mtw(4) remove misplaced DEBUG_FLAGS
[freebsd/src.git] / sys / crypto / aesni / intel_sha256.c
blob8b344cec8add01c58c4230cb9cce39ad3e9a113f
1 /*******************************************************************************
2 * Copyright (c) 2013, Intel Corporation
3 *
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met:
9 *
10 * * Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the
16 * distribution.
18 * * Neither the name of the Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived from
20 * this software without specific prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
24 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
27 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 ********************************************************************************
36 * Intel SHA Extensions optimized implementation of a SHA-256 update function
38 * The function takes a pointer to the current hash values, a pointer to the
39 * input data, and a number of 64 byte blocks to process. Once all blocks have
40 * been processed, the digest pointer is updated with the resulting hash value.
41 * The function only processes complete blocks, there is no functionality to
42 * store partial blocks. All message padding and hash value initialization must
43 * be done outside the update function.
45 * The indented lines in the loop are instructions related to rounds processing.
46 * The non-indented lines are instructions related to the message schedule.
48 * Author: Sean Gulley <sean.m.gulley@intel.com>
49 * Date: July 2013
51 ********************************************************************************
53 * Example complier command line:
54 * icc intel_sha_extensions_sha256_intrinsic.c
55 * gcc -msha -msse4 intel_sha_extensions_sha256_intrinsic.c
57 *******************************************************************************/
59 #include <sys/types.h>
60 #include <crypto/aesni/aesni_os.h>
61 #include <crypto/aesni/sha_sse.h>
63 #include <immintrin.h>
65 void intel_sha256_step(uint32_t *digest, const char *data, uint32_t num_blks) {
66 __m128i state0, state1;
67 __m128i msg;
68 __m128i msgtmp0, msgtmp1, msgtmp2, msgtmp3;
69 __m128i tmp;
70 __m128i shuf_mask;
71 __m128i abef_save, cdgh_save;
73 // Load initial hash values
74 // Need to reorder these appropriately
75 // DCBA, HGFE -> ABEF, CDGH
76 tmp = _mm_loadu_si128((__m128i*) digest);
77 state1 = _mm_loadu_si128((__m128i*) (digest+4));
79 tmp = _mm_shuffle_epi32(tmp, 0xB1); // CDAB
80 state1 = _mm_shuffle_epi32(state1, 0x1B); // EFGH
81 state0 = _mm_alignr_epi8(tmp, state1, 8); // ABEF
82 state1 = _mm_blend_epi16(state1, tmp, 0xF0); // CDGH
84 shuf_mask = _mm_set_epi64x(0x0c0d0e0f08090a0bull, 0x0405060700010203ull);
86 while (num_blks > 0) {
87 // Save hash values for addition after rounds
88 abef_save = state0;
89 cdgh_save = state1;
91 // Rounds 0-3
92 msg = _mm_loadu_si128((const __m128i*) data);
93 msgtmp0 = _mm_shuffle_epi8(msg, shuf_mask);
94 msg = _mm_add_epi32(msgtmp0,
95 _mm_set_epi64x(0xE9B5DBA5B5C0FBCFull, 0x71374491428A2F98ull));
96 state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
97 msg = _mm_shuffle_epi32(msg, 0x0E);
98 state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
100 // Rounds 4-7
101 msgtmp1 = _mm_loadu_si128((const __m128i*) (data+16));
102 msgtmp1 = _mm_shuffle_epi8(msgtmp1, shuf_mask);
103 msg = _mm_add_epi32(msgtmp1,
104 _mm_set_epi64x(0xAB1C5ED5923F82A4ull, 0x59F111F13956C25Bull));
105 state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
106 msg = _mm_shuffle_epi32(msg, 0x0E);
107 state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
