1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2025 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 We check (with modified_between_p) to avoid combining in such a way
37 as to move a computation to a place where its value would be different.
39 Combination is done by mathematically substituting the previous
40 insn(s) values for the regs they set into the expressions in
41 the later insns that refer to these regs. If the result is a valid insn
42 for our target machine, according to the machine description,
43 we install it, delete the earlier insns, and update the data flow
44 information (LOG_LINKS and REG_NOTES) for what we did.
46 There are a few exceptions where the dataflow information isn't
47 completely updated (however this is only a local issue since it is
48 regenerated before the next pass that uses it):
50 - reg_live_length is not updated
51 - reg_n_refs is not adjusted in the rare case when a register is
52 no longer required in a computation
53 - there are extremely rare cases (see distribute_notes) when a
55 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
56 removed because there is no way to know which register it was
59 To simplify substitution, we combine only when the earlier insn(s)
60 consist of only a single assignment. To simplify updating afterward,
61 we never combine when a subroutine call appears in the middle. */
65 #include "coretypes.h"
80 #include "stor-layout.h"
82 #include "cfgcleanup.h"
83 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
85 #include "insn-attr.h"
86 #include "rtlhooks-def.h"
88 #include "tree-pass.h"
91 #include "print-rtl.h"
92 #include "function-abi.h"
95 /* Number of attempts to combine instructions in this function. */
97 static int combine_attempts
;
99 /* Number of attempts that got as far as substitution in this function. */
101 static int combine_merges
;
103 /* Number of instructions combined with added SETs in this function. */
105 static int combine_extras
;
107 /* Number of instructions combined in this function. */
109 static int combine_successes
;
111 /* combine_instructions may try to replace the right hand side of the
112 second instruction with the value of an associated REG_EQUAL note
113 before throwing it at try_combine. That is problematic when there
114 is a REG_DEAD note for a register used in the old right hand side
115 and can cause distribute_notes to do wrong things. This is the
116 second instruction if it has been so modified, null otherwise. */
118 static rtx_insn
*i2mod
;
120 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
122 static rtx i2mod_old_rhs
;
124 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
126 static rtx i2mod_new_rhs
;
128 struct reg_stat_type
{
129 /* Record last point of death of (hard or pseudo) register n. */
130 rtx_insn
*last_death
;
132 /* Record last point of modification of (hard or pseudo) register n. */
135 /* The next group of fields allows the recording of the last value assigned
136 to (hard or pseudo) register n. We use this information to see if an
137 operation being processed is redundant given a prior operation performed
138 on the register. For example, an `and' with a constant is redundant if
139 all the zero bits are already known to be turned off.
141 We use an approach similar to that used by cse, but change it in the
144 (1) We do not want to reinitialize at each label.
145 (2) It is useful, but not critical, to know the actual value assigned
146 to a register. Often just its form is helpful.
148 Therefore, we maintain the following fields:
150 last_set_value the last value assigned
151 last_set_label records the value of label_tick when the
152 register was assigned
153 last_set_table_tick records the value of label_tick when a
154 value using the register is assigned
155 last_set_invalid set to true when it is not valid
156 to use the value of this register in some
159 To understand the usage of these tables, it is important to understand
160 the distinction between the value in last_set_value being valid and
161 the register being validly contained in some other expression in the
164 (The next two parameters are out of date).
166 reg_stat[i].last_set_value is valid if it is nonzero, and either
167 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
169 Register I may validly appear in any expression returned for the value
170 of another register if reg_n_sets[i] is 1. It may also appear in the
171 value for register J if reg_stat[j].last_set_invalid is zero, or
172 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
174 If an expression is found in the table containing a register which may
175 not validly appear in an expression, the register is replaced by
176 something that won't match, (clobber (const_int 0)). */
178 /* Record last value assigned to (hard or pseudo) register n. */
182 /* Record the value of label_tick when an expression involving register n
183 is placed in last_set_value. */
185 int last_set_table_tick
;
187 /* Record the value of label_tick when the value for register n is placed in
192 /* These fields are maintained in parallel with last_set_value and are
193 used to store the mode in which the register was last set, the bits
194 that were known to be zero when it was last set, and the number of
195 sign bits copies it was known to have when it was last set. */
197 unsigned HOST_WIDE_INT last_set_nonzero_bits
;
198 char last_set_sign_bit_copies
;
199 ENUM_BITFIELD(machine_mode
) last_set_mode
: MACHINE_MODE_BITSIZE
;
201 /* Set to true if references to register n in expressions should not be
202 used. last_set_invalid is set nonzero when this register is being
203 assigned to and last_set_table_tick == label_tick. */
205 bool last_set_invalid
;
207 /* Some registers that are set more than once and used in more than one
208 basic block are nevertheless always set in similar ways. For example,
209 a QImode register may be loaded from memory in two places on a machine
210 where byte loads zero extend.
212 We record in the following fields if a register has some leading bits
213 that are always equal to the sign bit, and what we know about the
214 nonzero bits of a register, specifically which bits are known to be
217 If an entry is zero, it means that we don't know anything special. */
219 unsigned char sign_bit_copies
;
221 unsigned HOST_WIDE_INT nonzero_bits
;
223 /* Record the value of the label_tick when the last truncation
224 happened. The field truncated_to_mode is only valid if
225 truncation_label == label_tick. */
227 int truncation_label
;
229 /* Record the last truncation seen for this register. If truncation
230 is not a nop to this mode we might be able to save an explicit
231 truncation if we know that value already contains a truncated
234 ENUM_BITFIELD(machine_mode
) truncated_to_mode
: MACHINE_MODE_BITSIZE
;
238 static vec
<reg_stat_type
> reg_stat
;
240 /* One plus the highest pseudo for which we track REG_N_SETS.
241 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
242 but during combine_split_insns new pseudos can be created. As we don't have
243 updated DF information in that case, it is hard to initialize the array
244 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
245 so instead of growing the arrays, just assume all newly created pseudos
246 during combine might be set multiple times. */
248 static unsigned int reg_n_sets_max
;
250 /* Record the luid of the last insn that invalidated memory
251 (anything that writes memory, and subroutine calls, but not pushes). */
253 static int mem_last_set
;
255 /* Record the luid of the last CALL_INSN
256 so we can tell whether a potential combination crosses any calls. */
258 static int last_call_luid
;
260 /* When `subst' is called, this is the insn that is being modified
261 (by combining in a previous insn). The PATTERN of this insn
262 is still the old pattern partially modified and it should not be
263 looked at, but this may be used to examine the successors of the insn
264 to judge whether a simplification is valid. */
266 static rtx_insn
*subst_insn
;
268 /* This is the lowest LUID that `subst' is currently dealing with.
269 get_last_value will not return a value if the register was set at or
270 after this LUID. If not for this mechanism, we could get confused if
271 I2 or I1 in try_combine were an insn that used the old value of a register
272 to obtain a new value. In that case, we might erroneously get the
273 new value of the register when we wanted the old one. */
275 static int subst_low_luid
;
277 /* This contains any hard registers that are used in newpat; reg_dead_at_p
278 must consider all these registers to be always live. */
280 static HARD_REG_SET newpat_used_regs
;
282 /* This is an insn to which a LOG_LINKS entry has been added. If this
283 insn is the earlier than I2 or I3, combine should rescan starting at
286 static rtx_insn
*added_links_insn
;
288 /* And similarly, for notes. */
290 static rtx_insn
*added_notes_insn
;
292 /* Basic block in which we are performing combines. */
293 static basic_block this_basic_block
;
294 static bool optimize_this_for_speed_p
;
297 /* Length of the currently allocated uid_insn_cost array. */
299 static int max_uid_known
;
301 /* The following array records the insn_cost for every insn
302 in the instruction stream. */
304 static int *uid_insn_cost
;
306 /* The following array records the LOG_LINKS for every insn in the
307 instruction stream as struct insn_link pointers. */
312 struct insn_link
*next
;
315 static struct insn_link
**uid_log_links
;
318 insn_uid_check (const_rtx insn
)
320 int uid
= INSN_UID (insn
);
321 gcc_checking_assert (uid
<= max_uid_known
);
325 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
326 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
328 #define FOR_EACH_LOG_LINK(L, INSN) \
329 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
331 /* Links for LOG_LINKS are allocated from this obstack. */
333 static struct obstack insn_link_obstack
;
335 /* Allocate a link. */
337 static inline struct insn_link
*
338 alloc_insn_link (rtx_insn
*insn
, unsigned int regno
, struct insn_link
*next
)
341 = (struct insn_link
*) obstack_alloc (&insn_link_obstack
,
342 sizeof (struct insn_link
));
349 /* Incremented for each basic block. */
351 static int label_tick
;
353 /* Reset to label_tick for each extended basic block in scanning order. */
355 static int label_tick_ebb_start
;
357 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
358 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
360 static scalar_int_mode nonzero_bits_mode
;
362 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
363 be safely used. It is zero while computing them and after combine has
364 completed. This former test prevents propagating values based on
365 previously set values, which can be incorrect if a variable is modified
368 static int nonzero_sign_valid
;
371 /* Record one modification to rtl structure
372 to be undone by storing old_contents into *where. */
374 enum undo_kind
{ UNDO_RTX
, UNDO_INT
, UNDO_MODE
, UNDO_LINKS
};
380 union { rtx r
; int i
; machine_mode m
; struct insn_link
*l
; } old_contents
;
381 union { rtx
*r
; int *i
; int regno
; struct insn_link
**l
; } where
;
384 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
385 num_undo says how many are currently recorded.
387 other_insn is nonzero if we have modified some other insn in the process
388 of working on subst_insn. It must be verified too. */
394 rtx_insn
*other_insn
;
397 static struct undobuf undobuf
;
399 /* Number of times the pseudo being substituted for
400 was found and replaced. */
402 static int n_occurrences
;
404 static rtx
reg_nonzero_bits_for_combine (const_rtx
, scalar_int_mode
,
406 unsigned HOST_WIDE_INT
*);
407 static rtx
reg_num_sign_bit_copies_for_combine (const_rtx
, scalar_int_mode
,
410 static void do_SUBST (rtx
*, rtx
);
411 static void do_SUBST_INT (int *, int);
412 static void init_reg_last (void);
413 static void setup_incoming_promotions (rtx_insn
*);
414 static void set_nonzero_bits_and_sign_copies (rtx
, const_rtx
, void *);
415 static bool cant_combine_insn_p (rtx_insn
*);
416 static bool can_combine_p (rtx_insn
*, rtx_insn
*, rtx_insn
*, rtx_insn
*,
417 rtx_insn
*, rtx_insn
*, rtx
*, rtx
*);
418 static bool combinable_i3pat (rtx_insn
*, rtx
*, rtx
, rtx
, rtx
,
420 static bool contains_muldiv (rtx
);
421 static rtx_insn
*try_combine (rtx_insn
*, rtx_insn
*, rtx_insn
*, rtx_insn
*,
423 static void undo_all (void);
424 static void undo_commit (void);
425 static rtx
*find_split_point (rtx
*, rtx_insn
*, bool);
426 static rtx
subst (rtx
, rtx
, rtx
, bool, bool, bool);
427 static rtx
combine_simplify_rtx (rtx
, machine_mode
, bool, bool);
428 static rtx
simplify_if_then_else (rtx
);
429 static rtx
simplify_set (rtx
);
430 static rtx
simplify_logical (rtx
);
431 static rtx
expand_compound_operation (rtx
);
432 static const_rtx
expand_field_assignment (const_rtx
);
433 static rtx
make_extraction (machine_mode
, rtx
, HOST_WIDE_INT
, rtx
,
434 unsigned HOST_WIDE_INT
, bool, bool, bool);
435 static int get_pos_from_mask (unsigned HOST_WIDE_INT
,
436 unsigned HOST_WIDE_INT
*);
437 static rtx
canon_reg_for_combine (rtx
, rtx
);
438 static rtx
force_int_to_mode (rtx
, scalar_int_mode
, scalar_int_mode
,
439 scalar_int_mode
, unsigned HOST_WIDE_INT
, bool);
440 static rtx
force_to_mode (rtx
, machine_mode
,
441 unsigned HOST_WIDE_INT
, bool);
442 static rtx
if_then_else_cond (rtx
, rtx
*, rtx
*);
443 static rtx
known_cond (rtx
, enum rtx_code
, rtx
, rtx
);
444 static bool rtx_equal_for_field_assignment_p (rtx
, rtx
, bool = false);
445 static rtx
make_field_assignment (rtx
);
446 static rtx
apply_distributive_law (rtx
);
447 static rtx
distribute_and_simplify_rtx (rtx
, int);
448 static rtx
simplify_and_const_int_1 (scalar_int_mode
, rtx
,
449 unsigned HOST_WIDE_INT
);
450 static rtx
simplify_and_const_int (rtx
, scalar_int_mode
, rtx
,
451 unsigned HOST_WIDE_INT
);
452 static bool merge_outer_ops (enum rtx_code
*, HOST_WIDE_INT
*, enum rtx_code
,
453 HOST_WIDE_INT
, machine_mode
, bool *);
454 static rtx
simplify_shift_const_1 (enum rtx_code
, machine_mode
, rtx
, int);
455 static rtx
simplify_shift_const (rtx
, enum rtx_code
, machine_mode
, rtx
,
457 static int recog_for_combine (rtx
*, rtx_insn
*, rtx
*);
458 static rtx
gen_lowpart_for_combine (machine_mode
, rtx
);
459 static enum rtx_code
simplify_compare_const (enum rtx_code
, machine_mode
,
461 static enum rtx_code
simplify_comparison (enum rtx_code
, rtx
*, rtx
*);
462 static void update_table_tick (rtx
);
463 static void record_value_for_reg (rtx
, rtx_insn
*, rtx
);
464 static void check_promoted_subreg (rtx_insn
*, rtx
);
465 static void record_dead_and_set_regs_1 (rtx
, const_rtx
, void *);
466 static void record_dead_and_set_regs (rtx_insn
*);
467 static bool get_last_value_validate (rtx
*, rtx_insn
*, int, bool);
468 static rtx
get_last_value (const_rtx
);
469 static void reg_dead_at_p_1 (rtx
, const_rtx
, void *);
470 static bool reg_dead_at_p (rtx
, rtx_insn
*);
471 static void move_deaths (rtx
, rtx
, int, rtx_insn
*, rtx
*);
472 static bool reg_bitfield_target_p (rtx
, rtx
);
473 static void distribute_notes (rtx
, rtx_insn
*, rtx_insn
*, rtx_insn
*,
475 static void distribute_links (struct insn_link
*);
476 static void mark_used_regs_combine (rtx
);
477 static void record_promoted_value (rtx_insn
*, rtx
);
478 static bool unmentioned_reg_p (rtx
, rtx
);
479 static void record_truncated_values (rtx
*, void *);
480 static bool reg_truncated_to_mode (machine_mode
, const_rtx
);
481 static rtx
gen_lowpart_or_truncate (machine_mode
, rtx
);
484 /* It is not safe to use ordinary gen_lowpart in combine.
485 See comments in gen_lowpart_for_combine. */
486 #undef RTL_HOOKS_GEN_LOWPART
487 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
489 /* Our implementation of gen_lowpart never emits a new pseudo. */
490 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
491 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
493 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
494 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
496 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
497 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
499 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
500 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
502 static const struct rtl_hooks combine_rtl_hooks
= RTL_HOOKS_INITIALIZER
;
505 /* Convenience wrapper for the canonicalize_comparison target hook.
506 Target hooks cannot use enum rtx_code. */
508 target_canonicalize_comparison (enum rtx_code
*code
, rtx
*op0
, rtx
*op1
,
509 bool op0_preserve_value
)
511 int code_int
= (int)*code
;
512 targetm
.canonicalize_comparison (&code_int
, op0
, op1
, op0_preserve_value
);
513 *code
= (enum rtx_code
)code_int
;
516 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
517 PATTERN cannot be split. Otherwise, it returns an insn sequence.
518 This is a wrapper around split_insns which ensures that the
519 reg_stat vector is made larger if the splitter creates a new
523 combine_split_insns (rtx pattern
, rtx_insn
*insn
)
528 ret
= split_insns (pattern
, insn
);
529 nregs
= max_reg_num ();
530 if (nregs
> reg_stat
.length ())
531 reg_stat
.safe_grow_cleared (nregs
, true);
535 /* This is used by find_single_use to locate an rtx in LOC that
536 contains exactly one use of DEST, which is typically a REG.
