1 /* $OpenBSD: moduli.c,v 1.39 2023/03/02 06:41:56 dtucker Exp $ */
3 * Copyright 1994 Phil Karn <karn@qualcomm.com>
4 * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
5 * Copyright 2000 Niels Provos <provos@citi.umich.edu>
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 * Two-step process to generate safe primes for DHGEX
32 * Sieve candidates for "safe" primes,
33 * suitable for use as Diffie-Hellman moduli;
34 * that is, where q = (p-1)/2 is also prime.
36 * First step: generate candidate primes (memory intensive)
37 * Second step: test primes' safety (processor intensive)
44 #include <sys/types.h>
46 #include <openssl/bn.h>
47 #include <openssl/dh.h>
63 #include "openbsd-compat/openssl-compat.h"
69 /* need line long enough for largest moduli plus headers */
70 #define QLINESIZE (100+8192)
74 * Specifies the number of the most significant bit (0 to M).
75 * WARNING: internally, usually 1 to N.
77 #define QSIZE_MINIMUM (511)
80 * Prime sieving defines
83 /* Constant: assuming 8 bit bytes and 32 bit words */
85 #define SHIFT_BYTE (2)
86 #define SHIFT_WORD (SHIFT_BIT+SHIFT_BYTE)
87 #define SHIFT_MEGABYTE (20)
88 #define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE)
91 * Using virtual memory can cause thrashing. This should be the largest
92 * number that is supported without a large amount of disk activity --
93 * that would increase the run time from hours to days or weeks!
95 #define LARGE_MINIMUM (8UL) /* megabytes */
98 * Do not increase this number beyond the unsigned integer bit size.
99 * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
101 #define LARGE_MAXIMUM (127UL) /* megabytes */
104 * Constant: when used with 32-bit integers, the largest sieve prime
105 * has to be less than 2**32.
107 #define SMALL_MAXIMUM (0xffffffffUL)
109 /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
110 #define TINY_NUMBER (1UL<<16)
112 /* Ensure enough bit space for testing 2*q. */
113 #define TEST_MAXIMUM (1UL<<16)
114 #define TEST_MINIMUM (QSIZE_MINIMUM + 1)
115 /* real TEST_MINIMUM (1UL << (SHIFT_WORD - TEST_POWER)) */
116 #define TEST_POWER (3) /* 2**n, n < SHIFT_WORD */
118 /* bit operations on 32-bit words */
119 #define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
120 #define BIT_SET(a,n) ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
121 #define BIT_TEST(a,n) ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
124 * Prime testing defines
127 /* Minimum number of primality tests to perform */
128 #define TRIAL_MINIMUM (4)
131 * Sieving data (XXX - move to struct)
135 static u_int32_t
*TinySieve
, tinybits
;
137 /* sieve 2**30 in 2**16 parts */
138 static u_int32_t
*SmallSieve
, smallbits
, smallbase
;
140 /* sieve relative to the initial value */
141 static u_int32_t
*LargeSieve
, largewords
, largetries
, largenumbers
;
142 static u_int32_t largebits
, largememory
; /* megabytes */
143 static BIGNUM
*largebase
;
145 int gen_candidates(FILE *, u_int32_t
, u_int32_t
, BIGNUM
*);
146 int prime_test(FILE *, FILE *, u_int32_t
, u_int32_t
, char *, unsigned long,
150 * print moduli out in consistent form,
153 qfileout(FILE * ofile
, u_int32_t otype
, u_int32_t otests
, u_int32_t otries
,
154 u_int32_t osize
, u_int32_t ogenerator
, BIGNUM
* omodulus
)
161 gtm
= gmtime(&time_now
);
165 res
= fprintf(ofile
, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
166 gtm
->tm_year
+ 1900, gtm
->tm_mon
+ 1, gtm
->tm_mday
,
167 gtm
->tm_hour
, gtm
->tm_min
, gtm
->tm_sec
,
168 otype
, otests
, otries
, osize
, ogenerator
);
173 if (BN_print_fp(ofile
, omodulus
) < 1)
176 res
= fprintf(ofile
, "\n");
179 return (res
> 0 ? 0 : -1);
184 ** Sieve p's and q's with small factors
187 sieve_large(u_int32_t s32
)
189 u_int64_t r
, u
, s
= s32
;
191 debug3("sieve_large %u", s32
);
193 /* r = largebase mod s */
194 r
= BN_mod_word(largebase
, s32
);
196 u
= 0; /* s divides into largebase exactly */
198 u
= s
- r
; /* largebase+u is first entry divisible by s */
200 if (u
< largebits
* 2ULL) {
202 * The sieve omits p's and q's divisible by 2, so ensure that
203 * largebase+u is odd. Then, step through the sieve in
207 u
+= s
; /* Make largebase+u odd, and u even */
209 /* Mark all multiples of 2*s */
210 for (u
/= 2; u
< largebits
; u
+= s
)
211 BIT_SET(LargeSieve
, u
);
217 u
= 0; /* s divides p exactly */
219 u
= s
- r
; /* p+u is first entry divisible by s */
221 if (u
< largebits
* 4ULL) {
223 * The sieve omits p's divisible by 4, so ensure that
224 * largebase+u is not. Then, step through the sieve in
228 if (SMALL_MAXIMUM
- u
< s
)
233 /* Mark all multiples of 4*s */
234 for (u
/= 4; u
< largebits
; u
+= s
)
235 BIT_SET(LargeSieve
, u
);
240 * list candidates for Sophie-Germain primes (where q = (p-1)/2)
241 * to standard output.
