Support both μs and us for entering microseconds
[gcalctool.git] / src / mp-trigonometric.c
blob3ad60c4519a5175479c75d663442e52cf780ae46
1 /*
2 * Copyright (C) 1987-2008 Sun Microsystems, Inc. All Rights Reserved.
3 * Copyright (C) 2008-2011 Robert Ancell.
4 *
5 * This program is free software: you can redistribute it and/or modify it under
6 * the terms of the GNU General Public License as published by the Free Software
7 * Foundation, either version 2 of the License, or (at your option) any later
8 * version. See http://www.gnu.org/copyleft/gpl.html the full text of the
9 * license.
12 #include <stdlib.h>
13 #include <string.h>
14 #include <math.h>
15 #include <libintl.h>
17 #include "mp.h"
18 #include "mp-private.h"
20 static MPNumber pi;
21 static gboolean have_pi = FALSE;
23 static int
24 mp_compare_mp_to_int(const MPNumber *x, int i)
26 MPNumber t;
27 mp_set_from_integer(i, &t);
28 return mp_compare_mp_to_mp(x, &t);
32 /* Convert x to radians */
33 void
34 convert_to_radians(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
36 MPNumber t1, t2;
38 switch(unit) {
39 default:
40 case MP_RADIANS:
41 mp_set_from_mp(x, z);
42 break;
44 case MP_DEGREES:
45 mp_get_pi(&t1);
46 mp_multiply(x, &t1, &t2);
47 mp_divide_integer(&t2, 180, z);
48 break;
50 case MP_GRADIANS:
51 mp_get_pi(&t1);
52 mp_multiply(x, &t1, &t2);
53 mp_divide_integer(&t2, 200, z);
54 break;
59 void
60 mp_get_pi(MPNumber *z)
62 if (mp_is_zero(&pi)) {
63 mp_set_from_string("3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679", 10, &pi);
64 have_pi = TRUE;
66 mp_set_from_mp(&pi, z);
70 void
71 convert_from_radians(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
73 MPNumber t1, t2;
75 switch (unit) {
76 default:
77 case MP_RADIANS:
78 mp_set_from_mp(x, z);
79 break;
81 case MP_DEGREES:
82 mp_multiply_integer(x, 180, &t2);
83 mp_get_pi(&t1);
84 mp_divide(&t2, &t1, z);
85 break;
87 case MP_GRADIANS:
88 mp_multiply_integer(x, 200, &t2);
89 mp_get_pi(&t1);
90 mp_divide(&t2, &t1, z);
91 break;
96 /* z = sin(x) -1 >= x >= 1, do_sin = 1
97 * z = cos(x) -1 >= x >= 1, do_sin = 0
99 static void
100 mpsin1(const MPNumber *x, MPNumber *z, int do_sin)
102 int i, b2;
103 MPNumber t1, t2;
105 /* sin(0) = 0, cos(0) = 1 */
106 if (mp_is_zero(x)) {
107 if (do_sin == 0)
108 mp_set_from_integer(1, z);
109 else
110 mp_set_from_integer(0, z);
111 return;
114 mp_multiply(x, x, &t2);
115 if (mp_compare_mp_to_int(&t2, 1) > 0) {
116 mperr("*** ABS(X) > 1 IN CALL TO MPSIN1 ***");
119 if (do_sin == 0) {
120 mp_set_from_integer(1, &t1);
121 mp_set_from_integer(0, z);
122 i = 1;
123 } else {
124 mp_set_from_mp(x, &t1);
125 mp_set_from_mp(&t1, z);
126 i = 2;
129 /* Taylor series */
130 /* POWER SERIES LOOP. REDUCE T IF POSSIBLE */
131 b2 = 2 * max(MP_BASE, 64);
132 do {
133 if (MP_T + t1.exponent <= 0)
134 break;
136 /* IF I*(I+1) IS NOT REPRESENTABLE AS AN INTEGER, THE FOLLOWING
137 * DIVISION BY I*(I+1) HAS TO BE SPLIT UP.