537 It returns a pointer to the innermost rtx expression
538 containing DEST. Appearances of DEST that are being used to
539 totally replace it are not counted. */
542 find_single_use_1 (rtx dest
, rtx
*loc
)
545 enum rtx_code code
= GET_CODE (x
);
561 /* If the destination is anything other than PC, a REG or a SUBREG
562 of a REG that occupies all of the REG, the insn uses DEST if
563 it is mentioned in the destination or the source. Otherwise, we
564 need just check the source. */
565 if (GET_CODE (SET_DEST (x
)) != PC
566 && !REG_P (SET_DEST (x
))
567 && ! (GET_CODE (SET_DEST (x
)) == SUBREG
568 && REG_P (SUBREG_REG (SET_DEST (x
)))
569 && !read_modify_subreg_p (SET_DEST (x
))))
572 return find_single_use_1 (dest
, &SET_SRC (x
));
576 return find_single_use_1 (dest
, &XEXP (x
, 0));
582 /* If it wasn't one of the common cases above, check each expression and
583 vector of this code. Look for a unique usage of DEST. */
585 fmt
= GET_RTX_FORMAT (code
);
586 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
590 if (dest
== XEXP (x
, i
)
591 || (REG_P (dest
) && REG_P (XEXP (x
, i
))
592 && REGNO (dest
) == REGNO (XEXP (x
, i
))))
595 this_result
= find_single_use_1 (dest
, &XEXP (x
, i
));
598 result
= this_result
;
599 else if (this_result
)
600 /* Duplicate usage. */
603 else if (fmt
[i
] == 'E')
607 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
609 if (XVECEXP (x
, i
, j
) == dest
611 && REG_P (XVECEXP (x
, i
, j
))
612 && REGNO (XVECEXP (x
, i
, j
)) == REGNO (dest
)))
615 this_result
= find_single_use_1 (dest
, &XVECEXP (x
, i
, j
));
618 result
= this_result
;
619 else if (this_result
)
629 /* See if DEST, produced in INSN, is used only a single time in the
630 sequel. If so, return a pointer to the innermost rtx expression in which
633 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
635 Otherwise, we find the single use by finding an insn that has a
636 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
637 only referenced once in that insn, we know that it must be the first
638 and last insn referencing DEST. */
641 find_single_use (rtx dest
, rtx_insn
*insn
, rtx_insn
**ploc
)
646 struct insn_link
*link
;
651 bb
= BLOCK_FOR_INSN (insn
);
652 for (next
= NEXT_INSN (insn
);
653 next
&& BLOCK_FOR_INSN (next
) == bb
;
654 next
= NEXT_INSN (next
))
655 if (NONDEBUG_INSN_P (next
) && dead_or_set_p (next
, dest
))
657 FOR_EACH_LOG_LINK (link
, next
)
658 if (link
->insn
== insn
&& link
->regno
== REGNO (dest
))
663 result
= find_single_use_1 (dest
, &PATTERN (next
));
673 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
674 insn. The substitution can be undone by undo_all. If INTO is already
675 set to NEWVAL, do not record this change. Because computing NEWVAL might
676 also call SUBST, we have to compute it before we put anything into
680 do_SUBST (rtx
*into
, rtx newval
)
685 if (oldval
== newval
)
688 /* We'd like to catch as many invalid transformations here as
689 possible. Unfortunately, there are way too many mode changes
690 that are perfectly valid, so we'd waste too much effort for
691 little gain doing the checks here. Focus on catching invalid
692 transformations involving integer constants. */
693 if (GET_MODE_CLASS (GET_MODE (oldval
)) == MODE_INT
694 && CONST_INT_P (newval
))
696 /* Sanity check that we're replacing oldval with a CONST_INT
697 that is a valid sign-extension for the original mode. */
698 gcc_assert (INTVAL (newval
)
699 == trunc_int_for_mode (INTVAL (newval
), GET_MODE (oldval
)));
701 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
702 CONST_INT is not valid, because after the replacement, the
703 original mode would be gone. Unfortunately, we can't tell
704 when do_SUBST is called to replace the operand thereof, so we
705 perform this test on oldval instead, checking whether an
706 invalid replacement took place before we got here. */
707 gcc_assert (!(GET_CODE (oldval
) == SUBREG
708 && CONST_INT_P (SUBREG_REG (oldval
))));
709 gcc_assert (!(GET_CODE (oldval
) == ZERO_EXTEND
710 && CONST_INT_P (XEXP (oldval
, 0))));
714 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
716 buf
= XNEW (struct undo
);
718 buf
->kind
= UNDO_RTX
;
720 buf
->old_contents
.r
= oldval
;
723 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
726 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
728 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
729 for the value of a HOST_WIDE_INT value (including CONST_INT) is
733 do_SUBST_INT (int *into
, int newval
)
738 if (oldval
== newval
)
742 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
744 buf
= XNEW (struct undo
);
746 buf
->kind
= UNDO_INT
;
748 buf
->old_contents
.i
= oldval
;
751 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
754 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
756 /* Similar to SUBST, but just substitute the mode. This is used when
757 changing the mode of a pseudo-register, so that any other
758 references to the entry in the regno_reg_rtx array will change as
762 subst_mode (int regno
, machine_mode newval
)
765 rtx reg
= regno_reg_rtx
[regno
];
766 machine_mode oldval
= GET_MODE (reg
);
768 if (oldval
== newval
)
772 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
774 buf
= XNEW (struct undo
);
776 buf
->kind
= UNDO_MODE
;
777 buf
->where
.regno
= regno
;
778 buf
->old_contents
.m
= oldval
;
779 adjust_reg_mode (reg
, newval
);
781 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
784 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
787 do_SUBST_LINK (struct insn_link
**into
, struct insn_link
*newval
)
790 struct insn_link
* oldval
= *into
;
792 if (oldval
== newval
)
796 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
798 buf
= XNEW (struct undo
);
800 buf
->kind
= UNDO_LINKS
;
802 buf
->old_contents
.l
= oldval
;
805 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
808 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
810 /* Subroutine of try_combine. Determine whether the replacement patterns
811 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
812 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
813 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
814 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
815 of all the instructions can be estimated and the replacements are more
816 expensive than the original sequence. */
819 combine_validate_cost (rtx_insn
*i0
, rtx_insn
*i1
, rtx_insn
*i2
, rtx_insn
*i3
,
820 rtx newpat
, rtx newi2pat
, rtx newotherpat
)
822 int i0_cost
, i1_cost
, i2_cost
, i3_cost
;
823 int new_i2_cost
, new_i3_cost
;
824 int old_cost
, new_cost
;
826 /* Lookup the original insn_costs. */
827 i2_cost
= INSN_COST (i2
);
828 i3_cost
= INSN_COST (i3
);
832 i1_cost
= INSN_COST (i1
);
835 i0_cost
= INSN_COST (i0
);
836 old_cost
= (i0_cost
> 0 && i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0
837 ? i0_cost
+ i1_cost
+ i2_cost
+ i3_cost
: 0);
841 old_cost
= (i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0
842 ? i1_cost
+ i2_cost
+ i3_cost
: 0);
848 old_cost
= (i2_cost
> 0 && i3_cost
> 0) ? i2_cost
+ i3_cost
: 0;
849 i1_cost
= i0_cost
= 0;
852 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
854 if (old_cost
&& i1
&& INSN_UID (i1
) == INSN_UID (i2
))
858 /* Calculate the replacement insn_costs. */
859 rtx tmp
= PATTERN (i3
);
860 PATTERN (i3
) = newpat
;
861 int tmpi
= INSN_CODE (i3
);
863 new_i3_cost
= insn_cost (i3
, optimize_this_for_speed_p
);
865 INSN_CODE (i3
) = tmpi
;
869 PATTERN (i2
) = newi2pat
;
870 tmpi
= INSN_CODE (i2
);
872 new_i2_cost
= insn_cost (i2
, optimize_this_for_speed_p
);
874 INSN_CODE (i2
) = tmpi
;
875 new_cost
= (new_i2_cost
> 0 && new_i3_cost
> 0)
876 ? new_i2_cost
+ new_i3_cost
: 0;
880 new_cost
= new_i3_cost
;
884 if (undobuf
.other_insn
)
886 int old_other_cost
, new_other_cost
;
888 old_other_cost
= INSN_COST (undobuf
.other_insn
);
889 tmp
= PATTERN (undobuf
.other_insn
);
890 PATTERN (undobuf
.other_insn
) = newotherpat
;
891 tmpi
= INSN_CODE (undobuf
.other_insn
);
892 INSN_CODE (undobuf
.other_insn
) = -1;
893 new_other_cost
= insn_cost (undobuf
.other_insn
,
894 optimize_this_for_speed_p
);
895 PATTERN (undobuf
.other_insn
) = tmp
;
896 INSN_CODE (undobuf
.other_insn
) = tmpi
;
897 if (old_other_cost
> 0 && new_other_cost
> 0)
899 old_cost
+= old_other_cost
;
900 new_cost
+= new_other_cost
;
906 /* Disallow this combination if both new_cost and old_cost are greater than
907 zero, and new_cost is greater than old cost. */
908 bool reject
= old_cost
> 0 && new_cost
> old_cost
;
912 fprintf (dump_file
, "%s combination of insns ",
913 reject
? "rejecting" : "allowing");
915 fprintf (dump_file
, "%d, ", INSN_UID (i0
));
916 if (i1
&& INSN_UID (i1
) != INSN_UID (i2
))
917 fprintf (dump_file
, "%d, ", INSN_UID (i1
));
918 fprintf (dump_file
, "%d and %d\n", INSN_UID (i2
), INSN_UID (i3
));
920 fprintf (dump_file
, "original costs ");
922 fprintf (dump_file
, "%d + ", i0_cost
);
923 if (i1
&& INSN_UID (i1
) != INSN_UID (i2
))
924 fprintf (dump_file
, "%d + ", i1_cost
);
925 fprintf (dump_file
, "%d + %d = %d\n", i2_cost
, i3_cost
, old_cost
);
928 fprintf (dump_file
, "replacement costs %d + %d = %d\n",
929 new_i2_cost
, new_i3_cost
, new_cost
);
931 fprintf (dump_file
, "replacement cost %d\n", new_cost
);
937 /* Update the uid_insn_cost array with the replacement costs. */
938 INSN_COST (i2
) = new_i2_cost
;
939 INSN_COST (i3
) = new_i3_cost
;
951 /* Delete any insns that copy a register to itself.
952 Return true if the CFG was changed. */
955 delete_noop_moves (void)
957 rtx_insn
*insn
, *next
;
960 bool edges_deleted
= false;
962 FOR_EACH_BB_FN (bb
, cfun
)
964 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
)); insn
= next
)
966 next
= NEXT_INSN (insn
);
967 if (INSN_P (insn
) && noop_move_p (insn
))
970 fprintf (dump_file
, "deleting noop move %d\n", INSN_UID (insn
));
972 edges_deleted
|= delete_insn_and_edges (insn
);
977 return edges_deleted
;
981 /* Return false if we do not want to (or cannot) combine DEF. */
983 can_combine_def_p (df_ref def
)
985 /* Do not consider if it is pre/post modification in MEM. */
986 if (DF_REF_FLAGS (def
) & DF_REF_PRE_POST_MODIFY
)
989 unsigned int regno
= DF_REF_REGNO (def
);
991 /* Do not combine frame pointer adjustments. */
992 if ((regno
== FRAME_POINTER_REGNUM
993 && (!reload_completed
|| frame_pointer_needed
))
994 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
995 && regno
== HARD_FRAME_POINTER_REGNUM
996 && (!reload_completed
|| frame_pointer_needed
))
997 || (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
998 && regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
]))
1004 /* Return false if we do not want to (or cannot) combine USE. */
1006 can_combine_use_p (df_ref use
)
1008 /* Do not consider the usage of the stack pointer by function call. */
1009 if (DF_REF_FLAGS (use
) & DF_REF_CALL_STACK_USAGE
)
1015 /* Fill in log links field for all insns. */
1018 create_log_links (void)
1021 rtx_insn
**next_use
;
1025 next_use
= XCNEWVEC (rtx_insn
*, max_reg_num ());
1027 /* Pass through each block from the end, recording the uses of each
1028 register and establishing log links when def is encountered.
1029 Note that we do not clear next_use array in order to save time,
1030 so we have to test whether the use is in the same basic block as def.
1032 There are a few cases below when we do not consider the definition or
1033 usage -- these are taken from original flow.c did. Don't ask me why it is
1034 done this way; I don't know and if it works, I don't want to know. */
1036 FOR_EACH_BB_FN (bb
, cfun
)
1038 FOR_BB_INSNS_REVERSE (bb
, insn
)
1040 if (!NONDEBUG_INSN_P (insn
))
1043 /* Log links are created only once. */
1044 gcc_assert (!LOG_LINKS (insn
));
1046 FOR_EACH_INSN_DEF (def
, insn
)
1048 unsigned int regno
= DF_REF_REGNO (def
);
1051 if (!next_use
[regno
])
1054 if (!can_combine_def_p (def
))
1057 use_insn
= next_use
[regno
];
1058 next_use
[regno
] = NULL
;
1060 if (BLOCK_FOR_INSN (use_insn
) != bb
)
1065 We don't build a LOG_LINK for hard registers contained
1066 in ASM_OPERANDs. If these registers get replaced,
1067 we might wind up changing the semantics of the insn,
1068 even if reload can make what appear to be valid
1069 assignments later. */
1070 if (regno
< FIRST_PSEUDO_REGISTER
1071 && asm_noperands (PATTERN (use_insn
)) >= 0)
1074 /* Don't add duplicate links between instructions. */
1075 struct insn_link
*links
;
1076 FOR_EACH_LOG_LINK (links
, use_insn
)
1077 if (insn
== links
->insn
&& regno
== links
->regno
)
1081 LOG_LINKS (use_insn
)
1082 = alloc_insn_link (insn
, regno
, LOG_LINKS (use_insn
));
1085 FOR_EACH_INSN_USE (use
, insn
)
1086 if (can_combine_use_p (use
))
1087 next_use
[DF_REF_REGNO (use
)] = insn
;
1094 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1095 true if we found a LOG_LINK that proves that A feeds B. This only works
1096 if there are no instructions between A and B which could have a link
1097 depending on A, since in that case we would not record a link for B. */
1100 insn_a_feeds_b (rtx_insn
*a
, rtx_insn
*b
)
1102 struct insn_link
*links
;
1103 FOR_EACH_LOG_LINK (links
, b
)
1104 if (links
->insn
== a
)
1109 /* Main entry point for combiner. F is the first insn of the function.
1110 NREGS is the first unused pseudo-reg number.
1112 Return nonzero if the CFG was changed (e.g. if the combiner has
1113 turned an indirect jump instruction into a direct jump). */
1115 combine_instructions (rtx_insn
*f
, unsigned int nregs
)
1117 rtx_insn
*insn
, *next
;
1118 struct insn_link
*links
, *nextlinks
;
1120 basic_block last_bb
;
1122 bool new_direct_jump_p
= false;
1124 for (first
= f
; first
&& !NONDEBUG_INSN_P (first
); )
1125 first
= NEXT_INSN (first
);
1129 combine_attempts
= 0;
1132 combine_successes
= 0;
1134 rtl_hooks
= combine_rtl_hooks
;
1136 reg_stat
.safe_grow_cleared (nregs
, true);
1138 init_recog_no_volatile ();
1140 /* Allocate array for insn info. */
1141 max_uid_known
= get_max_uid ();
1142 uid_log_links
= XCNEWVEC (struct insn_link
*, max_uid_known
+ 1);
1143 uid_insn_cost
= XCNEWVEC (int, max_uid_known
+ 1);
1144 gcc_obstack_init (&insn_link_obstack
);
1146 nonzero_bits_mode
= int_mode_for_size (HOST_BITS_PER_WIDE_INT
, 0).require ();
1148 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1149 problems when, for example, we have j <<= 1 in a loop. */
1151 nonzero_sign_valid
= 0;
1152 label_tick
= label_tick_ebb_start
= 1;
1154 /* Scan all SETs and see if we can deduce anything about what
1155 bits are known to be zero for some registers and how many copies
1156 of the sign bit are known to exist for those registers.
1158 Also set any known values so that we can use it while searching
1159 for what bits are known to be set. */
1161 setup_incoming_promotions (first
);
1162 /* Allow the entry block and the first block to fall into the same EBB.
