2 * Copyright (c) 2016-2018 Netflix, Inc.
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 #include <sys/cdefs.h>
28 #include "opt_inet6.h"
32 * Some notes about usage.
34 * The tcp_hpts system is designed to provide a high precision timer
35 * system for tcp. Its main purpose is to provide a mechanism for
36 * pacing packets out onto the wire. It can be used in two ways
37 * by a given TCP stack (and those two methods can be used simultaneously).
39 * First, and probably the main thing its used by Rack and BBR, it can
40 * be used to call tcp_output() of a transport stack at some time in the future.
41 * The normal way this is done is that tcp_output() of the stack schedules
42 * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The
43 * slot is the time from now that the stack wants to be called but it
44 * must be converted to tcp_hpts's notion of slot. This is done with
45 * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical
46 * call from the tcp_output() routine might look like:
48 * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550));
50 * The above would schedule tcp_output() to be called in 550 useconds.
51 * Note that if using this mechanism the stack will want to add near
52 * its top a check to prevent unwanted calls (from user land or the
53 * arrival of incoming ack's). So it would add something like:
55 * if (tcp_in_hpts(inp))
58 * to prevent output processing until the time alotted has gone by.
59 * Of course this is a bare bones example and the stack will probably
60 * have more consideration then just the above.
62 * In order to run input queued segments from the HPTS context the
63 * tcp stack must define an input function for
64 * tfb_do_queued_segments(). This function understands
65 * how to dequeue a array of packets that were input and
66 * knows how to call the correct processing routine.
68 * Locking in this is important as well so most likely the
69 * stack will need to define the tfb_do_segment_nounlock()
70 * splitting tfb_do_segment() into two parts. The main processing
71 * part that does not unlock the INP and returns a value of 1 or 0.
72 * It returns 0 if all is well and the lock was not released. It
73 * returns 1 if we had to destroy the TCB (a reset received etc).
74 * The remains of tfb_do_segment() then become just a simple call
75 * to the tfb_do_segment_nounlock() function and check the return
76 * code and possibly unlock.
78 * The stack must also set the flag on the INP that it supports this
79 * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes
80 * this flag as well and will queue packets when it is set.
81 * There are other flags as well INP_MBUF_QUEUE_READY and
82 * INP_DONT_SACK_QUEUE. The first flag tells the LRO code
83 * that we are in the pacer for output so there is no
84 * need to wake up the hpts system to get immediate
85 * input. The second tells the LRO code that its okay
86 * if a SACK arrives you can still defer input and let
87 * the current hpts timer run (this is usually set when
88 * a rack timer is up so we know SACK's are happening
89 * on the connection already and don't want to wakeup yet).
91 * There is a common functions within the rack_bbr_common code
92 * version i.e. ctf_do_queued_segments(). This function
93 * knows how to take the input queue of packets from tp->t_inqueue
94 * and process them digging out all the arguments, calling any bpf tap and
95 * calling into tfb_do_segment_nounlock(). The common
96 * function (ctf_do_queued_segments()) requires that
97 * you have defined the tfb_do_segment_nounlock() as
101 #include <sys/param.h>
103 #include <sys/interrupt.h>
104 #include <sys/module.h>
105 #include <sys/kernel.h>
106 #include <sys/hhook.h>
107 #include <sys/malloc.h>
108 #include <sys/mbuf.h>
109 #include <sys/proc.h> /* for proc0 declaration */
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/sysctl.h>
113 #include <sys/systm.h>
114 #include <sys/refcount.h>
115 #include <sys/sched.h>
116 #include <sys/queue.h>
118 #include <sys/counter.h>
119 #include <sys/time.h>
120 #include <sys/kthread.h>
121 #include <sys/kern_prefetch.h>
126 #include <net/route.h>
127 #include <net/vnet.h>
130 #include <net/netisr.h>
131 #include <net/rss_config.h>
134 #define TCPSTATES /* for logging */
136 #include <netinet/in.h>
137 #include <netinet/in_kdtrace.h>
138 #include <netinet/in_pcb.h>
139 #include <netinet/ip.h>
140 #include <netinet/ip_icmp.h> /* required for icmp_var.h */
141 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
142 #include <netinet/ip_var.h>
143 #include <netinet/ip6.h>
144 #include <netinet6/in6_pcb.h>
145 #include <netinet6/ip6_var.h>
146 #include <netinet/tcp.h>
147 #include <netinet/tcp_fsm.h>
148 #include <netinet/tcp_seq.h>
149 #include <netinet/tcp_timer.h>
150 #include <netinet/tcp_var.h>
151 #include <netinet/tcpip.h>
152 #include <netinet/cc/cc.h>
153 #include <netinet/tcp_hpts.h>
154 #include <netinet/tcp_log_buf.h>
157 #include <netinet/tcp_offload.h>
161 * The hpts uses a 102400 wheel. The wheel
162 * defines the time in 10 usec increments (102400 x 10).
163 * This gives a range of 10usec - 1024ms to place
164 * an entry within. If the user requests more than
165 * 1.024 second, a remaineder is attached and the hpts
166 * when seeing the remainder will re-insert the
167 * inpcb forward in time from where it is until
168 * the remainder is zero.
171 #define NUM_OF_HPTSI_SLOTS 102400
173 /* Each hpts has its own p_mtx which is used for locking */
174 #define HPTS_MTX_ASSERT(hpts) mtx_assert(&(hpts)->p_mtx, MA_OWNED)
175 #define HPTS_LOCK(hpts) mtx_lock(&(hpts)->p_mtx)
176 #define HPTS_TRYLOCK(hpts) mtx_trylock(&(hpts)->p_mtx)
177 #define HPTS_UNLOCK(hpts) mtx_unlock(&(hpts)->p_mtx)
178 struct tcp_hpts_entry
{
179 /* Cache line 0x00 */
180 struct mtx p_mtx
; /* Mutex for hpts */
181 struct timeval p_mysleep
; /* Our min sleep time */
182 uint64_t syscall_cnt
;
183 uint64_t sleeping
; /* What the actual sleep was (if sleeping) */
184 uint16_t p_hpts_active
; /* Flag that says hpts is awake */
185 uint8_t p_wheel_complete
; /* have we completed the wheel arc walk? */
186 uint32_t p_curtick
; /* Tick in 10 us the hpts is going to */
187 uint32_t p_runningslot
; /* Current tick we are at if we are running */
188 uint32_t p_prev_slot
; /* Previous slot we were on */
189 uint32_t p_cur_slot
; /* Current slot in wheel hpts is draining */
190 uint32_t p_nxt_slot
; /* The next slot outside the current range of
191 * slots that the hpts is running on. */
192 int32_t p_on_queue_cnt
; /* Count on queue in this hpts */
193 uint32_t p_lasttick
; /* Last tick before the current one */
194 uint8_t p_direct_wake
:1, /* boolean */
195 p_on_min_sleep
:1, /* boolean */
196 p_hpts_wake_scheduled
:1, /* boolean */
197 hit_callout_thresh
:1,
199 uint8_t p_fill
[3]; /* Fill to 32 bits */
200 /* Cache line 0x40 */
202 TAILQ_HEAD(, tcpcb
) head
;
205 } *p_hptss
; /* Hptsi wheel */
206 uint32_t p_hpts_sleep_time
; /* Current sleep interval having a max
208 uint32_t overidden_sleep
; /* what was overrided by min-sleep for logging */
209 uint32_t saved_lasttick
; /* for logging */
210 uint32_t saved_curtick
; /* for logging */
211 uint32_t saved_curslot
; /* for logging */
212 uint32_t saved_prev_slot
; /* for logging */
213 uint32_t p_delayed_by
; /* How much were we delayed by */
214 /* Cache line 0x80 */
215 struct sysctl_ctx_list hpts_ctx
;
216 struct sysctl_oid
*hpts_root
;
217 struct intr_event
*ie
;
219 uint16_t p_num
; /* The hpts number one per cpu */
220 uint16_t p_cpu
; /* The hpts CPU */
221 /* There is extra space in here */
222 /* Cache line 0x100 */
223 struct callout co
__aligned(CACHE_LINE_SIZE
);
224 } __aligned(CACHE_LINE_SIZE
);
226 static struct tcp_hptsi
{
227 struct cpu_group
**grps
;
228 struct tcp_hpts_entry
**rp_ent
; /* Array of hptss */
229 uint32_t *cts_last_ran
;
231 uint32_t rp_num_hptss
; /* Number of hpts threads */
234 static MALLOC_DEFINE(M_TCPHPTS
, "tcp_hpts", "TCP hpts");
236 static int tcp_bind_threads
= 1;
238 static int tcp_bind_threads
= 2;
240 static int tcp_use_irq_cpu
= 0;
241 static int hpts_does_tp_logging
= 0;
243 static int32_t tcp_hptsi(struct tcp_hpts_entry
*hpts
, bool from_callout
);
244 static void tcp_hpts_thread(void *ctx
);
246 int32_t tcp_min_hptsi_time
= DEFAULT_MIN_SLEEP
;
247 static int conn_cnt_thresh
= DEFAULT_CONNECTION_THESHOLD
;
248 static int32_t dynamic_min_sleep
= DYNAMIC_MIN_SLEEP
;
249 static int32_t dynamic_max_sleep
= DYNAMIC_MAX_SLEEP
;
252 SYSCTL_NODE(_net_inet_tcp
, OID_AUTO
, hpts
, CTLFLAG_RW
| CTLFLAG_MPSAFE
, 0,
253 "TCP Hpts controls");
254 SYSCTL_NODE(_net_inet_tcp_hpts
, OID_AUTO
, stats
, CTLFLAG_RD
| CTLFLAG_MPSAFE
, 0,
255 "TCP Hpts statistics");
257 #define timersub(tvp, uvp, vvp) \
259 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \
260 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \
261 if ((vvp)->tv_usec < 0) { \
263 (vvp)->tv_usec += 1000000; \