242 * The list is checked against small known primes (less than 2**30).
245 gen_candidates(FILE *out
, u_int32_t memory
, u_int32_t power
, BIGNUM
*start
)
248 u_int32_t j
, r
, s
, t
;
249 u_int32_t smallwords
= TINY_NUMBER
>> 6;
250 u_int32_t tinywords
= TINY_NUMBER
>> 6;
251 time_t time_start
, time_stop
;
255 largememory
= memory
;
258 (memory
< LARGE_MINIMUM
|| memory
> LARGE_MAXIMUM
)) {
259 error("Invalid memory amount (min %ld, max %ld)",
260 LARGE_MINIMUM
, LARGE_MAXIMUM
);
265 * Set power to the length in bits of the prime to be generated.
266 * This is changed to 1 less than the desired safe prime moduli p.
268 if (power
> TEST_MAXIMUM
) {
269 error("Too many bits: %u > %lu", power
, TEST_MAXIMUM
);
271 } else if (power
< TEST_MINIMUM
) {
272 error("Too few bits: %u < %u", power
, TEST_MINIMUM
);
275 power
--; /* decrement before squaring */
278 * The density of ordinary primes is on the order of 1/bits, so the
279 * density of safe primes should be about (1/bits)**2. Set test range
280 * to something well above bits**2 to be reasonably sure (but not
281 * guaranteed) of catching at least one safe prime.
283 largewords
= ((power
* power
) >> (SHIFT_WORD
- TEST_POWER
));
286 * Need idea of how much memory is available. We don't have to use all
289 if (largememory
> LARGE_MAXIMUM
) {
290 logit("Limited memory: %u MB; limit %lu MB",
291 largememory
, LARGE_MAXIMUM
);
292 largememory
= LARGE_MAXIMUM
;
295 if (largewords
<= (largememory
<< SHIFT_MEGAWORD
)) {
296 logit("Increased memory: %u MB; need %u bytes",
297 largememory
, (largewords
<< SHIFT_BYTE
));
298 largewords
= (largememory
<< SHIFT_MEGAWORD
);
299 } else if (largememory
> 0) {
300 logit("Decreased memory: %u MB; want %u bytes",
301 largememory
, (largewords
<< SHIFT_BYTE
));
302 largewords
= (largememory
<< SHIFT_MEGAWORD
);
305 TinySieve
= xcalloc(tinywords
, sizeof(u_int32_t
));
306 tinybits
= tinywords
<< SHIFT_WORD
;
308 SmallSieve
= xcalloc(smallwords
, sizeof(u_int32_t
));
309 smallbits
= smallwords
<< SHIFT_WORD
;
312 * dynamically determine available memory
314 while ((LargeSieve
= calloc(largewords
, sizeof(u_int32_t
))) == NULL
)
315 largewords
-= (1L << (SHIFT_MEGAWORD
- 2)); /* 1/4 MB chunks */
317 largebits
= largewords
<< SHIFT_WORD
;
318 largenumbers
= largebits
* 2; /* even numbers excluded */
320 /* validation check: count the number of primes tried */
322 if ((q
= BN_new()) == NULL
)
323 fatal("BN_new failed");
326 * Generate random starting point for subprime search, or use
327 * specified parameter.