1163 Conceptually the incoming promotions are assigned to the entry block. */
1164 last_bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
1166 create_log_links ();
1167 FOR_EACH_BB_FN (this_basic_block
, cfun
)
1169 optimize_this_for_speed_p
= optimize_bb_for_speed_p (this_basic_block
);
1174 if (!single_pred_p (this_basic_block
)
1175 || single_pred (this_basic_block
) != last_bb
)
1176 label_tick_ebb_start
= label_tick
;
1177 last_bb
= this_basic_block
;
1179 FOR_BB_INSNS (this_basic_block
, insn
)
1180 if (INSN_P (insn
) && BLOCK_FOR_INSN (insn
))
1184 subst_low_luid
= DF_INSN_LUID (insn
);
1187 note_stores (insn
, set_nonzero_bits_and_sign_copies
, insn
);
1188 record_dead_and_set_regs (insn
);
1191 for (links
= REG_NOTES (insn
); links
; links
= XEXP (links
, 1))
1192 if (REG_NOTE_KIND (links
) == REG_INC
)
1193 set_nonzero_bits_and_sign_copies (XEXP (links
, 0), NULL_RTX
,
1196 /* Record the current insn_cost of this instruction. */
1197 INSN_COST (insn
) = insn_cost (insn
, optimize_this_for_speed_p
);
1200 fprintf (dump_file
, "insn_cost %d for ", INSN_COST (insn
));
1201 dump_insn_slim (dump_file
, insn
);
1206 nonzero_sign_valid
= 1;
1208 /* Now scan all the insns in forward order. */
1209 label_tick
= label_tick_ebb_start
= 1;
1211 setup_incoming_promotions (first
);
1212 last_bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
1213 int max_combine
= param_max_combine_insns
;
1215 FOR_EACH_BB_FN (this_basic_block
, cfun
)
1217 rtx_insn
*last_combined_insn
= NULL
;
1219 /* Ignore instruction combination in basic blocks that are going to
1220 be removed as unreachable anyway. See PR82386. */
1221 if (EDGE_COUNT (this_basic_block
->preds
) == 0)
1224 optimize_this_for_speed_p
= optimize_bb_for_speed_p (this_basic_block
);
1229 if (!single_pred_p (this_basic_block
)
1230 || single_pred (this_basic_block
) != last_bb
)
1231 label_tick_ebb_start
= label_tick
;
1232 last_bb
= this_basic_block
;
1234 rtl_profile_for_bb (this_basic_block
);
1235 for (insn
= BB_HEAD (this_basic_block
);
1236 insn
!= NEXT_INSN (BB_END (this_basic_block
));
1237 insn
= next
? next
: NEXT_INSN (insn
))
1240 if (!NONDEBUG_INSN_P (insn
))
1243 while (last_combined_insn
1244 && (!NONDEBUG_INSN_P (last_combined_insn
)
1245 || last_combined_insn
->deleted ()))
1246 last_combined_insn
= PREV_INSN (last_combined_insn
);
1247 if (last_combined_insn
== NULL_RTX
1248 || BLOCK_FOR_INSN (last_combined_insn
) != this_basic_block
1249 || DF_INSN_LUID (last_combined_insn
) <= DF_INSN_LUID (insn
))
1250 last_combined_insn
= insn
;
1252 /* See if we know about function return values before this
1253 insn based upon SUBREG flags. */
1254 check_promoted_subreg (insn
, PATTERN (insn
));
1256 /* See if we can find hardregs and subreg of pseudos in
1257 narrower modes. This could help turning TRUNCATEs
1259 note_uses (&PATTERN (insn
), record_truncated_values
, NULL
);
1261 /* Try this insn with each insn it links back to. */
1263 FOR_EACH_LOG_LINK (links
, insn
)
1264 if ((next
= try_combine (insn
, links
->insn
, NULL
,
1265 NULL
, &new_direct_jump_p
,
1266 last_combined_insn
)) != 0)
1268 statistics_counter_event (cfun
, "two-insn combine", 1);
1272 /* Try each sequence of three linked insns ending with this one. */
1274 if (max_combine
>= 3)
1275 FOR_EACH_LOG_LINK (links
, insn
)
1277 rtx_insn
*link
= links
->insn
;
1279 /* If the linked insn has been replaced by a note, then there
1280 is no point in pursuing this chain any further. */
1284 FOR_EACH_LOG_LINK (nextlinks
, link
)
1285 if ((next
= try_combine (insn
, link
, nextlinks
->insn
,
1286 NULL
, &new_direct_jump_p
,
1287 last_combined_insn
)) != 0)
1289 statistics_counter_event (cfun
, "three-insn combine", 1);
1294 /* Try combining an insn with two different insns whose results it
1296 if (max_combine
>= 3)
1297 FOR_EACH_LOG_LINK (links
, insn
)
1298 for (nextlinks
= links
->next
; nextlinks
;
1299 nextlinks
= nextlinks
->next
)
1300 if ((next
= try_combine (insn
, links
->insn
,
1301 nextlinks
->insn
, NULL
,
1303 last_combined_insn
)) != 0)
1306 statistics_counter_event (cfun
, "three-insn combine", 1);
1310 /* Try four-instruction combinations. */
1311 if (max_combine
>= 4)
1312 FOR_EACH_LOG_LINK (links
, insn
)
1314 struct insn_link
*next1
;
1315 rtx_insn
*link
= links
->insn
;
1317 /* If the linked insn has been replaced by a note, then there
1318 is no point in pursuing this chain any further. */
1322 FOR_EACH_LOG_LINK (next1
, link
)
1324 rtx_insn
*link1
= next1
->insn
;
1327 /* I0 -> I1 -> I2 -> I3. */
1328 FOR_EACH_LOG_LINK (nextlinks
, link1
)
1329 if ((next
= try_combine (insn
, link
, link1
,
1332 last_combined_insn
)) != 0)
1334 statistics_counter_event (cfun
, "four-insn combine", 1);
1337 /* I0, I1 -> I2, I2 -> I3. */
1338 for (nextlinks
= next1
->next
; nextlinks
;
1339 nextlinks
= nextlinks
->next
)
1340 if ((next
= try_combine (insn
, link
, link1
,
1343 last_combined_insn
)) != 0)
1345 statistics_counter_event (cfun
, "four-insn combine", 1);
1350 for (next1
= links
->next
; next1
; next1
= next1
->next
)
1352 rtx_insn
*link1
= next1
->insn
;
1355 /* I0 -> I2; I1, I2 -> I3. */
1356 FOR_EACH_LOG_LINK (nextlinks
, link
)
1357 if ((next
= try_combine (insn
, link
, link1
,
1360 last_combined_insn
)) != 0)
1362 statistics_counter_event (cfun
, "four-insn combine", 1);
1365 /* I0 -> I1; I1, I2 -> I3. */
1366 FOR_EACH_LOG_LINK (nextlinks
, link1
)
1367 if ((next
= try_combine (insn
, link
, link1
,
1370 last_combined_insn
)) != 0)
1372 statistics_counter_event (cfun
, "four-insn combine", 1);
1378 /* Try this insn with each REG_EQUAL note it links back to. */
1379 FOR_EACH_LOG_LINK (links
, insn
)
1382 rtx_insn
*temp
= links
->insn
;
1383 if ((set
= single_set (temp
)) != 0
1384 && (note
= find_reg_equal_equiv_note (temp
)) != 0
1385 && (note
= XEXP (note
, 0), GET_CODE (note
)) != EXPR_LIST
1386 && ! side_effects_p (SET_SRC (set
))
1387 /* Avoid using a register that may already been marked
1388 dead by an earlier instruction. */
1389 && ! unmentioned_reg_p (note
, SET_SRC (set
))
1390 && (GET_MODE (note
) == VOIDmode
1391 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set
)))
1392 : (GET_MODE (SET_DEST (set
)) == GET_MODE (note
)
1393 && (GET_CODE (SET_DEST (set
)) != ZERO_EXTRACT
1394 || (GET_MODE (XEXP (SET_DEST (set
), 0))
1395 == GET_MODE (note
))))))
1397 /* Temporarily replace the set's source with the
1398 contents of the REG_EQUAL note. The insn will
1399 be deleted or recognized by try_combine. */
1400 rtx orig_src
= SET_SRC (set
);
1401 rtx orig_dest
= SET_DEST (set
);
1402 if (GET_CODE (SET_DEST (set
)) == ZERO_EXTRACT
)
1403 SET_DEST (set
) = XEXP (SET_DEST (set
), 0);
1404 SET_SRC (set
) = note
;
1406 i2mod_old_rhs
= copy_rtx (orig_src
);
1407 i2mod_new_rhs
= copy_rtx (note
);
1408 next
= try_combine (insn
, i2mod
, NULL
, NULL
,
1410 last_combined_insn
);
1414 statistics_counter_event (cfun
, "insn-with-note combine", 1);
1417 INSN_CODE (temp
) = -1;
1418 SET_SRC (set
) = orig_src
;
1419 SET_DEST (set
) = orig_dest
;
1424 record_dead_and_set_regs (insn
);
1431 default_rtl_profile ();
1434 if (purge_all_dead_edges ())
1435 new_direct_jump_p
= true;
1436 if (delete_noop_moves ())
1437 new_direct_jump_p
= true;
1440 obstack_free (&insn_link_obstack
, NULL
);
1441 free (uid_log_links
);
1442 free (uid_insn_cost
);
1443 reg_stat
.release ();
1446 struct undo
*undo
, *next
;
1447 for (undo
= undobuf
.frees
; undo
; undo
= next
)
1455 statistics_counter_event (cfun
, "attempts", combine_attempts
);
1456 statistics_counter_event (cfun
, "merges", combine_merges
);
1457 statistics_counter_event (cfun
, "extras", combine_extras
);
1458 statistics_counter_event (cfun
, "successes", combine_successes
);
1460 nonzero_sign_valid
= 0;
1461 rtl_hooks
= general_rtl_hooks
;
1463 /* Make recognizer allow volatile MEMs again. */
1466 return new_direct_jump_p
;
1469 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1472 init_reg_last (void)
1477 FOR_EACH_VEC_ELT (reg_stat
, i
, p
)
1478 memset (p
, 0, offsetof (reg_stat_type
, sign_bit_copies
));
1481 /* Set up any promoted values for incoming argument registers. */
1484 setup_incoming_promotions (rtx_insn
*first
)
1487 bool strictly_local
= false;
1489 for (arg
= DECL_ARGUMENTS (current_function_decl
); arg
;
1490 arg
= DECL_CHAIN (arg
))
1492 rtx x
, reg
= DECL_INCOMING_RTL (arg
);
1494 machine_mode mode1
, mode2
, mode3
, mode4
;
1496 /* Only continue if the incoming argument is in a register. */
1500 /* Determine, if possible, whether all call sites of the current
1501 function lie within the current compilation unit. (This does
1502 take into account the exporting of a function via taking its
1503 address, and so forth.) */
1505 = cgraph_node::local_info_node (current_function_decl
)->local
;
1507 /* The mode and signedness of the argument before any promotions happen
1508 (equal to the mode of the pseudo holding it at that stage). */
1509 mode1
= TYPE_MODE (TREE_TYPE (arg
));
1510 uns1
= TYPE_UNSIGNED (TREE_TYPE (arg
));
1512 /* The mode and signedness of the argument after any source language and
1513 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1514 mode2
= TYPE_MODE (DECL_ARG_TYPE (arg
));
1515 uns3
= TYPE_UNSIGNED (DECL_ARG_TYPE (arg
));
1517 /* The mode and signedness of the argument as it is actually passed,
1518 see assign_parm_setup_reg in function.cc. */
1519 mode3
= promote_function_mode (TREE_TYPE (arg
), mode1
, &uns3
,
1520 TREE_TYPE (cfun
->decl
), 0);
1522 /* The mode of the register in which the argument is being passed. */
1523 mode4
= GET_MODE (reg
);
1525 /* Eliminate sign extensions in the callee when:
1526 (a) A mode promotion has occurred; */
1529 /* (b) The mode of the register is the same as the mode of
1530 the argument as it is passed; */
1533 /* (c) There's no language level extension; */
1536 /* (c.1) All callers are from the current compilation unit. If that's
1537 the case we don't have to rely on an ABI, we only have to know
1538 what we're generating right now, and we know that we will do the
1539 mode1 to mode2 promotion with the given sign. */
1540 else if (!strictly_local
)
1542 /* (c.2) The combination of the two promotions is useful. This is
1543 true when the signs match, or if the first promotion is unsigned.
1544 In the later case, (sign_extend (zero_extend x)) is the same as
1545 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1551 /* Record that the value was promoted from mode1 to mode3,
1552 so that any sign extension at the head of the current
1553 function may be eliminated. */
1554 x
= gen_rtx_CLOBBER (mode1
, const0_rtx
);
1555 x
= gen_rtx_fmt_e ((uns3
? ZERO_EXTEND
: SIGN_EXTEND
), mode3
, x
);
1556 record_value_for_reg (reg
, first
, x
);
1560 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1561 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1562 because some machines (maybe most) will actually do the sign-extension and
1563 this is the conservative approach.
1565 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1569 sign_extend_short_imm (rtx src
, machine_mode mode
, unsigned int prec
)
1571 scalar_int_mode int_mode
;
1572 if (CONST_INT_P (src
)
1573 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
1574 && GET_MODE_PRECISION (int_mode
) < prec
1576 && val_signbit_known_set_p (int_mode
, INTVAL (src
)))
1577 src
= GEN_INT (INTVAL (src
) | ~GET_MODE_MASK (int_mode
));
1582 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1586 update_rsp_from_reg_equal (reg_stat_type
*rsp
, rtx_insn
*insn
, const_rtx set
,
1589 rtx reg_equal_note
= insn
? find_reg_equal_equiv_note (insn
) : NULL_RTX
;
1590 unsigned HOST_WIDE_INT bits
= 0;
1591 rtx reg_equal
= NULL
, src
= SET_SRC (set
);
1592 unsigned int num
= 0;
1595 reg_equal
= XEXP (reg_equal_note
, 0);
1597 if (SHORT_IMMEDIATES_SIGN_EXTEND
)
1599 src
= sign_extend_short_imm (src
, GET_MODE (x
), BITS_PER_WORD
);
1601 reg_equal
= sign_extend_short_imm (reg_equal
, GET_MODE (x
), BITS_PER_WORD
);
1604 /* Don't call nonzero_bits if it cannot change anything. */
1605 if (rsp
->nonzero_bits
!= HOST_WIDE_INT_M1U
)
1607 machine_mode mode
= GET_MODE (x
);
1608 if (GET_MODE_CLASS (mode
) == MODE_INT
1609 && HWI_COMPUTABLE_MODE_P (mode
))
1610 mode
= nonzero_bits_mode
;
1611 bits
= nonzero_bits (src
, mode
);
1612 if (reg_equal
&& bits
)
1613 bits
&= nonzero_bits (reg_equal
, mode
);
1614 rsp
->nonzero_bits
|= bits
;
1617 /* Don't call num_sign_bit_copies if it cannot change anything. */
1618 if (rsp
->sign_bit_copies
!= 1)
1620 num
= num_sign_bit_copies (SET_SRC (set
), GET_MODE (x
));
1621 if (reg_equal
&& maybe_ne (num
, GET_MODE_PRECISION (GET_MODE (x
))))
1623 unsigned int numeq
= num_sign_bit_copies (reg_equal
, GET_MODE (x
));
1624 if (num
== 0 || numeq
> num
)
1627 if (rsp
->sign_bit_copies
== 0 || num
< rsp
->sign_bit_copies
)
1628 rsp
->sign_bit_copies
= num
;
1632 /* Called via note_stores. If X is a pseudo that is narrower than
1633 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1635 If we are setting only a portion of X and we can't figure out what
1636 portion, assume all bits will be used since we don't know what will
1639 Similarly, set how many bits of X are known to be copies of the sign bit
1640 at all locations in the function. This is the smallest number implied
1644 set_nonzero_bits_and_sign_copies (rtx x
, const_rtx set
, void *data
)
1646 rtx_insn
*insn
= (rtx_insn
*) data
;
1647 scalar_int_mode mode
;
1650 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
1651 /* If this register is undefined at the start of the file, we can't
1652 say what its contents were. */
1653 && ! REGNO_REG_SET_P
1654 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
), REGNO (x
))
1655 && is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
)
1656 && HWI_COMPUTABLE_MODE_P (mode
))
1658 reg_stat_type
*rsp
= ®_stat
[REGNO (x
)];
1660 if (set
== 0 || GET_CODE (set
) == CLOBBER
)
1662 rsp
->nonzero_bits
= GET_MODE_MASK (mode
);
1663 rsp
->sign_bit_copies
= 1;
1667 /* If this register is being initialized using itself, and the
1668 register is uninitialized in this basic block, and there are
1669 no LOG_LINKS which set the register, then part of the
1670 register is uninitialized. In that case we can't assume
1671 anything about the number of nonzero bits.
1673 ??? We could do better if we checked this in
1674 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1675 could avoid making assumptions about the insn which initially
1676 sets the register, while still using the information in other
1677 insns. We would have to be careful to check every insn
1678 involved in the combination. */
1681 && reg_referenced_p (x
, PATTERN (insn
))
1682 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn
)),
1685 struct insn_link
*link
;
1687 FOR_EACH_LOG_LINK (link
, insn
)
1688 if (dead_or_set_p (link
->insn
, x
))
1692 rsp
->nonzero_bits
= GET_MODE_MASK (mode
);
1693 rsp
->sign_bit_copies
= 1;
1698 /* If this is a complex assignment, see if we can convert it into a
1699 simple assignment. */
1700 set
= expand_field_assignment (set
);
1702 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1703 set what we know about X. */
1705 if (SET_DEST (set
) == x
1706 || (paradoxical_subreg_p (SET_DEST (set
))
1707 && SUBREG_REG (SET_DEST (set
)) == x
))
1708 update_rsp_from_reg_equal (rsp
, insn
, set
, x
);
1711 rsp
->nonzero_bits
= GET_MODE_MASK (mode
);
1712 rsp
->sign_bit_copies
= 1;
1717 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1718 optionally insns that were previously combined into I3 or that will be
1719 combined into the merger of INSN and I3. The order is PRED, PRED2,
1720 INSN, SUCC, SUCC2, I3.
1722 Return false if the combination is not allowed for any reason.
1724 If the combination is allowed, *PDEST will be set to the single
1725 destination of INSN and *PSRC to the single source, and this function
1726 will return true. */
1729 can_combine_p (rtx_insn
*insn
, rtx_insn
*i3
, rtx_insn
*pred ATTRIBUTE_UNUSED
,
1730 rtx_insn
*pred2 ATTRIBUTE_UNUSED
, rtx_insn
*succ
, rtx_insn
*succ2
,
1731 rtx
*pdest
, rtx
*psrc
)
1738 bool all_adjacent
= true;
1739 bool (*is_volatile_p
) (const_rtx
);
1745 if (next_active_insn (succ2
) != i3
)
1746 all_adjacent
= false;
1747 if (next_active_insn (succ
) != succ2
)
1748 all_adjacent
= false;
1750 else if (next_active_insn (succ
) != i3
)
1751 all_adjacent
= false;
1752 if (next_active_insn (insn
) != succ
)
1753 all_adjacent
= false;
1755 else if (next_active_insn (insn
) != i3
)
1756 all_adjacent
= false;
1758 /* Can combine only if previous insn is a SET of a REG or a SUBREG,
1759 or a PARALLEL consisting of such a SET and CLOBBERs.