267 static int32_t tcp_hpts_precision
= 120;
269 static struct hpts_domain_info
{
272 } hpts_domains
[MAXMEMDOM
];
274 counter_u64_t hpts_hopelessly_behind
;
276 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats
, OID_AUTO
, hopeless
, CTLFLAG_RD
,
277 &hpts_hopelessly_behind
,
278 "Number of times hpts could not catch up and was behind hopelessly");
280 counter_u64_t hpts_loops
;
282 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats
, OID_AUTO
, loops
, CTLFLAG_RD
,
283 &hpts_loops
, "Number of times hpts had to loop to catch up");
285 counter_u64_t back_tosleep
;
287 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats
, OID_AUTO
, no_tcbsfound
, CTLFLAG_RD
,
288 &back_tosleep
, "Number of times hpts found no tcbs");
290 counter_u64_t combined_wheel_wrap
;
292 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats
, OID_AUTO
, comb_wheel_wrap
, CTLFLAG_RD
,
293 &combined_wheel_wrap
, "Number of times the wheel lagged enough to have an insert see wrap");
295 counter_u64_t wheel_wrap
;
297 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats
, OID_AUTO
, wheel_wrap
, CTLFLAG_RD
,
298 &wheel_wrap
, "Number of times the wheel lagged enough to have an insert see wrap");
300 counter_u64_t hpts_direct_call
;
301 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats
, OID_AUTO
, direct_call
, CTLFLAG_RD
,
302 &hpts_direct_call
, "Number of times hpts was called by syscall/trap or other entry");
304 counter_u64_t hpts_wake_timeout
;
306 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats
, OID_AUTO
, timeout_wakeup
, CTLFLAG_RD
,
307 &hpts_wake_timeout
, "Number of times hpts threads woke up via the callout expiring");
309 counter_u64_t hpts_direct_awakening
;
311 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats
, OID_AUTO
, direct_awakening
, CTLFLAG_RD
,
312 &hpts_direct_awakening
, "Number of times hpts threads woke up via the callout expiring");
314 counter_u64_t hpts_back_tosleep
;
316 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats
, OID_AUTO
, back_tosleep
, CTLFLAG_RD
,
317 &hpts_back_tosleep
, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work");
319 counter_u64_t cpu_uses_flowid
;
320 counter_u64_t cpu_uses_random
;
322 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats
, OID_AUTO
, cpusel_flowid
, CTLFLAG_RD
,
323 &cpu_uses_flowid
, "Number of times when setting cpuid we used the flowid field");
324 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats
, OID_AUTO
, cpusel_random
, CTLFLAG_RD
,
325 &cpu_uses_random
, "Number of times when setting cpuid we used the a random value");
327 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads
);
328 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu
);
329 SYSCTL_INT(_net_inet_tcp_hpts
, OID_AUTO
, bind_hptss
, CTLFLAG_RD
,
330 &tcp_bind_threads
, 2,
331 "Thread Binding tunable");
332 SYSCTL_INT(_net_inet_tcp_hpts
, OID_AUTO
, use_irq
, CTLFLAG_RD
,
334 "Use of irq CPU tunable");
335 SYSCTL_INT(_net_inet_tcp_hpts
, OID_AUTO
, precision
, CTLFLAG_RW
,
336 &tcp_hpts_precision
, 120,
337 "Value for PRE() precision of callout");
338 SYSCTL_INT(_net_inet_tcp_hpts
, OID_AUTO
, cnt_thresh
, CTLFLAG_RW
,
340 "How many connections (below) make us use the callout based mechanism");
341 SYSCTL_INT(_net_inet_tcp_hpts
, OID_AUTO
, logging
, CTLFLAG_RW
,
342 &hpts_does_tp_logging
, 0,
343 "Do we add to any tp that has logging on pacer logs");
344 SYSCTL_INT(_net_inet_tcp_hpts
, OID_AUTO
, dyn_minsleep
, CTLFLAG_RW
,
345 &dynamic_min_sleep
, 250,
346 "What is the dynamic minsleep value?");
347 SYSCTL_INT(_net_inet_tcp_hpts
, OID_AUTO
, dyn_maxsleep
, CTLFLAG_RW
,
348 &dynamic_max_sleep
, 5000,
349 "What is the dynamic maxsleep value?");
351 static int32_t max_pacer_loops
= 10;
352 SYSCTL_INT(_net_inet_tcp_hpts
, OID_AUTO
, loopmax
, CTLFLAG_RW
,
353 &max_pacer_loops
, 10,
354 "What is the maximum number of times the pacer will loop trying to catch up");
356 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2)
358 static uint32_t hpts_sleep_max
= HPTS_MAX_SLEEP_ALLOWED
;
361 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS
)
366 new = hpts_sleep_max
;
367 error
= sysctl_handle_int(oidp
, &new, 0, req
);
368 if (error
== 0 && req
->newptr
) {
369 if ((new < (dynamic_min_sleep
/HPTS_TICKS_PER_SLOT
)) ||
370 (new > HPTS_MAX_SLEEP_ALLOWED
))
373 hpts_sleep_max
= new;
379 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS
)
384 new = tcp_min_hptsi_time
;
385 error
= sysctl_handle_int(oidp
, &new, 0, req
);
386 if (error
== 0 && req
->newptr
) {
387 if (new < LOWEST_SLEEP_ALLOWED
)
390 tcp_min_hptsi_time
= new;
395 SYSCTL_PROC(_net_inet_tcp_hpts
, OID_AUTO
, maxsleep
,
396 CTLTYPE_UINT
| CTLFLAG_RW
,
398 &sysctl_net_inet_tcp_hpts_max_sleep
, "IU",
399 "Maximum time hpts will sleep in slots");
401 SYSCTL_PROC(_net_inet_tcp_hpts
, OID_AUTO
, minsleep
,
402 CTLTYPE_UINT
| CTLFLAG_RW
,
403 &tcp_min_hptsi_time
, 0,
404 &sysctl_net_inet_tcp_hpts_min_sleep
, "IU",
405 "The minimum time the hpts must sleep before processing more slots");
407 static int ticks_indicate_more_sleep
= TICKS_INDICATE_MORE_SLEEP
;
408 static int ticks_indicate_less_sleep
= TICKS_INDICATE_LESS_SLEEP
;
409 static int tcp_hpts_no_wake_over_thresh
= 1;
411 SYSCTL_INT(_net_inet_tcp_hpts
, OID_AUTO
, more_sleep
, CTLFLAG_RW
,
412 &ticks_indicate_more_sleep
, 0,
413 "If we only process this many or less on a timeout, we need longer sleep on the next callout");
414 SYSCTL_INT(_net_inet_tcp_hpts
, OID_AUTO
, less_sleep
, CTLFLAG_RW
,
415 &ticks_indicate_less_sleep
, 0,
416 "If we process this many or more on a timeout, we need less sleep on the next callout");
417 SYSCTL_INT(_net_inet_tcp_hpts
, OID_AUTO
, nowake_over_thresh
, CTLFLAG_RW
,
418 &tcp_hpts_no_wake_over_thresh
, 0,
419 "When we are over the threshold on the pacer do we prohibit wakeups?");
422 hpts_random_cpu(void)
428 cpuid
= (((ran
& 0xffff) % mp_ncpus
) % tcp_pace
.rp_num_hptss
);
433 tcp_hpts_log(struct tcp_hpts_entry
*hpts
, struct tcpcb
*tp
, struct timeval
*tv
,
434 int slots_to_run
, int idx
, bool from_callout
)
436 union tcp_log_stackspecific log
;
439 * 64 bit - delRate, rttProp, bw_inuse
441 * 8 bit - bbr_state, bbr_substate, inhpts;
443 memset(&log
.u_bbr
, 0, sizeof(log
.u_bbr
));
444 log
.u_bbr
.flex1
= hpts
->p_nxt_slot
;
445 log
.u_bbr
.flex2
= hpts
->p_cur_slot
;
446 log
.u_bbr
.flex3
= hpts
->p_prev_slot
;
447 log
.u_bbr
.flex4
= idx
;
448 log
.u_bbr
.flex5
= hpts
->p_curtick
;
449 log
.u_bbr
.flex6
= hpts
->p_on_queue_cnt
;
450 log
.u_bbr
.flex7
= hpts
->p_cpu
;
451 log
.u_bbr
.flex8
= (uint8_t)from_callout
;
452 log
.u_bbr
.inflight
= slots_to_run
;
453 log
.u_bbr
.applimited
= hpts
->overidden_sleep
;
454 log
.u_bbr
.delivered
= hpts
->saved_curtick
;
455 log
.u_bbr
.timeStamp
= tcp_tv_to_usectick(tv
);
456 log
.u_bbr
.epoch
= hpts
->saved_curslot
;
457 log
.u_bbr
.lt_epoch
= hpts
->saved_prev_slot
;
458 log
.u_bbr
.pkts_out
= hpts
->p_delayed_by
;
459 log
.u_bbr
.lost
= hpts
->p_hpts_sleep_time
;
460 log
.u_bbr
.pacing_gain
= hpts
->p_cpu
;
461 log
.u_bbr
.pkt_epoch
= hpts
->p_runningslot
;
462 log
.u_bbr
.use_lt_bw
= 1;
463 TCP_LOG_EVENTP(tp
, NULL
,
464 &tptosocket(tp
)->so_rcv
,
465 &tptosocket(tp
)->so_snd
,
471 tcp_wakehpts(struct tcp_hpts_entry
*hpts
)
473 HPTS_MTX_ASSERT(hpts
);
475 if (tcp_hpts_no_wake_over_thresh
&& (hpts
->p_on_queue_cnt
>= conn_cnt_thresh
)) {
476 hpts
->p_direct_wake
= 0;
479 if (hpts
->p_hpts_wake_scheduled
== 0) {
480 hpts
->p_hpts_wake_scheduled
= 1;
481 swi_sched(hpts
->ie_cookie
, 0);
486 hpts_timeout_swi(void *arg
)
488 struct tcp_hpts_entry
*hpts
;
490 hpts
= (struct tcp_hpts_entry
*)arg
;
491 swi_sched(hpts
->ie_cookie
, 0);
495 tcp_hpts_insert_internal(struct tcpcb
*tp
, struct tcp_hpts_entry
*hpts
)
497 struct inpcb
*inp
= tptoinpcb(tp
);
500 INP_WLOCK_ASSERT(inp
);
501 HPTS_MTX_ASSERT(hpts
);
502 MPASS(hpts
->p_cpu
== tp
->t_hpts_cpu
);
503 MPASS(!(inp
->inp_flags
& INP_DROPPED
));
505 hptsh
= &hpts
->p_hptss
[tp
->t_hpts_slot
];
507 if (tp
->t_in_hpts
== IHPTS_NONE
) {
508 tp
->t_in_hpts
= IHPTS_ONQUEUE
;
510 } else if (tp
->t_in_hpts
== IHPTS_MOVING
) {
511 tp
->t_in_hpts
= IHPTS_ONQUEUE
;
513 MPASS(tp
->t_in_hpts
== IHPTS_ONQUEUE
);
514 tp
->t_hpts_gencnt
= hptsh
->gencnt
;
516 TAILQ_INSERT_TAIL(&hptsh
->head
, tp
, t_hpts
);
518 hpts
->p_on_queue_cnt
++;
521 static struct tcp_hpts_entry
*
522 tcp_hpts_lock(struct tcpcb
*tp
)
524 struct tcp_hpts_entry
*hpts
;
526 INP_LOCK_ASSERT(tptoinpcb(tp
));
528 hpts
= tcp_pace
.rp_ent
[tp
->t_hpts_cpu
];
535 tcp_hpts_release(struct tcpcb
*tp
)
537 bool released __diagused
;
539 tp
->t_in_hpts
= IHPTS_NONE
;
540 released
= in_pcbrele_wlocked(tptoinpcb(tp
));
541 MPASS(released
== false);
545 * Initialize tcpcb to get ready for use with HPTS. We will know which CPU
546 * is preferred on the first incoming packet. Before that avoid crowding
547 * a single CPU with newborn connections and use a random one.
