2 * SPDX-License-Identifier: BSD-3-Clause
4 * Copyright (c) 1989 Stephen Deering
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
8 * This code is derived from software contributed to Berkeley by
9 * Stephen Deering of Stanford University.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * IP multicast forwarding procedures
39 * Written by David Waitzman, BBN Labs, August 1988.
40 * Modified by Steve Deering, Stanford, February 1989.
41 * Modified by Mark J. Steiglitz, Stanford, May, 1991
42 * Modified by Van Jacobson, LBL, January 1993
43 * Modified by Ajit Thyagarajan, PARC, August 1993
44 * Modified by Bill Fenner, PARC, April 1995
45 * Modified by Ahmed Helmy, SGI, June 1996
46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48 * Modified by Hitoshi Asaeda, WIDE, August 2000
49 * Modified by Pavlin Radoslavov, ICSI, October 2002
50 * Modified by Wojciech Macek, Semihalf, May 2021
52 * MROUTING Revision: 3.5
53 * and PIM-SMv2 and PIM-DM support, advanced API support,
54 * bandwidth metering and signaling
58 * TODO: Prefix functions with ipmf_.
59 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
60 * domain attachment (if_afdata) so we can track consumers of that service.
61 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
62 * move it to socket options.
63 * TODO: Cleanup LSRR removal further.
64 * TODO: Push RSVP stubs into raw_ip.c.
65 * TODO: Use bitstring.h for vif set.
66 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
67 * TODO: Sync ip6_mroute.c with this file.
70 #include <sys/cdefs.h>
72 #include "opt_mrouting.h"
76 #include <sys/types.h>
77 #include <sys/param.h>
78 #include <sys/kernel.h>
79 #include <sys/stddef.h>
80 #include <sys/condvar.h>
81 #include <sys/eventhandler.h>
83 #include <sys/kthread.h>
85 #include <sys/malloc.h>
87 #include <sys/module.h>
89 #include <sys/protosw.h>
90 #include <sys/signalvar.h>
91 #include <sys/socket.h>
92 #include <sys/socketvar.h>
93 #include <sys/sockio.h>
95 #include <sys/sysctl.h>
96 #include <sys/syslog.h>
97 #include <sys/systm.h>
98 #include <sys/taskqueue.h>
100 #include <sys/counter.h>
101 #include <machine/atomic.h>
104 #include <net/if_var.h>
105 #include <net/if_private.h>
106 #include <net/if_types.h>
107 #include <net/netisr.h>
108 #include <net/route.h>
109 #include <net/vnet.h>
111 #include <netinet/in.h>
112 #include <netinet/igmp.h>
113 #include <netinet/in_systm.h>
114 #include <netinet/in_var.h>
115 #include <netinet/ip.h>
116 #include <netinet/ip_encap.h>
117 #include <netinet/ip_mroute.h>
118 #include <netinet/ip_var.h>
119 #include <netinet/ip_options.h>
120 #include <netinet/pim.h>
121 #include <netinet/pim_var.h>
122 #include <netinet/udp.h>
124 #include <machine/in_cksum.h>
127 #define KTR_IPMF KTR_INET
130 #define VIFI_INVALID ((vifi_t) -1)
132 static MALLOC_DEFINE(M_MRTABLE
, "mroutetbl", "multicast forwarding cache");
135 * Locking. We use two locks: one for the virtual interface table and
136 * one for the forwarding table. These locks may be nested in which case
137 * the VIF lock must always be taken first. Note that each lock is used
138 * to cover not only the specific data structure but also related data
142 static struct rwlock mrouter_lock
;
143 #define MRW_RLOCK() rw_rlock(&mrouter_lock)
144 #define MRW_WLOCK() rw_wlock(&mrouter_lock)
145 #define MRW_RUNLOCK() rw_runlock(&mrouter_lock)
146 #define MRW_WUNLOCK() rw_wunlock(&mrouter_lock)
147 #define MRW_UNLOCK() rw_unlock(&mrouter_lock)
148 #define MRW_LOCK_ASSERT() rw_assert(&mrouter_lock, RA_LOCKED)
149 #define MRW_WLOCK_ASSERT() rw_assert(&mrouter_lock, RA_WLOCKED)
150 #define MRW_LOCK_TRY_UPGRADE() rw_try_upgrade(&mrouter_lock)
151 #define MRW_WOWNED() rw_wowned(&mrouter_lock)
152 #define MRW_LOCK_INIT() \
153 rw_init(&mrouter_lock, "IPv4 multicast forwarding")
154 #define MRW_LOCK_DESTROY() rw_destroy(&mrouter_lock)
156 static int ip_mrouter_cnt
; /* # of vnets with active mrouters */
157 static int ip_mrouter_unloading
; /* Allow no more V_ip_mrouter sockets */
159 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat
, mrtstat
);
160 VNET_PCPUSTAT_SYSINIT(mrtstat
);
161 VNET_PCPUSTAT_SYSUNINIT(mrtstat
);
162 SYSCTL_VNET_PCPUSTAT(_net_inet_ip
, OID_AUTO
, mrtstat
, struct mrtstat
,
163 mrtstat
, "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
164 "netinet/ip_mroute.h)");
166 VNET_DEFINE_STATIC(u_long
, mfchash
);
167 #define V_mfchash VNET(mfchash)
168 #define MFCHASH(a, g) \
169 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
170 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash)
171 #define MFCHASHSIZE 256
173 static u_long mfchashsize
= MFCHASHSIZE
; /* Hash size */
174 SYSCTL_ULONG(_net_inet_ip
, OID_AUTO
, mfchashsize
, CTLFLAG_RDTUN
,
175 &mfchashsize
, 0, "IPv4 Multicast Forwarding Table hash size");
176 VNET_DEFINE_STATIC(u_char
*, nexpire
); /* 0..mfchashsize-1 */
177 #define V_nexpire VNET(nexpire)
178 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr
, mfc
)*, mfchashtbl
);
179 #define V_mfchashtbl VNET(mfchashtbl)
180 VNET_DEFINE_STATIC(struct taskqueue
*, task_queue
);
181 #define V_task_queue VNET(task_queue)
182 VNET_DEFINE_STATIC(struct task
, task
);
183 #define V_task VNET(task)
185 VNET_DEFINE_STATIC(vifi_t
, numvifs
);
186 #define V_numvifs VNET(numvifs)
187 VNET_DEFINE_STATIC(struct vif
*, viftable
);
188 #define V_viftable VNET(viftable)
190 static eventhandler_tag if_detach_event_tag
= NULL
;
192 VNET_DEFINE_STATIC(struct callout
, expire_upcalls_ch
);
193 #define V_expire_upcalls_ch VNET(expire_upcalls_ch)
195 VNET_DEFINE_STATIC(struct mtx
, buf_ring_mtx
);
196 #define V_buf_ring_mtx VNET(buf_ring_mtx)
198 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
199 #define UPCALL_EXPIRE 6 /* number of timeouts */
202 * Bandwidth meter variables and constants
204 static MALLOC_DEFINE(M_BWMETER
, "bwmeter", "multicast upcall bw meters");
207 * Pending upcalls are stored in a ring which is flushed when
208 * full, or periodically
210 VNET_DEFINE_STATIC(struct callout
, bw_upcalls_ch
);
211 #define V_bw_upcalls_ch VNET(bw_upcalls_ch)
212 VNET_DEFINE_STATIC(struct buf_ring
*, bw_upcalls_ring
);
213 #define V_bw_upcalls_ring VNET(bw_upcalls_ring)
214 VNET_DEFINE_STATIC(struct mtx
, bw_upcalls_ring_mtx
);
215 #define V_bw_upcalls_ring_mtx VNET(bw_upcalls_ring_mtx)
217 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */
219 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat
, pimstat
);
220 VNET_PCPUSTAT_SYSINIT(pimstat
);
221 VNET_PCPUSTAT_SYSUNINIT(pimstat
);
223 SYSCTL_NODE(_net_inet
, IPPROTO_PIM
, pim
, CTLFLAG_RW
| CTLFLAG_MPSAFE
, 0,
225 SYSCTL_VNET_PCPUSTAT(_net_inet_pim
, PIMCTL_STATS
, stats
, struct pimstat
,
226 pimstat
, "PIM Statistics (struct pimstat, netinet/pim_var.h)");
228 static u_long pim_squelch_wholepkt
= 0;
229 SYSCTL_ULONG(_net_inet_pim
, OID_AUTO
, squelch_wholepkt
, CTLFLAG_RWTUN
,
230 &pim_squelch_wholepkt
, 0,
231 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
233 static const struct encaptab
*pim_encap_cookie
;
234 static int pim_encapcheck(const struct mbuf
*, int, int, void *);
235 static int pim_input(struct mbuf
*, int, int, void *);
237 extern int in_mcast_loop
;
239 static const struct encap_config ipv4_encap_cfg
= {
240 .proto
= IPPROTO_PIM
,
241 .min_length
= sizeof(struct ip
) + PIM_MINLEN
,
243 .check
= pim_encapcheck
,
248 * Note: the PIM Register encapsulation adds the following in front of a
251 * struct pim_encap_hdr {
253 * struct pim_encap_pimhdr pim;
258 struct pim_encap_pimhdr
{
262 #define PIM_ENCAP_TTL 64
264 static struct ip pim_encap_iphdr
= {
265 #if BYTE_ORDER == LITTLE_ENDIAN
266 sizeof(struct ip
) >> 2,
270 sizeof(struct ip
) >> 2,
273 sizeof(struct ip
), /* total length */
281 static struct pim_encap_pimhdr pim_encap_pimhdr
= {
283 PIM_MAKE_VT(PIM_VERSION
, PIM_REGISTER
), /* PIM vers and message type */
290 VNET_DEFINE_STATIC(vifi_t
, reg_vif_num
) = VIFI_INVALID
;
291 #define V_reg_vif_num VNET(reg_vif_num)
292 VNET_DEFINE_STATIC(struct ifnet
*, multicast_register_if
);
293 #define V_multicast_register_if VNET(multicast_register_if)
299 static u_long
X_ip_mcast_src(int);
300 static int X_ip_mforward(struct ip
*, struct ifnet
*, struct mbuf
*,
301 struct ip_moptions
*);
302 static int X_ip_mrouter_done(void);
303 static int X_ip_mrouter_get(struct socket
*, struct sockopt
*);
304 static int X_ip_mrouter_set(struct socket
*, struct sockopt
*);
305 static int X_legal_vif_num(int);
306 static int X_mrt_ioctl(u_long
, caddr_t
, int);
308 static int add_bw_upcall(struct bw_upcall
*);
309 static int add_mfc(struct mfcctl2
*);
310 static int add_vif(struct vifctl
*);
311 static void bw_meter_prepare_upcall(struct bw_meter
*, struct timeval
*);
312 static void bw_meter_geq_receive_packet(struct bw_meter
*, int,
314 static void bw_upcalls_send(void);
315 static int del_bw_upcall(struct bw_upcall
*);
316 static int del_mfc(struct mfcctl2
*);
317 static int del_vif(vifi_t
);
318 static int del_vif_locked(vifi_t
, struct ifnet
**, struct ifnet
**);
319 static void expire_bw_upcalls_send(void *);
320 static void expire_mfc(struct mfc
*);
321 static void expire_upcalls(void *);
322 static void free_bw_list(struct bw_meter
*);
323 static int get_sg_cnt(struct sioc_sg_req
*);
324 static int get_vif_cnt(struct sioc_vif_req
*);
325 static void if_detached_event(void *, struct ifnet
*);
326 static int ip_mdq(struct mbuf
*, struct ifnet
*, struct mfc
*, vifi_t
);
327 static int ip_mrouter_init(struct socket
*, int);
328 static __inline
struct mfc
*
329 mfc_find(struct in_addr
*, struct in_addr
*);
330 static void phyint_send(struct ip
*, struct vif
*, struct mbuf
*);
332 pim_register_prepare(struct ip
*, struct mbuf
*);
333 static int pim_register_send(struct ip
*, struct vif
*,
334 struct mbuf
*, struct mfc
*);
335 static int pim_register_send_rp(struct ip
*, struct vif
*,
336 struct mbuf
*, struct mfc
*);
337 static int pim_register_send_upcall(struct ip
*, struct vif
*,
338 struct mbuf
*, struct mfc
*);
339 static void send_packet(struct vif
*, struct mbuf
*);
340 static int set_api_config(uint32_t *);
341 static int set_assert(int);
342 static int socket_send(struct socket
*, struct mbuf
*,
343 struct sockaddr_in
*);
346 * Kernel multicast forwarding API capabilities and setup.