1761 If INSN has CLOBBER parallel parts, ignore them for our processing.
1762 By definition, these happen during the execution of the insn. When it
1763 is merged with another insn, all bets are off. If they are, in fact,
1764 needed and aren't also supplied in I3, they may be added by
1765 recog_for_combine. Otherwise, it won't match.
1767 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1770 Get the source and destination of INSN. If more than one, can't
1773 if (GET_CODE (PATTERN (insn
)) == SET
)
1774 set
= PATTERN (insn
);
1775 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
1776 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1778 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1780 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
1782 switch (GET_CODE (elt
))
1784 /* This is important to combine floating point insns
1785 for the SH4 port. */
1787 /* Combining an isolated USE doesn't make sense.
1788 We depend here on combinable_i3pat to reject them. */
1789 /* The code below this loop only verifies that the inputs of
1790 the SET in INSN do not change. We call reg_set_between_p
1791 to verify that the REG in the USE does not change between
1793 If the USE in INSN was for a pseudo register, the matching
1794 insn pattern will likely match any register; combining this
1795 with any other USE would only be safe if we knew that the
1796 used registers have identical values, or if there was
1797 something to tell them apart, e.g. different modes. For
1798 now, we forgo such complicated tests and simply disallow
1799 combining of USES of pseudo registers with any other USE. */
1800 if (REG_P (XEXP (elt
, 0))
1801 && GET_CODE (PATTERN (i3
)) == PARALLEL
)
1803 rtx i3pat
= PATTERN (i3
);
1804 int i
= XVECLEN (i3pat
, 0) - 1;
1805 unsigned int regno
= REGNO (XEXP (elt
, 0));
1809 rtx i3elt
= XVECEXP (i3pat
, 0, i
);
1811 if (GET_CODE (i3elt
) == USE
1812 && REG_P (XEXP (i3elt
, 0))
1813 && (REGNO (XEXP (i3elt
, 0)) == regno
1814 ? reg_set_between_p (XEXP (elt
, 0),
1815 PREV_INSN (insn
), i3
)
1816 : regno
>= FIRST_PSEUDO_REGISTER
))
1823 /* We can ignore CLOBBERs. */
1828 /* Ignore SETs whose result isn't used but not those that
1829 have side-effects. */
1830 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (elt
))
1831 && insn_nothrow_p (insn
)
1832 && !side_effects_p (elt
))
1835 /* If we have already found a SET, this is a second one and
1836 so we cannot combine with this insn. */
1844 /* Anything else means we can't combine. */
1850 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1851 so don't do anything with it. */
1852 || GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
)
1861 /* The simplification in expand_field_assignment may call back to
1862 get_last_value, so set safe guard here. */
1863 subst_low_luid
= DF_INSN_LUID (insn
);
1865 set
= expand_field_assignment (set
);
1866 src
= SET_SRC (set
), dest
= SET_DEST (set
);
1868 /* Do not eliminate user-specified register if it is in an
1869 asm input because we may break the register asm usage defined
1870 in GCC manual if allow to do so.
1871 Be aware that this may cover more cases than we expect but this
1872 should be harmless. */
1873 if (REG_P (dest
) && REG_USERVAR_P (dest
) && HARD_REGISTER_P (dest
)
1874 && extract_asm_operands (PATTERN (i3
)))
1877 /* Don't eliminate a store in the stack pointer. */
1878 if (dest
== stack_pointer_rtx
1879 /* Don't combine with an insn that sets a register to itself if it has
1880 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1881 || (rtx_equal_p (src
, dest
) && find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1882 /* Can't merge an ASM_OPERANDS. */
1883 || GET_CODE (src
) == ASM_OPERANDS
1884 /* Can't merge a function call. */
1885 || GET_CODE (src
) == CALL
1886 /* Don't eliminate a function call argument. */
1888 && (find_reg_fusage (i3
, USE
, dest
)
1890 && REGNO (dest
) < FIRST_PSEUDO_REGISTER
1891 && global_regs
[REGNO (dest
)])))
1892 /* Don't substitute into an incremented register. */
1893 || FIND_REG_INC_NOTE (i3
, dest
)
1894 || (succ
&& FIND_REG_INC_NOTE (succ
, dest
))
1895 || (succ2
&& FIND_REG_INC_NOTE (succ2
, dest
))
1896 /* Don't substitute into a non-local goto, this confuses CFG. */
1897 || (JUMP_P (i3
) && find_reg_note (i3
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
1898 /* Make sure that DEST is not used after INSN but before SUCC, or
1899 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1902 && (reg_used_between_p (dest
, succ2
, i3
)
1903 || reg_used_between_p (dest
, succ
, succ2
)))
1904 || (!succ2
&& succ
&& reg_used_between_p (dest
, succ
, i3
))
1905 || (!succ2
&& !succ
&& reg_used_between_p (dest
, insn
, i3
))
1907 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
1908 that case SUCC is not in the insn stream, so use SUCC2
1909 instead for this test. */
1910 && reg_used_between_p (dest
, insn
,
1912 && INSN_UID (succ
) == INSN_UID (succ2
)
1914 /* Make sure that the value that is to be substituted for the register
1915 does not use any registers whose values alter in between. However,
1916 If the insns are adjacent, a use can't cross a set even though we
1917 think it might (this can happen for a sequence of insns each setting
1918 the same destination; last_set of that register might point to
1919 a NOTE). If INSN has a REG_EQUIV note, the register is always
1920 equivalent to the memory so the substitution is valid even if there
1921 are intervening stores. Also, don't move a volatile asm or
1922 UNSPEC_VOLATILE across any other insns. */
1925 || ! find_reg_note (insn
, REG_EQUIV
, src
))
1926 && modified_between_p (src
, insn
, i3
))
1927 || (GET_CODE (src
) == ASM_OPERANDS
&& MEM_VOLATILE_P (src
))
1928 || GET_CODE (src
) == UNSPEC_VOLATILE
))
1929 /* Don't combine across a CALL_INSN, because that would possibly
1930 change whether the life span of some REGs crosses calls or not,
1931 and it is a pain to update that information.
1932 Exception: if source is a constant, moving it later can't hurt.
1933 Accept that as a special case. */
1934 || (DF_INSN_LUID (insn
) < last_call_luid
&& ! CONSTANT_P (src
)))
1937 /* DEST must be a REG. */
1940 /* If register alignment is being enforced for multi-word items in all
1941 cases except for parameters, it is possible to have a register copy
1942 insn referencing a hard register that is not allowed to contain the
1943 mode being copied and which would not be valid as an operand of most
1944 insns. Eliminate this problem by not combining with such an insn.
1946 Also, on some machines we don't want to extend the life of a hard
1950 && ((REGNO (dest
) < FIRST_PSEUDO_REGISTER
1951 && !targetm
.hard_regno_mode_ok (REGNO (dest
), GET_MODE (dest
)))
1952 /* Don't extend the life of a hard register unless it is
1953 user variable (if we have few registers) or it can't
1954 fit into the desired register (meaning something special
1956 Also avoid substituting a return register into I3, because
1957 reload can't handle a conflict with constraints of other
1959 || (REGNO (src
) < FIRST_PSEUDO_REGISTER
1960 && !targetm
.hard_regno_mode_ok (REGNO (src
),
1968 if (GET_CODE (PATTERN (i3
)) == PARALLEL
)
1969 for (i
= XVECLEN (PATTERN (i3
), 0) - 1; i
>= 0; i
--)
1970 if (GET_CODE (XVECEXP (PATTERN (i3
), 0, i
)) == CLOBBER
)
1972 rtx reg
= XEXP (XVECEXP (PATTERN (i3
), 0, i
), 0);
1974 /* If the clobber represents an earlyclobber operand, we must not
1975 substitute an expression containing the clobbered register.
1976 As we do not analyze the constraint strings here, we have to
1977 make the conservative assumption. However, if the register is
1978 a fixed hard reg, the clobber cannot represent any operand;
1979 we leave it up to the machine description to either accept or
1980 reject use-and-clobber patterns. */
1982 || REGNO (reg
) >= FIRST_PSEUDO_REGISTER
1983 || !fixed_regs
[REGNO (reg
)])
1984 if (reg_overlap_mentioned_p (reg
, src
))
1988 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1989 or not), reject, unless nothing volatile comes between it and I3 */
1991 if (GET_CODE (src
) == ASM_OPERANDS
|| volatile_refs_p (src
))
1993 /* Make sure neither succ nor succ2 contains a volatile reference. */
1994 if (succ2
!= 0 && volatile_refs_p (PATTERN (succ2
)))
1996 if (succ
!= 0 && volatile_refs_p (PATTERN (succ
)))
1998 /* We'll check insns between INSN and I3 below. */
2001 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2002 to be an explicit register variable, and was chosen for a reason. */
2004 if (GET_CODE (src
) == ASM_OPERANDS
2005 && REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
2008 /* If INSN contains volatile references (specifically volatile MEMs),
2009 we cannot combine across any other volatile references.
2010 Even if INSN doesn't contain volatile references, any intervening
2011 volatile insn might affect machine state. */
2013 is_volatile_p
= volatile_refs_p (PATTERN (insn
))
2017 for (p
= NEXT_INSN (insn
); p
!= i3
; p
= NEXT_INSN (p
))
2018 if (INSN_P (p
) && p
!= succ
&& p
!= succ2
&& is_volatile_p (PATTERN (p
)))
2021 /* If INSN contains an autoincrement or autodecrement, make sure that
2022 register is not used between there and I3, and not already used in
2023 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2024 Also insist that I3 not be a jump if using LRA; if it were one
2025 and the incremented register were spilled, we would lose.
2026 Reload handles this correctly. */
2029 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2030 if (REG_NOTE_KIND (link
) == REG_INC
2031 && ((JUMP_P (i3
) && targetm
.lra_p ())
2032 || reg_used_between_p (XEXP (link
, 0), insn
, i3
)
2033 || (pred
!= NULL_RTX
2034 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (pred
)))
2035 || (pred2
!= NULL_RTX
2036 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (pred2
)))
2037 || (succ
!= NULL_RTX
2038 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (succ
)))
2039 || (succ2
!= NULL_RTX
2040 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (succ2
)))
2041 || reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i3
))))
2044 /* If we get here, we have passed all the tests and the combination is
2053 /* LOC is the location within I3 that contains its pattern or the component
2054 of a PARALLEL of the pattern. We validate that it is valid for combining.
2056 One problem is if I3 modifies its output, as opposed to replacing it
2057 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2058 doing so would produce an insn that is not equivalent to the original insns.
2062 (set (reg:DI 101) (reg:DI 100))
2063 (set (subreg:SI (reg:DI 101) 0) <foo>)
2065 This is NOT equivalent to:
2067 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2068 (set (reg:DI 101) (reg:DI 100))])
2070 Not only does this modify 100 (in which case it might still be valid
2071 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2073 We can also run into a problem if I2 sets a register that I1
2074 uses and I1 gets directly substituted into I3 (not via I2). In that
2075 case, we would be getting the wrong value of I2DEST into I3, so we
2076 must reject the combination. This case occurs when I2 and I1 both
2077 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2078 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2079 of a SET must prevent combination from occurring. The same situation
2080 can occur for I0, in which case I0_NOT_IN_SRC is set.
2082 Before doing the above check, we first try to expand a field assignment
2083 into a set of logical operations.
2085 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2086 we place a register that is both set and used within I3. If more than one
2087 such register is detected, we fail.
2089 Return true if the combination is valid, false otherwise. */
2092 combinable_i3pat (rtx_insn
*i3
, rtx
*loc
, rtx i2dest
, rtx i1dest
, rtx i0dest
,
2093 bool i1_not_in_src
, bool i0_not_in_src
, rtx
*pi3dest_killed
)
2097 if (GET_CODE (x
) == SET
)
2100 rtx dest
= SET_DEST (set
);
2101 rtx src
= SET_SRC (set
);
2102 rtx inner_dest
= dest
;
2105 while (GET_CODE (inner_dest
) == STRICT_LOW_PART
2106 || GET_CODE (inner_dest
) == SUBREG
2107 || GET_CODE (inner_dest
) == ZERO_EXTRACT
)
2108 inner_dest
= XEXP (inner_dest
, 0);
2110 /* Check for the case where I3 modifies its output, as discussed
2111 above. We don't want to prevent pseudos from being combined
2112 into the address of a MEM, so only prevent the combination if
2113 i1 or i2 set the same MEM. */
2114 if ((inner_dest
!= dest
&&
2115 (!MEM_P (inner_dest
)
2116 || rtx_equal_p (i2dest
, inner_dest
)
2117 || (i1dest
&& rtx_equal_p (i1dest
, inner_dest
))
2118 || (i0dest
&& rtx_equal_p (i0dest
, inner_dest
)))
2119 && (reg_overlap_mentioned_p (i2dest
, inner_dest
)
2120 || (i1dest
&& reg_overlap_mentioned_p (i1dest
, inner_dest
))
2121 || (i0dest
&& reg_overlap_mentioned_p (i0dest
, inner_dest
))))
2123 /* This is the same test done in can_combine_p except we can't test
2124 all_adjacent; we don't have to, since this instruction will stay
2125 in place, thus we are not considering increasing the lifetime of
2128 Also, if this insn sets a function argument, combining it with
2129 something that might need a spill could clobber a previous
2130 function argument; the all_adjacent test in can_combine_p also
2131 checks this; here, we do a more specific test for this case. */
2133 || (REG_P (inner_dest
)
2134 && REGNO (inner_dest
) < FIRST_PSEUDO_REGISTER
2135 && !targetm
.hard_regno_mode_ok (REGNO (inner_dest
),
2136 GET_MODE (inner_dest
)))
2137 || (i1_not_in_src
&& reg_overlap_mentioned_p (i1dest
, src
))
2138 || (i0_not_in_src
&& reg_overlap_mentioned_p (i0dest
, src
)))
2141 /* If DEST is used in I3, it is being killed in this insn, so
2142 record that for later. We have to consider paradoxical
2143 subregs here, since they kill the whole register, but we
2144 ignore partial subregs, STRICT_LOW_PART, etc.
2145 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2146 STACK_POINTER_REGNUM, since these are always considered to be
2147 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2149 if (GET_CODE (subdest
) == SUBREG
&& !partial_subreg_p (subdest
))
2150 subdest
= SUBREG_REG (subdest
);
2153 && reg_referenced_p (subdest
, PATTERN (i3
))
2154 && REGNO (subdest
) != FRAME_POINTER_REGNUM
2155 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2156 || REGNO (subdest
) != HARD_FRAME_POINTER_REGNUM
)
2157 && (FRAME_POINTER_REGNUM
== ARG_POINTER_REGNUM
2158 || (REGNO (subdest
) != ARG_POINTER_REGNUM
2159 || ! fixed_regs
[REGNO (subdest
)]))
2160 && REGNO (subdest
) != STACK_POINTER_REGNUM
)
2162 if (*pi3dest_killed
)
2165 *pi3dest_killed
= subdest
;
2169 else if (GET_CODE (x
) == PARALLEL
)
2173 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
2174 if (! combinable_i3pat (i3
, &XVECEXP (x
, 0, i
), i2dest
, i1dest
, i0dest
,
2175 i1_not_in_src
, i0_not_in_src
, pi3dest_killed
))
2182 /* Return true if X is an arithmetic expression that contains a multiplication
2183 and division. We don't count multiplications by powers of two here. */
2186 contains_muldiv (rtx x
)
2188 switch (GET_CODE (x
))
2190 case MOD
: case DIV
: case UMOD
: case UDIV
:
2194 return ! (CONST_INT_P (XEXP (x
, 1))
2195 && pow2p_hwi (UINTVAL (XEXP (x
, 1))));
2198 return contains_muldiv (XEXP (x
, 0))
2199 || contains_muldiv (XEXP (x
, 1));
2202 return contains_muldiv (XEXP (x
, 0));
2208 /* Determine whether INSN can be used in a combination. Return true if
2209 not. This is used in try_combine to detect early some cases where we
2210 can't perform combinations. */
2213 cant_combine_insn_p (rtx_insn
*insn
)
2218 /* If this isn't really an insn, we can't do anything.
2219 This can occur when flow deletes an insn that it has merged into an
2220 auto-increment address. */
2221 if (!NONDEBUG_INSN_P (insn
))
2224 /* Never combine loads and stores involving hard regs that are likely
2225 to be spilled. The register allocator can usually handle such
2226 reg-reg moves by tying. If we allow the combiner to make
2227 substitutions of likely-spilled regs, reload might die.
