pip_wakeup(object
);
489 vm_page_io_finish(mt
);
490 if (vm_page_count_severe())
491 vm_page_try_to_cache(mt
);
497 #if !defined(NO_SWAPPING)
499 * vm_pageout_object_deactivate_pages
501 * deactivate enough pages to satisfy the inactive target
502 * requirements or if vm_page_proc_limit is set, then
503 * deactivate all of the pages in the object and its
506 * The object and map must be locked.
509 vm_pageout_object_deactivate_pages(pmap
, first_object
, desired
)
511 vm_object_t first_object
;
514 vm_object_t backing_object
, object
;
516 int actcount
, rcount
, remove_mode
;
518 VM_OBJECT_LOCK_ASSERT(first_object
, MA_OWNED
);
519 if (first_object
->type
== OBJT_DEVICE
|| first_object
->type
== OBJT_PHYS
)
521 for (object
= first_object
;; object
= backing_object
) {
522 if (pmap_resident_count(pmap
) <= desired
)
524 if (object
->paging_in_progress
)
528 if (object
->shadow_count
> 1)
531 * scan the objects entire memory queue
533 rcount
= object
->resident_page_count
;
534 p
= TAILQ_FIRST(&object
->memq
);
535 vm_page_lock_queues();
536 while (p
&& (rcount
-- > 0)) {
537 if (pmap_resident_count(pmap
) <= desired
) {
538 vm_page_unlock_queues();
541 next
= TAILQ_NEXT(p
, listq
);
543 if (p
->wire_count
!= 0 ||
544 p
->hold_count
!= 0 ||
546 (p
->oflags
& VPO_BUSY
) ||
547 (p
->flags
& PG_UNMANAGED
) ||
548 !pmap_page_exists_quick(pmap
, p
)) {
552 actcount
= pmap_ts_referenced(p
);
554 vm_page_flag_set(p
, PG_REFERENCED
);
555 } else if (p
->flags
& PG_REFERENCED
) {
558 if ((p
->queue
!= PQ_ACTIVE
) &&
559 (p
->flags
& PG_REFERENCED
)) {
561 p
->act_count
+= actcount
;
562 vm_page_flag_clear(p
, PG_REFERENCED
);
563 } else if (p
->queue
== PQ_ACTIVE
) {
564 if ((p
->flags
& PG_REFERENCED
) == 0) {
565 p
->act_count
-= min(p
->act_count
, ACT_DECLINE
);
566 if (!remove_mode
&& (vm_pageout_algorithm
|| (p
->act_count
== 0))) {
568 vm_page_deactivate(p
);
574 vm_page_flag_clear(p
, PG_REFERENCED
);
575 if (p
->act_count
< (ACT_MAX
- ACT_ADVANCE
))
576 p
->act_count
+= ACT_ADVANCE
;
579 } else if (p
->queue
== PQ_INACTIVE
) {
584 vm_page_unlock_queues();
585 if ((backing_object
= object
->backing_object
) == NULL
)
587 VM_OBJECT_LOCK(backing_object
);
588 if (object
!= first_object
)
589 VM_OBJECT_UNLOCK(object
);
592 if (object
!= first_object
)
593 VM_OBJECT_UNLOCK(object
);
597 * deactivate some number of pages in a map, try to do it fairly, but
598 * that is really hard to do.
601 vm_pageout_map_deactivate_pages(map
, desired
)
606 vm_object_t obj
, bigobj
;
609 if (!vm_map_trylock(map
))
616 * first, search out the biggest object, and try to free pages from
619 tmpe
= map
->header
.next
;
620 while (tmpe
!= &map
->header
) {
621 if ((tmpe
->eflags
& MAP_ENTRY_IS_SUB_MAP
) == 0) {
622 obj
= tmpe
->object
.vm_object
;
623 if (obj
!= NULL
&& VM_OBJECT_TRYLOCK(obj
)) {
624 if (obj
->shadow_count
<= 1 &&
626 bigobj
->resident_page_count
< obj
->resident_page_count
)) {
628 VM_OBJECT_UNLOCK(bigobj
);
631 VM_OBJECT_UNLOCK(obj
);
634 if (tmpe
->wired_count
> 0)
635 nothingwired
= FALSE
;
639 if (bigobj
!= NULL
) {
640 vm_pageout_object_deactivate_pages(map
->pmap
, bigobj
, desired
);
641 VM_OBJECT_UNLOCK(bigobj
);
644 * Next, hunt around for other pages to deactivate. We actually
645 * do this search sort of wrong -- .text first is not the best idea.