347 * If more API capabilities are added to the kernel, they should be
348 * recorded in `mrt_api_support'.
350 #define MRT_API_VERSION 0x0305
352 static const int mrt_api_version
= MRT_API_VERSION
;
353 static const uint32_t mrt_api_support
= (MRT_MFC_FLAGS_DISABLE_WRONGVIF
|
354 MRT_MFC_FLAGS_BORDER_VIF
|
357 VNET_DEFINE_STATIC(uint32_t, mrt_api_config
);
358 #define V_mrt_api_config VNET(mrt_api_config)
359 VNET_DEFINE_STATIC(int, pim_assert_enabled
);
360 #define V_pim_assert_enabled VNET(pim_assert_enabled)
361 static struct timeval pim_assert_interval
= { 3, 0 }; /* Rate limit */
364 * Find a route for a given origin IP address and multicast group address.
365 * Statistics must be updated by the caller.
367 static __inline
struct mfc
*
368 mfc_find(struct in_addr
*o
, struct in_addr
*g
)
373 * Might be called both RLOCK and WLOCK.
374 * Check if any, it's caller responsibility
375 * to choose correct option.
379 LIST_FOREACH(rt
, &V_mfchashtbl
[MFCHASH(*o
, *g
)], mfc_hash
) {
380 if (in_hosteq(rt
->mfc_origin
, *o
) &&
381 in_hosteq(rt
->mfc_mcastgrp
, *g
) &&
382 buf_ring_empty(rt
->mfc_stall_ring
))
389 static __inline
struct mfc
*
393 rt
= malloc(sizeof(*rt
), M_MRTABLE
, M_NOWAIT
| M_ZERO
);
397 rt
->mfc_stall_ring
= buf_ring_alloc(MAX_UPQ
, M_MRTABLE
,
398 M_NOWAIT
, &V_buf_ring_mtx
);
399 if (rt
->mfc_stall_ring
== NULL
) {
408 * Handle MRT setsockopt commands to modify the multicast forwarding tables.
411 X_ip_mrouter_set(struct socket
*so
, struct sockopt
*sopt
)
417 struct bw_upcall bw_upcall
;
420 if (so
!= V_ip_mrouter
&& sopt
->sopt_name
!= MRT_INIT
)
424 switch (sopt
->sopt_name
) {
426 error
= sooptcopyin(sopt
, &optval
, sizeof optval
, sizeof optval
);
429 error
= ip_mrouter_init(so
, optval
);
432 error
= ip_mrouter_done();
435 error
= sooptcopyin(sopt
, &vifc
, sizeof vifc
, sizeof vifc
);
438 error
= add_vif(&vifc
);
441 error
= sooptcopyin(sopt
, &vifi
, sizeof vifi
, sizeof vifi
);
444 error
= del_vif(vifi
);
449 * select data size depending on API version.
451 if (sopt
->sopt_name
== MRT_ADD_MFC
&&
452 V_mrt_api_config
& MRT_API_FLAGS_ALL
) {
453 error
= sooptcopyin(sopt
, &mfc
, sizeof(struct mfcctl2
),
454 sizeof(struct mfcctl2
));
456 error
= sooptcopyin(sopt
, &mfc
, sizeof(struct mfcctl
),
457 sizeof(struct mfcctl
));
458 bzero((caddr_t
)&mfc
+ sizeof(struct mfcctl
),
459 sizeof(mfc
) - sizeof(struct mfcctl
));
463 if (sopt
->sopt_name
== MRT_ADD_MFC
)
464 error
= add_mfc(&mfc
);
466 error
= del_mfc(&mfc
);
470 error
= sooptcopyin(sopt
, &optval
, sizeof optval
, sizeof optval
);
477 error
= sooptcopyin(sopt
, &i
, sizeof i
, sizeof i
);
479 error
= set_api_config(&i
);
481 error
= sooptcopyout(sopt
, &i
, sizeof i
);
484 case MRT_ADD_BW_UPCALL
:
485 case MRT_DEL_BW_UPCALL
:
486 error
= sooptcopyin(sopt
, &bw_upcall
, sizeof bw_upcall
,
490 if (sopt
->sopt_name
== MRT_ADD_BW_UPCALL
)
491 error
= add_bw_upcall(&bw_upcall
);
493 error
= del_bw_upcall(&bw_upcall
);
504 * Handle MRT getsockopt commands
507 X_ip_mrouter_get(struct socket
*so
, struct sockopt
*sopt
)
511 switch (sopt
->sopt_name
) {
513 error
= sooptcopyout(sopt
, &mrt_api_version
,
514 sizeof mrt_api_version
);
517 error
= sooptcopyout(sopt
, &V_pim_assert_enabled
,
518 sizeof V_pim_assert_enabled
);
520 case MRT_API_SUPPORT
:
521 error
= sooptcopyout(sopt
, &mrt_api_support
,
522 sizeof mrt_api_support
);
525 error
= sooptcopyout(sopt
, &V_mrt_api_config
,
526 sizeof V_mrt_api_config
);
536 * Handle ioctl commands to obtain information from the cache
539 X_mrt_ioctl(u_long cmd
, caddr_t data
, int fibnum __unused
)
544 * Currently the only function calling this ioctl routine is rtioctl_fib().
545 * Typically, only root can create the raw socket in order to execute
546 * this ioctl method, however the request might be coming from a prison
548 error
= priv_check(curthread
, PRIV_NETINET_MROUTE
);
552 case (SIOCGETVIFCNT
):
553 error
= get_vif_cnt((struct sioc_vif_req
*)data
);
557 error
= get_sg_cnt((struct sioc_sg_req
*)data
);
568 * returns the packet, byte, rpf-failure count for the source group provided
571 get_sg_cnt(struct sioc_sg_req
*req
)
576 rt
= mfc_find(&req
->src
, &req
->grp
);
579 req
->pktcnt
= req
->bytecnt
= req
->wrong_if
= 0xffffffff;
580 return EADDRNOTAVAIL
;
582 req
->pktcnt
= rt
->mfc_pkt_cnt
;
583 req
->bytecnt
= rt
->mfc_byte_cnt
;
584 req
->wrong_if
= rt
->mfc_wrong_if
;
590 * returns the input and output packet and byte counts on the vif provided
593 get_vif_cnt(struct sioc_vif_req
*req
)
595 vifi_t vifi
= req
->vifi
;
598 if (vifi
>= V_numvifs
) {
603 mtx_lock_spin(&V_viftable
[vifi
].v_spin
);
604 req
->icount
= V_viftable
[vifi
].v_pkt_in
;
605 req
->ocount
= V_viftable
[vifi
].v_pkt_out
;
606 req
->ibytes
= V_viftable
[vifi
].v_bytes_in
;
607 req
->obytes
= V_viftable
[vifi
].v_bytes_out
;
608 mtx_unlock_spin(&V_viftable
[vifi
].v_spin
);
615 if_detached_event(void *arg __unused
, struct ifnet
*ifp
)
618 u_long i
, vifi_cnt
= 0;
619 struct ifnet
*free_ptr
, *multi_leave
;
623 if (V_ip_mrouter
== NULL
) {
629 * Tear down multicast forwarder state associated with this ifnet.
630 * 1. Walk the vif list, matching vifs against this ifnet.
631 * 2. Walk the multicast forwarding cache (mfc) looking for
632 * inner matches with this vif's index.
633 * 3. Expire any matching multicast forwarding cache entries.
634 * 4. Free vif state. This should disable ALLMULTI on the interface.
637 for (vifi
= 0; vifi
< V_numvifs
; vifi
++) {
638 if (V_viftable
[vifi
].v_ifp
!= ifp
)
640 for (i
= 0; i
< mfchashsize
; i
++) {
641 struct mfc
*rt
, *nrt
;
643 LIST_FOREACH_SAFE(rt
, &V_mfchashtbl
[i
], mfc_hash
, nrt
) {
644 if (rt
->mfc_parent
== vifi
) {
649 del_vif_locked(vifi
, &multi_leave
, &free_ptr
);
650 if (free_ptr
!= NULL
)
654 if_allmulti(multi_leave
, 0);
663 * Free IFP. We don't have to use free_ptr here as it is the same
664 * that ifp. Perform free as many times as required in case
665 * refcount is greater than 1.
667 for (i
= 0; i
< vifi_cnt
; i
++)
672 ip_mrouter_upcall_thread(void *arg
, int pending __unused
)
674 CURVNET_SET((struct vnet
*) arg
);
684 * Enable multicast forwarding.
687 ip_mrouter_init(struct socket
*so
, int version
)
690 CTR2(KTR_IPMF
, "%s: so %p", __func__
, so
);
697 if (ip_mrouter_unloading
) {
702 if (V_ip_mrouter
!= NULL
) {
707 V_mfchashtbl
= hashinit_flags(mfchashsize
, M_MRTABLE
, &V_mfchash
,
709 if (V_mfchashtbl
== NULL
) {
714 /* Create upcall ring */
715 mtx_init(&V_bw_upcalls_ring_mtx
, "mroute upcall buf_ring mtx", NULL
, MTX_DEF
);
716 V_bw_upcalls_ring
= buf_ring_alloc(BW_UPCALLS_MAX
, M_MRTABLE
,
717 M_NOWAIT
, &V_bw_upcalls_ring_mtx
);
718 if (!V_bw_upcalls_ring
) {
723 TASK_INIT(&V_task
, 0, ip_mrouter_upcall_thread
, curvnet
);
724 taskqueue_cancel(V_task_queue
, &V_task
, NULL
);
725 taskqueue_unblock(V_task_queue
);
727 callout_reset(&V_expire_upcalls_ch
, EXPIRE_TIMEOUT
, expire_upcalls
,
729 callout_reset(&V_bw_upcalls_ch
, BW_UPCALLS_PERIOD
, expire_bw_upcalls_send
,
733 atomic_add_int(&ip_mrouter_cnt
, 1);
735 /* This is a mutex required by buf_ring init, but not used internally */
736 mtx_init(&V_buf_ring_mtx
, "mroute buf_ring mtx", NULL
, MTX_DEF
);
740 CTR1(KTR_IPMF
, "%s: done", __func__
);
746 * Disable multicast forwarding.
749 X_ip_mrouter_done(void)
755 struct bw_upcall
*bu
;
757 if (V_ip_mrouter
== NULL
)
761 * Detach/disable hooks to the reset of the system.