139 mp_multiply(&t2, &t1, &t1);
140 if (i > b2) {
141 mp_divide_integer(&t1, -i, &t1);
142 mp_divide_integer(&t1, i + 1, &t1);
143 } else {
144 mp_divide_integer(&t1, -i * (i + 1), &t1);
146 mp_add(&t1, z, z);
148 i += 2;
149 } while (t1.sign != 0);
151 if (do_sin == 0)
152 mp_add_integer(z, 1, z);
156 static void
157 mp_sin_real(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
159 int xs;
160 MPNumber x_radians;
162 /* sin(0) = 0 */
163 if (mp_is_zero(x)) {
164 mp_set_from_integer(0, z);
165 return;
168 convert_to_radians(x, unit, &x_radians);
170 xs = x_radians.sign;
171 mp_abs(&x_radians, &x_radians);
173 /* USE MPSIN1 IF ABS(X) <= 1 */
174 if (mp_compare_mp_to_int(&x_radians, 1) <= 0) {
175 mpsin1(&x_radians, z, 1);
177 /* FIND ABS(X) MODULO 2PI */
178 else {
179 mp_get_pi(z);
180 mp_divide_integer(z, 4, z);
181 mp_divide(&x_radians, z, &x_radians);
182 mp_divide_integer(&x_radians, 8, &x_radians);
183 mp_fractional_component(&x_radians, &x_radians);
185 /* SUBTRACT 1/2, SAVE SIGN AND TAKE ABS */
186 mp_add_fraction(&x_radians, -1, 2, &x_radians);
187 xs = -xs * x_radians.sign;
188 if (xs == 0) {
189 mp_set_from_integer(0, z);
190 return;
193 x_radians.sign = 1;
194 mp_multiply_integer(&x_radians, 4, &x_radians);
196 /* IF NOT LESS THAN 1, SUBTRACT FROM 2 */
197 if (x_radians.exponent > 0)
198 mp_add_integer(&x_radians, -2, &x_radians);
200 if (mp_is_zero(&x_radians)) {
201 mp_set_from_integer(0, z);
202 return;
205 x_radians.sign = 1;
206 mp_multiply_integer(&x_radians, 2, &x_radians);
208 /* NOW REDUCED TO FIRST QUADRANT, IF LESS THAN PI/4 USE
209 * POWER SERIES, ELSE COMPUTE COS OF COMPLEMENT
211 if (x_radians.exponent > 0) {
212 mp_add_integer(&x_radians, -2, &x_radians);
213 mp_multiply(&x_radians, z, &x_radians);
214 mpsin1(&x_radians, z, 0);
215 } else {
216 mp_multiply(&x_radians, z, &x_radians);
217 mpsin1(&x_radians, z, 1);
221 z->sign = xs;
225 static void
226 mp_cos_real(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
228 /* cos(0) = 1 */
229 if (mp_is_zero(x)) {
230 mp_set_from_integer(1, z);
231 return;
234 convert_to_radians(x, unit, z);
236 /* Use power series if |x| <= 1 */
237 mp_abs(z, z);
238 if (mp_compare_mp_to_int(z, 1) <= 0) {
239 mpsin1(z, z, 0);
240 } else {
241 MPNumber t;
243 /* cos(x) = sin(π/2 - |x|) */
244 mp_get_pi(&t);
245 mp_divide_integer(&t, 2, &t);
246 mp_subtract(&t, z, z);
247 mp_sin(z, MP_RADIANS, z);
252 void
253 mp_sin(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
255 if (mp_is_complex(x)) {
256 MPNumber x_real, x_im, z_real, z_im, t;
258 mp_real_component(x, &x_real);
259 mp_imaginary_component(x, &x_im);
261 mp_sin_real(&x_real, unit, &z_real);
262 mp_cosh(&x_im, &t);
263 mp_multiply(&z_real, &t, &z_real);