548 * This initialization is normally called on a newborn tcpcb, but potentially
549 * can be called once again if stack is switched. In that case we inherit CPU
550 * that the previous stack has set, be it random or not. In extreme cases,
551 * e.g. syzkaller fuzzing, a tcpcb can already be in HPTS in IHPTS_MOVING state
552 * and has never received a first packet.
555 tcp_hpts_init(struct tcpcb
*tp
)
558 if (__predict_true(tp
->t_hpts_cpu
== HPTS_CPU_NONE
)) {
559 tp
->t_hpts_cpu
= hpts_random_cpu();
560 MPASS(!(tp
->t_flags2
& TF2_HPTS_CPU_SET
));
565 * Called normally with the INP_LOCKED but it
566 * does not matter, the hpts lock is the key
567 * but the lock order allows us to hold the
568 * INP lock and then get the hpts lock.
571 tcp_hpts_remove(struct tcpcb
*tp
)
573 struct tcp_hpts_entry
*hpts
;
576 INP_WLOCK_ASSERT(tptoinpcb(tp
));
578 hpts
= tcp_hpts_lock(tp
);
579 if (tp
->t_in_hpts
== IHPTS_ONQUEUE
) {
580 hptsh
= &hpts
->p_hptss
[tp
->t_hpts_slot
];
581 tp
->t_hpts_request
= 0;
582 if (__predict_true(tp
->t_hpts_gencnt
== hptsh
->gencnt
)) {
583 TAILQ_REMOVE(&hptsh
->head
, tp
, t_hpts
);
584 MPASS(hptsh
->count
> 0);
586 MPASS(hpts
->p_on_queue_cnt
> 0);
587 hpts
->p_on_queue_cnt
--;
588 tcp_hpts_release(tp
);
591 * tcp_hptsi() now owns the TAILQ head of this inp.
592 * Can't TAILQ_REMOVE, just mark it.
597 TAILQ_FOREACH(tmp
, &hptsh
->head
, t_hpts
)
600 tp
->t_in_hpts
= IHPTS_MOVING
;
601 tp
->t_hpts_slot
= -1;
603 } else if (tp
->t_in_hpts
== IHPTS_MOVING
) {
605 * Handle a special race condition:
606 * tcp_hptsi() moves inpcb to detached tailq
607 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1
608 * tcp_hpts_insert() sets slot to a meaningful value
609 * tcp_hpts_remove() again (we are here!), then in_pcbdrop()
610 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED
612 tp
->t_hpts_slot
= -1;
618 hpts_slot(uint32_t wheel_slot
, uint32_t plus
)
621 * Given a slot on the wheel, what slot
622 * is that plus ticks out?
624 KASSERT(wheel_slot
< NUM_OF_HPTSI_SLOTS
, ("Invalid tick %u not on wheel", wheel_slot
));
625 return ((wheel_slot
+ plus
) % NUM_OF_HPTSI_SLOTS
);
629 tick_to_wheel(uint32_t cts_in_wticks
)
632 * Given a timestamp in ticks (so by
633 * default to get it to a real time one
634 * would multiply by 10.. i.e the number
635 * of ticks in a slot) map it to our limited
638 return (cts_in_wticks
% NUM_OF_HPTSI_SLOTS
);
642 hpts_slots_diff(int prev_slot
, int slot_now
)
645 * Given two slots that are someplace
646 * on our wheel. How far are they apart?
648 if (slot_now
> prev_slot
)
649 return (slot_now
- prev_slot
);
650 else if (slot_now
== prev_slot
)
652 * Special case, same means we can go all of our
653 * wheel less one slot.
655 return (NUM_OF_HPTSI_SLOTS
- 1);
657 return ((NUM_OF_HPTSI_SLOTS
- prev_slot
) + slot_now
);
661 * Given a slot on the wheel that is the current time
662 * mapped to the wheel (wheel_slot), what is the maximum
663 * distance forward that can be obtained without
664 * wrapping past either prev_slot or running_slot
665 * depending on the htps state? Also if passed
666 * a uint32_t *, fill it with the slot location.
668 * Note if you do not give this function the current
669 * time (that you think it is) mapped to the wheel slot
670 * then the results will not be what you expect and
671 * could lead to invalid inserts.
673 static inline int32_t
674 max_slots_available(struct tcp_hpts_entry
*hpts
, uint32_t wheel_slot
, uint32_t *target_slot
)
676 uint32_t dis_to_travel
, end_slot
, pacer_to_now
, avail_on_wheel
;
678 if ((hpts
->p_hpts_active
== 1) &&
679 (hpts
->p_wheel_complete
== 0)) {
680 end_slot
= hpts
->p_runningslot
;
681 /* Back up one tick */
683 end_slot
= NUM_OF_HPTSI_SLOTS
- 1;
687 *target_slot
= end_slot
;
690 * For the case where we are
691 * not active, or we have
692 * completed the pass over
693 * the wheel, we can use the
694 * prev tick and subtract one from it. This puts us
695 * as far out as possible on the wheel.
697 end_slot
= hpts
->p_prev_slot
;
699 end_slot
= NUM_OF_HPTSI_SLOTS
- 1;
703 *target_slot
= end_slot
;
705 * Now we have close to the full wheel left minus the
706 * time it has been since the pacer went to sleep. Note
707 * that wheel_tick, passed in, should be the current time
708 * from the perspective of the caller, mapped to the wheel.
710 if (hpts
->p_prev_slot
!= wheel_slot
)
711 dis_to_travel
= hpts_slots_diff(hpts
->p_prev_slot
, wheel_slot
);
715 * dis_to_travel in this case is the space from when the
716 * pacer stopped (p_prev_slot) and where our wheel_slot
717 * is now. To know how many slots we can put it in we
718 * subtract from the wheel size. We would not want
719 * to place something after p_prev_slot or it will
722 return (NUM_OF_HPTSI_SLOTS
- dis_to_travel
);
725 * So how many slots are open between p_runningslot -> p_cur_slot
726 * that is what is currently un-available for insertion. Special
727 * case when we are at the last slot, this gets 1, so that
728 * the answer to how many slots are available is all but 1.
730 if (hpts
->p_runningslot
== hpts
->p_cur_slot
)
733 dis_to_travel
= hpts_slots_diff(hpts
->p_runningslot
, hpts
->p_cur_slot
);
735 * How long has the pacer been running?
737 if (hpts
->p_cur_slot
!= wheel_slot
) {
738 /* The pacer is a bit late */
739 pacer_to_now
= hpts_slots_diff(hpts
->p_cur_slot
, wheel_slot
);
741 /* The pacer is right on time, now == pacers start time */
745 * To get the number left we can insert into we simply
746 * subtract the distance the pacer has to run from how
747 * many slots there are.
749 avail_on_wheel
= NUM_OF_HPTSI_SLOTS
- dis_to_travel
;
751 * Now how many of those we will eat due to the pacer's
752 * time (p_cur_slot) of start being behind the
753 * real time (wheel_slot)?
755 if (avail_on_wheel
<= pacer_to_now
) {
757 * Wheel wrap, we can't fit on the wheel, that
758 * is unusual the system must be way overloaded!
759 * Insert into the assured slot, and return special
762 counter_u64_add(combined_wheel_wrap
, 1);
764 *target_slot
= hpts
->p_nxt_slot
;
768 * We know how many slots are open
769 * on the wheel (the reverse of what
770 * is left to run. Take away the time
771 * the pacer started to now (wheel_slot)
772 * and that tells you how many slots are
773 * open that can be inserted into that won't
774 * be touched by the pacer until later.