764 atomic_subtract_int(&ip_mrouter_cnt
, 1);
765 V_mrt_api_config
= 0;
768 * Wait for all epoch sections to complete to ensure
769 * V_ip_mrouter = NULL is visible to others.
773 /* Stop and drain task queue */
774 taskqueue_block(V_task_queue
);
775 while (taskqueue_cancel(V_task_queue
, &V_task
, NULL
)) {
776 taskqueue_drain(V_task_queue
, &V_task
);
779 ifps
= malloc(MAXVIFS
* sizeof(*ifps
), M_TEMP
, M_WAITOK
);
782 taskqueue_cancel(V_task_queue
, &V_task
, NULL
);
784 /* Destroy upcall ring */
785 while ((bu
= buf_ring_dequeue_mc(V_bw_upcalls_ring
)) != NULL
) {
788 buf_ring_free(V_bw_upcalls_ring
, M_MRTABLE
);
789 mtx_destroy(&V_bw_upcalls_ring_mtx
);
792 * For each phyint in use, prepare to disable promiscuous reception
793 * of all IP multicasts. Defer the actual call until the lock is released;
794 * just record the list of interfaces while locked. Some interfaces use
795 * sx locks in their ioctl routines, which is not allowed while holding
796 * a non-sleepable lock.
798 KASSERT(V_numvifs
<= MAXVIFS
, ("More vifs than possible"));
799 for (vifi
= 0, nifp
= 0; vifi
< V_numvifs
; vifi
++) {
800 if (!in_nullhost(V_viftable
[vifi
].v_lcl_addr
) &&
801 !(V_viftable
[vifi
].v_flags
& (VIFF_TUNNEL
| VIFF_REGISTER
))) {
802 ifps
[nifp
++] = V_viftable
[vifi
].v_ifp
;
805 bzero((caddr_t
)V_viftable
, sizeof(*V_viftable
) * MAXVIFS
);
807 V_pim_assert_enabled
= 0;
809 callout_stop(&V_expire_upcalls_ch
);
810 callout_stop(&V_bw_upcalls_ch
);
813 * Free all multicast forwarding cache entries.
814 * Do not use hashdestroy(), as we must perform other cleanup.
816 for (i
= 0; i
< mfchashsize
; i
++) {
817 struct mfc
*rt
, *nrt
;
819 LIST_FOREACH_SAFE(rt
, &V_mfchashtbl
[i
], mfc_hash
, nrt
) {
823 free(V_mfchashtbl
, M_MRTABLE
);
826 bzero(V_nexpire
, sizeof(V_nexpire
[0]) * mfchashsize
);
828 V_reg_vif_num
= VIFI_INVALID
;
830 mtx_destroy(&V_buf_ring_mtx
);
835 * Now drop our claim on promiscuous multicast on the interfaces recorded
836 * above. This is safe to do now because ALLMULTI is reference counted.
838 for (vifi
= 0; vifi
< nifp
; vifi
++)
839 if_allmulti(ifps
[vifi
], 0);
842 CTR1(KTR_IPMF
, "%s: done", __func__
);
848 * Set PIM assert processing global
853 if ((i
!= 1) && (i
!= 0))
856 V_pim_assert_enabled
= i
;
862 * Configure API capabilities
865 set_api_config(uint32_t *apival
)
870 * We can set the API capabilities only if it is the first operation
871 * after MRT_INIT. I.e.:
872 * - there are no vifs installed
873 * - pim_assert is not enabled
874 * - the MFC table is empty
880 if (V_pim_assert_enabled
) {
887 for (i
= 0; i
< mfchashsize
; i
++) {
888 if (LIST_FIRST(&V_mfchashtbl
[i
]) != NULL
) {
897 V_mrt_api_config
= *apival
& mrt_api_support
;
898 *apival
= V_mrt_api_config
;
904 * Add a vif to the vif table
907 add_vif(struct vifctl
*vifcp
)
909 struct vif
*vifp
= V_viftable
+ vifcp
->vifc_vifi
;
910 struct sockaddr_in sin
= {sizeof sin
, AF_INET
};
915 if (vifcp
->vifc_vifi
>= MAXVIFS
)
917 /* rate limiting is no longer supported by this code */
918 if (vifcp
->vifc_rate_limit
!= 0) {
919 log(LOG_ERR
, "rate limiting is no longer supported\n");
923 if (in_nullhost(vifcp
->vifc_lcl_addr
))
924 return EADDRNOTAVAIL
;
926 /* Find the interface with an address in AF_INET family */
927 if (vifcp
->vifc_flags
& VIFF_REGISTER
) {
929 * XXX: Because VIFF_REGISTER does not really need a valid
930 * local interface (e.g. it could be 127.0.0.2), we don't
935 struct epoch_tracker et
;
937 sin
.sin_addr
= vifcp
->vifc_lcl_addr
;
939 ifa
= ifa_ifwithaddr((struct sockaddr
*)&sin
);
942 return EADDRNOTAVAIL
;
945 /* XXX FIXME we need to take a ref on ifp and cleanup properly! */
949 if ((vifcp
->vifc_flags
& VIFF_TUNNEL
) != 0) {
950 CTR1(KTR_IPMF
, "%s: tunnels are no longer supported", __func__
);
952 } else if (vifcp
->vifc_flags
& VIFF_REGISTER
) {
953 ifp
= V_multicast_register_if
= if_alloc(IFT_LOOP
);
954 CTR2(KTR_IPMF
, "%s: add register vif for ifp %p", __func__
, ifp
);
955 if (V_reg_vif_num
== VIFI_INVALID
) {
956 if_initname(V_multicast_register_if
, "register_vif", 0);
957 V_reg_vif_num
= vifcp
->vifc_vifi
;
959 } else { /* Make sure the interface supports multicast */
960 if ((ifp
->if_flags
& IFF_MULTICAST
) == 0)
963 /* Enable promiscuous reception of all IP multicasts from the if */
964 error
= if_allmulti(ifp
, 1);
971 if (!in_nullhost(vifp
->v_lcl_addr
)) {
973 V_multicast_register_if
= NULL
;
980 vifp
->v_flags
= vifcp
->vifc_flags
;
981 vifp
->v_threshold
= vifcp
->vifc_threshold
;
982 vifp
->v_lcl_addr
= vifcp
->vifc_lcl_addr
;
983 vifp
->v_rmt_addr
= vifcp
->vifc_rmt_addr
;
985 /* initialize per vif pkt counters */
988 vifp
->v_bytes_in
= 0;
989 vifp
->v_bytes_out
= 0;
990 sprintf(vifp
->v_spin_name
, "BM[%d] spin", vifcp
->vifc_vifi
);
991 mtx_init(&vifp
->v_spin
, vifp
->v_spin_name
, NULL
, MTX_SPIN
);
993 /* Adjust numvifs up if the vifi is higher than numvifs */
994 if (V_numvifs
<= vifcp
->vifc_vifi
)
995 V_numvifs
= vifcp
->vifc_vifi
+ 1;
999 CTR4(KTR_IPMF
, "%s: add vif %d laddr 0x%08x thresh %x", __func__
,
1000 (int)vifcp
->vifc_vifi
, ntohl(vifcp
->vifc_lcl_addr
.s_addr
),
1001 (int)vifcp
->vifc_threshold
);
1007 * Delete a vif from the vif table
1010 del_vif_locked(vifi_t vifi
, struct ifnet
**ifp_multi_leave
, struct ifnet
**ifp_free
)
1015 *ifp_multi_leave
= NULL
;
1019 if (vifi
>= V_numvifs
) {
1022 vifp
= &V_viftable
[vifi
];
1023 if (in_nullhost(vifp
->v_lcl_addr
)) {
1024 return EADDRNOTAVAIL
;
1027 if (!(vifp
->v_flags
& (VIFF_TUNNEL
| VIFF_REGISTER
)))
1028 *ifp_multi_leave
= vifp
->v_ifp
;
1030 if (vifp
->v_flags
& VIFF_REGISTER
) {
1031 V_reg_vif_num
= VIFI_INVALID
;
1033 if (vifp
->v_ifp
== V_multicast_register_if
)
1034 V_multicast_register_if
= NULL
;
1035 *ifp_free
= vifp
->v_ifp
;
1039 mtx_destroy(&vifp
->v_spin
);
1041 bzero((caddr_t
)vifp
, sizeof (*vifp
));
1043 CTR2(KTR_IPMF
, "%s: delete vif %d", __func__
, (int)vifi
);
1045 /* Adjust numvifs down */
1046 for (vifi
= V_numvifs
; vifi
> 0; vifi
--)
1047 if (!in_nullhost(V_viftable
[vifi
-1].v_lcl_addr
))
1055 del_vif(vifi_t vifi
)
1058 struct ifnet
*free_ptr
, *multi_leave
;
1061 cc
= del_vif_locked(vifi
, &multi_leave
, &free_ptr
);
1065 if_allmulti(multi_leave
, 0);
1074 * update an mfc entry without resetting counters and S,G addresses.
1077 update_mfc_params(struct mfc
*rt
, struct mfcctl2
*mfccp
)
1081 rt
->mfc_parent
= mfccp
->mfcc_parent
;
1082 for (i
= 0; i
< V_numvifs
; i
++) {
1083 rt
->mfc_ttls
[i
] = mfccp
->mfcc_ttls
[i
];
1084 rt
->mfc_flags
[i
] = mfccp
->mfcc_flags
[i
] & V_mrt_api_config
&
1087 /* set the RP address */
1088 if (V_mrt_api_config
& MRT_MFC_RP
)
1089 rt
->mfc_rp
= mfccp
->mfcc_rp
;
1091 rt
->mfc_rp
.s_addr
= INADDR_ANY
;
1095 * fully initialize an mfc entry from the parameter.