108 msgtmp0 = _mm_sha256msg1_epu32(msgtmp0, msgtmp1);
110 // Rounds 8-11
111 msgtmp2 = _mm_loadu_si128((const __m128i*) (data+32));
112 msgtmp2 = _mm_shuffle_epi8(msgtmp2, shuf_mask);
113 msg = _mm_add_epi32(msgtmp2,
114 _mm_set_epi64x(0x550C7DC3243185BEull, 0x12835B01D807AA98ull));
115 state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
116 msg = _mm_shuffle_epi32(msg, 0x0E);
117 state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
118 msgtmp1 = _mm_sha256msg1_epu32(msgtmp1, msgtmp2);
120 // Rounds 12-15
121 msgtmp3 = _mm_loadu_si128((const __m128i*) (data+48));
122 msgtmp3 = _mm_shuffle_epi8(msgtmp3, shuf_mask);
123 msg = _mm_add_epi32(msgtmp3,
124 _mm_set_epi64x(0xC19BF1749BDC06A7ull, 0x80DEB1FE72BE5D74ull));
125 state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
126 tmp = _mm_alignr_epi8(msgtmp3, msgtmp2, 4);
127 msgtmp0 = _mm_add_epi32(msgtmp0, tmp);
128 msgtmp0 = _mm_sha256msg2_epu32(msgtmp0, msgtmp3);
129 msg = _mm_shuffle_epi32(msg, 0x0E);
130 state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
131 msgtmp2 = _mm_sha256msg1_epu32(msgtmp2, msgtmp3);
133 // Rounds 16-19
134 msg = _mm_add_epi32(msgtmp0,
135 _mm_set_epi64x(0x240CA1CC0FC19DC6ull, 0xEFBE4786E49B69C1ull));
136 state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
137 tmp = _mm_alignr_epi8(msgtmp0, msgtmp3, 4);
138 msgtmp1 = _mm_add_epi32(msgtmp1, tmp);
139 msgtmp1 = _mm_sha256msg2_epu32(msgtmp1, msgtmp0);
140 msg = _mm_shuffle_epi32(msg, 0x0E);
141 state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
142 msgtmp3 = _mm_sha256msg1_epu32(msgtmp3, msgtmp0);
144 // Rounds 20-23
145 msg = _mm_add_epi32(msgtmp1,
146 _mm_set_epi64x(0x76F988DA5CB0A9DCull, 0x4A7484AA2DE92C6Full));
147 state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
148 tmp = _mm_alignr_epi8(msgtmp1, msgtmp0, 4);
149 msgtmp2 = _mm_add_epi32(msgtmp2, tmp);
150 msgtmp2 = _mm_sha256msg2_epu32(msgtmp2, msgtmp1);
151 msg = _mm_shuffle_epi32(msg, 0x0E);
152 state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
153 msgtmp0 = _mm_sha256msg1_epu32(msgtmp0, msgtmp1);
155 // Rounds 24-27
156 msg = _mm_add_epi32(msgtmp2,
157 _mm_set_epi64x(0xBF597FC7B00327C8ull, 0xA831C66D983E5152ull));
158 state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
159 tmp = _mm_alignr_epi8(msgtmp2, msgtmp1, 4);
160 msgtmp3 = _mm_add_epi32(msgtmp3, tmp);
161 msgtmp3 = _mm_sha256msg2_epu32(msgtmp3, msgtmp2);
162 msg = _mm_shuffle_epi32(msg, 0x0E);
163 state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
164 msgtmp1 = _mm_sha256msg1_epu32(msgtmp1, msgtmp2);
166 // Rounds 28-31
167 msg = _mm_add_epi32(msgtmp3,
168 _mm_set_epi64x(0x1429296706CA6351ull, 0xD5A79147C6E00BF3ull));
169 state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
170 tmp = _mm_alignr_epi8(msgtmp3, msgtmp2, 4);
171 msgtmp0 = _mm_add_epi32(msgtmp0, tmp);
172 msgtmp0 = _mm_sha256msg2_epu32(msgtmp0, msgtmp3);
173 msg = _mm_shuffle_epi32(msg, 0x0E);
174 state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
175 msgtmp2 = _mm_sha256msg1_epu32(msgtmp2, msgtmp3);
177 // Rounds 32-35
178 msg = _mm_add_epi32(msgtmp0,
179 _mm_set_epi64x(0x53380D134D2C6DFCull, 0x2E1B213827B70A85ull));
180 state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
181 tmp = _mm_alignr_epi8(msgtmp0, msgtmp3, 4);
182 msgtmp1 = _mm_add_epi32(msgtmp1, tmp);
183 msgtmp1 = _mm_sha256msg2_epu32(msgtmp1, msgtmp0);
184 msg = _mm_shuffle_epi32(msg, 0x0E);
185 state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
186 msgtmp3 = _mm_sha256msg1_epu32(msgtmp3, msgtmp0);
188 // Rounds 36-39
189 msg = _mm_add_epi32(msgtmp1,