2228 As an exception, we allow combinations involving fixed regs; these are
2229 not available to the register allocator so there's no risk involved. */
2231 set
= single_set (insn
);
2234 src
= SET_SRC (set
);
2235 dest
= SET_DEST (set
);
2236 if (GET_CODE (src
) == SUBREG
)
2237 src
= SUBREG_REG (src
);
2238 if (GET_CODE (dest
) == SUBREG
)
2239 dest
= SUBREG_REG (dest
);
2240 if (REG_P (src
) && REG_P (dest
)
2241 && ((HARD_REGISTER_P (src
)
2242 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (src
))
2243 #ifdef LEAF_REGISTERS
2244 && ! LEAF_REGISTERS
[REGNO (src
)])
2248 || (HARD_REGISTER_P (dest
)
2249 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (dest
))
2250 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest
))))))
2256 struct likely_spilled_retval_info
2258 unsigned regno
, nregs
;
2262 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2263 hard registers that are known to be written to / clobbered in full. */
2265 likely_spilled_retval_1 (rtx x
, const_rtx set
, void *data
)
2267 struct likely_spilled_retval_info
*const info
=
2268 (struct likely_spilled_retval_info
*) data
;
2269 unsigned regno
, nregs
;
2272 if (!REG_P (XEXP (set
, 0)))
2275 if (regno
>= info
->regno
+ info
->nregs
)
2277 nregs
= REG_NREGS (x
);
2278 if (regno
+ nregs
<= info
->regno
)
2280 new_mask
= (2U << (nregs
- 1)) - 1;
2281 if (regno
< info
->regno
)
2282 new_mask
>>= info
->regno
- regno
;
2284 new_mask
<<= regno
- info
->regno
;
2285 info
->mask
&= ~new_mask
;
2288 /* Return true iff part of the return value is live during INSN, and
2289 it is likely spilled. This can happen when more than one insn is needed
2290 to copy the return value, e.g. when we consider to combine into the
2291 second copy insn for a complex value. */
2294 likely_spilled_retval_p (rtx_insn
*insn
)
2296 rtx_insn
*use
= BB_END (this_basic_block
);
2299 unsigned regno
, nregs
;
2300 /* We assume here that no machine mode needs more than
2301 32 hard registers when the value overlaps with a register
2302 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2304 struct likely_spilled_retval_info info
;
2306 if (!NONJUMP_INSN_P (use
) || GET_CODE (PATTERN (use
)) != USE
|| insn
== use
)
2308 reg
= XEXP (PATTERN (use
), 0);
2309 if (!REG_P (reg
) || !targetm
.calls
.function_value_regno_p (REGNO (reg
)))
2311 regno
= REGNO (reg
);
2312 nregs
= REG_NREGS (reg
);
2315 mask
= (2U << (nregs
- 1)) - 1;
2317 /* Disregard parts of the return value that are set later. */
2321 for (p
= PREV_INSN (use
); info
.mask
&& p
!= insn
; p
= PREV_INSN (p
))
2323 note_stores (p
, likely_spilled_retval_1
, &info
);
2326 /* Check if any of the (probably) live return value registers is
2331 if ((mask
& 1 << nregs
)
2332 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (regno
+ nregs
)))
2338 /* Adjust INSN after we made a change to its destination.
2340 Changing the destination can invalidate notes that say something about
2341 the results of the insn and a LOG_LINK pointing to the insn. */
2344 adjust_for_new_dest (rtx_insn
*insn
)
2346 /* For notes, be conservative and simply remove them. */
2347 remove_reg_equal_equiv_notes (insn
, true);
2349 /* The new insn will have a destination that was previously the destination
2350 of an insn just above it. Call distribute_links to make a LOG_LINK from
2351 the next use of that destination. */
2353 rtx set
= single_set (insn
);
2356 rtx reg
= SET_DEST (set
);
2358 while (GET_CODE (reg
) == ZERO_EXTRACT
2359 || GET_CODE (reg
) == STRICT_LOW_PART
2360 || GET_CODE (reg
) == SUBREG
)
2361 reg
= XEXP (reg
, 0);
2362 gcc_assert (REG_P (reg
));
2364 distribute_links (alloc_insn_link (insn
, REGNO (reg
), NULL
));
2366 df_insn_rescan (insn
);
2369 /* Return TRUE if combine can reuse reg X in mode MODE.
2370 ADDED_SETS is trueif the original set is still required. */
2372 can_change_dest_mode (rtx x
, bool added_sets
, machine_mode mode
)
2379 /* Don't change between modes with different underlying register sizes,
2380 since this could lead to invalid subregs. */
2381 if (maybe_ne (REGMODE_NATURAL_SIZE (mode
),
2382 REGMODE_NATURAL_SIZE (GET_MODE (x
))))
2386 /* Allow hard registers if the new mode is legal, and occupies no more
2387 registers than the old mode. */
2388 if (regno
< FIRST_PSEUDO_REGISTER
)
2389 return (targetm
.hard_regno_mode_ok (regno
, mode
)
2390 && REG_NREGS (x
) >= hard_regno_nregs (regno
, mode
));
2392 /* Or a pseudo that is only used once. */
2393 return (regno
< reg_n_sets_max
2394 && REG_N_SETS (regno
) == 1
2396 && !REG_USERVAR_P (x
));
2400 /* Check whether X, the destination of a set, refers to part of
2401 the register specified by REG. */
2404 reg_subword_p (rtx x
, rtx reg
)
2406 /* Check that reg is an integer mode register. */
2407 if (!REG_P (reg
) || GET_MODE_CLASS (GET_MODE (reg
)) != MODE_INT
)
2410 if (GET_CODE (x
) == STRICT_LOW_PART
2411 || GET_CODE (x
) == ZERO_EXTRACT
)
2414 return GET_CODE (x
) == SUBREG
2415 && !paradoxical_subreg_p (x
)
2416 && SUBREG_REG (x
) == reg
2417 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
;
2420 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2421 by an arbitrary number of CLOBBERs. */
2423 is_parallel_of_n_reg_sets (rtx pat
, int n
)
2425 if (GET_CODE (pat
) != PARALLEL
)
2428 int len
= XVECLEN (pat
, 0);
2433 for (i
= 0; i
< n
; i
++)
2434 if (GET_CODE (XVECEXP (pat
, 0, i
)) != SET
2435 || !REG_P (SET_DEST (XVECEXP (pat
, 0, i
))))
2437 for ( ; i
< len
; i
++)
2438 switch (GET_CODE (XVECEXP (pat
, 0, i
)))
2441 if (XEXP (XVECEXP (pat
, 0, i
), 0) == const0_rtx
)
2450 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2451 CLOBBERs), can be split into individual SETs in that order, without
2452 changing semantics. */
2454 can_split_parallel_of_n_reg_sets (rtx_insn
*insn
, int n
)
2456 if (!insn_nothrow_p (insn
))
2459 rtx pat
= PATTERN (insn
);
2462 for (i
= 0; i
< n
; i
++)
2464 if (side_effects_p (SET_SRC (XVECEXP (pat
, 0, i
))))
2467 rtx reg
= SET_DEST (XVECEXP (pat
, 0, i
));
2469 for (j
= i
+ 1; j
< n
; j
++)
2470 if (reg_referenced_p (reg
, XVECEXP (pat
, 0, j
)))
2477 /* Return whether X is just a single_set, with the source
2478 a general_operand. */
2480 is_just_move (rtx_insn
*x
)
2482 rtx set
= single_set (x
);
2486 return general_operand (SET_SRC (set
), VOIDmode
);
2489 /* Callback function to count autoincs. */
2492 count_auto_inc (rtx
, rtx
, rtx
, rtx
, rtx
, void *arg
)
2499 /* Try to combine the insns I0, I1 and I2 into I3.
2500 Here I0, I1 and I2 appear earlier than I3.
2501 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2504 If we are combining more than two insns and the resulting insn is not
2505 recognized, try splitting it into two insns. If that happens, I2 and I3
2506 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2507 Otherwise, I0, I1 and I2 are pseudo-deleted.
2509 Return 0 if the combination does not work. Then nothing is changed.
2510 If we did the combination, return the insn at which combine should
2513 Set NEW_DIRECT_JUMP_P to true if try_combine creates a
2514 new direct jump instruction.
2516 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2517 been I3 passed to an earlier try_combine within the same basic
2521 try_combine (rtx_insn
*i3
, rtx_insn
*i2
, rtx_insn
*i1
, rtx_insn
*i0
,
2522 bool *new_direct_jump_p
, rtx_insn
*last_combined_insn
)
2524 /* New patterns for I3 and I2, respectively. */
2525 rtx newpat
, newi2pat
= 0;
2526 rtvec newpat_vec_with_clobbers
= 0;
2527 bool substed_i2
= false, substed_i1
= false, substed_i0
= false;
2528 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2530 bool added_sets_0
, added_sets_1
, added_sets_2
;
2531 /* Total number of SETs to put into I3. */
2533 /* Nonzero if I2's or I1's body now appears in I3. */
2534 int i2_is_used
= 0, i1_is_used
= 0;
2535 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2536 int insn_code_number
, i2_code_number
= 0, other_code_number
= 0;
2537 /* Contains I3 if the destination of I3 is used in its source, which means
2538 that the old life of I3 is being killed. If that usage is placed into
2539 I2 and not in I3, a REG_DEAD note must be made. */
2540 rtx i3dest_killed
= 0;
2541 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2542 rtx i2dest
= 0, i2src
= 0, i1dest
= 0, i1src
= 0, i0dest
= 0, i0src
= 0;
2543 /* Copy of SET_SRC of I1 and I0, if needed. */
2544 rtx i1src_copy
= 0, i0src_copy
= 0, i0src_copy2
= 0;
2545 /* Set if I2DEST was reused as a scratch register. */
2546 bool i2scratch
= false;
2547 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2548 rtx i0pat
= 0, i1pat
= 0, i2pat
= 0;
2549 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2550 bool i2dest_in_i2src
= false, i1dest_in_i1src
= false;
2551 bool i2dest_in_i1src
= false, i0dest_in_i0src
= false;
2552 bool i1dest_in_i0src
= false, i2dest_in_i0src
= false;;
2553 bool i2dest_killed
= false, i1dest_killed
= false, i0dest_killed
= false;
2554 bool i1_feeds_i2_n
= false, i0_feeds_i2_n
= false, i0_feeds_i1_n
= false;
2555 /* Notes that must be added to REG_NOTES in I3 and I2. */
2556 rtx new_i3_notes
, new_i2_notes
;
2557 /* Notes that we substituted I3 into I2 instead of the normal case. */
2558 bool i3_subst_into_i2
= false;
2559 /* Notes that I1, I2 or I3 is a MULT operation. */
2560 bool have_mult
= false;
2561 bool swap_i2i3
= false;
2562 bool split_i2i3
= false;
2563 bool changed_i3_dest
= false;
2564 bool i2_was_move
= false, i3_was_move
= false;
2568 rtx_insn
*temp_insn
;
2570 struct insn_link
*link
;
2572 rtx new_other_notes
;
2574 scalar_int_mode dest_mode
, temp_mode
;
2575 bool has_non_call_exception
= false;
2577 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2579 if (i1
== i2
|| i0
== i2
|| (i0
&& i0
== i1
))
2582 /* Only try four-insn combinations when there's high likelihood of
2583 success. Look for simple insns, such as loads of constants or
2584 binary operations involving a constant. */
2592 if (!flag_expensive_optimizations
)
2595 for (i
= 0; i
< 4; i
++)
2597 rtx_insn
*insn
= i
== 0 ? i0
: i
== 1 ? i1
: i
== 2 ? i2
: i3
;
2598 rtx set
= single_set (insn
);
2602 src
= SET_SRC (set
);
2603 if (CONSTANT_P (src
))
2608 else if (BINARY_P (src
) && CONSTANT_P (XEXP (src
, 1)))
2610 else if (GET_CODE (src
) == ASHIFT
|| GET_CODE (src
) == ASHIFTRT
2611 || GET_CODE (src
) == LSHIFTRT
)
2615 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2616 are likely manipulating its value. Ideally we'll be able to combine
2617 all four insns into a bitfield insertion of some kind.
2619 Note the source in I0 might be inside a sign/zero extension and the
2620 memory modes in I0 and I3 might be different. So extract the address
2621 from the destination of I3 and search for it in the source of I0.
2623 In the event that there's a match but the source/dest do not actually
2624 refer to the same memory, the worst that happens is we try some
2625 combinations that we wouldn't have otherwise. */
2626 if ((set0
= single_set (i0
))
2627 /* Ensure the source of SET0 is a MEM, possibly buried inside
2629 && (GET_CODE (SET_SRC (set0
)) == MEM
2630 || ((GET_CODE (SET_SRC (set0
)) == ZERO_EXTEND
2631 || GET_CODE (SET_SRC (set0
)) == SIGN_EXTEND
)
2632 && GET_CODE (XEXP (SET_SRC (set0
), 0)) == MEM
))
2633 && (set3
= single_set (i3
))
2634 /* Ensure the destination of SET3 is a MEM. */
2635 && GET_CODE (SET_DEST (set3
)) == MEM
2636 /* Would it be better to extract the base address for the MEM
2637 in SET3 and look for that? I don't have cases where it matters
2638 but I could envision such cases. */
2639 && rtx_referenced_p (XEXP (SET_DEST (set3
), 0), SET_SRC (set0
)))
2642 if (ngood
< 2 && nshift
< 2)
2646 /* Exit early if one of the insns involved can't be used for
2649 || (i1
&& CALL_P (i1
))
2650 || (i0
&& CALL_P (i0
))
2651 || cant_combine_insn_p (i3
)
2652 || cant_combine_insn_p (i2
)
2653 || (i1
&& cant_combine_insn_p (i1
))
2654 || (i0
&& cant_combine_insn_p (i0
))
2655 || likely_spilled_retval_p (i3
))
2659 undobuf
.other_insn
= 0;
2661 /* Reset the hard register usage information. */
2662 CLEAR_HARD_REG_SET (newpat_used_regs
);
2664 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2667 fprintf (dump_file
, "\nTrying %d, %d, %d -> %d:\n",
2668 INSN_UID (i0
), INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
2670 fprintf (dump_file
, "\nTrying %d, %d -> %d:\n",
2671 INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
2673 fprintf (dump_file
, "\nTrying %d -> %d:\n",
2674 INSN_UID (i2
), INSN_UID (i3
));
2677 dump_insn_slim (dump_file
, i0
);
2679 dump_insn_slim (dump_file
, i1
);
2680 dump_insn_slim (dump_file
, i2
);
2681 dump_insn_slim (dump_file
, i3
);
2684 /* If multiple insns feed into one of I2 or I3, they can be in any
2685 order. To simplify the code below, reorder them in sequence. */
2686 if (i0
&& DF_INSN_LUID (i0
) > DF_INSN_LUID (i2
))
2688 if (i0
&& DF_INSN_LUID (i0
) > DF_INSN_LUID (i1
))
2690 if (i1
&& DF_INSN_LUID (i1
) > DF_INSN_LUID (i2
))
2693 added_links_insn
= 0;
2694 added_notes_insn
= 0;
2696 /* First check for one important special case that the code below will
2697 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2698 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2699 we may be able to replace that destination with the destination of I3.
2700 This occurs in the common code where we compute both a quotient and
2701 remainder into a structure, in which case we want to do the computation
2702 directly into the structure to avoid register-register copies.
2704 Note that this case handles both multiple sets in I2 and also cases
2705 where I2 has a number of CLOBBERs inside the PARALLEL.
2707 We make very conservative checks below and only try to handle the
2708 most common cases of this. For example, we only handle the case
2709 where I2 and I3 are adjacent to avoid making difficult register
2712 if (i1
== 0 && NONJUMP_INSN_P (i3
) && GET_CODE (PATTERN (i3
)) == SET
2713 && REG_P (SET_SRC (PATTERN (i3
)))
2714 && REGNO (SET_SRC (PATTERN (i3
))) >= FIRST_PSEUDO_REGISTER
2715 && find_reg_note (i3
, REG_DEAD
, SET_SRC (PATTERN (i3
)))
2716 && GET_CODE (PATTERN (i2
)) == PARALLEL
2717 && ! side_effects_p (SET_DEST (PATTERN (i3
)))
2718 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2719 below would need to check what is inside (and reg_overlap_mentioned_p
2720 doesn't support those codes anyway). Don't allow those destinations;
2721 the resulting insn isn't likely to be recognized anyway. */
2722 && GET_CODE (SET_DEST (PATTERN (i3
))) != ZERO_EXTRACT
2723 && GET_CODE (SET_DEST (PATTERN (i3
))) != STRICT_LOW_PART
2724 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3
)),
2725 SET_DEST (PATTERN (i3
)))
2726 && next_active_insn (i2
) == i3
)
2728 rtx p2
= PATTERN (i2
);
2730 /* Make sure that the destination of I3,
2731 which we are going to substitute into one output of I2,
2732 is not used within another output of I2. We must avoid making this:
2733 (parallel [(set (mem (reg 69)) ...)
2734 (set (reg 69) ...)])
2735 which is not well-defined as to order of actions.
2736 (Besides, reload can't handle output reloads for this.)
2738 The problem can also happen if the dest of I3 is a memory ref,
2739 if another dest in I2 is an indirect memory ref.