1098 init_mfc_params(struct mfc
*rt
, struct mfcctl2
*mfccp
)
1100 rt
->mfc_origin
= mfccp
->mfcc_origin
;
1101 rt
->mfc_mcastgrp
= mfccp
->mfcc_mcastgrp
;
1103 update_mfc_params(rt
, mfccp
);
1105 /* initialize pkt counters per src-grp */
1106 rt
->mfc_pkt_cnt
= 0;
1107 rt
->mfc_byte_cnt
= 0;
1108 rt
->mfc_wrong_if
= 0;
1109 timevalclear(&rt
->mfc_last_assert
);
1113 expire_mfc(struct mfc
*rt
)
1119 free_bw_list(rt
->mfc_bw_meter_leq
);
1120 free_bw_list(rt
->mfc_bw_meter_geq
);
1122 while (!buf_ring_empty(rt
->mfc_stall_ring
)) {
1123 rte
= buf_ring_dequeue_mc(rt
->mfc_stall_ring
);
1126 free(rte
, M_MRTABLE
);
1129 buf_ring_free(rt
->mfc_stall_ring
, M_MRTABLE
);
1131 LIST_REMOVE(rt
, mfc_hash
);
1132 free(rt
, M_MRTABLE
);
1139 add_mfc(struct mfcctl2
*mfccp
)
1145 struct epoch_tracker et
;
1148 rt
= mfc_find(&mfccp
->mfcc_origin
, &mfccp
->mfcc_mcastgrp
);
1150 /* If an entry already exists, just update the fields */
1152 CTR4(KTR_IPMF
, "%s: update mfc orig 0x%08x group %lx parent %x",
1153 __func__
, ntohl(mfccp
->mfcc_origin
.s_addr
),
1154 (u_long
)ntohl(mfccp
->mfcc_mcastgrp
.s_addr
),
1155 mfccp
->mfcc_parent
);
1156 update_mfc_params(rt
, mfccp
);
1162 * Find the entry for which the upcall was made and update
1165 hash
= MFCHASH(mfccp
->mfcc_origin
, mfccp
->mfcc_mcastgrp
);
1166 NET_EPOCH_ENTER(et
);
1167 LIST_FOREACH(rt
, &V_mfchashtbl
[hash
], mfc_hash
) {
1168 if (in_hosteq(rt
->mfc_origin
, mfccp
->mfcc_origin
) &&
1169 in_hosteq(rt
->mfc_mcastgrp
, mfccp
->mfcc_mcastgrp
) &&
1170 !buf_ring_empty(rt
->mfc_stall_ring
)) {
1172 "%s: add mfc orig 0x%08x group %lx parent %x qh %p",
1173 __func__
, ntohl(mfccp
->mfcc_origin
.s_addr
),
1174 (u_long
)ntohl(mfccp
->mfcc_mcastgrp
.s_addr
),
1176 rt
->mfc_stall_ring
);
1178 CTR1(KTR_IPMF
, "%s: multiple matches", __func__
);
1180 init_mfc_params(rt
, mfccp
);
1181 rt
->mfc_expire
= 0; /* Don't clean this guy up */
1184 /* Free queued packets, but attempt to forward them first. */
1185 while (!buf_ring_empty(rt
->mfc_stall_ring
)) {
1186 rte
= buf_ring_dequeue_mc(rt
->mfc_stall_ring
);
1187 if (rte
->ifp
!= NULL
)
1188 ip_mdq(rte
->m
, rte
->ifp
, rt
, -1);
1190 free(rte
, M_MRTABLE
);
1197 * It is possible that an entry is being inserted without an upcall
1200 CTR1(KTR_IPMF
, "%s: adding mfc w/o upcall", __func__
);
1201 LIST_FOREACH(rt
, &V_mfchashtbl
[hash
], mfc_hash
) {
1202 if (in_hosteq(rt
->mfc_origin
, mfccp
->mfcc_origin
) &&
1203 in_hosteq(rt
->mfc_mcastgrp
, mfccp
->mfcc_mcastgrp
)) {
1204 init_mfc_params(rt
, mfccp
);
1212 if (rt
== NULL
) { /* no upcall, so make a new entry */
1219 init_mfc_params(rt
, mfccp
);
1222 rt
->mfc_bw_meter_leq
= NULL
;
1223 rt
->mfc_bw_meter_geq
= NULL
;
1225 /* insert new entry at head of hash chain */
1226 LIST_INSERT_HEAD(&V_mfchashtbl
[hash
], rt
, mfc_hash
);
1236 * Delete an mfc entry
1239 del_mfc(struct mfcctl2
*mfccp
)
1241 struct in_addr origin
;
1242 struct in_addr mcastgrp
;
1245 origin
= mfccp
->mfcc_origin
;
1246 mcastgrp
= mfccp
->mfcc_mcastgrp
;
1248 CTR3(KTR_IPMF
, "%s: delete mfc orig 0x%08x group %lx", __func__
,
1249 ntohl(origin
.s_addr
), (u_long
)ntohl(mcastgrp
.s_addr
));
1253 LIST_FOREACH(rt
, &V_mfchashtbl
[MFCHASH(origin
, mcastgrp
)], mfc_hash
) {
1254 if (in_hosteq(rt
->mfc_origin
, origin
) &&
1255 in_hosteq(rt
->mfc_mcastgrp
, mcastgrp
))
1260 return EADDRNOTAVAIL
;
1271 * Send a message to the routing daemon on the multicast routing socket.
1274 socket_send(struct socket
*s
, struct mbuf
*mm
, struct sockaddr_in
*src
)
1277 SOCKBUF_LOCK(&s
->so_rcv
);
1278 if (sbappendaddr_locked(&s
->so_rcv
, (struct sockaddr
*)src
, mm
,
1280 sorwakeup_locked(s
);
1283 soroverflow_locked(s
);
1290 * IP multicast forwarding function. This function assumes that the packet
1291 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1292 * pointed to by "ifp", and the packet is to be relayed to other networks
1293 * that have members of the packet's destination IP multicast group.
1295 * The packet is returned unscathed to the caller, unless it is
1296 * erroneous, in which case a non-zero return value tells the caller to
1300 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
1303 X_ip_mforward(struct ip
*ip
, struct ifnet
*ifp
, struct mbuf
*m
,
1304 struct ip_moptions
*imo
)
1316 CTR3(KTR_IPMF
, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p",
1317 ntohl(ip
->ip_src
.s_addr
), (u_long
)ntohl(ip
->ip_dst
.s_addr
), ifp
);
1319 if (ip
->ip_hl
< (sizeof(struct ip
) + TUNNEL_LEN
) >> 2 ||
1320 ((u_char
*)(ip
+ 1))[1] != IPOPT_LSRR
) {
1322 * Packet arrived via a physical interface or
1323 * an encapsulated tunnel or a register_vif.
1327 * Packet arrived through a source-route tunnel.
1328 * Source-route tunnels are no longer supported.
1334 * BEGIN: MCAST ROUTING HOT PATH
1337 if (imo
&& ((vifi
= imo
->imo_multicast_vif
) < V_numvifs
)) {
1338 if (ip
->ip_ttl
< MAXTTL
)
1339 ip
->ip_ttl
++; /* compensate for -1 in *_send routines */
1340 error
= ip_mdq(m
, ifp
, NULL
, vifi
);
1346 * Don't forward a packet with time-to-live of zero or one,
1347 * or a packet destined to a local-only group.
1349 if (ip
->ip_ttl
<= 1 || IN_LOCAL_GROUP(ntohl(ip
->ip_dst
.s_addr
))) {
1356 * Determine forwarding vifs from the forwarding cache table
1358 MRTSTAT_INC(mrts_mfc_lookups
);
1359 rt
= mfc_find(&ip
->ip_src
, &ip
->ip_dst
);
1361 /* Entry exists, so forward if necessary */
1363 error
= ip_mdq(m
, ifp
, rt
, -1);
1364 /* Generic unlock here as we might release R or W lock */
1370 * END: MCAST ROUTING HOT PATH
1373 /* Further processing must be done with WLOCK taken */
1374 if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) {
1377 goto mfc_find_retry
;
1381 * If we don't have a route for packet's origin,
1382 * Make a copy of the packet & send message to routing daemon
1384 hlen
= ip
->ip_hl
<< 2;
1386 MRTSTAT_INC(mrts_mfc_misses
);
1387 MRTSTAT_INC(mrts_no_route
);
1388 CTR2(KTR_IPMF
, "ip_mforward: no mfc for (0x%08x,%lx)",
1389 ntohl(ip
->ip_src
.s_addr
), (u_long
)ntohl(ip
->ip_dst
.s_addr
));
1392 * Allocate mbufs early so that we don't do extra work if we are
1393 * just going to fail anyway. Make sure to pullup the header so
1394 * that other people can't step on it.
1396 rte
= malloc((sizeof *rte
), M_MRTABLE
, M_NOWAIT
|M_ZERO
);
1402 mb0
= m_copypacket(m
, M_NOWAIT
);
1403 if (mb0
&& (!M_WRITABLE(mb0
) || mb0
->m_len
< hlen
))
1404 mb0
= m_pullup(mb0
, hlen
);
1406 free(rte
, M_MRTABLE
);
1411 /* is there an upcall waiting for this flow ? */
1412 hash
= MFCHASH(ip
->ip_src
, ip
->ip_dst
);
1413 LIST_FOREACH(rt
, &V_mfchashtbl
[hash
], mfc_hash
)
1415 if (in_hosteq(ip
->ip_src
, rt
->mfc_origin
) &&
1416 in_hosteq(ip
->ip_dst
, rt
->mfc_mcastgrp
) &&
1417 !buf_ring_empty(rt
->mfc_stall_ring
))
1424 struct sockaddr_in k_igmpsrc
= { sizeof k_igmpsrc
, AF_INET
};
1428 * Locate the vifi for the incoming interface for this packet.
1429 * If none found, drop packet.
1431 for (vifi
= 0; vifi
< V_numvifs
&&
1432 V_viftable
[vifi
].v_ifp
!= ifp
; vifi
++)
1434 if (vifi
>= V_numvifs
) /* vif not found, drop packet */
1437 /* no upcall, so make a new entry */
1442 /* Make a copy of the header to send to the user level process */
1443 mm
= m_copym(mb0
, 0, hlen
, M_NOWAIT
);
1448 * Send message to routing daemon to install
1449 * a route into the kernel table
1452 im
= mtod(mm
, struct igmpmsg
*);
1453 im
->im_msgtype
= IGMPMSG_NOCACHE
;
1457 MRTSTAT_INC(mrts_upcalls
);
1459 k_igmpsrc
.sin_addr
= ip
->ip_src
;
1460 if (socket_send(V_ip_mrouter
, mm
, &k_igmpsrc
) < 0) {
1461 CTR0(KTR_IPMF
, "ip_mforward: socket queue full");
1462 MRTSTAT_INC(mrts_upq_sockfull
);
1463 fail1
: free(rt
, M_MRTABLE
);
1464 fail
: free(rte
, M_MRTABLE
);
1470 /* insert new entry at head of hash chain */
1471 rt
->mfc_origin
.s_addr
= ip
->ip_src
.s_addr
;
1472 rt
->mfc_mcastgrp
.s_addr
= ip
->ip_dst
.s_addr
;
1473 rt
->mfc_expire
= UPCALL_EXPIRE
;
1475 for (i
= 0; i
< V_numvifs
; i
++) {
1476 rt
->mfc_ttls
[i
] = 0;
1477 rt
->mfc_flags
[i
] = 0;
1479 rt
->mfc_parent
= -1;
1481 /* clear the RP address */
1482 rt
->mfc_rp
.s_addr
= INADDR_ANY
;
1483 rt
->mfc_bw_meter_leq
= NULL
;
1484 rt
->mfc_bw_meter_geq
= NULL
;
1486 /* initialize pkt counters per src-grp */
1487 rt
->mfc_pkt_cnt
= 0;
1488 rt
->mfc_byte_cnt
= 0;
1489 rt
->mfc_wrong_if
= 0;
1490 timevalclear(&rt
->mfc_last_assert
);
1492 buf_ring_enqueue(rt
->mfc_stall_ring
, rte
);
1494 /* Add RT to hashtable as it didn't exist before */
1495 LIST_INSERT_HEAD(&V_mfchashtbl
[hash
], rt
, mfc_hash
);
1497 /* determine if queue has overflowed */
1498 if (buf_ring_full(rt
->mfc_stall_ring
)) {
1499 MRTSTAT_INC(mrts_upq_ovflw
);
1500 non_fatal
: free(rte
, M_MRTABLE
);
1506 buf_ring_enqueue(rt
->mfc_stall_ring
, rte
);
1518 * Clean up the cache entry if upcall is not serviced
1521 expire_upcalls(void *arg
)
1525 CURVNET_SET((struct vnet
*) arg
);
1527 /*This callout is always run with MRW_WLOCK taken. */
1529 for (i
= 0; i
< mfchashsize
; i
++) {
1530 struct mfc
*rt
, *nrt
;
1532 if (V_nexpire
[i
] == 0)
1535 LIST_FOREACH_SAFE(rt
, &V_mfchashtbl
[i
], mfc_hash
, nrt
) {
1536 if (buf_ring_empty(rt
->mfc_stall_ring
))
1539 if (rt
->mfc_expire
== 0 || --rt
->mfc_expire
> 0)
1542 MRTSTAT_INC(mrts_cache_cleanups
);
1543 CTR3(KTR_IPMF
, "%s: expire (%lx, %lx)", __func__
,
1544 (u_long
)ntohl(rt
->mfc_origin
.s_addr
),
1545 (u_long
)ntohl(rt
->mfc_mcastgrp
.s_addr
));
1551 callout_reset(&V_expire_upcalls_ch
, EXPIRE_TIMEOUT
, expire_upcalls
,
1558 * Packet forwarding routine once entry in the cache is made
1561 ip_mdq(struct mbuf
*m
, struct ifnet
*ifp
, struct mfc
*rt
, vifi_t xmt_vif
)
1563 struct ip
*ip
= mtod(m
, struct ip
*);
1565 int plen
= ntohs(ip
->ip_len
);
1572 * If xmt_vif is not -1, send on only the requested vif.