329 if ((largebase
= BN_new()) == NULL
)
330 fatal("BN_new failed");
332 if (BN_rand(largebase
, power
, 1, 1) == 0)
333 fatal("BN_rand failed");
335 if (BN_copy(largebase
, start
) == NULL
)
336 fatal("BN_copy: failed");
340 if (BN_set_bit(largebase
, 0) == 0)
341 fatal("BN_set_bit: failed");
345 logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start
),
346 largenumbers
, power
);
347 debug2("start point: 0x%s", BN_bn2hex(largebase
));
352 for (i
= 0; i
< tinybits
; i
++) {
353 if (BIT_TEST(TinySieve
, i
))
354 continue; /* 2*i+3 is composite */
356 /* The next tiny prime */
359 /* Mark all multiples of t */
360 for (j
= i
+ t
; j
< tinybits
; j
+= t
)
361 BIT_SET(TinySieve
, j
);
367 * Start the small block search at the next possible prime. To avoid
368 * fencepost errors, the last pass is skipped.
370 for (smallbase
= TINY_NUMBER
+ 3;
371 smallbase
< (SMALL_MAXIMUM
- TINY_NUMBER
);
372 smallbase
+= TINY_NUMBER
) {
373 for (i
= 0; i
< tinybits
; i
++) {
374 if (BIT_TEST(TinySieve
, i
))
375 continue; /* 2*i+3 is composite */
377 /* The next tiny prime */
382 s
= 0; /* t divides into smallbase exactly */
384 /* smallbase+s is first entry divisible by t */
389 * The sieve omits even numbers, so ensure that
390 * smallbase+s is odd. Then, step through the sieve
391 * in increments of 2*t
394 s
+= t
; /* Make smallbase+s odd, and s even */
396 /* Mark all multiples of 2*t */
397 for (s
/= 2; s
< smallbits
; s
+= t
)
398 BIT_SET(SmallSieve
, s
);
404 for (i
= 0; i
< smallbits
; i
++) {
405 if (BIT_TEST(SmallSieve
, i
))
406 continue; /* 2*i+smallbase is composite */
408 /* The next small prime */
409 sieve_large((2 * i
) + smallbase
);
412 memset(SmallSieve
, 0, smallwords
<< SHIFT_BYTE
);
417 logit("%.24s Sieved with %u small primes in %lld seconds",
418 ctime(&time_stop
), largetries
, (long long)(time_stop
- time_start
));
420 for (j
= r
= 0; j
< largebits
; j
++) {
421 if (BIT_TEST(LargeSieve
, j
))
422 continue; /* Definitely composite, skip */
424 debug2("test q = largebase+%u", 2 * j
);
425 if (BN_set_word(q
, 2 * j
) == 0)
426 fatal("BN_set_word failed");
427 if (BN_add(q
, q
, largebase
) == 0)
428 fatal("BN_add failed");
429 if (qfileout(out
, MODULI_TYPE_SOPHIE_GERMAIN
,
430 MODULI_TESTS_SIEVE
, largetries
,
431 (power
- 1) /* MSB */, (0), q
) == -1) {
445 logit("%.24s Found %u candidates", ctime(&time_stop
), r
);
451 write_checkpoint(char *cpfile
, u_int32_t lineno
)
455 int r
, writeok
, closeok
;
457 r
= snprintf(tmp
, sizeof(tmp
), "%s.XXXXXXXXXX", cpfile
);
458 if (r
< 0 || r
>= PATH_MAX
) {
459 logit("write_checkpoint: temp pathname too long");
462 if ((r
= mkstemp(tmp
)) == -1) {
463 logit("mkstemp(%s): %s", tmp
, strerror(errno
));
466 if ((fp
= fdopen(r
, "w")) == NULL
) {
467 logit("write_checkpoint: fdopen: %s", strerror(errno
));
472 writeok
= (fprintf(fp
, "%lu\n", (unsigned long)lineno
) > 0);
473 closeok
= (fclose(fp
) == 0);
474 if (writeok
&& closeok
&& rename(tmp
, cpfile
) == 0) {
475 debug3("wrote checkpoint line %lu to '%s'",
476 (unsigned long)lineno
, cpfile
);
478 logit("failed to write to checkpoint file '%s': %s", cpfile
,
485 read_checkpoint(char *cpfile
)
488 unsigned long lineno
= 0;
490 if ((fp
= fopen(cpfile
, "r")) == NULL
)
492 if (fscanf(fp
, "%lu\n", &lineno
) < 1)
493 logit("Failed to load checkpoint from '%s'", cpfile
);
495 logit("Loaded checkpoint from '%s' line %lu", cpfile
, lineno
);
503 unsigned long count
= 0;
504 char lp
[QLINESIZE
+ 1];
506 if (fseek(f
, 0, SEEK_SET