2741 Neither can this PARALLEL be an asm. We do not allow combining
2742 that usually (see can_combine_p), so do not here either. */
2744 for (i
= 0; ok
&& i
< XVECLEN (p2
, 0); i
++)
2746 if ((GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2747 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER
)
2748 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3
)),
2749 SET_DEST (XVECEXP (p2
, 0, i
))))
2751 else if (GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2752 && GET_CODE (SET_SRC (XVECEXP (p2
, 0, i
))) == ASM_OPERANDS
)
2757 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
2758 if (GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2759 && SET_DEST (XVECEXP (p2
, 0, i
)) == SET_SRC (PATTERN (i3
)))
2764 subst_low_luid
= DF_INSN_LUID (i2
);
2766 added_sets_2
= added_sets_1
= added_sets_0
= false;
2767 i2src
= SET_SRC (XVECEXP (p2
, 0, i
));
2768 i2dest
= SET_DEST (XVECEXP (p2
, 0, i
));
2769 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2771 /* Replace the dest in I2 with our dest and make the resulting
2772 insn the new pattern for I3. Then skip to where we validate
2773 the pattern. Everything was set up above. */
2774 SUBST (SET_DEST (XVECEXP (p2
, 0, i
)), SET_DEST (PATTERN (i3
)));
2776 i3_subst_into_i2
= true;
2777 goto validate_replacement
;
2781 /* If I2 is setting a pseudo to a constant and I3 is setting some
2782 sub-part of it to another constant, merge them by making a new
2785 && (temp_expr
= single_set (i2
)) != 0
2786 && is_a
<scalar_int_mode
> (GET_MODE (SET_DEST (temp_expr
)), &temp_mode
)
2787 && CONST_SCALAR_INT_P (SET_SRC (temp_expr
))
2788 && GET_CODE (PATTERN (i3
)) == SET
2789 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3
)))
2790 && reg_subword_p (SET_DEST (PATTERN (i3
)), SET_DEST (temp_expr
)))
2792 rtx dest
= SET_DEST (PATTERN (i3
));
2793 rtx temp_dest
= SET_DEST (temp_expr
);
2797 if (GET_CODE (dest
) == ZERO_EXTRACT
)
2799 if (CONST_INT_P (XEXP (dest
, 1))
2800 && CONST_INT_P (XEXP (dest
, 2))
2801 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (dest
, 0)),
2804 width
= INTVAL (XEXP (dest
, 1));
2805 offset
= INTVAL (XEXP (dest
, 2));
2806 dest
= XEXP (dest
, 0);
2807 if (BITS_BIG_ENDIAN
)
2808 offset
= GET_MODE_PRECISION (dest_mode
) - width
- offset
;
2813 if (GET_CODE (dest
) == STRICT_LOW_PART
)
2814 dest
= XEXP (dest
, 0);
2815 if (is_a
<scalar_int_mode
> (GET_MODE (dest
), &dest_mode
))
2817 width
= GET_MODE_PRECISION (dest_mode
);
2824 /* If this is the low part, we're done. */
2825 if (subreg_lowpart_p (dest
))
2827 /* Handle the case where inner is twice the size of outer. */
2828 else if (GET_MODE_PRECISION (temp_mode
)
2829 == 2 * GET_MODE_PRECISION (dest_mode
))
2830 offset
+= GET_MODE_PRECISION (dest_mode
);
2831 /* Otherwise give up for now. */
2838 rtx inner
= SET_SRC (PATTERN (i3
));
2839 rtx outer
= SET_SRC (temp_expr
);
2841 wide_int o
= wi::insert (rtx_mode_t (outer
, temp_mode
),
2842 rtx_mode_t (inner
, dest_mode
),
2847 subst_low_luid
= DF_INSN_LUID (i2
);
2848 added_sets_2
= added_sets_1
= added_sets_0
= false;
2850 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2852 /* Replace the source in I2 with the new constant and make the
2853 resulting insn the new pattern for I3. Then skip to where we
2854 validate the pattern. Everything was set up above. */
2855 SUBST (SET_SRC (temp_expr
),
2856 immed_wide_int_const (o
, temp_mode
));
2858 newpat
= PATTERN (i2
);
2860 /* The dest of I3 has been replaced with the dest of I2. */
2861 changed_i3_dest
= true;
2862 goto validate_replacement
;
2866 /* If we have no I1 and I2 looks like:
2867 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2869 make up a dummy I1 that is
2872 (set (reg:CC X) (compare:CC Y (const_int 0)))
2874 (We can ignore any trailing CLOBBERs.)
2876 This undoes a previous combination and allows us to match a branch-and-
2880 && is_parallel_of_n_reg_sets (PATTERN (i2
), 2)
2881 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0))))
2883 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0))) == COMPARE
2884 && XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 1) == const0_rtx
2885 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 0),
2886 SET_SRC (XVECEXP (PATTERN (i2
), 0, 1)))
2887 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0)), i2
, i3
)
2888 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)), i2
, i3
))
2890 /* We make I1 with the same INSN_UID as I2. This gives it
2891 the same DF_INSN_LUID for value tracking. Our fake I1 will
2892 never appear in the insn stream so giving it the same INSN_UID
2893 as I2 will not cause a problem. */
2895 i1
= gen_rtx_INSN (VOIDmode
, NULL
, i2
, BLOCK_FOR_INSN (i2
),
2896 XVECEXP (PATTERN (i2
), 0, 1), INSN_LOCATION (i2
),
2898 INSN_UID (i1
) = INSN_UID (i2
);
2900 SUBST (PATTERN (i2
), XVECEXP (PATTERN (i2
), 0, 0));
2901 SUBST (XEXP (SET_SRC (PATTERN (i2
)), 0),
2902 SET_DEST (PATTERN (i1
)));
2903 unsigned int regno
= REGNO (SET_DEST (PATTERN (i1
)));
2904 SUBST_LINK (LOG_LINKS (i2
),
2905 alloc_insn_link (i1
, regno
, LOG_LINKS (i2
)));
2908 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2909 make those two SETs separate I1 and I2 insns, and make an I0 that is
2912 && is_parallel_of_n_reg_sets (PATTERN (i2
), 2)
2913 && can_split_parallel_of_n_reg_sets (i2
, 2)
2914 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0)), i2
, i3
)
2915 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)), i2
, i3
)
2916 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0)), i2
, i3
)
2917 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)), i2
, i3
))
2919 /* If there is no I1, there is no I0 either. */
2922 /* We make I1 with the same INSN_UID as I2. This gives it
2923 the same DF_INSN_LUID for value tracking. Our fake I1 will
2924 never appear in the insn stream so giving it the same INSN_UID
2925 as I2 will not cause a problem. */
2927 i1
= gen_rtx_INSN (VOIDmode
, NULL
, i2
, BLOCK_FOR_INSN (i2
),
2928 XVECEXP (PATTERN (i2
), 0, 0), INSN_LOCATION (i2
),
2930 INSN_UID (i1
) = INSN_UID (i2
);
2932 SUBST (PATTERN (i2
), XVECEXP (PATTERN (i2
), 0, 1));
2935 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
2936 if (!can_combine_p (i2
, i3
, i0
, i1
, NULL
, NULL
, &i2dest
, &i2src
))
2938 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2939 fprintf (dump_file
, "Can't combine i2 into i3\n");
2943 if (i1
&& !can_combine_p (i1
, i3
, i0
, NULL
, i2
, NULL
, &i1dest
, &i1src
))
2945 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2946 fprintf (dump_file
, "Can't combine i1 into i3\n");
2950 if (i0
&& !can_combine_p (i0
, i3
, NULL
, NULL
, i1
, i2
, &i0dest
, &i0src
))
2952 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2953 fprintf (dump_file
, "Can't combine i0 into i3\n");
2958 /* With non-call exceptions we can end up trying to combine multiple
2959 insns with possible EH side effects. Make sure we can combine
2960 that to a single insn which means there must be at most one insn
2961 in the combination with an EH side effect. */
2962 if (cfun
->can_throw_non_call_exceptions
)
2964 if (find_reg_note (i3
, REG_EH_REGION
, NULL_RTX
)
2965 || find_reg_note (i2
, REG_EH_REGION
, NULL_RTX
)
2966 || (i1
&& find_reg_note (i1
, REG_EH_REGION
, NULL_RTX
))
2967 || (i0
&& find_reg_note (i0
, REG_EH_REGION
, NULL_RTX
)))
2969 has_non_call_exception
= true;
2970 if (insn_could_throw_p (i3
)
2971 + insn_could_throw_p (i2
)
2972 + (i1
? insn_could_throw_p (i1
) : 0)
2973 + (i0
? insn_could_throw_p (i0
) : 0) > 1)
2975 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2976 fprintf (dump_file
, "Can't combine multiple insns with EH "
2984 /* Record whether i2 and i3 are trivial moves. */
2985 i2_was_move
= is_just_move (i2
);
2986 i3_was_move
= is_just_move (i3
);
2988 /* Record whether I2DEST is used in I2SRC and similarly for the other
2989 cases. Knowing this will help in register status updating below. */
2990 i2dest_in_i2src
= reg_overlap_mentioned_p (i2dest
, i2src
);
2991 i1dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i1dest
, i1src
);
2992 i2dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i2dest
, i1src
);
2993 i0dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i0dest
, i0src
);
2994 i1dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i1dest
, i0src
);
2995 i2dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i2dest
, i0src
);
2996 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2997 i1dest_killed
= i1
&& dead_or_set_p (i1
, i1dest
);
2998 i0dest_killed
= i0
&& dead_or_set_p (i0
, i0dest
);
3000 /* For the earlier insns, determine which of the subsequent ones they
3002 i1_feeds_i2_n
= i1
&& insn_a_feeds_b (i1
, i2
);
3003 i0_feeds_i1_n
= i0
&& insn_a_feeds_b (i0
, i1
);
3004 i0_feeds_i2_n
= (i0
&& (!i0_feeds_i1_n
? insn_a_feeds_b (i0
, i2
)
3005 : (!reg_overlap_mentioned_p (i1dest
, i0dest
)
3006 && reg_overlap_mentioned_p (i0dest
, i2src
))));
3008 /* Ensure that I3's pattern can be the destination of combines. */
3009 if (! combinable_i3pat (i3
, &PATTERN (i3
), i2dest
, i1dest
, i0dest
,
3010 i1
&& i2dest_in_i1src
&& !i1_feeds_i2_n
,
3011 i0
&& ((i2dest_in_i0src
&& !i0_feeds_i2_n
)
3012 || (i1dest_in_i0src
&& !i0_feeds_i1_n
)),
3019 /* See if any of the insns is a MULT operation. Unless one is, we will
3020 reject a combination that is, since it must be slower. Be conservative
3022 if (GET_CODE (i2src
) == MULT
3023 || (i1
!= 0 && GET_CODE (i1src
) == MULT
)
3024 || (i0
!= 0 && GET_CODE (i0src
) == MULT
)
3025 || (GET_CODE (PATTERN (i3
)) == SET
3026 && GET_CODE (SET_SRC (PATTERN (i3
))) == MULT
))
3029 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3030 We used to do this EXCEPT in one case: I3 has a post-inc in an
3031 output operand. However, that exception can give rise to insns like
3033 which is a famous insn on the PDP-11 where the value of r3 used as the
3034 source was model-dependent. Avoid this sort of thing. */
3037 if (!(GET_CODE (PATTERN (i3
)) == SET
3038 && REG_P (SET_SRC (PATTERN (i3
)))
3039 && MEM_P (SET_DEST (PATTERN (i3
)))
3040 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_INC
3041 || GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_DEC
)))
3042 /* It's not the exception. */
3047 for (link
= REG_NOTES (i3
); link
; link
= XEXP (link
, 1))
3048 if (REG_NOTE_KIND (link
) == REG_INC
3049 && (reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i2
))
3051 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i1
)))))
3058 /* See if the SETs in I1 or I2 need to be kept around in the merged
3059 instruction: whenever the value set there is still needed past I3.
3060 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3062 For the SET in I1, we have two cases: if I1 and I2 independently feed
3063 into I3, the set in I1 needs to be kept around unless I1DEST dies
3064 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3065 in I1 needs to be kept around unless I1DEST dies or is set in either
3066 I2 or I3. The same considerations apply to I0. */
3068 added_sets_2
= !dead_or_set_p (i3
, i2dest
);
3071 added_sets_1
= !(dead_or_set_p (i3
, i1dest
)
3072 || (i1_feeds_i2_n
&& dead_or_set_p (i2
, i1dest
)));
3074 added_sets_1
= false;
3077 added_sets_0
= !(dead_or_set_p (i3
, i0dest
)
3078 || (i0_feeds_i1_n
&& dead_or_set_p (i1
, i0dest
))
3079 || ((i0_feeds_i2_n
|| (i0_feeds_i1_n
&& i1_feeds_i2_n
))
3080 && dead_or_set_p (i2
, i0dest
)));
3082 added_sets_0
= false;
3084 /* We are about to copy insns for the case where they need to be kept
3085 around. Check that they can be copied in the merged instruction. */
3087 if (targetm
.cannot_copy_insn_p
3088 && ((added_sets_2
&& targetm
.cannot_copy_insn_p (i2
))
3089 || (i1
&& added_sets_1
&& targetm
.cannot_copy_insn_p (i1
))
3090 || (i0
&& added_sets_0
&& targetm
.cannot_copy_insn_p (i0
))))
3096 /* We cannot safely duplicate volatile references in any case. */
3098 if ((added_sets_2
&& volatile_refs_p (PATTERN (i2
)))
3099 || (added_sets_1
&& volatile_refs_p (PATTERN (i1
)))
3100 || (added_sets_0
&& volatile_refs_p (PATTERN (i0
))))
3106 /* Count how many auto_inc expressions there were in the original insns;
3107 we need to have the same number in the resulting patterns. */
3110 for_each_inc_dec (PATTERN (i0
), count_auto_inc
, &n_auto_inc
);
3112 for_each_inc_dec (PATTERN (i1
), count_auto_inc
, &n_auto_inc
);
3113 for_each_inc_dec (PATTERN (i2
), count_auto_inc
, &n_auto_inc
);
3114 for_each_inc_dec (PATTERN (i3
), count_auto_inc
, &n_auto_inc
);
3116 /* If the set in I2 needs to be kept around, we must make a copy of
3117 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3118 PATTERN (I2), we are only substituting for the original I1DEST, not into
3119 an already-substituted copy. This also prevents making self-referential
3120 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3125 if (GET_CODE (PATTERN (i2
)) == PARALLEL
)
3126 i2pat
= gen_rtx_SET (i2dest
, copy_rtx (i2src
));
3128 i2pat
= copy_rtx (PATTERN (i2
));
3133 if (GET_CODE (PATTERN (i1
)) == PARALLEL
)
3134 i1pat
= gen_rtx_SET (i1dest
, copy_rtx (i1src
));
3136 i1pat
= copy_rtx (PATTERN (i1
));
3141 if (GET_CODE (PATTERN (i0
)) == PARALLEL
)
3142 i0pat
= gen_rtx_SET (i0dest
, copy_rtx (i0src
));
3144 i0pat
= copy_rtx (PATTERN (i0
));
3149 /* Substitute in the latest insn for the regs set by the earlier ones. */
3151 maxreg
= max_reg_num ();
3155 /* Many machines have insns that can both perform an
3156 arithmetic operation and set the condition code. These operations will
3157 be represented as a PARALLEL with the first element of the vector
3158 being a COMPARE of an arithmetic operation with the constant zero.
3159 The second element of the vector will set some pseudo to the result
3160 of the same arithmetic operation. If we simplify the COMPARE, we won't
3161 match such a pattern and so will generate an extra insn. Here we test
3162 for this case, where both the comparison and the operation result are
3163 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3164 I2SRC. Later we will make the PARALLEL that contains I2. */
3166 if (i1
== 0 && added_sets_2
&& GET_CODE (PATTERN (i3
)) == SET
3167 && GET_CODE (SET_SRC (PATTERN (i3
))) == COMPARE
3168 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3
)), 1))
3169 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3
)), 0), i2dest
))
3172 rtx
*cc_use_loc
= NULL
;
3173 rtx_insn
*cc_use_insn
= NULL
;
3174 rtx op0
= i2src
, op1
= XEXP (SET_SRC (PATTERN (i3
)), 1);
3175 machine_mode compare_mode
, orig_compare_mode
;
3176 enum rtx_code compare_code
= UNKNOWN
, orig_compare_code
= UNKNOWN
;
3177 scalar_int_mode mode
;
3179 newpat
= PATTERN (i3
);
3180 newpat_dest
= SET_DEST (newpat
);
3181 compare_mode
= orig_compare_mode
= GET_MODE (newpat_dest
);
3183 if (undobuf
.other_insn
== 0
3184 && (cc_use_loc
= find_single_use (SET_DEST (newpat
), i3
,
3187 compare_code
= orig_compare_code
= GET_CODE (*cc_use_loc
);
3188 if (is_a
<scalar_int_mode
> (GET_MODE (i2dest
), &mode
))
3189 compare_code
= simplify_compare_const (compare_code
, mode
,
3191 target_canonicalize_comparison (&compare_code
, &op0
, &op1
, 1);
3194 /* Do the rest only if op1 is const0_rtx, which may be the
3195 result of simplification. */
3196 if (op1
== const0_rtx
)
3198 /* If a single use of the CC is found, prepare to modify it
3199 when SELECT_CC_MODE returns a new CC-class mode, or when
3200 the above simplify_compare_const() returned a new comparison
3201 operator. undobuf.other_insn is assigned the CC use insn
3202 when modifying it. */
3205 #ifdef SELECT_CC_MODE
3206 machine_mode new_mode
3207 = SELECT_CC_MODE (compare_code
, op0
, op1
);
3208 if (new_mode
!= orig_compare_mode
3209 && can_change_dest_mode (SET_DEST (newpat
),
3210 added_sets_2
, new_mode
))
3212 unsigned int regno
= REGNO (newpat_dest
);
3213 compare_mode
= new_mode
;
3214 if (regno
< FIRST_PSEUDO_REGISTER
)
3215 newpat_dest
= gen_rtx_REG (compare_mode
, regno
);
3218 subst_mode (regno
, compare_mode
);
3219 newpat_dest
= regno_reg_rtx
[regno
];
3223 /* Cases for modifying the CC-using comparison. */
3224 if (compare_code
!= orig_compare_code
3225 && COMPARISON_P (*cc_use_loc
))
3227 /* Replace cc_use_loc with entire new RTX. */
3229 gen_rtx_fmt_ee (compare_code
, GET_MODE (*cc_use_loc
),
3230 newpat_dest
, const0_rtx
));
3231 undobuf
.other_insn
= cc_use_insn
;
3233 else if (compare_mode
!= orig_compare_mode
)
3235 subrtx_ptr_iterator::array_type array
;
3237 /* Just replace the CC reg with a new mode. */
3238 FOR_EACH_SUBRTX_PTR (iter
, array
, cc_use_loc
, NONCONST
)
3242 && REGNO (*loc
) == REGNO (newpat_dest
))
3244 SUBST (*loc
, newpat_dest
);
3245 iter
.skip_subrtxes ();
3248 undobuf
.other_insn
= cc_use_insn
;
3252 /* Now we modify the current newpat:
3253 First, SET_DEST(newpat) is updated if the CC mode has been
3254 altered. For targets without SELECT_CC_MODE, this should be
3256 if (compare_mode
!= orig_compare_mode
)
3257 SUBST (SET_DEST (newpat
), newpat_dest
);
3258 /* This is always done to propagate i2src into newpat. */
3259 SUBST (SET_SRC (newpat
),
3260 gen_rtx_COMPARE (compare_mode
, op0
, op1
));
3261 /* Create new version of i2pat if needed; the below PARALLEL
3262 creation needs this to work correctly. */
3263 if (! rtx_equal_p (i2src
, op0
))
3264 i2pat
= gen_rtx_SET (i2dest
, op0
);
3269 if (i2_is_used
== 0)
3271 /* It is possible that the source of I2 or I1 may be performing
3272 an unneeded operation, such as a ZERO_EXTEND of something
3273 that is known to have the high part zero. Handle that case
3274 by letting subst look at the inner insns.