1574 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1576 if (xmt_vif
< V_numvifs
) {
1577 if (V_viftable
[xmt_vif
].v_flags
& VIFF_REGISTER
)
1578 pim_register_send(ip
, V_viftable
+ xmt_vif
, m
, rt
);
1580 phyint_send(ip
, V_viftable
+ xmt_vif
, m
);
1585 * Don't forward if it didn't arrive from the parent vif for its origin.
1587 vifi
= rt
->mfc_parent
;
1588 if ((vifi
>= V_numvifs
) || (V_viftable
[vifi
].v_ifp
!= ifp
)) {
1589 CTR4(KTR_IPMF
, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
1590 __func__
, ifp
, (int)vifi
, V_viftable
[vifi
].v_ifp
);
1591 MRTSTAT_INC(mrts_wrong_if
);
1594 * If we are doing PIM assert processing, send a message
1595 * to the routing daemon.
1597 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1598 * can complete the SPT switch, regardless of the type
1599 * of the iif (broadcast media, GRE tunnel, etc).
1601 if (V_pim_assert_enabled
&& (vifi
< V_numvifs
) &&
1602 V_viftable
[vifi
].v_ifp
) {
1603 if (ifp
== V_multicast_register_if
)
1604 PIMSTAT_INC(pims_rcv_registers_wrongiif
);
1606 /* Get vifi for the incoming packet */
1607 for (vifi
= 0; vifi
< V_numvifs
&& V_viftable
[vifi
].v_ifp
!= ifp
; vifi
++)
1609 if (vifi
>= V_numvifs
)
1610 return 0; /* The iif is not found: ignore the packet. */
1612 if (rt
->mfc_flags
[vifi
] & MRT_MFC_FLAGS_DISABLE_WRONGVIF
)
1613 return 0; /* WRONGVIF disabled: ignore the packet */
1615 if (ratecheck(&rt
->mfc_last_assert
, &pim_assert_interval
)) {
1616 struct sockaddr_in k_igmpsrc
= { sizeof k_igmpsrc
, AF_INET
};
1618 int hlen
= ip
->ip_hl
<< 2;
1619 struct mbuf
*mm
= m_copym(m
, 0, hlen
, M_NOWAIT
);
1621 if (mm
&& (!M_WRITABLE(mm
) || mm
->m_len
< hlen
))
1622 mm
= m_pullup(mm
, hlen
);
1626 im
= mtod(mm
, struct igmpmsg
*);
1627 im
->im_msgtype
= IGMPMSG_WRONGVIF
;
1631 MRTSTAT_INC(mrts_upcalls
);
1633 k_igmpsrc
.sin_addr
= im
->im_src
;
1634 if (socket_send(V_ip_mrouter
, mm
, &k_igmpsrc
) < 0) {
1635 CTR1(KTR_IPMF
, "%s: socket queue full", __func__
);
1636 MRTSTAT_INC(mrts_upq_sockfull
);
1644 /* If I sourced this packet, it counts as output, else it was input. */
1645 mtx_lock_spin(&V_viftable
[vifi
].v_spin
);
1646 if (in_hosteq(ip
->ip_src
, V_viftable
[vifi
].v_lcl_addr
)) {
1647 V_viftable
[vifi
].v_pkt_out
++;
1648 V_viftable
[vifi
].v_bytes_out
+= plen
;
1650 V_viftable
[vifi
].v_pkt_in
++;
1651 V_viftable
[vifi
].v_bytes_in
+= plen
;
1653 mtx_unlock_spin(&V_viftable
[vifi
].v_spin
);
1656 rt
->mfc_byte_cnt
+= plen
;
1659 * For each vif, decide if a copy of the packet should be forwarded.
1661 * - the ttl exceeds the vif's threshold
1662 * - there are group members downstream on interface
1664 for (vifi
= 0; vifi
< V_numvifs
; vifi
++)
1665 if ((rt
->mfc_ttls
[vifi
] > 0) && (ip
->ip_ttl
> rt
->mfc_ttls
[vifi
])) {
1666 V_viftable
[vifi
].v_pkt_out
++;
1667 V_viftable
[vifi
].v_bytes_out
+= plen
;
1668 if (V_viftable
[vifi
].v_flags
& VIFF_REGISTER
)
1669 pim_register_send(ip
, V_viftable
+ vifi
, m
, rt
);
1671 phyint_send(ip
, V_viftable
+ vifi
, m
);
1675 * Perform upcall-related bw measuring.
1677 if ((rt
->mfc_bw_meter_geq
!= NULL
) || (rt
->mfc_bw_meter_leq
!= NULL
)) {
1682 /* Process meters for Greater-or-EQual case */
1683 for (x
= rt
->mfc_bw_meter_geq
; x
!= NULL
; x
= x
->bm_mfc_next
)
1684 bw_meter_geq_receive_packet(x
, plen
, &now
);
1686 /* Process meters for Lower-or-EQual case */
1687 for (x
= rt
->mfc_bw_meter_leq
; x
!= NULL
; x
= x
->bm_mfc_next
) {
1689 * Record that a packet is received.
1690 * Spin lock has to be taken as callout context
1691 * (expire_bw_meter_leq) might modify these fields
1694 mtx_lock_spin(&x
->bm_spin
);
1695 x
->bm_measured
.b_packets
++;
1696 x
->bm_measured
.b_bytes
+= plen
;
1697 mtx_unlock_spin(&x
->bm_spin
);
1705 * Check if a vif number is legal/ok. This is used by in_mcast.c.
1708 X_legal_vif_num(int vif
)
1717 if (vif
< V_numvifs
)
1725 * Return the local address used by this vif
1728 X_ip_mcast_src(int vifi
)
1737 if (vifi
< V_numvifs
)
1738 addr
= V_viftable
[vifi
].v_lcl_addr
.s_addr
;
1745 phyint_send(struct ip
*ip
, struct vif
*vifp
, struct mbuf
*m
)
1747 struct mbuf
*mb_copy
;
1748 int hlen
= ip
->ip_hl
<< 2;
1754 * Make a new reference to the packet; make sure that
1755 * the IP header is actually copied, not just referenced,
1756 * so that ip_output() only scribbles on the copy.
1758 mb_copy
= m_copypacket(m
, M_NOWAIT
);
1759 if (mb_copy
&& (!M_WRITABLE(mb_copy
) || mb_copy
->m_len
< hlen
))
1760 mb_copy
= m_pullup(mb_copy
, hlen
);
1761 if (mb_copy
== NULL
)
1764 send_packet(vifp
, mb_copy
);
1768 send_packet(struct vif
*vifp
, struct mbuf
*m
)
1770 struct ip_moptions imo
;
1776 imo
.imo_multicast_ifp
= vifp
->v_ifp
;
1777 imo
.imo_multicast_ttl
= mtod(m
, struct ip
*)->ip_ttl
- 1;
1778 imo
.imo_multicast_loop
= !!in_mcast_loop
;
1779 imo
.imo_multicast_vif
= -1;
1780 STAILQ_INIT(&imo
.imo_head
);
1783 * Re-entrancy should not be a problem here, because
1784 * the packets that we send out and are looped back at us
1785 * should get rejected because they appear to come from
1786 * the loopback interface, thus preventing looping.
1788 error
= ip_output(m
, NULL
, NULL
, IP_FORWARDING
, &imo
, NULL
);
1789 CTR3(KTR_IPMF
, "%s: vif %td err %d", __func__
,
1790 (ptrdiff_t)(vifp
- V_viftable
), error
);
1794 * Stubs for old RSVP socket shim implementation.