) != 0) {
507 debug("input file is not seekable");
510 while (fgets(lp
, QLINESIZE
+ 1, f
) != NULL
)
513 debug("input file has %lu lines", count
);
518 fmt_time(time_t seconds
)
521 static char buf
[128];
523 min
= (seconds
/ 60) % 60;
524 hr
= (seconds
/ 60 / 60) % 24;
525 day
= seconds
/ 60 / 60 / 24;
527 snprintf(buf
, sizeof buf
, "%dd %d:%02d", day
, hr
, min
);
529 snprintf(buf
, sizeof buf
, "%d:%02d", hr
, min
);
534 print_progress(unsigned long start_lineno
, unsigned long current_lineno
,
535 unsigned long end_lineno
)
537 static time_t time_start
, time_prev
;
538 time_t time_now
, elapsed
;
539 unsigned long num_to_process
, processed
, remaining
, percent
, eta
;
540 double time_per_line
;
543 time_now
= monotime();
544 if (time_start
== 0) {
545 time_start
= time_prev
= time_now
;
548 /* print progress after 1m then once per 5m */
549 if (time_now
- time_prev
< 5 * 60)
551 time_prev
= time_now
;
552 elapsed
= time_now
- time_start
;
553 processed
= current_lineno
- start_lineno
;
554 remaining
= end_lineno
- current_lineno
;
555 num_to_process
= end_lineno
- start_lineno
;
556 time_per_line
= (double)elapsed
/ processed
;
557 /* if we don't know how many we're processing just report count+time */
559 if (end_lineno
== ULONG_MAX
) {
560 logit("%.24s processed %lu in %s", ctime(&time_now
),
561 processed
, fmt_time(elapsed
));
564 percent
= 100 * processed
/ num_to_process
;
565 eta
= time_per_line
* remaining
;
566 eta_str
= xstrdup(fmt_time(eta
));
567 logit("%.24s processed %lu of %lu (%lu%%) in %s, ETA %s",
568 ctime(&time_now
), processed
, num_to_process
, percent
,
569 fmt_time(elapsed
), eta_str
);
574 * perform a Miller-Rabin primality test
575 * on the list of candidates
576 * (checking both q and p)
577 * The result is a list of so-call "safe" primes
580 prime_test(FILE *in
, FILE *out
, u_int32_t trials
, u_int32_t generator_wanted
,
581 char *checkpoint_file
, unsigned long start_lineno
, unsigned long num_lines
)
585 u_int32_t count_in
= 0, count_out
= 0, count_possible
= 0;
586 u_int32_t generator_known
, in_tests
, in_tries
, in_type
, in_size
;
587 unsigned long last_processed
= 0, end_lineno
;
588 time_t time_start
, time_stop
;
591 if (trials
< TRIAL_MINIMUM
) {
592 error("Minimum primality trials is %d", TRIAL_MINIMUM
);
597 end_lineno
= count_lines(in
);
599 end_lineno
= start_lineno
+ num_lines
;
603 if ((p
= BN_new()) == NULL
)
604 fatal("BN_new failed");
605 if ((q
= BN_new()) == NULL
)
606 fatal("BN_new failed");
608 debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
609 ctime(&time_start
), trials
, generator_wanted
);
611 if (checkpoint_file
!= NULL
)
612 last_processed
= read_checkpoint(checkpoint_file
);
613 last_processed
= start_lineno
= MAXIMUM(last_processed
, start_lineno
);
614 if (end_lineno
== ULONG_MAX
)
615 debug("process from line %lu from pipe", last_processed
);
617 debug("process from line %lu to line %lu", last_processed
,
621 lp
= xmalloc(QLINESIZE
+ 1);
622 while (fgets(lp
, QLINESIZE
+ 1, in
) != NULL
&& count_in
< end_lineno
) {
624 if (count_in
<= last_processed
) {
625 debug3("skipping line %u, before checkpoint or "
626 "specified start line", count_in
);
629 if (checkpoint_file
!= NULL
)
630 write_checkpoint(checkpoint_file
, count_in
);
631 print_progress(start_lineno
, count_in
, end_lineno
);
632 if (strlen(lp
) < 14 || *lp
== '!' || *lp
== '#') {
633 debug2("%10u: comment or short line", count_in
);
637 /* XXX - fragile parser */
639 cp
= &lp
[14]; /* (skip) */