265 mp_cos_real(&x_real, unit, &z_im);
266 mp_sinh(&x_im, &t);
267 mp_multiply(&z_im, &t, &z_im);
269 mp_set_from_complex(&z_real, &z_im, z);
271 else
272 mp_sin_real(x, unit, z);
276 void
277 mp_cos(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
279 if (mp_is_complex(x)) {
280 MPNumber x_real, x_im, z_real, z_im, t;
282 mp_real_component(x, &x_real);
283 mp_imaginary_component(x, &x_im);
285 mp_cos_real(&x_real, unit, &z_real);
286 mp_cosh(&x_im, &t);
287 mp_multiply(&z_real, &t, &z_real);
289 mp_sin_real(&x_real, unit, &z_im);
290 mp_sinh(&x_im, &t);
291 mp_multiply(&z_im, &t, &z_im);
292 mp_invert_sign(&z_im, &z_im);
294 mp_set_from_complex(&z_real, &z_im, z);
296 else
297 mp_cos_real(x, unit, z);
301 void
302 mp_tan(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
304 MPNumber cos_x, sin_x;
306 /* Check for undefined values */
307 mp_cos(x, unit, &cos_x);
308 if (mp_is_zero(&cos_x)) {
309 /* Translators: Error displayed when tangent value is undefined */
310 mperr(_("Tangent is undefined for angles that are multiples of π (180°) from π∕2 (90°)"));
311 mp_set_from_integer(0, z);
312 return;
315 /* tan(x) = sin(x) / cos(x) */
316 mp_sin(x, unit, &sin_x);
317 mp_divide(&sin_x, &cos_x, z);
321 void
322 mp_asin(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
324 MPNumber t1, t2;
326 /* asin⁻¹(0) = 0 */
327 if (mp_is_zero(x)) {
328 mp_set_from_integer(0, z);
329 return;
332 /* sin⁻¹(x) = tan⁻¹(x / √(1 - x²)), |x| < 1 */
333 if (x->exponent <= 0) {
334 mp_set_from_integer(1, &t1);
335 mp_set_from_mp(&t1, &t2);
336 mp_subtract(&t1, x, &t1);
337 mp_add(&t2, x, &t2);
338 mp_multiply(&t1, &t2, &t2);
339 mp_root(&t2, -2, &t2);
340 mp_multiply(x, &t2, z);
341 mp_atan(z, unit, z);
342 return;
345 /* sin⁻¹(1) = π/2, sin⁻¹(-1) = -π/2 */
346 mp_set_from_integer(x->sign, &t2);
347 if (mp_is_equal(x, &t2)) {
348 mp_get_pi(z);
349 mp_divide_integer(z, 2 * t2.sign, z);
350 convert_from_radians(z, unit, z);
351 return;
354 /* Translators: Error displayed when inverse sine value is undefined */
355 mperr(_("Inverse sine is undefined for values outside [-1, 1]"));
356 mp_set_from_integer(0, z);
360 void
361 mp_acos(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
363 MPNumber t1, t2;
364 MPNumber MPn1, pi, MPy;
366 mp_get_pi(&pi);
367 mp_set_from_integer(1, &t1);
368 mp_set_from_integer(-1, &MPn1);
370 if (mp_is_greater_than(x, &t1) || mp_is_less_than(x, &MPn1)) {
371 /* Translators: Error displayed when inverse cosine value is undefined */
372 mperr(_("Inverse cosine is undefined for values outside [-1, 1]"));
373 mp_set_from_integer(0, z);
374 } else if (mp_is_zero(x)) {
375 mp_divide_integer(&pi, 2, z);
376 } else if (mp_is_equal(x, &t1)) {
377 mp_set_from_integer(0, z);
378 } else if (mp_is_equal(x, &MPn1)) {