1798 X_ip_rsvp_vif(struct socket
*so __unused
, struct sockopt
*sopt __unused
)
1801 return (EOPNOTSUPP
);
1805 X_ip_rsvp_force_done(struct socket
*so __unused
)
1811 X_rsvp_input(struct mbuf
**mp
, int *offp
, int proto
)
1819 return (IPPROTO_DONE
);
1823 * Code for bandwidth monitors
1827 * Define common interface for timeval-related methods
1829 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1830 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1831 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1834 compute_bw_meter_flags(struct bw_upcall
*req
)
1838 if (req
->bu_flags
& BW_UPCALL_UNIT_PACKETS
)
1839 flags
|= BW_METER_UNIT_PACKETS
;
1840 if (req
->bu_flags
& BW_UPCALL_UNIT_BYTES
)
1841 flags
|= BW_METER_UNIT_BYTES
;
1842 if (req
->bu_flags
& BW_UPCALL_GEQ
)
1843 flags
|= BW_METER_GEQ
;
1844 if (req
->bu_flags
& BW_UPCALL_LEQ
)
1845 flags
|= BW_METER_LEQ
;
1851 expire_bw_meter_leq(void *arg
)
1853 struct bw_meter
*x
= arg
;
1857 * callout is always executed with MRW_WLOCK taken
1860 CURVNET_SET((struct vnet
*)x
->arg
);
1865 * Test if we should deliver an upcall
1867 if (((x
->bm_flags
& BW_METER_UNIT_PACKETS
) &&
1868 (x
->bm_measured
.b_packets
<= x
->bm_threshold
.b_packets
)) ||
1869 ((x
->bm_flags
& BW_METER_UNIT_BYTES
) &&
1870 (x
->bm_measured
.b_bytes
<= x
->bm_threshold
.b_bytes
))) {
1871 /* Prepare an upcall for delivery */
1872 bw_meter_prepare_upcall(x
, &now
);
1875 /* Send all upcalls that are pending delivery */
1876 taskqueue_enqueue(V_task_queue
, &V_task
);
1878 /* Reset counters */
1879 x
->bm_start_time
= now
;
1880 /* Spin lock has to be taken as ip_forward context
1881 * might modify these fields as well
1883 mtx_lock_spin(&x
->bm_spin
);
1884 x
->bm_measured
.b_bytes
= 0;
1885 x
->bm_measured
.b_packets
= 0;
1886 mtx_unlock_spin(&x
->bm_spin
);
1888 callout_schedule(&x
->bm_meter_callout
, tvtohz(&x
->bm_threshold
.b_time
));
1894 * Add a bw_meter entry
1897 add_bw_upcall(struct bw_upcall
*req
)
1900 struct timeval delta
= { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC
,
1901 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC
};
1903 struct bw_meter
*x
, **bwm_ptr
;
1906 if (!(V_mrt_api_config
& MRT_MFC_BW_UPCALL
))
1909 /* Test if the flags are valid */
1910 if (!(req
->bu_flags
& (BW_UPCALL_UNIT_PACKETS
| BW_UPCALL_UNIT_BYTES
)))
1912 if (!(req
->bu_flags
& (BW_UPCALL_GEQ
| BW_UPCALL_LEQ
)))
1914 if ((req
->bu_flags
& (BW_UPCALL_GEQ
| BW_UPCALL_LEQ
)) == (BW_UPCALL_GEQ
| BW_UPCALL_LEQ
))
1917 /* Test if the threshold time interval is valid */
1918 if (BW_TIMEVALCMP(&req
->bu_threshold
.b_time
, &delta
, <))
1921 flags
= compute_bw_meter_flags(req
);
1924 * Find if we have already same bw_meter entry
1927 mfc
= mfc_find(&req
->bu_src
, &req
->bu_dst
);
1930 return EADDRNOTAVAIL
;
1933 /* Choose an appropriate bw_meter list */
1934 if (req
->bu_flags
& BW_UPCALL_GEQ
)
1935 bwm_ptr
= &mfc
->mfc_bw_meter_geq
;
1937 bwm_ptr
= &mfc
->mfc_bw_meter_leq
;
1939 for (x
= *bwm_ptr
; x
!= NULL
; x
= x
->bm_mfc_next
) {
1940 if ((BW_TIMEVALCMP(&x
->bm_threshold
.b_time
,
1941 &req
->bu_threshold
.b_time
, ==))
1942 && (x
->bm_threshold
.b_packets
1943 == req
->bu_threshold
.b_packets
)
1944 && (x
->bm_threshold
.b_bytes
1945 == req
->bu_threshold
.b_bytes
)
1946 && (x
->bm_flags
& BW_METER_USER_FLAGS
)
1949 return 0; /* XXX Already installed */
1953 /* Allocate the new bw_meter entry */
1954 x
= malloc(sizeof(*x
), M_BWMETER
, M_ZERO
| M_NOWAIT
);
1960 /* Set the new bw_meter entry */
1961 x
->bm_threshold
.b_time
= req
->bu_threshold
.b_time
;
1963 x
->bm_start_time
= now
;
1964 x
->bm_threshold
.b_packets
= req
->bu_threshold
.b_packets
;
1965 x
->bm_threshold
.b_bytes
= req
->bu_threshold
.b_bytes
;
1966 x
->bm_measured
.b_packets
= 0;
1967 x
->bm_measured
.b_bytes
= 0;
1968 x
->bm_flags
= flags
;
1969 x
->bm_time_next
= NULL
;
1972 sprintf(x
->bm_spin_name
, "BM spin %p", x
);
1973 mtx_init(&x
->bm_spin
, x
->bm_spin_name
, NULL
, MTX_SPIN
);
1975 /* For LEQ case create periodic callout */
1976 if (req
->bu_flags
& BW_UPCALL_LEQ
) {
1977 callout_init_rw(&x
->bm_meter_callout
, &mrouter_lock
, CALLOUT_SHAREDLOCK
);
1978 callout_reset(&x
->bm_meter_callout
, tvtohz(&x
->bm_threshold
.b_time
),
1979 expire_bw_meter_leq
, x
);
1982 /* Add the new bw_meter entry to the front of entries for this MFC */
1983 x
->bm_mfc_next
= *bwm_ptr
;
1992 free_bw_list(struct bw_meter
*list
)
1994 while (list
!= NULL
) {
1995 struct bw_meter
*x
= list
;
1997 /* MRW_WLOCK must be held here */
1998 if (x
->bm_flags
& BW_METER_LEQ
) {
1999 callout_drain(&x
->bm_meter_callout
);
2000 mtx_destroy(&x
->bm_spin
);
2003 list
= list
->bm_mfc_next
;
2009 * Delete one or multiple bw_meter entries
2012 del_bw_upcall(struct bw_upcall
*req
)
2015 struct bw_meter
*x
, **bwm_ptr
;
2017 if (!(V_mrt_api_config
& MRT_MFC_BW_UPCALL
))
2022 /* Find the corresponding MFC entry */
2023 mfc
= mfc_find(&req
->bu_src
, &req
->bu_dst
);
2026 return EADDRNOTAVAIL
;
2027 } else if (req
->bu_flags
& BW_UPCALL_DELETE_ALL
) {
2029 * Delete all bw_meter entries for this mfc
2031 struct bw_meter
*list
;
2034 list
= mfc
->mfc_bw_meter_leq
;
2035 mfc
->mfc_bw_meter_leq
= NULL
;
2039 list
= mfc
->mfc_bw_meter_geq
;
2040 mfc
->mfc_bw_meter_geq
= NULL
;
2044 } else { /* Delete a single bw_meter entry */
2045 struct bw_meter
*prev
;
2048 flags
= compute_bw_meter_flags(req
);
2050 /* Choose an appropriate bw_meter list */
2051 if (req
->bu_flags
& BW_UPCALL_GEQ
)
2052 bwm_ptr
= &mfc
->mfc_bw_meter_geq
;
2054 bwm_ptr
= &mfc
->mfc_bw_meter_leq
;
2056 /* Find the bw_meter entry to delete */
2057 for (prev
= NULL
, x
= *bwm_ptr
; x
!= NULL
;
2058 prev
= x
, x
= x
->bm_mfc_next
) {
2059 if ((BW_TIMEVALCMP(&x
->bm_threshold
.b_time
, &req
->bu_threshold
.b_time
, ==)) &&
2060 (x
->bm_threshold
.b_packets
== req
->bu_threshold
.b_packets
) &&
2061 (x
->bm_threshold
.b_bytes
== req
->bu_threshold
.b_bytes
) &&
2062 (x
->bm_flags
& BW_METER_USER_FLAGS
) == flags
)
2065 if (x
!= NULL
) { /* Delete entry from the list for this MFC */
2067 prev
->bm_mfc_next
= x
->bm_mfc_next
; /* remove from middle*/
2069 *bwm_ptr
= x
->bm_mfc_next
;/* new head of list */
2071 if (req
->bu_flags
& BW_UPCALL_LEQ
)
2072 callout_stop(&x
->bm_meter_callout
);
2075 /* Free the bw_meter entry */
2083 __assert_unreachable();
2087 * Perform bandwidth measurement processing that may result in an upcall
2090 bw_meter_geq_receive_packet(struct bw_meter
*x
, int plen
, struct timeval
*nowp
)
2092 struct timeval delta
;
2097 BW_TIMEVALDECR(&delta
, &x
->bm_start_time
);
2100 * Processing for ">=" type of bw_meter entry.
2101 * bm_spin does not have to be hold here as in GEQ
2102 * case this is the only context accessing bm_measured.
2104 if (BW_TIMEVALCMP(&delta
, &x
->bm_threshold
.b_time
, >)) {
2105 /* Reset the bw_meter entry */
2106 x
->bm_start_time
= *nowp
;
2107 x
->bm_measured
.b_packets
= 0;
2108 x
->bm_measured
.b_bytes
= 0;
2109 x
->bm_flags
&= ~BW_METER_UPCALL_DELIVERED
;
2112 /* Record that a packet is received */
2113 x
->bm_measured
.b_packets
++;
2114 x
->bm_measured
.b_bytes
+= plen
;
2117 * Test if we should deliver an upcall
2119 if (!(x
->bm_flags
& BW_METER_UPCALL_DELIVERED
)) {
2120 if (((x
->bm_flags
& BW_METER_UNIT_PACKETS
) &&
2121 (x
->bm_measured
.b_packets
>= x
->bm_threshold
.b_packets
)) ||
2122 ((x
->bm_flags
& BW_METER_UNIT_BYTES
) &&
2123 (x
->bm_measured
.b_bytes
>= x
->bm_threshold
.b_bytes
))) {
2124 /* Prepare an upcall for delivery */
2125 bw_meter_prepare_upcall(x
, nowp
);
2126 x
->bm_flags
|= BW_METER_UPCALL_DELIVERED
;
2132 * Prepare a bandwidth-related upcall
2135 bw_meter_prepare_upcall(struct bw_meter
*x
, struct timeval
*nowp
)
2137 struct timeval delta
;
2138 struct bw_upcall
*u
;
2143 * Compute the measured time interval
2146 BW_TIMEVALDECR(&delta
, &x
->bm_start_time
);
2149 * Set the bw_upcall entry
2151 u
= malloc(sizeof(struct bw_upcall
), M_MRTABLE
, M_NOWAIT
| M_ZERO
);
2153 log(LOG_WARNING
, "bw_meter_prepare_upcall: cannot allocate entry\n");
2156 u
->bu_src
= x
->bm_mfc
->mfc_origin
;
2157 u
->bu_dst
= x
->bm_mfc
->mfc_mcastgrp
;
2158 u
->bu_threshold
.b_time
= x
->bm_threshold
.b_time
;
2159 u
->bu_threshold
.b_packets
= x
->bm_threshold
.b_packets
;
2160 u
->bu_threshold
.b_bytes
= x
->bm_threshold
.b_bytes
;
2161 u
->bu_measured
.b_time
= delta
;
2162 u
->bu_measured
.b_packets
= x
->bm_measured
.b_packets
;
2163 u
->bu_measured
.b_bytes
= x
->bm_measured
.b_bytes
;
2165 if (x
->bm_flags
& BW_METER_UNIT_PACKETS
)
2166 u
->bu_flags
|= BW_UPCALL_UNIT_PACKETS
;
2167 if (x
->bm_flags
& BW_METER_UNIT_BYTES
)
2168 u
->bu_flags
|= BW_UPCALL_UNIT_BYTES
;
2169 if (x
->bm_flags
& BW_METER_GEQ
)
2170 u
->bu_flags
|= BW_UPCALL_GEQ
;
2171 if (x
->bm_flags
& BW_METER_LEQ
)
2172 u
->bu_flags
|= BW_UPCALL_LEQ
;
2174 if (buf_ring_enqueue(V_bw_upcalls_ring
, u
))
2175 log(LOG_WARNING
, "bw_meter_prepare_upcall: cannot enqueue upcall\n");
2176 if (buf_ring_count(V_bw_upcalls_ring
) > (BW_UPCALLS_MAX
/ 2)) {
2177 taskqueue_enqueue(V_task_queue
, &V_task
);
2181 * Send the pending bandwidth-related upcalls
2184 bw_upcalls_send(void)
2188 struct bw_upcall
*bu
;
2189 struct sockaddr_in k_igmpsrc
= { sizeof k_igmpsrc
, AF_INET
};
2190 static struct igmpmsg igmpmsg
= {
2193 IGMPMSG_BW_UPCALL
,/* im_msgtype */
2203 if (buf_ring_empty(V_bw_upcalls_ring
))
2207 * Allocate a new mbuf, initialize it with the header and
2208 * the payload for the pending calls.
2210 m
= m_gethdr(M_NOWAIT
, MT_DATA
);
2212 log(LOG_WARNING
, "bw_upcalls_send: cannot allocate mbuf\n");
2216 m_copyback(m
, 0, sizeof(struct igmpmsg
), (caddr_t
)&igmpmsg
);
2217 len
+= sizeof(struct igmpmsg
);
2218 while ((bu
= buf_ring_dequeue_mc(V_bw_upcalls_ring
)) != NULL
) {
2219 m_copyback(m
, len
, sizeof(struct bw_upcall
), (caddr_t
)bu
);
2220 len
+= sizeof(struct bw_upcall
);
2221 free(bu
, M_MRTABLE
);
2226 * XXX do we need to set the address in k_igmpsrc ?