776 return (avail_on_wheel
- pacer_to_now
);
783 check_if_slot_would_be_wrong(struct tcp_hpts_entry
*hpts
, struct tcpcb
*tp
,
784 uint32_t hptsslot
, int line
)
787 * Sanity checks for the pacer with invariants
790 KASSERT(hptsslot
< NUM_OF_HPTSI_SLOTS
,
791 ("hpts:%p tp:%p slot:%d > max", hpts
, tp
, hptsslot
));
792 if ((hpts
->p_hpts_active
) &&
793 (hpts
->p_wheel_complete
== 0)) {
795 * If the pacer is processing a arc
796 * of the wheel, we need to make
797 * sure we are not inserting within
800 int distance
, yet_to_run
;
802 distance
= hpts_slots_diff(hpts
->p_runningslot
, hptsslot
);
803 if (hpts
->p_runningslot
!= hpts
->p_cur_slot
)
804 yet_to_run
= hpts_slots_diff(hpts
->p_runningslot
, hpts
->p_cur_slot
);
806 yet_to_run
= 0; /* processing last slot */
807 KASSERT(yet_to_run
<= distance
, ("hpts:%p tp:%p slot:%d "
808 "distance:%d yet_to_run:%d rs:%d cs:%d", hpts
, tp
,
809 hptsslot
, distance
, yet_to_run
, hpts
->p_runningslot
,
816 tcp_hpts_insert_diag(struct tcpcb
*tp
, uint32_t slot
, int32_t line
, struct hpts_diag
*diag
)
818 struct tcp_hpts_entry
*hpts
;
820 uint32_t slot_on
, wheel_cts
, last_slot
, need_new_to
= 0;
821 int32_t wheel_slot
, maxslots
;
822 bool need_wakeup
= false;
824 INP_WLOCK_ASSERT(tptoinpcb(tp
));
825 MPASS(!(tptoinpcb(tp
)->inp_flags
& INP_DROPPED
));
826 MPASS(!(tp
->t_in_hpts
== IHPTS_ONQUEUE
));
829 * We now return the next-slot the hpts will be on, beyond its
830 * current run (if up) or where it was when it stopped if it is
833 hpts
= tcp_hpts_lock(tp
);
836 memset(diag
, 0, sizeof(struct hpts_diag
));
837 diag
->p_hpts_active
= hpts
->p_hpts_active
;
838 diag
->p_prev_slot
= hpts
->p_prev_slot
;
839 diag
->p_runningslot
= hpts
->p_runningslot
;
840 diag
->p_nxt_slot
= hpts
->p_nxt_slot
;
841 diag
->p_cur_slot
= hpts
->p_cur_slot
;
842 diag
->p_curtick
= hpts
->p_curtick
;
843 diag
->p_lasttick
= hpts
->p_lasttick
;
844 diag
->slot_req
= slot
;
845 diag
->p_on_min_sleep
= hpts
->p_on_min_sleep
;
846 diag
->hpts_sleep_time
= hpts
->p_hpts_sleep_time
;
849 /* Ok we need to set it on the hpts in the current slot */
850 tp
->t_hpts_request
= 0;
851 if ((hpts
->p_hpts_active
== 0) || (hpts
->p_wheel_complete
)) {
853 * A sleeping hpts we want in next slot to run
854 * note that in this state p_prev_slot == p_cur_slot
856 tp
->t_hpts_slot
= hpts_slot(hpts
->p_prev_slot
, 1);
857 if ((hpts
->p_on_min_sleep
== 0) &&
858 (hpts
->p_hpts_active
== 0))
861 tp
->t_hpts_slot
= hpts
->p_runningslot
;
862 if (__predict_true(tp
->t_in_hpts
!= IHPTS_MOVING
))
863 tcp_hpts_insert_internal(tp
, hpts
);
866 * Activate the hpts if it is sleeping and its
869 hpts
->p_direct_wake
= 1;
872 slot_on
= hpts
->p_nxt_slot
;
877 /* Get the current time relative to the wheel */
878 wheel_cts
= tcp_tv_to_hptstick(&tv
);
879 /* Map it onto the wheel */
880 wheel_slot
= tick_to_wheel(wheel_cts
);
881 /* Now what's the max we can place it at? */
882 maxslots
= max_slots_available(hpts
, wheel_slot
, &last_slot
);
884 diag
->wheel_slot
= wheel_slot
;
885 diag
->maxslots
= maxslots
;
886 diag
->wheel_cts
= wheel_cts
;
889 /* The pacer is in a wheel wrap behind, yikes! */
892 * Reduce by 1 to prevent a forever loop in
893 * case something else is wrong. Note this
894 * probably does not hurt because the pacer
895 * if its true is so far behind we will be
896 * > 1second late calling anyway.
900 tp
->t_hpts_slot
= last_slot
;
901 tp
->t_hpts_request
= slot
;
902 } else if (maxslots
>= slot
) {
903 /* It all fits on the wheel */
904 tp
->t_hpts_request
= 0;
905 tp
->t_hpts_slot
= hpts_slot(wheel_slot
, slot
);
907 /* It does not fit */
908 tp
->t_hpts_request
= slot
- maxslots
;
909 tp
->t_hpts_slot
= last_slot
;
912 diag
->slot_remaining
= tp
->t_hpts_request
;
913 diag
->inp_hptsslot
= tp
->t_hpts_slot
;
916 check_if_slot_would_be_wrong(hpts
, tp
, tp
->t_hpts_slot
, line
);
918 if (__predict_true(tp
->t_in_hpts
!= IHPTS_MOVING
))
919 tcp_hpts_insert_internal(tp
, hpts
);
920 if ((hpts
->p_hpts_active
== 0) &&
921 (tp
->t_hpts_request
== 0) &&
922 (hpts
->p_on_min_sleep
== 0)) {
924 * The hpts is sleeping and NOT on a minimum
925 * sleep time, we need to figure out where
926 * it will wake up at and if we need to reschedule
929 uint32_t have_slept
, yet_to_sleep
;
931 /* Now do we need to restart the hpts's timer? */
932 have_slept
= hpts_slots_diff(hpts
->p_prev_slot
, wheel_slot
);
933 if (have_slept
< hpts
->p_hpts_sleep_time
)
934 yet_to_sleep
= hpts
->p_hpts_sleep_time
- have_slept
;
936 /* We are over-due */
941 diag
->have_slept
= have_slept
;
942 diag
->yet_to_sleep
= yet_to_sleep
;
945 (yet_to_sleep
> slot
)) {
947 * We need to reschedule the hpts's time-out.
949 hpts
->p_hpts_sleep_time
= slot
;
950 need_new_to
= slot
* HPTS_TICKS_PER_SLOT
;
954 * Now how far is the hpts sleeping to? if active is 1, its
955 * up and ticking we do nothing, otherwise we may need to
956 * reschedule its callout if need_new_to is set from above.
959 hpts
->p_direct_wake
= 1;
962 diag
->need_new_to
= 0;
963 diag
->co_ret
= 0xffff0000;
965 } else if (need_new_to
) {
972 while (need_new_to
> HPTS_USEC_IN_SEC
) {
974 need_new_to
-= HPTS_USEC_IN_SEC
;
976 tv
.tv_usec
= need_new_to
;
978 co_ret
= callout_reset_sbt_on(&hpts
->co
, sb
, 0,
979 hpts_timeout_swi
, hpts
, hpts
->p_cpu
,
980 (C_DIRECT_EXEC
| C_PREL(tcp_hpts_precision
)));
982 diag
->need_new_to
= need_new_to
;
983 diag
->co_ret
= co_ret
;
986 slot_on
= hpts
->p_nxt_slot
;
993 hpts_cpuid(struct tcpcb
*tp
, int *failed
)
995 struct inpcb
*inp
= tptoinpcb(tp
);
998 struct hpts_domain_info
*di
;
1002 if (tp
->t_flags2
& TF2_HPTS_CPU_SET
) {
1003 return (tp
->t_hpts_cpu
);
1006 * If we are using the irq cpu set by LRO or
1007 * the driver then it overrides all other domains.
1009 if (tcp_use_irq_cpu
) {
1010 if (tp
->t_lro_cpu
== HPTS_CPU_NONE
) {
1014 return (tp
->t_lro_cpu
);
1016 /* If one is set the other must be the same */
1018 cpuid
= rss_hash2cpuid(inp
->inp_flowid
, inp
->inp_flowtype
);
1019 if (cpuid
== NETISR_CPUID_NONE
)
1020 return (hpts_random_cpu());
1025 * We don't have a flowid -> cpuid mapping, so cheat and just map
1026 * unknown cpuids to curcpu. Not the best, but apparently better
1027 * than defaulting to swi 0.
1029 if (inp
->inp_flowtype
== M_HASHTYPE_NONE
) {
1030 counter_u64_add(cpu_uses_random
, 1);
1031 return (hpts_random_cpu());
1034 * Hash to a thread based on the flowid. If we are using numa,
1035 * then restrict the hash to the numa domain where the inp lives.
1039 if ((vm_ndomains
== 1) ||
1040 (inp
->inp_numa_domain
== M_NODOM
)) {
1042 cpuid
= inp
->inp_flowid
% mp_ncpus
;
1045 /* Hash into the cpu's that use that domain */
1046 di
= &hpts_domains
[inp
->inp_numa_domain
];
1047 cpuid
= di
->cpu
[inp
->inp_flowid
% di
->count
];
1050 counter_u64_add(cpu_uses_flowid
, 1);
1055 tcp_hpts_set_max_sleep(struct tcp_hpts_entry
*hpts
, int wrap_loop_cnt
)
1059 if ((hpts
->p_on_queue_cnt
) && (wrap_loop_cnt
< 2)) {
1061 * Find next slot that is occupied and use that to
1062 * be the sleep time.