3276 Another way to do this would be to have a function that tries
3277 to simplify a single insn instead of merging two or more
3278 insns. We don't do this because of the potential of infinite
3279 loops and because of the potential extra memory required.
3280 However, doing it the way we are is a bit of a kludge and
3281 doesn't catch all cases.
3283 But only do this if -fexpensive-optimizations since it slows
3284 things down and doesn't usually win.
3286 This is not done in the COMPARE case above because the
3287 unmodified I2PAT is used in the PARALLEL and so a pattern
3288 with a modified I2SRC would not match. */
3290 if (flag_expensive_optimizations
)
3292 /* Pass pc_rtx so no substitutions are done, just
3296 subst_low_luid
= DF_INSN_LUID (i1
);
3297 i1src
= subst (i1src
, pc_rtx
, pc_rtx
, false, false, false);
3300 subst_low_luid
= DF_INSN_LUID (i2
);
3301 i2src
= subst (i2src
, pc_rtx
, pc_rtx
, false, false, false);
3304 n_occurrences
= 0; /* `subst' counts here */
3305 subst_low_luid
= DF_INSN_LUID (i2
);
3307 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3308 copy of I2SRC each time we substitute it, in order to avoid creating
3309 self-referential RTL when we will be substituting I1SRC for I1DEST
3310 later. Likewise if I0 feeds into I2, either directly or indirectly
3311 through I1, and I0DEST is in I0SRC. */
3312 newpat
= subst (PATTERN (i3
), i2dest
, i2src
, false, false,
3313 (i1_feeds_i2_n
&& i1dest_in_i1src
)
3314 || ((i0_feeds_i2_n
|| (i0_feeds_i1_n
&& i1_feeds_i2_n
))
3315 && i0dest_in_i0src
));
3318 /* Record whether I2's body now appears within I3's body. */
3319 i2_is_used
= n_occurrences
;
3322 /* If we already got a failure, don't try to do more. Otherwise, try to
3323 substitute I1 if we have it. */
3325 if (i1
&& GET_CODE (newpat
) != CLOBBER
)
3327 /* Before we can do this substitution, we must redo the test done
3328 above (see detailed comments there) that ensures I1DEST isn't
3329 mentioned in any SETs in NEWPAT that are field assignments. */
3330 if (!combinable_i3pat (NULL
, &newpat
, i1dest
, NULL_RTX
, NULL_RTX
,
3338 subst_low_luid
= DF_INSN_LUID (i1
);
3340 /* If the following substitution will modify I1SRC, make a copy of it
3341 for the case where it is substituted for I1DEST in I2PAT later. */
3342 if (added_sets_2
&& i1_feeds_i2_n
)
3343 i1src_copy
= copy_rtx (i1src
);
3345 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3346 copy of I1SRC each time we substitute it, in order to avoid creating
3347 self-referential RTL when we will be substituting I0SRC for I0DEST
3349 newpat
= subst (newpat
, i1dest
, i1src
, false, false,
3350 i0_feeds_i1_n
&& i0dest_in_i0src
);
3353 /* Record whether I1's body now appears within I3's body. */
3354 i1_is_used
= n_occurrences
;
3357 /* Likewise for I0 if we have it. */
3359 if (i0
&& GET_CODE (newpat
) != CLOBBER
)
3361 if (!combinable_i3pat (NULL
, &newpat
, i0dest
, NULL_RTX
, NULL_RTX
,
3368 /* If the following substitution will modify I0SRC, make a copy of it
3369 for the case where it is substituted for I0DEST in I1PAT later. */
3370 if (added_sets_1
&& i0_feeds_i1_n
)
3371 i0src_copy
= copy_rtx (i0src
);
3372 /* And a copy for I0DEST in I2PAT substitution. */
3373 if (added_sets_2
&& ((i0_feeds_i1_n
&& i1_feeds_i2_n
)
3374 || (i0_feeds_i2_n
)))
3375 i0src_copy2
= copy_rtx (i0src
);
3378 subst_low_luid
= DF_INSN_LUID (i0
);
3379 newpat
= subst (newpat
, i0dest
, i0src
, false, false, false);
3385 int new_n_auto_inc
= 0;
3386 for_each_inc_dec (newpat
, count_auto_inc
, &new_n_auto_inc
);
3388 if (n_auto_inc
!= new_n_auto_inc
)
3390 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3391 fprintf (dump_file
, "Number of auto_inc expressions changed\n");
3397 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3398 to count all the ways that I2SRC and I1SRC can be used. */
3399 if ((FIND_REG_INC_NOTE (i2
, NULL_RTX
) != 0
3400 && i2_is_used
+ added_sets_2
> 1)
3401 || (i1
!= 0 && FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
3402 && (i1_is_used
+ added_sets_1
+ (added_sets_2
&& i1_feeds_i2_n
) > 1))
3403 || (i0
!= 0 && FIND_REG_INC_NOTE (i0
, NULL_RTX
) != 0
3404 && (n_occurrences
+ added_sets_0
3405 + (added_sets_1
&& i0_feeds_i1_n
)
3406 + (added_sets_2
&& i0_feeds_i2_n
) > 1))
3407 /* Fail if we tried to make a new register. */
3408 || max_reg_num () != maxreg
3409 /* Fail if we couldn't do something and have a CLOBBER. */
3410 || GET_CODE (newpat
) == CLOBBER
3411 /* Fail if this new pattern is a MULT and we didn't have one before
3412 at the outer level. */
3413 || (GET_CODE (newpat
) == SET
&& GET_CODE (SET_SRC (newpat
)) == MULT
3420 /* If the actions of the earlier insns must be kept
3421 in addition to substituting them into the latest one,
3422 we must make a new PARALLEL for the latest insn
3423 to hold additional the SETs. */
3425 if (added_sets_0
|| added_sets_1
|| added_sets_2
)
3427 int extra_sets
= added_sets_0
+ added_sets_1
+ added_sets_2
;
3430 if (GET_CODE (newpat
) == PARALLEL
)
3432 rtvec old
= XVEC (newpat
, 0);
3433 total_sets
= XVECLEN (newpat
, 0) + extra_sets
;
3434 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
3435 memcpy (XVEC (newpat
, 0)->elem
, &old
->elem
[0],
3436 sizeof (old
->elem
[0]) * old
->num_elem
);
3441 total_sets
= 1 + extra_sets
;
3442 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
3443 XVECEXP (newpat
, 0, 0) = old
;
3447 XVECEXP (newpat
, 0, --total_sets
) = i0pat
;
3453 t
= subst (t
, i0dest
, i0src_copy
? i0src_copy
: i0src
,
3454 false, false, false);
3456 XVECEXP (newpat
, 0, --total_sets
) = t
;
3462 t
= subst (t
, i1dest
, i1src_copy
? i1src_copy
: i1src
, false, false,
3463 i0_feeds_i1_n
&& i0dest_in_i0src
);
3464 if ((i0_feeds_i1_n
&& i1_feeds_i2_n
) || i0_feeds_i2_n
)
3465 t
= subst (t
, i0dest
, i0src_copy2
? i0src_copy2
: i0src
,
3466 false, false, false);
3468 XVECEXP (newpat
, 0, --total_sets
) = t
;
3472 validate_replacement
:
3474 /* Note which hard regs this insn has as inputs. */
3475 mark_used_regs_combine (newpat
);
3477 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3478 consider splitting this pattern, we might need these clobbers. */
3479 if (i1
&& GET_CODE (newpat
) == PARALLEL
3480 && GET_CODE (XVECEXP (newpat
, 0, XVECLEN (newpat
, 0) - 1)) == CLOBBER
)
3482 int len
= XVECLEN (newpat
, 0);
3484 newpat_vec_with_clobbers
= rtvec_alloc (len
);
3485 for (i
= 0; i
< len
; i
++)
3486 RTVEC_ELT (newpat_vec_with_clobbers
, i
) = XVECEXP (newpat
, 0, i
);
3489 /* We have recognized nothing yet. */
3490 insn_code_number
= -1;
3492 /* See if this is a PARALLEL of two SETs where one SET's destination is
3493 a register that is unused and this isn't marked as an instruction that
3494 might trap in an EH region. In that case, we just need the other SET.
3495 We prefer this over the PARALLEL.
3497 This can occur when simplifying a divmod insn. We *must* test for this
3498 case here because the code below that splits two independent SETs doesn't
3499 handle this case correctly when it updates the register status.
3501 It's pointless doing this if we originally had two sets, one from
3502 i3, and one from i2. Combining then splitting the parallel results
3503 in the original i2 again plus an invalid insn (which we delete).
3504 The net effect is only to move instructions around, which makes
3505 debug info less accurate.
3507 If the remaining SET came from I2 its destination should not be used
3508 between I2 and I3. See PR82024. */
3510 if (!(added_sets_2
&& i1
== 0)
3511 && is_parallel_of_n_reg_sets (newpat
, 2)
3512 && asm_noperands (newpat
) < 0)
3514 rtx set0
= XVECEXP (newpat
, 0, 0);
3515 rtx set1
= XVECEXP (newpat
, 0, 1);
3516 rtx oldpat
= newpat
;
3518 if (((REG_P (SET_DEST (set1
))
3519 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set1
)))
3520 || (GET_CODE (SET_DEST (set1
)) == SUBREG
3521 && find_reg_note (i3
, REG_UNUSED
, SUBREG_REG (SET_DEST (set1
)))))
3522 && insn_nothrow_p (i3
)
3523 && !side_effects_p (SET_SRC (set1
)))
3526 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3529 else if (((REG_P (SET_DEST (set0
))
3530 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set0
)))
3531 || (GET_CODE (SET_DEST (set0
)) == SUBREG
3532 && find_reg_note (i3
, REG_UNUSED
,
3533 SUBREG_REG (SET_DEST (set0
)))))
3534 && insn_nothrow_p (i3
)
3535 && !side_effects_p (SET_SRC (set0
)))
3537 rtx dest
= SET_DEST (set1
);
3538 if (GET_CODE (dest
) == SUBREG
)
3539 dest
= SUBREG_REG (dest
);
3540 if (!reg_used_between_p (dest
, i2
, i3
))
3543 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3545 if (insn_code_number
>= 0)
3546 changed_i3_dest
= true;
3550 if (insn_code_number
< 0)
3554 /* Is the result of combination a valid instruction? */
3555 if (insn_code_number
< 0)
3556 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3558 /* If we were combining three insns and the result is a simple SET
3559 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3560 insns. There are two ways to do this. It can be split using a
3561 machine-specific method (like when you have an addition of a large
3562 constant) or by combine in the function find_split_point. */
3564 if (i1
&& insn_code_number
< 0 && GET_CODE (newpat
) == SET
3565 && asm_noperands (newpat
) < 0)
3567 rtx parallel
, *split
;
3568 rtx_insn
*m_split_insn
;
3570 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3571 use I2DEST as a scratch register will help. In the latter case,
3572 convert I2DEST to the mode of the source of NEWPAT if we can. */
3574 m_split_insn
= combine_split_insns (newpat
, i3
);
3576 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3577 inputs of NEWPAT. */
3579 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3580 possible to try that as a scratch reg. This would require adding
3581 more code to make it work though. */
3583 if (m_split_insn
== 0 && ! reg_overlap_mentioned_p (i2dest
, newpat
))
3585 machine_mode new_mode
= GET_MODE (SET_DEST (newpat
));
3587 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3588 (temporarily, until we are committed to this instruction
3589 combination) does not work: for example, any call to nonzero_bits
3590 on the register (from a splitter in the MD file, for example)
3591 will get the old information, which is invalid.
3593 Since nowadays we can create registers during combine just fine,
3594 we should just create a new one here, not reuse i2dest. */
3596 /* First try to split using the original register as a
3597 scratch register. */
3598 parallel
= gen_rtx_PARALLEL (VOIDmode
,
3599 gen_rtvec (2, newpat
,
3600 gen_rtx_CLOBBER (VOIDmode
,
3602 m_split_insn
= combine_split_insns (parallel
, i3
);
3604 /* If that didn't work, try changing the mode of I2DEST if
3606 if (m_split_insn
== 0
3607 && new_mode
!= GET_MODE (i2dest
)
3608 && new_mode
!= VOIDmode
3609 && can_change_dest_mode (i2dest
, added_sets_2
, new_mode
))
3611 machine_mode old_mode
= GET_MODE (i2dest
);
3614 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
3615 ni2dest
= gen_rtx_REG (new_mode
, REGNO (i2dest
));
3618 subst_mode (REGNO (i2dest
), new_mode
);
3619 ni2dest
= regno_reg_rtx
[REGNO (i2dest
)];
3622 parallel
= (gen_rtx_PARALLEL
3624 gen_rtvec (2, newpat
,
3625 gen_rtx_CLOBBER (VOIDmode
,
3627 m_split_insn
= combine_split_insns (parallel
, i3
);
3629 if (m_split_insn
== 0
3630 && REGNO (i2dest
) >= FIRST_PSEUDO_REGISTER
)
3634 adjust_reg_mode (regno_reg_rtx
[REGNO (i2dest
)], old_mode
);
3635 buf
= undobuf
.undos
;
3636 undobuf
.undos
= buf
->next
;
3637 buf
->next
= undobuf
.frees
;
3638 undobuf
.frees
= buf
;
3642 i2scratch
= m_split_insn
!= 0;
3645 /* If recog_for_combine has discarded clobbers, try to use them
3646 again for the split. */
3647 if (m_split_insn
== 0 && newpat_vec_with_clobbers
)
3649 parallel
= gen_rtx_PARALLEL (VOIDmode
, newpat_vec_with_clobbers
);
3650 m_split_insn
= combine_split_insns (parallel
, i3
);
3653 if (m_split_insn
&& NEXT_INSN (m_split_insn
) == NULL_RTX
)
3655 rtx m_split_pat
= PATTERN (m_split_insn
);
3656 insn_code_number
= recog_for_combine (&m_split_pat
, i3
, &new_i3_notes
);
3657 if (insn_code_number
>= 0)
3658 newpat
= m_split_pat
;
3660 else if (m_split_insn
&& NEXT_INSN (NEXT_INSN (m_split_insn
)) == NULL_RTX
3661 && (next_nonnote_nondebug_insn (i2
) == i3
3662 || !modified_between_p (PATTERN (m_split_insn
), i2
, i3
)))
3665 rtx newi3pat
= PATTERN (NEXT_INSN (m_split_insn
));
3666 newi2pat
= PATTERN (m_split_insn
);
3668 i3set
= single_set (NEXT_INSN (m_split_insn
));
3669 i2set
= single_set (m_split_insn
);
3671 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3673 /* If I2 or I3 has multiple SETs, we won't know how to track
3674 register status, so don't use these insns. If I2's destination
3675 is used between I2 and I3, we also can't use these insns. */
3677 if (i2_code_number
>= 0 && i2set
&& i3set
3678 && (next_nonnote_nondebug_insn (i2
) == i3
3679 || ! reg_used_between_p (SET_DEST (i2set
), i2
, i3
)))
3680 insn_code_number
= recog_for_combine (&newi3pat
, i3
,
3682 if (insn_code_number
>= 0)
3685 /* It is possible that both insns now set the destination of I3.