2228 MRTSTAT_INC(mrts_upcalls
);
2229 if (socket_send(V_ip_mrouter
, m
, &k_igmpsrc
) < 0) {
2230 log(LOG_WARNING
, "bw_upcalls_send: ip_mrouter socket queue full\n");
2231 MRTSTAT_INC(mrts_upq_sockfull
);
2236 * A periodic function for sending all upcalls that are pending delivery
2239 expire_bw_upcalls_send(void *arg
)
2241 CURVNET_SET((struct vnet
*) arg
);
2243 /* This callout is run with MRW_RLOCK taken */
2247 callout_reset(&V_bw_upcalls_ch
, BW_UPCALLS_PERIOD
, expire_bw_upcalls_send
,
2253 * End of bandwidth monitoring code
2257 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2261 pim_register_send(struct ip
*ip
, struct vif
*vifp
, struct mbuf
*m
,
2264 struct mbuf
*mb_copy
, *mm
;
2267 * Do not send IGMP_WHOLEPKT notifications to userland, if the
2268 * rendezvous point was unspecified, and we were told not to.
2270 if (pim_squelch_wholepkt
!= 0 && (V_mrt_api_config
& MRT_MFC_RP
) &&
2271 in_nullhost(rt
->mfc_rp
))
2274 mb_copy
= pim_register_prepare(ip
, m
);
2275 if (mb_copy
== NULL
)
2279 * Send all the fragments. Note that the mbuf for each fragment
2280 * is freed by the sending machinery.
2282 for (mm
= mb_copy
; mm
; mm
= mb_copy
) {
2283 mb_copy
= mm
->m_nextpkt
;
2285 mm
= m_pullup(mm
, sizeof(struct ip
));
2287 ip
= mtod(mm
, struct ip
*);
2288 if ((V_mrt_api_config
& MRT_MFC_RP
) && !in_nullhost(rt
->mfc_rp
)) {
2289 pim_register_send_rp(ip
, vifp
, mm
, rt
);
2291 pim_register_send_upcall(ip
, vifp
, mm
, rt
);
2300 * Return a copy of the data packet that is ready for PIM Register
2302 * XXX: Note that in the returned copy the IP header is a valid one.
2304 static struct mbuf
*
2305 pim_register_prepare(struct ip
*ip
, struct mbuf
*m
)
2307 struct mbuf
*mb_copy
= NULL
;
2310 /* Take care of delayed checksums */
2311 if (m
->m_pkthdr
.csum_flags
& CSUM_DELAY_DATA
) {
2312 in_delayed_cksum(m
);
2313 m
->m_pkthdr
.csum_flags
&= ~CSUM_DELAY_DATA
;
2317 * Copy the old packet & pullup its IP header into the
2318 * new mbuf so we can modify it.
2320 mb_copy
= m_copypacket(m
, M_NOWAIT
);
2321 if (mb_copy
== NULL
)
2323 mb_copy
= m_pullup(mb_copy
, ip
->ip_hl
<< 2);
2324 if (mb_copy
== NULL
)
2327 /* take care of the TTL */
2328 ip
= mtod(mb_copy
, struct ip
*);
2331 /* Compute the MTU after the PIM Register encapsulation */
2332 mtu
= 0xffff - sizeof(pim_encap_iphdr
) - sizeof(pim_encap_pimhdr
);
2334 if (ntohs(ip
->ip_len
) <= mtu
) {
2335 /* Turn the IP header into a valid one */
2337 ip
->ip_sum
= in_cksum(mb_copy
, ip
->ip_hl
<< 2);
2339 /* Fragment the packet */
2340 mb_copy
->m_pkthdr
.csum_flags
|= CSUM_IP
;
2341 if (ip_fragment(ip
, &mb_copy
, mtu
, 0) != 0) {
2350 * Send an upcall with the data packet to the user-level process.
2353 pim_register_send_upcall(struct ip
*ip
, struct vif
*vifp
,
2354 struct mbuf
*mb_copy
, struct mfc
*rt
)
2356 struct mbuf
*mb_first
;
2357 int len
= ntohs(ip
->ip_len
);
2359 struct sockaddr_in k_igmpsrc
= { sizeof k_igmpsrc
, AF_INET
};
2364 * Add a new mbuf with an upcall header
2366 mb_first
= m_gethdr(M_NOWAIT
, MT_DATA
);
2367 if (mb_first
== NULL
) {
2371 mb_first
->m_data
+= max_linkhdr
;
2372 mb_first
->m_pkthdr
.len
= len
+ sizeof(struct igmpmsg
);
2373 mb_first
->m_len
= sizeof(struct igmpmsg
);
2374 mb_first
->m_next
= mb_copy
;
2376 /* Send message to routing daemon */
2377 im
= mtod(mb_first
, struct igmpmsg
*);
2378 im
->im_msgtype
= IGMPMSG_WHOLEPKT
;
2380 im
->im_vif
= vifp
- V_viftable
;
2381 im
->im_src
= ip
->ip_src
;
2382 im
->im_dst
= ip
->ip_dst
;
2384 k_igmpsrc
.sin_addr
= ip
->ip_src
;
2386 MRTSTAT_INC(mrts_upcalls
);
2388 if (socket_send(V_ip_mrouter
, mb_first
, &k_igmpsrc
) < 0) {
2389 CTR1(KTR_IPMF
, "%s: socket queue full", __func__
);
2390 MRTSTAT_INC(mrts_upq_sockfull
);
2394 /* Keep statistics */
2395 PIMSTAT_INC(pims_snd_registers_msgs
);
2396 PIMSTAT_ADD(pims_snd_registers_bytes
, len
);
2402 * Encapsulate the data packet in PIM Register message and send it to the RP.
2405 pim_register_send_rp(struct ip
*ip
, struct vif
*vifp
, struct mbuf
*mb_copy
,
2408 struct mbuf
*mb_first
;
2409 struct ip
*ip_outer
;
2410 struct pim_encap_pimhdr
*pimhdr
;
2411 int len
= ntohs(ip
->ip_len
);
2412 vifi_t vifi
= rt
->mfc_parent
;
2416 if ((vifi
>= V_numvifs
) || in_nullhost(V_viftable
[vifi
].v_lcl_addr
)) {
2418 return EADDRNOTAVAIL
; /* The iif vif is invalid */
2422 * Add a new mbuf with the encapsulating header
2424 mb_first
= m_gethdr(M_NOWAIT
, MT_DATA
);
2425 if (mb_first
== NULL
) {
2429 mb_first
->m_data
+= max_linkhdr
;
2430 mb_first
->m_len
= sizeof(pim_encap_iphdr
) + sizeof(pim_encap_pimhdr
);
2431 mb_first
->m_next
= mb_copy
;
2433 mb_first
->m_pkthdr
.len
= len
+ mb_first
->m_len
;
2436 * Fill in the encapsulating IP and PIM header
2438 ip_outer
= mtod(mb_first
, struct ip
*);
2439 *ip_outer
= pim_encap_iphdr
;
2440 ip_outer
->ip_len
= htons(len
+ sizeof(pim_encap_iphdr
) +
2441 sizeof(pim_encap_pimhdr
));
2442 ip_outer
->ip_src
= V_viftable
[vifi
].v_lcl_addr
;
2443 ip_outer
->ip_dst
= rt
->mfc_rp
;
2445 * Copy the inner header TOS to the outer header, and take care of the
2448 ip_outer
->ip_tos
= ip
->ip_tos
;
2449 if (ip
->ip_off
& htons(IP_DF
))
2450 ip_outer
->ip_off
|= htons(IP_DF
);
2451 ip_fillid(ip_outer
);
2452 pimhdr
= (struct pim_encap_pimhdr
*)((caddr_t
)ip_outer
2453 + sizeof(pim_encap_iphdr
));
2454 *pimhdr
= pim_encap_pimhdr
;
2455 /* If the iif crosses a border, set the Border-bit */
2456 if (rt
->mfc_flags
[vifi
] & MRT_MFC_FLAGS_BORDER_VIF
& V_mrt_api_config
)
2457 pimhdr
->flags
|= htonl(PIM_BORDER_REGISTER
);
2459 mb_first
->m_data
+= sizeof(pim_encap_iphdr
);
2460 pimhdr
->pim
.pim_cksum
= in_cksum(mb_first
, sizeof(pim_encap_pimhdr
));
2461 mb_first
->m_data
-= sizeof(pim_encap_iphdr
);
2463 send_packet(vifp
, mb_first
);
2465 /* Keep statistics */
2466 PIMSTAT_INC(pims_snd_registers_msgs
);
2467 PIMSTAT_ADD(pims_snd_registers_bytes
, len
);
2473 * pim_encapcheck() is called by the encap4_input() path at runtime to
2474 * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2478 pim_encapcheck(const struct mbuf
*m __unused
, int off __unused
,
2479 int proto __unused
, void *arg __unused
)
2482 KASSERT(proto
== IPPROTO_PIM
, ("not for IPPROTO_PIM"));
2483 return (8); /* claim the datagram. */
2487 * PIM-SMv2 and PIM-DM messages processing.
2488 * Receives and verifies the PIM control messages, and passes them
2489 * up to the listening socket, using rip_input().
2490 * The only message with special processing is the PIM_REGISTER message
2491 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2492 * is passed to if_simloop().
2495 pim_input(struct mbuf
*m
, int off
, int proto
, void *arg __unused
)
2497 struct ip
*ip
= mtod(m
, struct ip
*);
2501 int datalen
= ntohs(ip
->ip_len
) - iphlen
;
2504 /* Keep statistics */
2505 PIMSTAT_INC(pims_rcv_total_msgs
);
2506 PIMSTAT_ADD(pims_rcv_total_bytes
, datalen
);
2511 if (datalen
< PIM_MINLEN
) {
2512 PIMSTAT_INC(pims_rcv_tooshort
);
2513 CTR3(KTR_IPMF
, "%s: short packet (%d) from 0x%08x",
2514 __func__
, datalen
, ntohl(ip
->ip_src
.s_addr
));
2516 return (IPPROTO_DONE
);
2520 * If the packet is at least as big as a REGISTER, go agead
2521 * and grab the PIM REGISTER header size, to avoid another
2522 * possible m_pullup() later.
2524 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8
2525 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2527 minlen
= iphlen
+ (datalen
>= PIM_REG_MINLEN
? PIM_REG_MINLEN
: PIM_MINLEN
);
2529 * Get the IP and PIM headers in contiguous memory, and
2530 * possibly the PIM REGISTER header.
2532 if (m
->m_len
< minlen
&& (m
= m_pullup(m
, minlen
)) == NULL
) {
2533 CTR1(KTR_IPMF
, "%s: m_pullup() failed", __func__
);
2534 return (IPPROTO_DONE
);
2537 /* m_pullup() may have given us a new mbuf so reset ip. */
2538 ip
= mtod(m
, struct ip
*);
2539 ip_tos
= ip
->ip_tos
;
2541 /* adjust mbuf to point to the PIM header */
2542 m
->m_data
+= iphlen
;
2544 pim
= mtod(m
, struct pim
*);
2547 * Validate checksum. If PIM REGISTER, exclude the data packet.
2549 * XXX: some older PIMv2 implementations don't make this distinction,
2550 * so for compatibility reason perform the checksum over part of the
2551 * message, and if error, then over the whole message.