647 tmpe
= map
->header
.next
;
648 while (tmpe
!= &map
->header
) {
649 if (pmap_resident_count(vm_map_pmap(map
)) <= desired
)
651 if ((tmpe
->eflags
& MAP_ENTRY_IS_SUB_MAP
) == 0) {
652 obj
= tmpe
->object
.vm_object
;
655 vm_pageout_object_deactivate_pages(map
->pmap
, obj
, desired
);
656 VM_OBJECT_UNLOCK(obj
);
663 * Remove all mappings if a process is swapped out, this will free page
666 if (desired
== 0 && nothingwired
) {
667 pmap_remove(vm_map_pmap(map
), vm_map_min(map
),
672 #endif /* !defined(NO_SWAPPING) */
675 * vm_pageout_scan does the dirty work for the pageout daemon.
678 vm_pageout_scan(int pass
)
681 struct vm_page marker
;
682 int page_shortage
, maxscan
, pcount
;
683 int addl_page_shortage
, addl_page_shortage_init
;
684 struct proc
*p
, *bigproc
;
686 vm_offset_t size
, bigsize
;
689 int vnodes_skipped
= 0;
693 * Decrease registered cache sizes.
695 EVENTHANDLER_INVOKE(vm_lowmem
, 0);
697 * We do this explicitly after the caches have been drained above.
701 addl_page_shortage_init
= atomic_readandclear_int(&vm_pageout_deficit
);
704 * Calculate the number of pages we want to either free or move
707 page_shortage
= vm_paging_target() + addl_page_shortage_init
;
710 * Initialize our marker
712 bzero(&marker
, sizeof(marker
));
713 marker
.flags
= PG_FICTITIOUS
| PG_MARKER
;
714 marker
.oflags
= VPO_BUSY
;
715 marker
.queue
= PQ_INACTIVE
;
716 marker
.wire_count
= 1;
719 * Start scanning the inactive queue for pages we can move to the
720 * cache or free. The scan will stop when the target is reached or
721 * we have scanned the entire inactive queue. Note that m->act_count
722 * is not used to form decisions for the inactive queue, only for the
725 * maxlaunder limits the number of dirty pages we flush per scan.
726 * For most systems a smaller value (16 or 32) is more robust under
727 * extreme memory and disk pressure because any unnecessary writes
728 * to disk can result in extreme performance degredation. However,
729 * systems with excessive dirty pages (especially when MAP_NOSYNC is
730 * used) will die horribly with limited laundering. If the pageout
731 * daemon cannot clean enough pages in the first pass, we let it go
732 * all out in succeeding passes.
734 if ((maxlaunder
= vm_max_launder
) <= 1)
738 vm_page_lock_queues();
740 addl_page_shortage
= addl_page_shortage_init
;
741 maxscan
= cnt
.v_inactive_count
;
743 for (m
= TAILQ_FIRST(&vm_page_queues
[PQ_INACTIVE
].pl
);
744 m
!= NULL
&& maxscan
-- > 0 && page_shortage
> 0;
749 if (VM_PAGE_GETQUEUE(m
) != PQ_INACTIVE
) {
753 next
= TAILQ_NEXT(m
, pageq
);
759 if (m
->flags
& PG_MARKER
)
763 * A held page may be undergoing I/O, so skip it.
767 addl_page_shortage
++;
771 * Don't mess with busy pages, keep in the front of the
772 * queue, most likely are being paged out.