1064 for (i
= 0, t
= hpts_slot(hpts
->p_cur_slot
, 1); i
< NUM_OF_HPTSI_SLOTS
; i
++) {
1065 if (TAILQ_EMPTY(&hpts
->p_hptss
[t
].head
) == 0) {
1068 t
= (t
+ 1) % NUM_OF_HPTSI_SLOTS
;
1070 KASSERT((i
!= NUM_OF_HPTSI_SLOTS
), ("Hpts:%p cnt:%d but none found", hpts
, hpts
->p_on_queue_cnt
));
1071 hpts
->p_hpts_sleep_time
= min((i
+ 1), hpts_sleep_max
);
1073 /* No one on the wheel sleep for all but 400 slots or sleep max */
1074 hpts
->p_hpts_sleep_time
= hpts_sleep_max
;
1079 tcp_hptsi(struct tcp_hpts_entry
*hpts
, bool from_callout
)
1083 int32_t slots_to_run
, i
, error
;
1084 int32_t loop_cnt
= 0;
1085 int32_t did_prefetch
= 0;
1086 int32_t prefetch_tp
= 0;
1087 int32_t wrap_loop_cnt
= 0;
1088 int32_t slot_pos_of_endpoint
= 0;
1089 int32_t orig_exit_slot
;
1090 bool completed_measure
, seen_endpoint
;
1092 completed_measure
= false;
1093 seen_endpoint
= false;
1095 HPTS_MTX_ASSERT(hpts
);
1097 /* record previous info for any logging */
1098 hpts
->saved_lasttick
= hpts
->p_lasttick
;
1099 hpts
->saved_curtick
= hpts
->p_curtick
;
1100 hpts
->saved_curslot
= hpts
->p_cur_slot
;
1101 hpts
->saved_prev_slot
= hpts
->p_prev_slot
;
1103 hpts
->p_lasttick
= hpts
->p_curtick
;
1104 hpts
->p_curtick
= tcp_gethptstick(&tv
);
1105 tcp_pace
.cts_last_ran
[hpts
->p_num
] = tcp_tv_to_usectick(&tv
);
1106 orig_exit_slot
= hpts
->p_cur_slot
= tick_to_wheel(hpts
->p_curtick
);
1107 if ((hpts
->p_on_queue_cnt
== 0) ||
1108 (hpts
->p_lasttick
== hpts
->p_curtick
)) {
1110 * No time has yet passed,
1113 hpts
->p_prev_slot
= hpts
->p_cur_slot
;
1114 hpts
->p_lasttick
= hpts
->p_curtick
;
1118 hpts
->p_wheel_complete
= 0;
1119 HPTS_MTX_ASSERT(hpts
);
1120 slots_to_run
= hpts_slots_diff(hpts
->p_prev_slot
, hpts
->p_cur_slot
);
1121 if (((hpts
->p_curtick
- hpts
->p_lasttick
) >
1122 ((NUM_OF_HPTSI_SLOTS
-1) * HPTS_TICKS_PER_SLOT
)) &&
1123 (hpts
->p_on_queue_cnt
!= 0)) {
1125 * Wheel wrap is occuring, basically we
1126 * are behind and the distance between
1127 * run's has spread so much it has exceeded
1128 * the time on the wheel (1.024 seconds). This
1129 * is ugly and should NOT be happening. We
1130 * need to run the entire wheel. We last processed
1131 * p_prev_slot, so that needs to be the last slot
1132 * we run. The next slot after that should be our
1133 * reserved first slot for new, and then starts
1134 * the running position. Now the problem is the
1135 * reserved "not to yet" place does not exist
1136 * and there may be inp's in there that need
1137 * running. We can merge those into the
1138 * first slot at the head.
1141 hpts
->p_nxt_slot
= hpts_slot(hpts
->p_prev_slot
, 1);
1142 hpts
->p_runningslot
= hpts_slot(hpts
->p_prev_slot
, 2);
1144 * Adjust p_cur_slot to be where we are starting from
1145 * hopefully we will catch up (fat chance if something
1146 * is broken this bad :( )
1148 hpts
->p_cur_slot
= hpts
->p_prev_slot
;
1150 * The next slot has guys to run too, and that would
1151 * be where we would normally start, lets move them into
1152 * the next slot (p_prev_slot + 2) so that we will
1153 * run them, the extra 10usecs of late (by being
1154 * put behind) does not really matter in this situation.
1156 TAILQ_FOREACH(tp
, &hpts
->p_hptss
[hpts
->p_nxt_slot
].head
,
1158 MPASS(tp
->t_hpts_slot
== hpts
->p_nxt_slot
);
1159 MPASS(tp
->t_hpts_gencnt
==
1160 hpts
->p_hptss
[hpts
->p_nxt_slot
].gencnt
);
1161 MPASS(tp
->t_in_hpts
== IHPTS_ONQUEUE
);
1164 * Update gencnt and nextslot accordingly to match
1165 * the new location. This is safe since it takes both
1166 * the INP lock and the pacer mutex to change the
1167 * t_hptsslot and t_hpts_gencnt.
1170 hpts
->p_hptss
[hpts
->p_runningslot
].gencnt
;
1171 tp
->t_hpts_slot
= hpts
->p_runningslot
;
1173 TAILQ_CONCAT(&hpts
->p_hptss
[hpts
->p_runningslot
].head
,
1174 &hpts
->p_hptss
[hpts
->p_nxt_slot
].head
, t_hpts
);
1175 hpts
->p_hptss
[hpts
->p_runningslot
].count
+=
1176 hpts
->p_hptss
[hpts
->p_nxt_slot
].count
;
1177 hpts
->p_hptss
[hpts
->p_nxt_slot
].count
= 0;
1178 hpts
->p_hptss
[hpts
->p_nxt_slot
].gencnt
++;
1179 slots_to_run
= NUM_OF_HPTSI_SLOTS
- 1;
1180 counter_u64_add(wheel_wrap
, 1);
1183 * Nxt slot is always one after p_runningslot though
1184 * its not used usually unless we are doing wheel wrap.
1186 hpts
->p_nxt_slot
= hpts
->p_prev_slot
;
1187 hpts
->p_runningslot
= hpts_slot(hpts
->p_prev_slot
, 1);
1189 if (hpts
->p_on_queue_cnt
== 0) {
1192 for (i
= 0; i
< slots_to_run
; i
++) {
1193 struct tcpcb
*tp
, *ntp
;
1194 TAILQ_HEAD(, tcpcb
) head
= TAILQ_HEAD_INITIALIZER(head
);
1195 struct hptsh
*hptsh
;
1196 uint32_t runningslot
;
1199 * Calculate our delay, if there are no extra ticks there
1200 * was not any (i.e. if slots_to_run == 1, no delay).
1202 hpts
->p_delayed_by
= (slots_to_run
- (i
+ 1)) *
1203 HPTS_TICKS_PER_SLOT
;
1205 runningslot
= hpts
->p_runningslot
;
1206 hptsh
= &hpts
->p_hptss
[runningslot
];
1207 TAILQ_SWAP(&head
, &hptsh
->head
, tcpcb
, t_hpts
);
1208 hpts
->p_on_queue_cnt
-= hptsh
->count
;
1214 TAILQ_FOREACH_SAFE(tp
, &head
, t_hpts
, ntp
) {
1215 struct inpcb
*inp
= tptoinpcb(tp
);
1220 * If we have a next tcpcb, see if we can
1221 * prefetch it. Note this may seem
1222 * "risky" since we have no locks (other
1223 * than the previous inp) and there no
1224 * assurance that ntp was not pulled while
1225 * we were processing tp and freed. If this
1226 * occurred it could mean that either:
1228 * a) Its NULL (which is fine we won't go
1229 * here) <or> b) Its valid (which is cool we
1230 * will prefetch it) <or> c) The inp got
1231 * freed back to the slab which was
1232 * reallocated. Then the piece of memory was
1233 * re-used and something else (not an
1234 * address) is in inp_ppcb. If that occurs
1235 * we don't crash, but take a TLB shootdown
1236 * performance hit (same as if it was NULL
1237 * and we tried to pre-fetch it).
1239 * Considering that the likelyhood of <c> is
1240 * quite rare we will take a risk on doing
1241 * this. If performance drops after testing
1242 * we can always take this out. NB: the
1243 * kern_prefetch on amd64 actually has
1244 * protection against a bad address now via
1245 * the DMAP_() tests. This will prevent the
1246 * TLB hit, and instead if <c> occurs just
1247 * cause us to load cache with a useless
1250 * XXXGL: this comment and the prefetch action
1251 * could be outdated after tp == inp change.
1253 kern_prefetch(ntp
, &prefetch_tp
);
1258 if (!seen_endpoint
) {
1259 seen_endpoint
= true;
1260 orig_exit_slot
= slot_pos_of_endpoint
=
1262 } else if (!completed_measure
) {
1263 /* Record the new position */
1264 orig_exit_slot
= runningslot
;
1268 if ((tp
->t_flags2
& TF2_HPTS_CPU_SET
) == 0) {
1274 if (__predict_false(tp
->t_in_hpts
== IHPTS_MOVING
)) {
1275 if (tp
->t_hpts_slot
== -1) {
1276 tp
->t_in_hpts
= IHPTS_NONE
;
1277 if (in_pcbrele_wlocked(inp
) == false)
1281 tcp_hpts_insert_internal(tp
, hpts
);
1288 MPASS(tp
->t_in_hpts
== IHPTS_ONQUEUE
);
1289 MPASS(!(inp
->inp_flags
& INP_DROPPED
));
1290 KASSERT(runningslot
== tp
->t_hpts_slot
,
1291 ("Hpts:%p inp:%p slot mis-aligned %u vs %u",
1292 hpts
, inp
, runningslot
, tp
->t_hpts_slot
));
1294 if (tp
->t_hpts_request
) {
1296 * This guy is deferred out further in time
1297 * then our wheel had available on it.
1298 * Push him back on the wheel or run it
1301 uint32_t maxslots
, last_slot
, remaining_slots
;
1303 remaining_slots
= slots_to_run
- (i
+ 1);
1304 if (tp
->t_hpts_request
> remaining_slots
) {
1307 * How far out can we go?
1309 maxslots
= max_slots_available(hpts
,
1310 hpts
->p_cur_slot
, &last_slot
);
1311 if (maxslots
>= tp
->t_hpts_request
) {
1312 /* We can place it finally to
1314 tp
->t_hpts_slot
= hpts_slot(
1315 hpts
->p_runningslot
,
1316 tp
->t_hpts_request
);
1317 tp
->t_hpts_request
= 0;
1319 /* Work off some more time */
1320 tp
->t_hpts_slot
= last_slot
;
1321 tp
->t_hpts_request
-=
1324 tcp_hpts_insert_internal(tp
, hpts
);
1329 tp
->t_hpts_request
= 0;
1330 /* Fall through we will so do it now */
1333 tcp_hpts_release(tp
);
1336 * Setup so the next time we will move to
1337 * the right CPU. This should be a rare
1338 * event. It will sometimes happens when we
1339 * are the client side (usually not the
1340 * server). Somehow tcp_output() gets called
1341 * before the tcp_do_segment() sets the
1342 * intial state. This means the r_cpu and
1343 * r_hpts_cpu is 0. We get on the hpts, and
1344 * then tcp_input() gets called setting up
1345 * the r_cpu to the correct value. The hpts
1346 * goes off and sees the mis-match. We
1347 * simply correct it here and the CPU will
1348 * switch to the new hpts nextime the tcb
1349 * gets added to the hpts (not this one)
1354 CURVNET_SET(inp
->inp_vnet
);
1355 /* Lets do any logging that we might want to */
1356 if (hpts_does_tp_logging
&& tcp_bblogging_on(tp
)) {
1357 tcp_hpts_log(hpts
, tp
, &tv
, slots_to_run
, i
,
1361 if (tp
->t_fb_ptr
!= NULL
) {
1362 kern_prefetch(tp
->t_fb_ptr
, &did_prefetch
);
1366 * We set TF2_HPTS_CALLS before any possible output.