379 mp_set_from_mp(&pi, z);
380 } else {
381 /* cos⁻¹(x) = tan⁻¹(√(1 - x²) / x) */
382 mp_multiply(x, x, &t2);
383 mp_subtract(&t1, &t2, &t2);
384 mp_sqrt(&t2, &t2);
385 mp_divide(&t2, x, &t2);
386 mp_atan(&t2, MP_RADIANS, &MPy);
387 if (x->sign > 0) {
388 mp_set_from_mp(&MPy, z);
389 } else {
390 mp_add(&MPy, &pi, z);
394 convert_from_radians(z, unit, z);
398 void
399 mp_atan(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
401 int i, q;
402 float rx = 0.0;
403 MPNumber t1, t2;
405 if (mp_is_zero(x)) {
406 mp_set_from_integer(0, z);
407 return;
410 mp_set_from_mp(x, &t2);
411 if (abs(x->exponent) <= 2)
412 rx = mp_cast_to_float(x);
414 /* REDUCE ARGUMENT IF NECESSARY BEFORE USING SERIES */
415 q = 1;
416 while (t2.exponent >= 0)
418 if (t2.exponent == 0 && 2 * (t2.fraction[0] + 1) <= MP_BASE)
419 break;
421 q *= 2;
423 /* t = t / (√(t² + 1) + 1) */
424 mp_multiply(&t2, &t2, z);
425 mp_add_integer(z, 1, z);
426 mp_sqrt(z, z);
427 mp_add_integer(z, 1, z);
428 mp_divide(&t2, z, &t2);
431 /* USE POWER SERIES NOW ARGUMENT IN (-0.5, 0.5) */
432 mp_set_from_mp(&t2, z);
433 mp_multiply(&t2, &t2, &t1);
435 /* SERIES LOOP. REDUCE T IF POSSIBLE. */
436 for (i = 1; ; i += 2) {
437 if (MP_T + 2 + t2.exponent <= 1)
438 break;
440 mp_multiply(&t2, &t1, &t2);
441 mp_multiply_fraction(&t2, -i, i + 2, &t2);
443 mp_add(z, &t2, z);
444 if (mp_is_zero(&t2))
445 break;
448 /* CORRECT FOR ARGUMENT REDUCTION */
449 mp_multiply_integer(z, q, z);
451 /* CHECK THAT RELATIVE ERROR LESS THAN 0.01 UNLESS EXPONENT
452 * OF X IS LARGE (WHEN ATAN MIGHT NOT WORK)
454 if (abs(x->exponent) <= 2) {
455 float ry = mp_cast_to_float(z);
456 /* THE FOLLOWING MESSAGE MAY INDICATE THAT B**(T-1) IS TOO SMALL. */
457 if (fabs(ry - atan(rx)) >= fabs(ry) * 0.01)
458 mperr("*** ERROR OCCURRED IN MP_ATAN, RESULT INCORRECT ***");
461 convert_from_radians(z, unit, z);
465 void
466 mp_sinh(const MPNumber *x, MPNumber *z)
468 MPNumber abs_x;
470 /* sinh(0) = 0 */
471 if (mp_is_zero(x)) {
472 mp_set_from_integer(0, z);
473 return;
476 /* WORK WITH ABS(X) */
477 mp_abs(x, &abs_x);
479 /* If |x| < 1 USE MPEXP TO AVOID CANCELLATION, otherwise IF TOO LARGE MP_EPOWY GIVES ERROR MESSAGE */
480 if (abs_x.exponent <= 0) {
481 MPNumber exp_x, a, b;
483 /* ((e^|x| + 1) * (e^|x| - 1)) / e^|x| */
484 // FIXME: Solves to e^|x| - e^-|x|, why not lower branch always? */
485 mp_epowy(&abs_x, &exp_x);
486 mp_add_integer(&exp_x, 1, &a);
487 mp_add_integer(&exp_x, -1, &b);
488 mp_multiply(&a, &b, z);
489 mp_divide(z, &exp_x, z);
491 else {
492 MPNumber exp_x;
494 /* e^|x| - e^-|x| */
495 mp_epowy(&abs_x, &exp_x);
496 mp_reciprocal(&exp_x, z);
497 mp_subtract(&exp_x, z, z);
500 /* DIVIDE BY TWO AND RESTORE SIGN */
501 mp_divide_integer(z, 2, z);