774 if (!VM_OBJECT_TRYLOCK(object
) &&
775 (!vm_pageout_fallback_object_lock(m
, &next
) ||
776 m
->hold_count
!= 0)) {
777 VM_OBJECT_UNLOCK(object
);
778 addl_page_shortage
++;
781 if (m
->busy
|| (m
->oflags
& VPO_BUSY
)) {
782 VM_OBJECT_UNLOCK(object
);
783 addl_page_shortage
++;
788 * If the object is not being used, we ignore previous
791 if (object
->ref_count
== 0) {
792 vm_page_flag_clear(m
, PG_REFERENCED
);
793 pmap_clear_reference(m
);
796 * Otherwise, if the page has been referenced while in the
797 * inactive queue, we bump the "activation count" upwards,
798 * making it less likely that the page will be added back to
799 * the inactive queue prematurely again. Here we check the
800 * page tables (or emulated bits, if any), given the upper
801 * level VM system not knowing anything about existing
804 } else if (((m
->flags
& PG_REFERENCED
) == 0) &&
805 (actcount
= pmap_ts_referenced(m
))) {
807 VM_OBJECT_UNLOCK(object
);
808 m
->act_count
+= (actcount
+ ACT_ADVANCE
);
813 * If the upper level VM system knows about any page
814 * references, we activate the page. We also set the
815 * "activation count" higher than normal so that we will less
816 * likely place pages back onto the inactive queue again.
818 if ((m
->flags
& PG_REFERENCED
) != 0) {
819 vm_page_flag_clear(m
, PG_REFERENCED
);
820 actcount
= pmap_ts_referenced(m
);
822 VM_OBJECT_UNLOCK(object
);
823 m
->act_count
+= (actcount
+ ACT_ADVANCE
+ 1);
828 * If the upper level VM system doesn't know anything about
829 * the page being dirty, we have to check for it again. As
830 * far as the VM code knows, any partially dirty pages are
833 if (m
->dirty
== 0 && !pmap_is_modified(m
)) {
835 * Avoid a race condition: Unless write access is
836 * removed from the page, another processor could
837 * modify it before all access is removed by the call
838 * to vm_page_cache() below. If vm_page_cache() finds
839 * that the page has been modified when it removes all
840 * access, it panics because it cannot cache dirty
841 * pages. In principle, we could eliminate just write
842 * access here rather than all access. In the expected
843 * case, when there are no last instant modifications
844 * to the page, removing all access will be cheaper
847 if ((m
->flags
& PG_WRITEABLE
) != 0)
855 * Invalid pages can be easily freed
860 } else if (m
->dirty
== 0) {
862 * Clean pages can be placed onto the cache queue.
863 * This effectively frees them.
867 } else if ((m
->flags
& PG_WINATCFLS
) == 0 && pass
== 0) {
869 * Dirty pages need to be paged out, but flushing
870 * a page is extremely expensive verses freeing
871 * a clean page. Rather then artificially limiting
872 * the number of pages we can flush, we instead give
873 * dirty pages extra priority on the inactive queue
874 * by forcing them to be cycled through the queue
875 * twice before being flushed, after which the
876 * (now clean) page will cycle through once more
877 * before being freed. This significantly extends
878 * the thrash point for a heavily loaded machine.
880 vm_page_flag_set(m
, PG_WINATCFLS
);
882 } else if (maxlaunder
> 0) {
884 * We always want to try to flush some dirty pages if
885 * we encounter them, to keep the system stable.
886 * Normally this number is small, but under extreme
887 * pressure where there are insufficient clean pages
888 * on the inactive queue, we may have to go all out.
890 int swap_pageouts_ok
, vfslocked
= 0;
891 struct vnode
*vp
= NULL
;
892 struct mount
*mp
= NULL
;
894 if ((object
->type
!= OBJT_SWAP
) && (object
->type
!= OBJT_DEFAULT
)) {
895 swap_pageouts_ok
= 1;
897 swap_pageouts_ok
= !(defer_swap_pageouts
|| disable_swap_pageouts
);
898 swap_pageouts_ok
|= (!disable_swap_pageouts
&& defer_swap_pageouts
&&
899 vm_page_count_min());
904 * We don't bother paging objects that are "dead".
905 * Those objects are in a "rundown" state.