1367 * The contract with the transport is that if it cares
1368 * about hpts calling it should clear the flag. That
1369 * way next time it is called it will know it is hpts.
1371 * We also only call tfb_do_queued_segments() <or>
1372 * tcp_output(). It is expected that if segments are
1373 * queued and come in that the final input mbuf will
1374 * cause a call to output if it is needed so we do
1375 * not need a second call to tcp_output(). So we do
1376 * one or the other but not both.
1378 * XXXGL: some KPI abuse here. tfb_do_queued_segments
1379 * returns unlocked with positive error (always 1) and
1380 * tcp_output returns unlocked with negative error.
1382 tp
->t_flags2
|= TF2_HPTS_CALLS
;
1383 if ((tp
->t_flags2
& TF2_SUPPORTS_MBUFQ
) &&
1384 !STAILQ_EMPTY(&tp
->t_inqueue
))
1385 error
= -(*tp
->t_fb
->tfb_do_queued_segments
)(tp
,
1388 error
= tcp_output(tp
);
1389 if (__predict_true(error
>= 0))
1393 if (seen_endpoint
) {
1395 * We now have a accurate distance between
1396 * slot_pos_of_endpoint <-> orig_exit_slot
1397 * to tell us how late we were, orig_exit_slot
1398 * is where we calculated the end of our cycle to
1399 * be when we first entered.
1401 completed_measure
= true;
1404 hpts
->p_runningslot
++;
1405 if (hpts
->p_runningslot
>= NUM_OF_HPTSI_SLOTS
) {
1406 hpts
->p_runningslot
= 0;
1410 HPTS_MTX_ASSERT(hpts
);
1411 hpts
->p_delayed_by
= 0;
1413 * Check to see if we took an excess amount of time and need to run
1414 * more ticks (if we did not hit eno-bufs).
1416 hpts
->p_prev_slot
= hpts
->p_cur_slot
;
1417 hpts
->p_lasttick
= hpts
->p_curtick
;
1418 if (!from_callout
|| (loop_cnt
> max_pacer_loops
)) {
1420 * Something is serious slow we have
1421 * looped through processing the wheel
1422 * and by the time we cleared the
1423 * needs to run max_pacer_loops time
1424 * we still needed to run. That means
1425 * the system is hopelessly behind and
1426 * can never catch up :(
1428 * We will just lie to this thread
1429 * and let it thing p_curtick is
1430 * correct. When it next awakens
1431 * it will find itself further behind.
1434 counter_u64_add(hpts_hopelessly_behind
, 1);
1437 hpts
->p_curtick
= tcp_gethptstick(&tv
);
1438 hpts
->p_cur_slot
= tick_to_wheel(hpts
->p_curtick
);
1439 if (!seen_endpoint
) {
1440 /* We saw no endpoint but we may be looping */
1441 orig_exit_slot
= hpts
->p_cur_slot
;
1443 if ((wrap_loop_cnt
< 2) &&
1444 (hpts
->p_lasttick
!= hpts
->p_curtick
)) {
1445 counter_u64_add(hpts_loops
, 1);
1450 tcp_pace
.cts_last_ran
[hpts
->p_num
] = tcp_tv_to_usectick(&tv
);
1452 * Set flag to tell that we are done for
1453 * any slot input that happens during
1456 hpts
->p_wheel_complete
= 1;
1458 * Now did we spend too long running input and need to run more ticks?
1459 * Note that if wrap_loop_cnt < 2 then we should have the conditions
1460 * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt
1461 * is greater than 2, then the condtion most likely are *not* true.
1462 * Also if we are called not from the callout, we don't run the wheel
1463 * multiple times so the slots may not align either.
1465 KASSERT(((hpts
->p_prev_slot
== hpts
->p_cur_slot
) ||
1466 (wrap_loop_cnt
>= 2) || !from_callout
),
1467 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts
,
1468 hpts
->p_prev_slot
, hpts
->p_cur_slot
));
1469 KASSERT(((hpts
->p_lasttick
== hpts
->p_curtick
)
1470 || (wrap_loop_cnt
>= 2) || !from_callout
),
1471 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts
,
1472 hpts
->p_lasttick
, hpts
->p_curtick
));
1473 if (from_callout
&& (hpts
->p_lasttick
!= hpts
->p_curtick
)) {
1474 hpts
->p_curtick
= tcp_gethptstick(&tv
);
1475 counter_u64_add(hpts_loops
, 1);
1476 hpts
->p_cur_slot
= tick_to_wheel(hpts
->p_curtick
);
1481 tcp_hpts_set_max_sleep(hpts
, wrap_loop_cnt
);
1484 return(hpts_slots_diff(slot_pos_of_endpoint
, orig_exit_slot
));
1490 __tcp_set_hpts(struct tcpcb
*tp
, int32_t line
)
1492 struct tcp_hpts_entry
*hpts
;
1495 INP_WLOCK_ASSERT(tptoinpcb(tp
));
1497 hpts
= tcp_hpts_lock(tp
);
1498 if (tp
->t_in_hpts
== IHPTS_NONE
&& !(tp
->t_flags2
& TF2_HPTS_CPU_SET
)) {
1499 tp
->t_hpts_cpu
= hpts_cpuid(tp
, &failed
);
1501 tp
->t_flags2
|= TF2_HPTS_CPU_SET
;
1506 static struct tcp_hpts_entry
*
1507 tcp_choose_hpts_to_run(void)
1509 int i
, oldest_idx
, start
, end
;
1510 uint32_t cts
, time_since_ran
, calc
;
1512 cts
= tcp_get_usecs(NULL
);
1514 /* Default is all one group */
1516 end
= tcp_pace
.rp_num_hptss
;
1518 * If we have more than one L3 group figure out which one
1521 if (tcp_pace
.grp_cnt
> 1) {
1522 for (i
= 0; i
< tcp_pace
.grp_cnt
; i
++) {
1523 if (CPU_ISSET(curcpu
, &tcp_pace
.grps
[i
]->cg_mask
)) {
1524 start
= tcp_pace
.grps
[i
]->cg_first
;
1525 end
= (tcp_pace
.grps
[i
]->cg_last
+ 1);
1531 for (i
= start
; i
< end
; i
++) {
1532 if (TSTMP_GT(cts
, tcp_pace
.cts_last_ran
[i
]))
1533 calc
= cts
- tcp_pace
.cts_last_ran
[i
];
1536 if (calc
> time_since_ran
) {
1538 time_since_ran
= calc
;
1541 if (oldest_idx
>= 0)
1542 return(tcp_pace
.rp_ent
[oldest_idx
]);
1544 return(tcp_pace
.rp_ent
[(curcpu
% tcp_pace
.rp_num_hptss
)]);
1548 __tcp_run_hpts(void)
1550 struct epoch_tracker et
;
1551 struct tcp_hpts_entry
*hpts
;
1554 hpts
= tcp_choose_hpts_to_run();
1556 if (hpts
->p_hpts_active
) {
1557 /* Already active */
1560 if (!HPTS_TRYLOCK(hpts
)) {
1561 /* Someone else got the lock */
1564 NET_EPOCH_ENTER(et
);
1565 if (hpts
->p_hpts_active
)
1567 hpts
->syscall_cnt
++;
1568 counter_u64_add(hpts_direct_call
, 1);
1569 hpts
->p_hpts_active
= 1;
1570 ticks_ran
= tcp_hptsi(hpts
, false);
1571 /* We may want to adjust the sleep values here */
1572 if (hpts
->p_on_queue_cnt
>= conn_cnt_thresh
) {
1573 if (ticks_ran
> ticks_indicate_less_sleep
) {
1577 hpts
->p_mysleep
.tv_usec
/= 2;
1578 if (hpts
->p_mysleep
.tv_usec
< dynamic_min_sleep
)
1579 hpts
->p_mysleep
.tv_usec
= dynamic_min_sleep
;
1580 /* Reschedule with new to value */
1581 tcp_hpts_set_max_sleep(hpts
, 0);
1583 tv
.tv_usec
= hpts
->p_hpts_sleep_time
* HPTS_TICKS_PER_SLOT
;
1584 /* Validate its in the right ranges */
1585 if (tv
.tv_usec
< hpts
->p_mysleep
.tv_usec
) {
1586 hpts
->overidden_sleep
= tv
.tv_usec
;
1587 tv
.tv_usec
= hpts
->p_mysleep
.tv_usec
;
1588 } else if (tv
.tv_usec
> dynamic_max_sleep
) {
1589 /* Lets not let sleep get above this value */
1590 hpts
->overidden_sleep
= tv
.tv_usec
;
1591 tv
.tv_usec
= dynamic_max_sleep
;
1594 * In this mode the timer is a backstop to
1595 * all the userret/lro_flushes so we use
1596 * the dynamic value and set the on_min_sleep
1597 * flag so we will not be awoken.