502 mp_multiply_integer(z, x->sign, z);
506 void
507 mp_cosh(const MPNumber *x, MPNumber *z)
509 MPNumber t;
511 /* cosh(0) = 1 */
512 if (mp_is_zero(x)) {
513 mp_set_from_integer(1, z);
514 return;
517 /* cosh(x) = (e^x + e^-x) / 2 */
518 mp_abs(x, &t);
519 mp_epowy(&t, &t);
520 mp_reciprocal(&t, z);
521 mp_add(&t, z, z);
522 mp_divide_integer(z, 2, z);
526 void
527 mp_tanh(const MPNumber *x, MPNumber *z)
529 float r__1;
530 MPNumber t;
532 /* tanh(0) = 0 */
533 if (mp_is_zero(x)) {
534 mp_set_from_integer(0, z);
535 return;
538 mp_abs(x, &t);
540 /* SEE IF ABS(X) SO LARGE THAT RESULT IS +-1 */
541 r__1 = (float) MP_T * 0.5 * log((float) MP_BASE);
542 mp_set_from_float(r__1, z);
543 if (mp_compare_mp_to_mp(&t, z) > 0) {
544 mp_set_from_integer(x->sign, z);
545 return;
548 /* If |x| >= 1/2 use ?, otherwise use ? to avoid cancellation */
549 /* |tanh(x)| = (e^|2x| - 1) / (e^|2x| + 1) */
550 mp_multiply_integer(&t, 2, &t);
551 if (t.exponent > 0) {
552 mp_epowy(&t, &t);
553 mp_add_integer(&t, -1, z);
554 mp_add_integer(&t, 1, &t);
555 mp_divide(z, &t, z);
556 } else {
557 mp_epowy(&t, &t);
558 mp_add_integer(&t, 1, z);
559 mp_add_integer(&t, -1, &t);
560 mp_divide(&t, z, z);
563 /* Restore sign */
564 z->sign = x->sign * z->sign;
568 void
569 mp_asinh(const MPNumber *x, MPNumber *z)
571 MPNumber t;
573 /* sinh⁻¹(x) = ln(x + √(x² + 1)) */
574 mp_multiply(x, x, &t);
575 mp_add_integer(&t, 1, &t);
576 mp_sqrt(&t, &t);
577 mp_add(x, &t, &t);
578 mp_ln(&t, z);
582 void
583 mp_acosh(const MPNumber *x, MPNumber *z)
585 MPNumber t;
587 /* Check x >= 1 */
588 mp_set_from_integer(1, &t);
589 if (mp_is_less_than(x, &t)) {
590 /* Translators: Error displayed when inverse hyperbolic cosine value is undefined */
591 mperr(_("Inverse hyperbolic cosine is undefined for values less than one"));
592 mp_set_from_integer(0, z);
593 return;
596 /* cosh⁻¹(x) = ln(x + √(x² - 1)) */
597 mp_multiply(x, x, &t);
598 mp_add_integer(&t, -1, &t);
599 mp_sqrt(&t, &t);
600 mp_add(x, &t, &t);
601 mp_ln(&t, z);
605 void
606 mp_atanh(const MPNumber *x, MPNumber *z)
608 MPNumber one, minus_one, n, d;
610 /* Check -1 <= x <= 1 */
611 mp_set_from_integer(1, &one);
612 mp_set_from_integer(-1, &minus_one);
613 if (mp_is_greater_equal(x, &one) || mp_is_less_equal(x, &minus_one)) {
614 /* Translators: Error displayed when inverse hyperbolic tangent value is undefined */
615 mperr(_("Inverse hyperbolic tangent is undefined for values outside [-1, 1]"));
616 mp_set_from_integer(0, z);
617 return;
620 /* atanh(x) = 0.5 * ln((1 + x) / (1 - x)) */
621 mp_add_integer(x, 1, &n);
622 mp_set_from_mp(x, &d);
623 mp_invert_sign(&d, &d);
624 mp_add_integer(&d, 1, &d);
625 mp_divide(&n, &d, z);
626 mp_ln(z, z);
627 mp_divide_integer(z, 2, z);