907 if (!swap_pageouts_ok
|| (object
->flags
& OBJ_DEAD
)) {
908 VM_OBJECT_UNLOCK(object
);
914 * Following operations may unlock
915 * vm_page_queue_mtx, invalidating the 'next'
916 * pointer. To prevent an inordinate number
917 * of restarts we use our marker to remember
921 TAILQ_INSERT_AFTER(&vm_page_queues
[PQ_INACTIVE
].pl
,
924 * The object is already known NOT to be dead. It
925 * is possible for the vget() to block the whole
926 * pageout daemon, but the new low-memory handling
927 * code should prevent it.
929 * The previous code skipped locked vnodes and, worse,
930 * reordered pages in the queue. This results in
931 * completely non-deterministic operation and, on a
932 * busy system, can lead to extremely non-optimal
933 * pageouts. For example, it can cause clean pages
934 * to be freed and dirty pages to be moved to the end
935 * of the queue. Since dirty pages are also moved to
936 * the end of the queue once-cleaned, this gives
937 * way too large a weighting to defering the freeing
940 * We can't wait forever for the vnode lock, we might
941 * deadlock due to a vn_read() getting stuck in
942 * vm_wait while holding this vnode. We skip the
943 * vnode if we can't get it in a reasonable amount
946 if (object
->type
== OBJT_VNODE
) {
948 if (vp
->v_type
== VREG
&&
949 vn_start_write(vp
, &mp
, V_NOWAIT
) != 0) {
951 ("vm_pageout_scan: mp != NULL"));
953 if (object
->flags
& OBJ_MIGHTBEDIRTY
)
955 goto unlock_and_continue
;
957 vm_page_unlock_queues();
958 vm_object_reference_locked(object
);
959 VM_OBJECT_UNLOCK(object
);
960 vfslocked
= VFS_LOCK_GIANT(vp
->v_mount
);
961 if (vget(vp
, LK_EXCLUSIVE
| LK_TIMELOCK
,
963 VM_OBJECT_LOCK(object
);
964 vm_page_lock_queues();
966 if (object
->flags
& OBJ_MIGHTBEDIRTY
)
969 goto unlock_and_continue
;
971 VM_OBJECT_LOCK(object
);
972 vm_page_lock_queues();
974 * The page might have been moved to another
975 * queue during potential blocking in vget()
976 * above. The page might have been freed and
977 * reused for another vnode.
979 if (VM_PAGE_GETQUEUE(m
) != PQ_INACTIVE
||
980 m
->object
!= object
||
981 TAILQ_NEXT(m
, pageq
) != &marker
) {
982 if (object
->flags
& OBJ_MIGHTBEDIRTY
)
984 goto unlock_and_continue
;
988 * The page may have been busied during the
989 * blocking in vget(). We don't move the
990 * page back onto the end of the queue so that
991 * statistics are more correct if we don't.
993 if (m
->busy
|| (m
->oflags
& VPO_BUSY
)) {
994 goto unlock_and_continue
;
998 * If the page has become held it might
999 * be undergoing I/O, so skip it
1001 if (m
->hold_count
) {
1003 if (object
->flags
& OBJ_MIGHTBEDIRTY
)
1005 goto unlock_and_continue
;
1010 * If a page is dirty, then it is either being washed
1011 * (but not yet cleaned) or it is still in the
1012 * laundry. If it is still in the laundry, then we
1013 * start the cleaning operation.
1015 * decrement page_shortage on success to account for
1016 * the (future) cleaned page. Otherwise we could wind
1017 * up laundering or cleaning too many pages.
1019 if (vm_pageout_clean(m
) != 0) {
1023 unlock_and_continue
:
1024 VM_OBJECT_UNLOCK(object
);
1026 vm_page_unlock_queues();
1029 VFS_UNLOCK_GIANT(vfslocked
);
1030 vm_object_deallocate(object
);
1031 vn_finished_write(mp
);
1032 vm_page_lock_queues();
1034 next
= TAILQ_NEXT(&marker
, pageq
);
1035 TAILQ_REMOVE(&vm_page_queues
[PQ_INACTIVE
].pl
,
1039 VM_OBJECT_UNLOCK(object
);
1043 * Compute the number of pages we want to try to move from the
1044 * active queue to the inactive queue.