642 in_type
= strtoul(cp
, &cp
, 10);
645 in_tests
= strtoul(cp
, &cp
, 10);
647 if (in_tests
& MODULI_TESTS_COMPOSITE
) {
648 debug2("%10u: known composite", count_in
);
653 in_tries
= strtoul(cp
, &cp
, 10);
655 /* size (most significant bit) */
656 in_size
= strtoul(cp
, &cp
, 10);
658 /* generator (hex) */
659 generator_known
= strtoul(cp
, &cp
, 16);
661 /* Skip white space */
662 cp
+= strspn(cp
, " ");
666 case MODULI_TYPE_SOPHIE_GERMAIN
:
667 debug2("%10u: (%u) Sophie-Germain", count_in
, in_type
);
669 if (BN_hex2bn(&a
, cp
) == 0)
670 fatal("BN_hex2bn failed");
672 if (BN_lshift(p
, q
, 1) == 0)
673 fatal("BN_lshift failed");
674 if (BN_add_word(p
, 1) == 0)
675 fatal("BN_add_word failed");
679 case MODULI_TYPE_UNSTRUCTURED
:
680 case MODULI_TYPE_SAFE
:
681 case MODULI_TYPE_SCHNORR
:
682 case MODULI_TYPE_STRONG
:
683 case MODULI_TYPE_UNKNOWN
:
684 debug2("%10u: (%u)", count_in
, in_type
);
686 if (BN_hex2bn(&a
, cp
) == 0)
687 fatal("BN_hex2bn failed");
689 if (BN_rshift(q
, p
, 1) == 0)
690 fatal("BN_rshift failed");
693 debug2("Unknown prime type");
698 * due to earlier inconsistencies in interpretation, check
699 * the proposed bit size.
701 if ((u_int32_t
)BN_num_bits(p
) != (in_size
+ 1)) {
702 debug2("%10u: bit size %u mismatch", count_in
, in_size
);
705 if (in_size
< QSIZE_MINIMUM
) {
706 debug2("%10u: bit size %u too short", count_in
, in_size
);
710 if (in_tests
& MODULI_TESTS_MILLER_RABIN
)
716 * guess unknown generator
718 if (generator_known
== 0) {
719 if (BN_mod_word(p
, 24) == 11)
722 u_int32_t r
= BN_mod_word(p
, 10);
724 if (r
== 3 || r
== 7)
729 * skip tests when desired generator doesn't match
731 if (generator_wanted
> 0 &&
732 generator_wanted
!= generator_known
) {
733 debug2("%10u: generator %d != %d",
734 count_in
, generator_known
, generator_wanted
);
739 * Primes with no known generator are useless for DH, so
742 if (generator_known
== 0) {
743 debug2("%10u: no known generator", count_in
);
750 * The (1/4)^N performance bound on Miller-Rabin is
751 * extremely pessimistic, so don't spend a lot of time
752 * really verifying that q is prime until after we know
753 * that p is also prime. A single pass will weed out the
754 * vast majority of composite q's.
756 is_prime
= BN_is_prime_ex(q
, 1, NULL
, NULL
);
758 fatal("BN_is_prime_ex failed");
760 debug("%10u: q failed first possible prime test",
766 * q is possibly prime, so go ahead and really make sure
767 * that p is prime. If it is, then we can go back and do
768 * the same for q. If p is composite, chances are that
769 * will show up on the first Rabin-Miller iteration so it
770 * doesn't hurt to specify a high iteration count.
772 is_prime
= BN_is_prime_ex(p
, trials
, NULL
, NULL
);
774 fatal("BN_is_prime_ex failed");
776 debug("%10u: p is not prime", count_in
);
779 debug("%10u: p is almost certainly prime", count_in
);
781 /* recheck q more rigorously */
782 is_prime
= BN_is_prime_ex(q
, trials
- 1, NULL
, NULL
);
784 fatal("BN_is_prime_ex failed");
786 debug("%10u: q is not prime", count_in
);
789 debug("%10u: q is almost certainly prime", count_in
);
791 if (qfileout(out
, MODULI_TYPE_SAFE
,
792 in_tests
| MODULI_TESTS_MILLER_RABIN
,
793 in_tries
, in_size
, generator_known
, p
)) {
806 if (checkpoint_file
!= NULL
)
807 unlink(checkpoint_file
);
809 logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
810 ctime(&time_stop
), count_out
, count_possible
,
811 (long) (time_stop
- time_start
));
816 #endif /* WITH_OPENSSL */