1600 /* Store off to make visible the actual sleep time */
1601 hpts
->sleeping
= tv
.tv_usec
;
1602 callout_reset_sbt_on(&hpts
->co
, sb
, 0,
1603 hpts_timeout_swi
, hpts
, hpts
->p_cpu
,
1604 (C_DIRECT_EXEC
| C_PREL(tcp_hpts_precision
)));
1605 } else if (ticks_ran
< ticks_indicate_more_sleep
) {
1606 /* For the further sleep, don't reschedule hpts */
1607 hpts
->p_mysleep
.tv_usec
*= 2;
1608 if (hpts
->p_mysleep
.tv_usec
> dynamic_max_sleep
)
1609 hpts
->p_mysleep
.tv_usec
= dynamic_max_sleep
;
1611 hpts
->p_on_min_sleep
= 1;
1613 hpts
->p_hpts_active
= 0;
1620 tcp_hpts_thread(void *ctx
)
1622 struct tcp_hpts_entry
*hpts
;
1623 struct epoch_tracker et
;
1628 hpts
= (struct tcp_hpts_entry
*)ctx
;
1630 if (hpts
->p_direct_wake
) {
1631 /* Signaled by input or output with low occupancy count. */
1632 callout_stop(&hpts
->co
);
1633 counter_u64_add(hpts_direct_awakening
, 1);
1635 /* Timed out, the normal case. */
1636 counter_u64_add(hpts_wake_timeout
, 1);
1637 if (callout_pending(&hpts
->co
) ||
1638 !callout_active(&hpts
->co
)) {
1643 callout_deactivate(&hpts
->co
);
1644 hpts
->p_hpts_wake_scheduled
= 0;
1645 NET_EPOCH_ENTER(et
);
1646 if (hpts
->p_hpts_active
) {
1648 * We are active already. This means that a syscall
1649 * trap or LRO is running in behalf of hpts. In that case
1650 * we need to double our timeout since there seems to be
1651 * enough activity in the system that we don't need to
1652 * run as often (if we were not directly woken).
1655 if (hpts
->p_direct_wake
== 0) {
1656 counter_u64_add(hpts_back_tosleep
, 1);
1657 if (hpts
->p_on_queue_cnt
>= conn_cnt_thresh
) {
1658 hpts
->p_mysleep
.tv_usec
*= 2;
1659 if (hpts
->p_mysleep
.tv_usec
> dynamic_max_sleep
)
1660 hpts
->p_mysleep
.tv_usec
= dynamic_max_sleep
;
1661 tv
.tv_usec
= hpts
->p_mysleep
.tv_usec
;
1662 hpts
->p_on_min_sleep
= 1;
1665 * Here we have low count on the wheel, but
1666 * somehow we still collided with one of the
1667 * connections. Lets go back to sleep for a
1668 * min sleep time, but clear the flag so we
1669 * can be awoken by insert.
1671 hpts
->p_on_min_sleep
= 0;
1672 tv
.tv_usec
= tcp_min_hptsi_time
;
1676 * Directly woken most likely to reset the
1679 tv
.tv_usec
= hpts
->p_mysleep
.tv_usec
;
1684 hpts
->p_hpts_active
= 1;
1685 ticks_ran
= tcp_hptsi(hpts
, true);
1687 tv
.tv_usec
= hpts
->p_hpts_sleep_time
* HPTS_TICKS_PER_SLOT
;
1688 if ((hpts
->p_on_queue_cnt
> conn_cnt_thresh
) && (hpts
->hit_callout_thresh
== 0)) {
1689 hpts
->hit_callout_thresh
= 1;
1690 atomic_add_int(&hpts_that_need_softclock
, 1);
1691 } else if ((hpts
->p_on_queue_cnt
<= conn_cnt_thresh
) && (hpts
->hit_callout_thresh
== 1)) {
1692 hpts
->hit_callout_thresh
= 0;
1693 atomic_subtract_int(&hpts_that_need_softclock
, 1);
1695 if (hpts
->p_on_queue_cnt
>= conn_cnt_thresh
) {
1696 if(hpts
->p_direct_wake
== 0) {
1698 * Only adjust sleep time if we were
1699 * called from the callout i.e. direct_wake == 0.
1701 if (ticks_ran
< ticks_indicate_more_sleep
) {
1702 hpts
->p_mysleep
.tv_usec
*= 2;
1703 if (hpts
->p_mysleep
.tv_usec
> dynamic_max_sleep
)
1704 hpts
->p_mysleep
.tv_usec
= dynamic_max_sleep
;
1705 } else if (ticks_ran
> ticks_indicate_less_sleep
) {
1706 hpts
->p_mysleep
.tv_usec
/= 2;
1707 if (hpts
->p_mysleep
.tv_usec
< dynamic_min_sleep
)
1708 hpts
->p_mysleep
.tv_usec
= dynamic_min_sleep
;
1711 if (tv
.tv_usec
< hpts
->p_mysleep
.tv_usec
) {
1712 hpts
->overidden_sleep
= tv
.tv_usec
;
1713 tv
.tv_usec
= hpts
->p_mysleep
.tv_usec
;
1714 } else if (tv
.tv_usec
> dynamic_max_sleep
) {
1715 /* Lets not let sleep get above this value */
1716 hpts
->overidden_sleep
= tv
.tv_usec
;
1717 tv
.tv_usec
= dynamic_max_sleep
;
1720 * In this mode the timer is a backstop to
1721 * all the userret/lro_flushes so we use
1722 * the dynamic value and set the on_min_sleep
1723 * flag so we will not be awoken.
1725 hpts
->p_on_min_sleep
= 1;
1726 } else if (hpts
->p_on_queue_cnt
== 0) {
1728 * No one on the wheel, please wake us up
1729 * if you insert on the wheel.
1731 hpts
->p_on_min_sleep
= 0;
1732 hpts
->overidden_sleep
= 0;
1735 * We hit here when we have a low number of
1736 * clients on the wheel (our else clause).
1737 * We may need to go on min sleep, if we set
1738 * the flag we will not be awoken if someone
1739 * is inserted ahead of us. Clearing the flag
1740 * means we can be awoken. This is "old mode"
1741 * where the timer is what runs hpts mainly.
1743 if (tv
.tv_usec
< tcp_min_hptsi_time
) {
1745 * Yes on min sleep, which means
1746 * we cannot be awoken.
1748 hpts
->overidden_sleep
= tv
.tv_usec
;
1749 tv
.tv_usec
= tcp_min_hptsi_time
;
1750 hpts
->p_on_min_sleep
= 1;
1752 /* Clear the min sleep flag */
1753 hpts
->overidden_sleep
= 0;
1754 hpts
->p_on_min_sleep
= 0;
1757 HPTS_MTX_ASSERT(hpts
);
1758 hpts
->p_hpts_active
= 0;
1760 hpts
->p_direct_wake
= 0;
1762 /* Store off to make visible the actual sleep time */
1763 hpts
->sleeping
= tv
.tv_usec
;
1764 callout_reset_sbt_on(&hpts
->co
, sb
, 0,
1765 hpts_timeout_swi
, hpts
, hpts
->p_cpu
,
1766 (C_DIRECT_EXEC
| C_PREL(tcp_hpts_precision
)));
1774 hpts_count_level(struct cpu_group
*cg
)
1776 int32_t count_l3
, i
;
1779 if (cg
->cg_level
== CG_SHARE_L3
)
1781 /* Walk all the children looking for L3 */
1782 for (i
= 0; i
< cg
->cg_children
; i
++) {
1783 count_l3
+= hpts_count_level(&cg
->cg_child
[i
]);
1789 hpts_gather_grps(struct cpu_group
**grps
, int32_t *at
, int32_t max
, struct cpu_group
*cg
)
1794 if (cg
->cg_level
== CG_SHARE_L3
) {
1803 /* Walk all the children looking for L3 */
1804 for (i
= 0; i
< cg
->cg_children
; i
++) {
1805 hpts_gather_grps(grps
, at
, max
, &cg
->cg_child
[i
]);
1810 tcp_hpts_mod_load(void)
1812 struct cpu_group
*cpu_top
;
1813 int32_t error __diagused
;
1814 int32_t i
, j
, bound
= 0, created
= 0;
1818 struct tcp_hpts_entry
*hpts
;
1821 uint32_t ncpus
= mp_ncpus
? mp_ncpus
: MAXCPU
;
1825 cpu_top
= smp_topo();
1829 tcp_pace
.rp_num_hptss
= ncpus
;
1830 hpts_hopelessly_behind
= counter_u64_alloc(M_WAITOK
);
1831 hpts_loops
= counter_u64_alloc(M_WAITOK
);
1832 back_tosleep
= counter_u64_alloc(M_WAITOK
);
1833 combined_wheel_wrap
= counter_u64_alloc(M_WAITOK
);
1834 wheel_wrap
= counter_u64_alloc(M_WAITOK
);
1835 hpts_wake_timeout
= counter_u64_alloc(M_WAITOK
);
1836 hpts_direct_awakening
= counter_u64_alloc(M_WAITOK
);
1837 hpts_back_tosleep
= counter_u64_alloc(M_WAITOK
);
1838 hpts_direct_call
= counter_u64_alloc(M_WAITOK
);
1839 cpu_uses_flowid
= counter_u64_alloc(M_WAITOK
);
1840 cpu_uses_random
= counter_u64_alloc(M_WAITOK
);
1842 sz
= (tcp_pace
.rp_num_hptss
* sizeof(struct tcp_hpts_entry
*));
1843 tcp_pace
.rp_ent
= malloc(sz
, M_TCPHPTS
, M_WAITOK
| M_ZERO
);
1844 sz
= (sizeof(uint32_t) * tcp_pace
.rp_num_hptss
);
1845 tcp_pace
.cts_last_ran
= malloc(sz
, M_TCPHPTS
, M_WAITOK
);
1846 tcp_pace
.grp_cnt
= 0;
1847 if (cpu_top
== NULL
) {
1848 tcp_pace
.grp_cnt
= 1;
1850 /* Find out how many cache level 3 domains we have */
1852 tcp_pace
.grp_cnt
= hpts_count_level(cpu_top
);
1853 if (tcp_pace
.grp_cnt
== 0) {
1854 tcp_pace
.grp_cnt
= 1;
1856 sz
= (tcp_pace
.grp_cnt
* sizeof(struct cpu_group
*));
1857 tcp_pace
.grps
= malloc(sz
, M_TCPHPTS
, M_WAITOK
);
1858 /* Now populate the groups */
1859 if (tcp_pace
.grp_cnt
== 1) {
1861 * All we need is the top level all cpu's are in
1862 * the same cache so when we use grp[0]->cg_mask
1863 * with the cg_first <-> cg_last it will include
1864 * all cpu's in it. The level here is probably
1867 tcp_pace
.grps
[0] = cpu_top
;
1870 * Here we must find all the level three cache domains
1871 * and setup our pointers to them.