1046 page_shortage
= vm_paging_target() +
1047 cnt
.v_inactive_target
- cnt
.v_inactive_count
;
1048 page_shortage
+= addl_page_shortage
;
1051 * Scan the active queue for things we can deactivate. We nominally
1052 * track the per-page activity counter and use it to locate
1053 * deactivation candidates.
1055 pcount
= cnt
.v_active_count
;
1056 m
= TAILQ_FIRST(&vm_page_queues
[PQ_ACTIVE
].pl
);
1058 while ((m
!= NULL
) && (pcount
-- > 0) && (page_shortage
> 0)) {
1060 KASSERT(VM_PAGE_INQUEUE2(m
, PQ_ACTIVE
),
1061 ("vm_pageout_scan: page %p isn't active", m
));
1063 next
= TAILQ_NEXT(m
, pageq
);
1065 if ((m
->flags
& PG_MARKER
) != 0) {
1069 if (!VM_OBJECT_TRYLOCK(object
) &&
1070 !vm_pageout_fallback_object_lock(m
, &next
)) {
1071 VM_OBJECT_UNLOCK(object
);
1077 * Don't deactivate pages that are busy.
1079 if ((m
->busy
!= 0) ||
1080 (m
->oflags
& VPO_BUSY
) ||
1081 (m
->hold_count
!= 0)) {
1082 VM_OBJECT_UNLOCK(object
);
1089 * The count for pagedaemon pages is done after checking the
1090 * page for eligibility...
1095 * Check to see "how much" the page has been used.
1098 if (object
->ref_count
!= 0) {
1099 if (m
->flags
& PG_REFERENCED
) {
1102 actcount
+= pmap_ts_referenced(m
);
1104 m
->act_count
+= ACT_ADVANCE
+ actcount
;
1105 if (m
->act_count
> ACT_MAX
)
1106 m
->act_count
= ACT_MAX
;
1111 * Since we have "tested" this bit, we need to clear it now.
1113 vm_page_flag_clear(m
, PG_REFERENCED
);
1116 * Only if an object is currently being used, do we use the
1117 * page activation count stats.
1119 if (actcount
&& (object
->ref_count
!= 0)) {
1122 m
->act_count
-= min(m
->act_count
, ACT_DECLINE
);
1123 if (vm_pageout_algorithm
||
1124 object
->ref_count
== 0 ||
1125 m
->act_count
== 0) {
1127 if (object
->ref_count
== 0) {
1132 vm_page_deactivate(m
);
1134 vm_page_deactivate(m
);
1140 VM_OBJECT_UNLOCK(object
);
1143 vm_page_unlock_queues();
1144 #if !defined(NO_SWAPPING)
1146 * Idle process swapout -- run once per second.
1148 if (vm_swap_idle_enabled
) {
1150 if (time_second
!= lsec
) {
1151 vm_req_vmdaemon(VM_SWAP_IDLE
);
1158 * If we didn't get enough free pages, and we have skipped a vnode
1159 * in a writeable object, wakeup the sync daemon. And kick swapout
1160 * if we did not get enough free pages.
1162 if (vm_paging_target() > 0) {
1163 if (vnodes_skipped
&& vm_page_count_min())
1164 (void) speedup_syncer();
1165 #if !defined(NO_SWAPPING)
1166 if (vm_swap_enabled
&& vm_page_count_target())
1167 vm_req_vmdaemon(VM_SWAP_NORMAL
);
1172 * If we are critically low on one of RAM or swap and low on
1173 * the other, kill the largest process. However, we avoid
1174 * doing this on the first pass in order to give ourselves a
1175 * chance to flush out dirty vnode-backed pages and to allow
1176 * active pages to be moved to the inactive queue and reclaimed.
1178 * We keep the process bigproc locked once we find it to keep anyone
1179 * from messing with it; however, there is a possibility of
1180 * deadlock if process B is bigproc and one of it's child processes
1181 * attempts to propagate a signal to B while we are waiting for A's
1182 * lock while walking this list. To avoid this, we don't block on
1183 * the process lock but just skip a process if it is already locked.