190 _mm_set_epi64x(0x92722C8581C2C92Eull, 0x766A0ABB650A7354ull));
191 state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
192 tmp = _mm_alignr_epi8(msgtmp1, msgtmp0, 4);
193 msgtmp2 = _mm_add_epi32(msgtmp2, tmp);
194 msgtmp2 = _mm_sha256msg2_epu32(msgtmp2, msgtmp1);
195 msg = _mm_shuffle_epi32(msg, 0x0E);
196 state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
197 msgtmp0 = _mm_sha256msg1_epu32(msgtmp0, msgtmp1);
199 // Rounds 40-43
200 msg = _mm_add_epi32(msgtmp2,
201 _mm_set_epi64x(0xC76C51A3C24B8B70ull, 0xA81A664BA2BFE8A1ull));
202 state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
203 tmp = _mm_alignr_epi8(msgtmp2, msgtmp1, 4);
204 msgtmp3 = _mm_add_epi32(msgtmp3, tmp);
205 msgtmp3 = _mm_sha256msg2_epu32(msgtmp3, msgtmp2);
206 msg = _mm_shuffle_epi32(msg, 0x0E);
207 state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
208 msgtmp1 = _mm_sha256msg1_epu32(msgtmp1, msgtmp2);
210 // Rounds 44-47
211 msg = _mm_add_epi32(msgtmp3,
212 _mm_set_epi64x(0x106AA070F40E3585ull, 0xD6990624D192E819ull));
213 state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
214 tmp = _mm_alignr_epi8(msgtmp3, msgtmp2, 4);
215 msgtmp0 = _mm_add_epi32(msgtmp0, tmp);
216 msgtmp0 = _mm_sha256msg2_epu32(msgtmp0, msgtmp3);
217 msg = _mm_shuffle_epi32(msg, 0x0E);
218 state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
219 msgtmp2 = _mm_sha256msg1_epu32(msgtmp2, msgtmp3);
221 // Rounds 48-51
222 msg = _mm_add_epi32(msgtmp0,
223 _mm_set_epi64x(0x34B0BCB52748774Cull, 0x1E376C0819A4C116ull));
224 state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
225 tmp = _mm_alignr_epi8(msgtmp0, msgtmp3, 4);
226 msgtmp1 = _mm_add_epi32(msgtmp1, tmp);
227 msgtmp1 = _mm_sha256msg2_epu32(msgtmp1, msgtmp0);
228 msg = _mm_shuffle_epi32(msg, 0x0E);
229 state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
230 msgtmp3 = _mm_sha256msg1_epu32(msgtmp3, msgtmp0);
232 // Rounds 52-55
233 msg = _mm_add_epi32(msgtmp1,
234 _mm_set_epi64x(0x682E6FF35B9CCA4Full, 0x4ED8AA4A391C0CB3ull));
235 state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
236 tmp = _mm_alignr_epi8(msgtmp1, msgtmp0, 4);
237 msgtmp2 = _mm_add_epi32(msgtmp2, tmp);
238 msgtmp2 = _mm_sha256msg2_epu32(msgtmp2, msgtmp1);
239 msg = _mm_shuffle_epi32(msg, 0x0E);
240 state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
242 // Rounds 56-59
243 msg = _mm_add_epi32(msgtmp2,
244 _mm_set_epi64x(0x8CC7020884C87814ull, 0x78A5636F748F82EEull));
245 state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
246 tmp = _mm_alignr_epi8(msgtmp2, msgtmp1, 4);
247 msgtmp3 = _mm_add_epi32(msgtmp3, tmp);
248 msgtmp3 = _mm_sha256msg2_epu32(msgtmp3, msgtmp2);
249 msg = _mm_shuffle_epi32(msg, 0x0E);
250 state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
252 // Rounds 60-63
253 msg = _mm_add_epi32(msgtmp3,
254 _mm_set_epi64x(0xC67178F2BEF9A3F7ull, 0xA4506CEB90BEFFFAull));
255 state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
256 msg = _mm_shuffle_epi32(msg, 0x0E);
257 state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
259 // Add current hash values with previously saved
260 state0 = _mm_add_epi32(state0, abef_save);
261 state1 = _mm_add_epi32(state1, cdgh_save);
263 data += 64;
264 num_blks--;
267 // Write hash values back in the correct order
268 tmp = _mm_shuffle_epi32(state0, 0x1B); // FEBA
269 state1 = _mm_shuffle_epi32(state1, 0xB1); // DCHG
270 state0 = _mm_blend_epi16(tmp, state1, 0xF0); // DCBA
271 state1 = _mm_alignr_epi8(state1, tmp, 8); // ABEF
273 _mm_store_si128((__m128i*) digest, state0);
274 _mm_store_si128((__m128i*) (digest+4), state1);