2553 if (PIM_VT_T(pim
->pim_vt
) == PIM_REGISTER
&& in_cksum(m
, PIM_MINLEN
) == 0) {
2554 /* do nothing, checksum okay */
2555 } else if (in_cksum(m
, datalen
)) {
2556 PIMSTAT_INC(pims_rcv_badsum
);
2557 CTR1(KTR_IPMF
, "%s: invalid checksum", __func__
);
2559 return (IPPROTO_DONE
);
2562 /* PIM version check */
2563 if (PIM_VT_V(pim
->pim_vt
) < PIM_VERSION
) {
2564 PIMSTAT_INC(pims_rcv_badversion
);
2565 CTR3(KTR_IPMF
, "%s: bad version %d expect %d", __func__
,
2566 (int)PIM_VT_V(pim
->pim_vt
), PIM_VERSION
);
2568 return (IPPROTO_DONE
);
2571 /* restore mbuf back to the outer IP */
2572 m
->m_data
-= iphlen
;
2575 if (PIM_VT_T(pim
->pim_vt
) == PIM_REGISTER
) {
2577 * Since this is a REGISTER, we'll make a copy of the register
2578 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2581 struct sockaddr_in dst
= { sizeof(dst
), AF_INET
};
2583 struct ip
*encap_ip
;
2588 if ((V_reg_vif_num
>= V_numvifs
) || (V_reg_vif_num
== VIFI_INVALID
)) {
2590 CTR2(KTR_IPMF
, "%s: register vif not set: %d", __func__
,
2591 (int)V_reg_vif_num
);
2593 return (IPPROTO_DONE
);
2595 /* XXX need refcnt? */
2596 vifp
= V_viftable
[V_reg_vif_num
].v_ifp
;
2602 if (datalen
< PIM_REG_MINLEN
) {
2603 PIMSTAT_INC(pims_rcv_tooshort
);
2604 PIMSTAT_INC(pims_rcv_badregisters
);
2605 CTR1(KTR_IPMF
, "%s: register packet size too small", __func__
);
2607 return (IPPROTO_DONE
);
2610 reghdr
= (u_int32_t
*)(pim
+ 1);
2611 encap_ip
= (struct ip
*)(reghdr
+ 1);
2613 CTR3(KTR_IPMF
, "%s: register: encap ip src 0x%08x len %d",
2614 __func__
, ntohl(encap_ip
->ip_src
.s_addr
),
2615 ntohs(encap_ip
->ip_len
));
2617 /* verify the version number of the inner packet */
2618 if (encap_ip
->ip_v
!= IPVERSION
) {
2619 PIMSTAT_INC(pims_rcv_badregisters
);
2620 CTR1(KTR_IPMF
, "%s: bad encap ip version", __func__
);
2622 return (IPPROTO_DONE
);
2625 /* verify the inner packet is destined to a mcast group */
2626 if (!IN_MULTICAST(ntohl(encap_ip
->ip_dst
.s_addr
))) {
2627 PIMSTAT_INC(pims_rcv_badregisters
);
2628 CTR2(KTR_IPMF
, "%s: bad encap ip dest 0x%08x", __func__
,
2629 ntohl(encap_ip
->ip_dst
.s_addr
));
2631 return (IPPROTO_DONE
);
2634 /* If a NULL_REGISTER, pass it to the daemon */
2635 if ((ntohl(*reghdr
) & PIM_NULL_REGISTER
))
2636 goto pim_input_to_daemon
;
2639 * Copy the TOS from the outer IP header to the inner IP header.
2641 if (encap_ip
->ip_tos
!= ip_tos
) {
2642 /* Outer TOS -> inner TOS */
2643 encap_ip
->ip_tos
= ip_tos
;
2644 /* Recompute the inner header checksum. Sigh... */
2646 /* adjust mbuf to point to the inner IP header */
2647 m
->m_data
+= (iphlen
+ PIM_MINLEN
);
2648 m
->m_len
-= (iphlen
+ PIM_MINLEN
);
2650 encap_ip
->ip_sum
= 0;
2651 encap_ip
->ip_sum
= in_cksum(m
, encap_ip
->ip_hl
<< 2);
2653 /* restore mbuf to point back to the outer IP header */
2654 m
->m_data
-= (iphlen
+ PIM_MINLEN
);
2655 m
->m_len
+= (iphlen
+ PIM_MINLEN
);
2659 * Decapsulate the inner IP packet and loopback to forward it
2660 * as a normal multicast packet. Also, make a copy of the
2661 * outer_iphdr + pimhdr + reghdr + encap_iphdr
2662 * to pass to the daemon later, so it can take the appropriate
2663 * actions (e.g., send back PIM_REGISTER_STOP).
2664 * XXX: here m->m_data points to the outer IP header.
2666 mcp
= m_copym(m
, 0, iphlen
+ PIM_REG_MINLEN
, M_NOWAIT
);
2668 CTR1(KTR_IPMF
, "%s: m_copym() failed", __func__
);
2670 return (IPPROTO_DONE
);
2673 /* Keep statistics */
2674 /* XXX: registers_bytes include only the encap. mcast pkt */
2675 PIMSTAT_INC(pims_rcv_registers_msgs
);
2676 PIMSTAT_ADD(pims_rcv_registers_bytes
, ntohs(encap_ip
->ip_len
));
2679 * forward the inner ip packet; point m_data at the inner ip.
2681 m_adj(m
, iphlen
+ PIM_MINLEN
);
2684 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
2686 (u_long
)ntohl(encap_ip
->ip_src
.s_addr
),
2687 (u_long
)ntohl(encap_ip
->ip_dst
.s_addr
),
2688 (int)V_reg_vif_num
);
2690 /* NB: vifp was collected above; can it change on us? */
2691 if_simloop(vifp
, m
, dst
.sin_family
, 0);
2693 /* prepare the register head to send to the mrouting daemon */
2697 pim_input_to_daemon
:
2699 * Pass the PIM message up to the daemon; if it is a Register message,
2700 * pass the 'head' only up to the daemon. This includes the
2701 * outer IP header, PIM header, PIM-Register header and the
2703 * XXX: the outer IP header pkt size of a Register is not adjust to
2704 * reflect the fact that the inner multicast data is truncated.
2706 return (rip_input(&m
, &off
, proto
));
2710 sysctl_mfctable(SYSCTL_HANDLER_ARGS
)
2717 if (V_mfchashtbl
== NULL
) /* XXX unlocked */
2719 error
= sysctl_wire_old_buffer(req
, 0);
2724 for (i
= 0; i
< mfchashsize
; i
++) {
2725 LIST_FOREACH(rt
, &V_mfchashtbl
[i
], mfc_hash
) {
2726 error
= SYSCTL_OUT(req
, rt
, sizeof(struct mfc
));
2736 static SYSCTL_NODE(_net_inet_ip
, OID_AUTO
, mfctable
,
2737 CTLFLAG_RD
| CTLFLAG_MPSAFE
, sysctl_mfctable
,
2738 "IPv4 Multicast Forwarding Table "
2739 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)");
2742 sysctl_viflist(SYSCTL_HANDLER_ARGS
)
2748 if (V_viftable
== NULL
) /* XXX unlocked */
2750 error
= sysctl_wire_old_buffer(req
, MROUTE_VIF_SYSCTL_LEN
* MAXVIFS
);
2755 /* Copy out user-visible portion of vif entry. */
2756 for (i
= 0; i
< MAXVIFS
; i
++) {
2757 error
= SYSCTL_OUT(req
, &V_viftable
[i
], MROUTE_VIF_SYSCTL_LEN
);
2765 SYSCTL_PROC(_net_inet_ip
, OID_AUTO
, viftable
,
2766 CTLTYPE_OPAQUE
| CTLFLAG_VNET
| CTLFLAG_RD
| CTLFLAG_MPSAFE
, NULL
, 0,
2767 sysctl_viflist
, "S,vif[MAXVIFS]",
2768 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
2771 vnet_mroute_init(const void *unused __unused
)
2774 V_nexpire
= malloc(mfchashsize
, M_MRTABLE
, M_WAITOK
|M_ZERO
);
2776 V_viftable
= mallocarray(MAXVIFS
, sizeof(*V_viftable
),
2777 M_MRTABLE
, M_WAITOK
|M_ZERO
);
2779 callout_init_rw(&V_expire_upcalls_ch
, &mrouter_lock
, 0);
2780 callout_init_rw(&V_bw_upcalls_ch
, &mrouter_lock
, 0);
2782 /* Prepare taskqueue */
2783 V_task_queue
= taskqueue_create_fast("ip_mroute_tskq", M_NOWAIT
,
2784 taskqueue_thread_enqueue
, &V_task_queue
);
2785 taskqueue_start_threads(&V_task_queue
, 1, PI_NET
, "ip_mroute_tskq task");
2788 VNET_SYSINIT(vnet_mroute_init
, SI_SUB_PROTO_MC
, SI_ORDER_ANY
, vnet_mroute_init
,
2792 vnet_mroute_uninit(const void *unused __unused
)
2795 /* Taskqueue should be cancelled and drained before freeing */
2796 taskqueue_free(V_task_queue
);
2798 free(V_viftable
, M_MRTABLE
);
2799 free(V_nexpire
, M_MRTABLE
);
2803 VNET_SYSUNINIT(vnet_mroute_uninit
, SI_SUB_PROTO_MC
, SI_ORDER_MIDDLE
,
2804 vnet_mroute_uninit
, NULL
);
2807 ip_mroute_modevent(module_t mod
, int type
, void *unused
)
2814 if_detach_event_tag
= EVENTHANDLER_REGISTER(ifnet_departure_event
,
2815 if_detached_event
, NULL
, EVENTHANDLER_PRI_ANY
);
2816 if (if_detach_event_tag
== NULL
) {
2817 printf("ip_mroute: unable to register "
2818 "ifnet_departure_event handler\n");
2823 if (!powerof2(mfchashsize
)) {
2824 printf("WARNING: %s not a power of 2; using default\n",
2825 "net.inet.ip.mfchashsize");
2826 mfchashsize
= MFCHASHSIZE
;
2829 pim_encap_cookie
= ip_encap_attach(&ipv4_encap_cfg
, NULL
, M_WAITOK
);
2831 ip_mcast_src
= X_ip_mcast_src
;
2832 ip_mforward
= X_ip_mforward
;
2833 ip_mrouter_done
= X_ip_mrouter_done
;
2834 ip_mrouter_get
= X_ip_mrouter_get
;
2835 ip_mrouter_set
= X_ip_mrouter_set
;
2837 ip_rsvp_force_done
= X_ip_rsvp_force_done
;
2838 ip_rsvp_vif
= X_ip_rsvp_vif
;
2840 legal_vif_num
= X_legal_vif_num
;
2841 mrt_ioctl
= X_mrt_ioctl
;
2842 rsvp_input_p
= X_rsvp_input
;
2847 * Typically module unload happens after the user-level
2848 * process has shutdown the kernel services (the check
2849 * below insures someone can't just yank the module out
2850 * from under a running process). But if the module is
2851 * just loaded and then unloaded w/o starting up a user
2852 * process we still need to cleanup.
2855 if (ip_mrouter_cnt
!= 0) {
2859 ip_mrouter_unloading
= 1;
2862 EVENTHANDLER_DEREGISTER(ifnet_departure_event
, if_detach_event_tag
);
2864 if (pim_encap_cookie
) {
2865 ip_encap_detach(pim_encap_cookie
);
2866 pim_encap_cookie
= NULL
;
2869 ip_mcast_src
= NULL
;
2871 ip_mrouter_done
= NULL
;
2872 ip_mrouter_get
= NULL
;
2873 ip_mrouter_set
= NULL
;
2875 ip_rsvp_force_done
= NULL
;
2878 legal_vif_num
= NULL
;
2880 rsvp_input_p
= NULL
;
2891 static moduledata_t ip_mroutemod
= {
2897 DECLARE_MODULE(ip_mroute
, ip_mroutemod
, SI_SUB_PROTO_MC
, SI_ORDER_MIDDLE
);