1186 ((swap_pager_avail
< 64 && vm_page_count_min()) ||
1187 (swap_pager_full
&& vm_paging_target() > 0))) {
1190 sx_slock(&allproc_lock
);
1191 FOREACH_PROC_IN_SYSTEM(p
) {
1194 if (PROC_TRYLOCK(p
) == 0)
1197 * If this is a system or protected process, skip it.
1199 if ((p
->p_flag
& P_SYSTEM
) || (p
->p_pid
== 1) ||
1200 (p
->p_flag
& P_PROTECTED
) ||
1201 ((p
->p_pid
< 48) && (swap_pager_avail
!= 0))) {
1206 * If the process is in a non-running type state,
1207 * don't touch it. Check all the threads individually.
1210 FOREACH_THREAD_IN_PROC(p
, td
) {
1212 if (!TD_ON_RUNQ(td
) &&
1213 !TD_IS_RUNNING(td
) &&
1214 !TD_IS_SLEEPING(td
)) {
1226 * get the process size
1228 if (!vm_map_trylock_read(&p
->p_vmspace
->vm_map
)) {
1232 size
= vmspace_swap_count(p
->p_vmspace
);
1233 vm_map_unlock_read(&p
->p_vmspace
->vm_map
);
1234 size
+= vmspace_resident_count(p
->p_vmspace
);
1236 * if the this process is bigger than the biggest one
1239 if (size
> bigsize
) {
1240 if (bigproc
!= NULL
)
1241 PROC_UNLOCK(bigproc
);
1247 sx_sunlock(&allproc_lock
);
1248 if (bigproc
!= NULL
) {
1249 killproc(bigproc
, "out of swap space");
1250 sched_nice(bigproc
, PRIO_MIN
);
1251 PROC_UNLOCK(bigproc
);
1252 wakeup(&cnt
.v_free_count
);
1258 * This routine tries to maintain the pseudo LRU active queue,
1259 * so that during long periods of time where there is no paging,
1260 * that some statistic accumulation still occurs. This code
1261 * helps the situation where paging just starts to occur.
1264 vm_pageout_page_stats()
1268 int pcount
,tpcount
; /* Number of pages to check */
1269 static int fullintervalcount
= 0;
1272 mtx_assert(&vm_page_queue_mtx
, MA_OWNED
);
1274 (cnt
.v_inactive_target
+ cnt
.v_cache_max
+ cnt
.v_free_min
) -
1275 (cnt
.v_free_count
+ cnt
.v_inactive_count
+ cnt
.v_cache_count
);
1277 if (page_shortage
<= 0)
1280 pcount
= cnt
.v_active_count
;
1281 fullintervalcount
+= vm_pageout_stats_interval
;
1282 if (fullintervalcount
< vm_pageout_full_stats_interval
) {
1283 tpcount
= (vm_pageout_stats_max
* cnt
.v_active_count
) / cnt
.v_page_count
;
1284 if (pcount
> tpcount
)
1287 fullintervalcount
= 0;
1290 m
= TAILQ_FIRST(&vm_page_queues
[PQ_ACTIVE
].pl
);
1291 while ((m
!= NULL
) && (pcount
-- > 0)) {
1294 KASSERT(VM_PAGE_INQUEUE2(m
, PQ_ACTIVE
),
1295 ("vm_pageout_page_stats: page %p isn't active", m
));
1297 next
= TAILQ_NEXT(m
, pageq
);
1300 if ((m
->flags
& PG_MARKER
) != 0) {
1304 if (!VM_OBJECT_TRYLOCK(object
) &&
1305 !vm_pageout_fallback_object_lock(m
, &next
)) {
1306 VM_OBJECT_UNLOCK(object
);
1312 * Don't deactivate pages that are busy.