1874 hpts_gather_grps(tcp_pace
.grps
, &count
, tcp_pace
.grp_cnt
, cpu_top
);
1877 asz
= sizeof(struct hptsh
) * NUM_OF_HPTSI_SLOTS
;
1878 for (i
= 0; i
< tcp_pace
.rp_num_hptss
; i
++) {
1879 tcp_pace
.rp_ent
[i
] = malloc(sizeof(struct tcp_hpts_entry
),
1880 M_TCPHPTS
, M_WAITOK
| M_ZERO
);
1881 tcp_pace
.rp_ent
[i
]->p_hptss
= malloc(asz
, M_TCPHPTS
, M_WAITOK
);
1882 hpts
= tcp_pace
.rp_ent
[i
];
1884 * Init all the hpts structures that are not specifically
1885 * zero'd by the allocations. Also lets attach them to the
1886 * appropriate sysctl block as well.
1888 mtx_init(&hpts
->p_mtx
, "tcp_hpts_lck",
1889 "hpts", MTX_DEF
| MTX_DUPOK
);
1890 for (j
= 0; j
< NUM_OF_HPTSI_SLOTS
; j
++) {
1891 TAILQ_INIT(&hpts
->p_hptss
[j
].head
);
1892 hpts
->p_hptss
[j
].count
= 0;
1893 hpts
->p_hptss
[j
].gencnt
= 0;
1895 sysctl_ctx_init(&hpts
->hpts_ctx
);
1896 sprintf(unit
, "%d", i
);
1897 hpts
->hpts_root
= SYSCTL_ADD_NODE(&hpts
->hpts_ctx
,
1898 SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts
),
1901 CTLFLAG_RW
| CTLFLAG_MPSAFE
, 0,
1903 SYSCTL_ADD_INT(&hpts
->hpts_ctx
,
1904 SYSCTL_CHILDREN(hpts
->hpts_root
),
1905 OID_AUTO
, "out_qcnt", CTLFLAG_RD
,
1906 &hpts
->p_on_queue_cnt
, 0,
1907 "Count TCB's awaiting output processing");
1908 SYSCTL_ADD_U16(&hpts
->hpts_ctx
,
1909 SYSCTL_CHILDREN(hpts
->hpts_root
),
1910 OID_AUTO
, "active", CTLFLAG_RD
,
1911 &hpts
->p_hpts_active
, 0,
1912 "Is the hpts active");
1913 SYSCTL_ADD_UINT(&hpts
->hpts_ctx
,
1914 SYSCTL_CHILDREN(hpts
->hpts_root
),
1915 OID_AUTO
, "curslot", CTLFLAG_RD
,
1916 &hpts
->p_cur_slot
, 0,
1917 "What the current running pacers goal");
1918 SYSCTL_ADD_UINT(&hpts
->hpts_ctx
,
1919 SYSCTL_CHILDREN(hpts
->hpts_root
),
1920 OID_AUTO
, "runtick", CTLFLAG_RD
,
1921 &hpts
->p_runningslot
, 0,
1922 "What the running pacers current slot is");
1923 SYSCTL_ADD_UINT(&hpts
->hpts_ctx
,
1924 SYSCTL_CHILDREN(hpts
->hpts_root
),
1925 OID_AUTO
, "curtick", CTLFLAG_RD
,
1926 &hpts
->p_curtick
, 0,
1927 "What the running pacers last tick mapped to the wheel was");
1928 SYSCTL_ADD_UINT(&hpts
->hpts_ctx
,
1929 SYSCTL_CHILDREN(hpts
->hpts_root
),
1930 OID_AUTO
, "lastran", CTLFLAG_RD
,
1931 &tcp_pace
.cts_last_ran
[i
], 0,
1932 "The last usec tick that this hpts ran");
1933 SYSCTL_ADD_LONG(&hpts
->hpts_ctx
,
1934 SYSCTL_CHILDREN(hpts
->hpts_root
),
1935 OID_AUTO
, "cur_min_sleep", CTLFLAG_RD
,
1936 &hpts
->p_mysleep
.tv_usec
,
1937 "What the running pacers is using for p_mysleep.tv_usec");
1938 SYSCTL_ADD_U64(&hpts
->hpts_ctx
,
1939 SYSCTL_CHILDREN(hpts
->hpts_root
),
1940 OID_AUTO
, "now_sleeping", CTLFLAG_RD
,
1942 "What the running pacers is actually sleeping for");
1943 SYSCTL_ADD_U64(&hpts
->hpts_ctx
,
1944 SYSCTL_CHILDREN(hpts
->hpts_root
),
1945 OID_AUTO
, "syscall_cnt", CTLFLAG_RD
,
1946 &hpts
->syscall_cnt
, 0,
1947 "How many times we had syscalls on this hpts");
1949 hpts
->p_hpts_sleep_time
= hpts_sleep_max
;
1951 hpts
->p_curtick
= tcp_gethptstick(&tv
);
1952 tcp_pace
.cts_last_ran
[i
] = tcp_tv_to_usectick(&tv
);
1953 hpts
->p_prev_slot
= hpts
->p_cur_slot
= tick_to_wheel(hpts
->p_curtick
);
1954 hpts
->p_cpu
= 0xffff;
1955 hpts
->p_nxt_slot
= hpts_slot(hpts
->p_cur_slot
, 1);
1956 callout_init(&hpts
->co
, 1);
1958 /* Don't try to bind to NUMA domains if we don't have any */
1959 if (vm_ndomains
== 1 && tcp_bind_threads
== 2)
1960 tcp_bind_threads
= 0;
1963 * Now lets start ithreads to handle the hptss.
1965 for (i
= 0; i
< tcp_pace
.rp_num_hptss
; i
++) {
1966 hpts
= tcp_pace
.rp_ent
[i
];
1969 error
= swi_add(&hpts
->ie
, "hpts",
1970 tcp_hpts_thread
, (void *)hpts
,
1971 SWI_NET
, INTR_MPSAFE
, &hpts
->ie_cookie
);
1973 ("Can't add hpts:%p i:%d err:%d",
1976 hpts
->p_mysleep
.tv_sec
= 0;
1977 hpts
->p_mysleep
.tv_usec
= tcp_min_hptsi_time
;
1978 if (tcp_bind_threads
== 1) {
1979 if (intr_event_bind(hpts
->ie
, i
) == 0)
1981 } else if (tcp_bind_threads
== 2) {
1982 /* Find the group for this CPU (i) and bind into it */
1983 for (j
= 0; j
< tcp_pace
.grp_cnt
; j
++) {
1984 if (CPU_ISSET(i
, &tcp_pace
.grps
[j
]->cg_mask
)) {
1985 if (intr_event_bind_ithread_cpuset(hpts
->ie
,
1986 &tcp_pace
.grps
[j
]->cg_mask
) == 0) {
1989 domain
= pc
->pc_domain
;
1990 count
= hpts_domains
[domain
].count
;
1991 hpts_domains
[domain
].cpu
[count
] = i
;
1992 hpts_domains
[domain
].count
++;
1999 tv
.tv_usec
= hpts
->p_hpts_sleep_time
* HPTS_TICKS_PER_SLOT
;
2000 hpts
->sleeping
= tv
.tv_usec
;
2002 callout_reset_sbt_on(&hpts
->co
, sb
, 0,
2003 hpts_timeout_swi
, hpts
, hpts
->p_cpu
,
2004 (C_DIRECT_EXEC
| C_PREL(tcp_hpts_precision
)));
2007 * If we somehow have an empty domain, fall back to choosing
2008 * among all htps threads.
2010 for (i
= 0; i
< vm_ndomains
; i
++) {
2011 if (hpts_domains
[i
].count
== 0) {
2012 tcp_bind_threads
= 0;
2016 tcp_hpts_softclock
= __tcp_run_hpts
;
2017 tcp_lro_hpts_init();
2018 printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n",
2020 tcp_bind_threads
== 2 ? "NUMA domains" : "cpus");
2024 tcp_hpts_mod_unload(void)
2028 tcp_lro_hpts_uninit();
2029 atomic_store_ptr(&tcp_hpts_softclock
, NULL
);
2031 for (int i
= 0; i
< tcp_pace
.rp_num_hptss
; i
++) {
2032 struct tcp_hpts_entry
*hpts
= tcp_pace
.rp_ent
[i
];
2034 rv
= callout_drain(&hpts
->co
);
2037 rv
= swi_remove(hpts
->ie_cookie
);
2040 rv
= sysctl_ctx_free(&hpts
->hpts_ctx
);
2043 mtx_destroy(&hpts
->p_mtx
);
2044 free(hpts
->p_hptss
, M_TCPHPTS
);
2045 free(hpts
, M_TCPHPTS
);
2048 free(tcp_pace
.rp_ent
, M_TCPHPTS
);
2049 free(tcp_pace
.cts_last_ran
, M_TCPHPTS
);
2051 free(tcp_pace
.grps
, M_TCPHPTS
);
2054 counter_u64_free(hpts_hopelessly_behind
);
2055 counter_u64_free(hpts_loops
);
2056 counter_u64_free(back_tosleep
);
2057 counter_u64_free(combined_wheel_wrap
);
2058 counter_u64_free(wheel_wrap
);
2059 counter_u64_free(hpts_wake_timeout
);
2060 counter_u64_free(hpts_direct_awakening
);
2061 counter_u64_free(hpts_back_tosleep
);
2062 counter_u64_free(hpts_direct_call
);
2063 counter_u64_free(cpu_uses_flowid
);
2064 counter_u64_free(cpu_uses_random
);
2068 tcp_hpts_modevent(module_t mod
, int what
, void *arg
)
2073 tcp_hpts_mod_load();
2077 * Since we are a dependency of TCP stack modules, they should
2078 * already be unloaded, and the HPTS ring is empty. However,
2079 * function pointer manipulations aren't 100% safe. Although,
2080 * tcp_hpts_mod_unload() use atomic(9) the userret() doesn't.
2081 * Thus, allow only forced unload of HPTS.
2085 tcp_hpts_mod_unload();
2092 static moduledata_t tcp_hpts_module
= {
2094 .evhand
= tcp_hpts_modevent
,
2097 DECLARE_MODULE(tcphpts
, tcp_hpts_module
, SI_SUB_SOFTINTR
, SI_ORDER_ANY
);
2098 MODULE_VERSION(tcphpts
, 1);