1314 if ((m
->busy
!= 0) ||
1315 (m
->oflags
& VPO_BUSY
) ||
1316 (m
->hold_count
!= 0)) {
1317 VM_OBJECT_UNLOCK(object
);
1324 if (m
->flags
& PG_REFERENCED
) {
1325 vm_page_flag_clear(m
, PG_REFERENCED
);
1329 actcount
+= pmap_ts_referenced(m
);
1331 m
->act_count
+= ACT_ADVANCE
+ actcount
;
1332 if (m
->act_count
> ACT_MAX
)
1333 m
->act_count
= ACT_MAX
;
1336 if (m
->act_count
== 0) {
1338 * We turn off page access, so that we have
1339 * more accurate RSS stats. We don't do this
1340 * in the normal page deactivation when the
1341 * system is loaded VM wise, because the
1342 * cost of the large number of page protect
1343 * operations would be higher than the value
1344 * of doing the operation.
1347 vm_page_deactivate(m
);
1349 m
->act_count
-= min(m
->act_count
, ACT_DECLINE
);
1353 VM_OBJECT_UNLOCK(object
);
1359 * vm_pageout is the high level pageout daemon.
1367 * Initialize some paging parameters.
1369 cnt
.v_interrupt_free_min
= 2;
1370 if (cnt
.v_page_count
< 2000)
1371 vm_pageout_page_count
= 8;
1374 * v_free_reserved needs to include enough for the largest
1375 * swap pager structures plus enough for any pv_entry structs
1378 if (cnt
.v_page_count
> 1024)
1379 cnt
.v_free_min
= 4 + (cnt
.v_page_count
- 1024) / 200;
1382 cnt
.v_pageout_free_min
= (2*MAXBSIZE
)/PAGE_SIZE
+
1383 cnt
.v_interrupt_free_min
;
1384 cnt
.v_free_reserved
= vm_pageout_page_count
+
1385 cnt
.v_pageout_free_min
+ (cnt
.v_page_count
/ 768);
1386 cnt
.v_free_severe
= cnt
.v_free_min
/ 2;
1387 cnt
.v_free_min
+= cnt
.v_free_reserved
;
1388 cnt
.v_free_severe
+= cnt
.v_free_reserved
;
1391 * v_free_target and v_cache_min control pageout hysteresis. Note
1392 * that these are more a measure of the VM cache queue hysteresis
1393 * then the VM free queue. Specifically, v_free_target is the
1394 * high water mark (free+cache pages).
1396 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1397 * low water mark, while v_free_min is the stop. v_cache_min must
1398 * be big enough to handle memory needs while the pageout daemon
1399 * is signalled and run to free more pages.
1401 if (cnt
.v_free_count
> 6144)
1402 cnt
.v_free_target
= 4 * cnt
.v_free_min
+ cnt
.v_free_reserved
;
1404 cnt
.v_free_target
= 2 * cnt
.v_free_min
+ cnt
.v_free_reserved
;
1406 if (cnt
.v_free_count
> 2048) {
1407 cnt
.v_cache_min
= cnt
.v_free_target
;
1408 cnt
.v_cache_max
= 2 * cnt
.v_cache_min
;
1409 cnt
.v_inactive_target
= (3 * cnt
.v_free_target
) / 2;
1411 cnt
.v_cache_min
= 0;
1412 cnt
.v_cache_max
= 0;
1413 cnt
.v_inactive_target
= cnt
.v_free_count
/ 4;
1415 if (cnt
.v_inactive_target
> cnt
.v_free_count
/ 3)
1416 cnt
.v_inactive_target
= cnt
.v_free_count
/ 3;
1418 /* XXX does not really belong here */
1419 if (vm_page_max_wired
== 0)
1420 vm_page_max_wired
= cnt
.v_free_count
/ 3;
1422 if (vm_pageout_stats_max
== 0)
1423 vm_pageout_stats_max
= cnt
.v_free_target
;
1426 * Set interval in seconds for stats scan.
1428 if (vm_pageout_stats_interval
== 0)
1429 vm_pageout_stats_interval
= 5;
1430 if (vm_pageout_full_stats_interval
== 0)
1431 vm_pageout_full_stats_interval
= vm_pageout_stats_interval
* 4;
1433 swap_pager_swap_init();
1436 * The pageout daemon is never done, so loop forever.
1440 * If we have enough free memory, wakeup waiters. Do
1441 * not clear vm_pages_needed until we reach our target,
1442 * otherwise we may be woken up over and over again and
1443 * waste a lot of cpu.
1445 mtx_lock(&vm_page_queue_free_mtx
);
1446 if (vm_pages_needed
&& !vm_page_count_min()) {
1447 if (!vm_paging_needed())
1448 vm_pages_needed
= 0;
1449 wakeup(&cnt
.v_free_count
);
1451 if (vm_pages_needed
) {
1453 * Still not done, take a second pass without waiting
1454 * (unlimited dirty cleaning), otherwise sleep a bit
1459 msleep(&vm_pages_needed
,
1460 &vm_page_queue_free_mtx
, PVM
, "psleep",
1464 * Good enough, sleep & handle stats. Prime the pass
1471 error
= msleep(&vm_pages_needed
,
1472 &vm_page_queue_free_mtx
, PVM
, "psleep",
1473 vm_pageout_stats_interval
* hz
);
1474 if (error
&& !vm_pages_needed
) {
1475 mtx_unlock(&vm_page_queue_free_mtx
);
1477 vm_page_lock_queues();
1478 vm_pageout_page_stats();
1479 vm_page_unlock_queues();
1483 if (vm_pages_needed
)
1485 mtx_unlock(&vm_page_queue_free_mtx
);
1486 vm_pageout_scan(pass
);
1491 * Unless the free page queue lock is held by the caller, this function
1492 * should be regarded as advisory. Specifically, the caller should
1493 * not msleep() on &cnt.v_free_count following this function unless
1494 * the free page queue lock is held until the msleep() is performed.
1500 if (!vm_pages_needed
&& curthread
->td_proc
!= pageproc
) {
1501 vm_pages_needed
= 1;
1502 wakeup(&vm_pages_needed
);
1506 #if !defined(NO_SWAPPING)
1508 vm_req_vmdaemon(int req
)
1510 static int lastrun
= 0;
1512 mtx_lock(&vm_daemon_mtx
);
1513 vm_pageout_req_swapout
|= req
;
1514 if ((ticks
> (lastrun
+ hz
)) || (ticks
< lastrun
)) {
1515 wakeup(&vm_daemon_needed
);
1518 mtx_unlock(&vm_daemon_mtx
);
1524 struct rlimit rsslim
;
1527 int breakout
, swapout_flags
;
1530 mtx_lock(&vm_daemon_mtx
);
1531 msleep(&vm_daemon_needed
, &vm_daemon_mtx
, PPAUSE
, "psleep", 0);
1532 swapout_flags
= vm_pageout_req_swapout
;
1533 vm_pageout_req_swapout
= 0;
1534 mtx_unlock(&vm_daemon_mtx
);
1536 swapout_procs(swapout_flags
);
1539 * scan the processes for exceeding their rlimits or if
1540 * process is swapped out -- deactivate pages
1542 sx_slock(&allproc_lock
);
1543 FOREACH_PROC_IN_SYSTEM(p
) {
1544 vm_pindex_t limit
, size
;
1547 * if this is a system process or if we have already
1548 * looked at this process, skip it.
1551 if (p
->p_flag
& (P_SYSTEM
| P_WEXIT
)) {
1556 * if the process is in a non-running type state,
1560 FOREACH_THREAD_IN_PROC(p
, td
) {
1562 if (!TD_ON_RUNQ(td
) &&
1563 !TD_IS_RUNNING(td
) &&
1564 !TD_IS_SLEEPING(td
)) {
1578 lim_rlimit(p
, RLIMIT_RSS
, &rsslim
);
1580 qmin(rsslim
.rlim_cur
, rsslim
.rlim_max
));
1583 * let processes that are swapped out really be
1584 * swapped out set the limit to nothing (will force a
1587 if ((p
->p_flag
& P_INMEM
) == 0)
1588 limit
= 0; /* XXX */
1591 size
= vmspace_resident_count(p
->p_vmspace
);
1592 if (limit
>= 0 && size
>= limit
) {
1593 vm_pageout_map_deactivate_pages(
1594 &p
->p_vmspace
->vm_map
, limit
);
1597 sx_sunlock(&allproc_lock
);
1600 #endif /* !defined(NO_SWAPPING) */