3686 If so, we must show an extra use of it. */
3688 if (insn_code_number
>= 0)
3690 rtx new_i3_dest
= SET_DEST (i3set
);
3691 rtx new_i2_dest
= SET_DEST (i2set
);
3693 while (GET_CODE (new_i3_dest
) == ZERO_EXTRACT
3694 || GET_CODE (new_i3_dest
) == STRICT_LOW_PART
3695 || GET_CODE (new_i3_dest
) == SUBREG
)
3696 new_i3_dest
= XEXP (new_i3_dest
, 0);
3698 while (GET_CODE (new_i2_dest
) == ZERO_EXTRACT
3699 || GET_CODE (new_i2_dest
) == STRICT_LOW_PART
3700 || GET_CODE (new_i2_dest
) == SUBREG
)
3701 new_i2_dest
= XEXP (new_i2_dest
, 0);
3703 if (REG_P (new_i3_dest
)
3704 && REG_P (new_i2_dest
)
3705 && REGNO (new_i3_dest
) == REGNO (new_i2_dest
)
3706 && REGNO (new_i2_dest
) < reg_n_sets_max
)
3707 INC_REG_N_SETS (REGNO (new_i2_dest
), 1);
3711 /* If we can split it and use I2DEST, go ahead and see if that
3712 helps things be recognized. Verify that none of the registers
3713 are set between I2 and I3. */
3714 if (insn_code_number
< 0
3715 && (split
= find_split_point (&newpat
, i3
, false)) != 0
3716 /* We need I2DEST in the proper mode. If it is a hard register
3717 or the only use of a pseudo, we can change its mode.
3718 Make sure we don't change a hard register to have a mode that
3719 isn't valid for it, or change the number of registers. */
3720 && (GET_MODE (*split
) == GET_MODE (i2dest
)
3721 || GET_MODE (*split
) == VOIDmode
3722 || can_change_dest_mode (i2dest
, added_sets_2
,
3724 && (next_nonnote_nondebug_insn (i2
) == i3
3725 || !modified_between_p (*split
, i2
, i3
))
3726 /* We can't overwrite I2DEST if its value is still used by
3728 && ! reg_referenced_p (i2dest
, newpat
)
3729 /* We should not split a possibly trapping part when we
3730 care about non-call EH and have REG_EH_REGION notes
3732 && ! (cfun
->can_throw_non_call_exceptions
3733 && has_non_call_exception
3734 && may_trap_p (*split
)))
3736 rtx newdest
= i2dest
;
3737 enum rtx_code split_code
= GET_CODE (*split
);
3738 machine_mode split_mode
= GET_MODE (*split
);
3739 bool subst_done
= false;
3740 newi2pat
= NULL_RTX
;
3744 /* *SPLIT may be part of I2SRC, so make sure we have the
3745 original expression around for later debug processing.
3746 We should not need I2SRC any more in other cases. */
3747 if (MAY_HAVE_DEBUG_BIND_INSNS
)
3748 i2src
= copy_rtx (i2src
);
3752 /* Get NEWDEST as a register in the proper mode. We have already
3753 validated that we can do this. */
3754 if (GET_MODE (i2dest
) != split_mode
&& split_mode
!= VOIDmode
)
3756 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
3757 newdest
= gen_rtx_REG (split_mode
, REGNO (i2dest
));
3760 subst_mode (REGNO (i2dest
), split_mode
);
3761 newdest
= regno_reg_rtx
[REGNO (i2dest
)];
3765 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3766 an ASHIFT. This can occur if it was inside a PLUS and hence
3767 appeared to be a memory address. This is a kludge. */
3768 if (split_code
== MULT
3769 && CONST_INT_P (XEXP (*split
, 1))
3770 && INTVAL (XEXP (*split
, 1)) > 0
3771 && (i
= exact_log2 (UINTVAL (XEXP (*split
, 1)))) >= 0)
3773 rtx i_rtx
= gen_int_shift_amount (split_mode
, i
);
3774 SUBST (*split
, gen_rtx_ASHIFT (split_mode
,
3775 XEXP (*split
, 0), i_rtx
));
3776 /* Update split_code because we may not have a multiply
3778 split_code
= GET_CODE (*split
);
3781 /* Similarly for (plus (mult FOO (const_int pow2))). */
3782 if (split_code
== PLUS
3783 && GET_CODE (XEXP (*split
, 0)) == MULT
3784 && CONST_INT_P (XEXP (XEXP (*split
, 0), 1))
3785 && INTVAL (XEXP (XEXP (*split
, 0), 1)) > 0
3786 && (i
= exact_log2 (UINTVAL (XEXP (XEXP (*split
, 0), 1)))) >= 0)
3788 rtx nsplit
= XEXP (*split
, 0);
3789 rtx i_rtx
= gen_int_shift_amount (GET_MODE (nsplit
), i
);
3790 SUBST (XEXP (*split
, 0), gen_rtx_ASHIFT (GET_MODE (nsplit
),
3793 /* Update split_code because we may not have a multiply
3795 split_code
= GET_CODE (*split
);
3798 #ifdef INSN_SCHEDULING
3799 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3800 be written as a ZERO_EXTEND. */
3801 if (split_code
== SUBREG
&& MEM_P (SUBREG_REG (*split
)))
3803 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3804 what it really is. */
3805 if (load_extend_op (GET_MODE (SUBREG_REG (*split
)))
3807 SUBST (*split
, gen_rtx_SIGN_EXTEND (split_mode
,
3808 SUBREG_REG (*split
)));
3810 SUBST (*split
, gen_rtx_ZERO_EXTEND (split_mode
,
3811 SUBREG_REG (*split
)));
3815 /* Attempt to split binary operators using arithmetic identities. */
3816 if (BINARY_P (SET_SRC (newpat
))
3817 && split_mode
== GET_MODE (SET_SRC (newpat
))
3818 && ! side_effects_p (SET_SRC (newpat
)))
3820 rtx setsrc
= SET_SRC (newpat
);
3821 machine_mode mode
= GET_MODE (setsrc
);
3822 enum rtx_code code
= GET_CODE (setsrc
);
3823 rtx src_op0
= XEXP (setsrc
, 0);
3824 rtx src_op1
= XEXP (setsrc
, 1);
3826 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3827 if (rtx_equal_p (src_op0
, src_op1
))
3829 newi2pat
= gen_rtx_SET (newdest
, src_op0
);
3830 SUBST (XEXP (setsrc
, 0), newdest
);
3831 SUBST (XEXP (setsrc
, 1), newdest
);
3834 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3835 else if ((code
== PLUS
|| code
== MULT
)
3836 && GET_CODE (src_op0
) == code
3837 && GET_CODE (XEXP (src_op0
, 0)) == code
3838 && (INTEGRAL_MODE_P (mode
)
3839 || (FLOAT_MODE_P (mode
)
3840 && flag_unsafe_math_optimizations
)))
3842 rtx p
= XEXP (XEXP (src_op0
, 0), 0);
3843 rtx q
= XEXP (XEXP (src_op0
, 0), 1);
3844 rtx r
= XEXP (src_op0
, 1);
3847 /* Split both "((X op Y) op X) op Y" and
3848 "((X op Y) op Y) op X" as "T op T" where T is
3850 if ((rtx_equal_p (p
,r
) && rtx_equal_p (q
,s
))
3851 || (rtx_equal_p (p
,s
) && rtx_equal_p (q
,r
)))
3853 newi2pat
= gen_rtx_SET (newdest
, XEXP (src_op0
, 0));
3854 SUBST (XEXP (setsrc
, 0), newdest
);
3855 SUBST (XEXP (setsrc
, 1), newdest
);
3858 /* Split "((X op X) op Y) op Y)" as "T op T" where
3860 else if (rtx_equal_p (p
,q
) && rtx_equal_p (r
,s
))
3862 rtx tmp
= simplify_gen_binary (code
, mode
, p
, r
);
3863 newi2pat
= gen_rtx_SET (newdest
, tmp
);
3864 SUBST (XEXP (setsrc
, 0), newdest
);
3865 SUBST (XEXP (setsrc
, 1), newdest
);
3873 newi2pat
= gen_rtx_SET (newdest
, *split
);
3874 SUBST (*split
, newdest
);
3877 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3879 /* recog_for_combine might have added CLOBBERs to newi2pat.
3880 Make sure NEWPAT does not depend on the clobbered regs. */
3881 if (GET_CODE (newi2pat
) == PARALLEL
)
3882 for (i
= XVECLEN (newi2pat
, 0) - 1; i
>= 0; i
--)
3883 if (GET_CODE (XVECEXP (newi2pat
, 0, i
)) == CLOBBER
)
3885 rtx reg
= XEXP (XVECEXP (newi2pat
, 0, i
), 0);
3886 if (reg_overlap_mentioned_p (reg
, newpat
))
3893 /* If the split point was a MULT and we didn't have one before,
3894 don't use one now. */
3895 if (i2_code_number
>= 0 && ! (split_code
== MULT
&& ! have_mult
))
3896 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3900 /* Check for a case where we loaded from memory in a narrow mode and
3901 then sign extended it, but we need both registers. In that case,
3902 we have a PARALLEL with both loads from the same memory location.
3903 We can split this into a load from memory followed by a register-register
3904 copy. This saves at least one insn, more if register allocation can
3907 We cannot do this if the involved modes have more than one elements,
3908 like for vector or complex modes.
3910 We cannot do this if the destination of the first assignment is a
3911 condition code register. We eliminate this case by making sure
3912 the SET_DEST and SET_SRC have the same mode.
3914 We cannot do this if the destination of the second assignment is
3915 a register that we have already assumed is zero-extended. Similarly
3916 for a SUBREG of such a register. */
3918 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
3919 && GET_CODE (newpat
) == PARALLEL
3920 && XVECLEN (newpat
, 0) == 2
3921 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
3922 && GET_CODE (SET_SRC (XVECEXP (newpat
, 0, 0))) == SIGN_EXTEND
3923 && (GET_MODE (SET_DEST (XVECEXP (newpat
, 0, 0)))
3924 == GET_MODE (SET_SRC (XVECEXP (newpat
, 0, 0))))
3925 && ! VECTOR_MODE_P (GET_MODE (SET_DEST (XVECEXP (newpat
, 0, 0))))
3926 && ! COMPLEX_MODE_P (GET_MODE (SET_DEST (XVECEXP (newpat
, 0, 0))))
3927 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
3928 && rtx_equal_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
3929 XEXP (SET_SRC (XVECEXP (newpat
, 0, 0)), 0))
3930 && !modified_between_p (SET_SRC (XVECEXP (newpat
, 0, 1)), i2
, i3
)
3931 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
3932 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
3933 && ! (temp_expr
= SET_DEST (XVECEXP (newpat
, 0, 1)),
3935 && reg_stat
[REGNO (temp_expr
)].nonzero_bits
!= 0
3936 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr
)),
3938 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr
)),
3940 && (reg_stat
[REGNO (temp_expr
)].nonzero_bits
3941 != GET_MODE_MASK (word_mode
))))
3942 && ! (GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) == SUBREG
3943 && (temp_expr
= SUBREG_REG (SET_DEST (XVECEXP (newpat
, 0, 1))),
3945 && reg_stat
[REGNO (temp_expr
)].nonzero_bits
!= 0
3946 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr
)),
3948 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr
)),
3950 && (reg_stat
[REGNO (temp_expr
)].nonzero_bits
3951 != GET_MODE_MASK (word_mode
)))))
3952 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
3953 SET_SRC (XVECEXP (newpat
, 0, 1)))
3954 && ! find_reg_note (i3
, REG_UNUSED
,
3955 SET_DEST (XVECEXP (newpat
, 0, 0))))
3959 newi2pat
= XVECEXP (newpat
, 0, 0);
3960 ni2dest
= SET_DEST (XVECEXP (newpat
, 0, 0));
3961 newpat
= XVECEXP (newpat
, 0, 1);
3962 SUBST (SET_SRC (newpat
),
3963 gen_lowpart (GET_MODE (SET_SRC (newpat
)), ni2dest
));
3964 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3966 if (i2_code_number
>= 0)
3967 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3969 if (insn_code_number
>= 0)
3973 /* Similarly, check for a case where we have a PARALLEL of two independent
3974 SETs but we started with three insns. In this case, we can do the sets
3975 as two separate insns. This case occurs when some SET allows two
3976 other insns to combine, but the destination of that SET is still live.
3978 Also do this if we started with two insns and (at least) one of the
3979 resulting sets is a noop; this noop will be deleted later.
3981 Also do this if we started with two insns neither of which was a simple
3984 else if (insn_code_number
< 0 && asm_noperands (newpat
) < 0
3985 && GET_CODE (newpat
) == PARALLEL
3986 && XVECLEN (newpat
, 0) == 2
3987 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
3988 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
3990 || set_noop_p (XVECEXP (newpat
, 0, 0))
3991 || set_noop_p (XVECEXP (newpat
, 0, 1))
3992 || (!i2_was_move
&& !i3_was_move
))
3993 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != ZERO_EXTRACT
3994 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != STRICT_LOW_PART
3995 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
3996 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
3997 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
3998 XVECEXP (newpat
, 0, 0))
3999 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 0)),
4000 XVECEXP (newpat
, 0, 1))
4001 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 0)))
4002 && contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 1)))))
4004 rtx set0
= XVECEXP (newpat
, 0, 0);
4005 rtx set1
= XVECEXP (newpat
, 0, 1);
4007 /* Normally, it doesn't matter which of the two is done first, but
4008 one which uses any regs/memory set in between i2 and i3 can't
4009 be first. The PARALLEL might also have been pre-existing in i3,
4010 so we need to make sure that we won't wrongly hoist a SET to i2
4011 that would conflict with a death note present in there, or would
4012 have its dest modified between i2 and i3. */
4013 if (!modified_between_p (SET_SRC (set1
), i2
, i3
)
4014 && !(REG_P (SET_DEST (set1
))
4015 && find_reg_note (i2
, REG_DEAD
, SET_DEST (set1
)))
4016 && !(GET_CODE (SET_DEST (set1
)) == SUBREG
4017 && find_reg_note (i2
, REG_DEAD
,
4018 SUBREG_REG (SET_DEST (set1
))))
4019 && !modified_between_p (SET_DEST (set1
), i2
, i3
)
4020 /* If I3 is a jump, ensure that set0 is a jump so that
4021 we do not create invalid RTL. */
4022 && (!JUMP_P (i3
) || SET_DEST (set0
) == pc_rtx
)
4028 else if (!modified_between_p (SET_SRC (set0
), i2
, i3
)
4029 && !(REG_P (SET_DEST (set0
))
4030 && find_reg_note (i2
, REG_DEAD
, SET_DEST (set0
)))
4031 && !(GET_CODE (SET_DEST (set0
)) == SUBREG
4032 && find_reg_note (i2
, REG_DEAD
,
4033 SUBREG_REG (SET_DEST (set0
))))
4034 && !modified_between_p (SET_DEST (set0
), i2
, i3
)
4035 /* If I3 is a jump, ensure that set1 is a jump so that
4036 we do not create invalid RTL. */
4037 && (!JUMP_P (i3
) || SET_DEST (set1
) == pc_rtx
)
4049 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
4051 if (i2_code_number
>= 0)
4053 /* recog_for_combine might have added CLOBBERs to newi2pat.
4054 Make sure NEWPAT does not depend on the clobbered regs. */
4055 if (GET_CODE (newi2pat
) == PARALLEL
)
4057 for (i
= XVECLEN (newi2pat
, 0) - 1; i
>= 0; i
--)
4058 if (GET_CODE (XVECEXP (newi2pat
, 0, i
)) == CLOBBER
)
4060 rtx reg
= XEXP (XVECEXP (newi2pat
, 0, i
), 0);
4061 if (reg_overlap_mentioned_p (reg
, newpat
))
4069 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
4071 /* Likewise, recog_for_combine might have added clobbers to NEWPAT.
4072 Checking that the SET0's SET_DEST and SET1's SET_DEST aren't
4073 mentioned/clobbered, ensures NEWI2PAT's SET_DEST is live. */
4074 if (insn_code_number
>= 0 && GET_CODE (newpat
) == PARALLEL
)
4076 for (i
= XVECLEN (newpat
, 0) - 1; i
>= 0; i
--)
4077 if (GET_CODE (XVECEXP (newpat
, 0, i
)) == CLOBBER
)
4079 rtx reg
= XEXP (XVECEXP (newpat
, 0, i
), 0);
4080 if (reg_overlap_mentioned_p (reg
, SET_DEST (set0
))
4081 || reg_overlap_mentioned_p (reg
, SET_DEST (set1
)))
4089 if (insn_code_number
>= 0)
4094 /* If it still isn't recognized, fail and change things back the way they
4096 if ((insn_code_number
< 0
4097 /* Is the result a reasonable ASM_OPERANDS? */
4098 && (! check_asm_operands (newpat
) || added_sets_1
|| added_sets_2
)))
4104 /* If we had to change another insn, make sure it is valid also. */
4105 if (undobuf
.other_insn
)
4107 CLEAR_HARD_REG_SET (newpat_used_regs
);
4109 other_pat
= PATTERN (undobuf
.other_insn
);
4110 other_code_number
= recog_for_combine (&other_pat
, undobuf
.other_insn
,
4113 if (other_code_number
< 0 && ! check_asm_operands (other_pat
))
4120 /* Only allow this combination if insn_cost reports that the
4121 replacement instructions are cheaper than the originals. */
4122 if (!combine_validate_cost (i0
, i1
, i2
, i3
, newpat
, newi2pat
, other_pat
))
4128 if (MAY_HAVE_DEBUG_BIND_INSNS
)
4132 for (undo
= undobuf
.undos
; undo
; undo
= undo
->next
)
4133 if (undo
->kind
== UNDO_MODE
)
4135 rtx reg
= regno_reg_rtx
[undo
->where
.regno
];
4136 machine_mode new_mode
= GET_MODE (reg
);
4137 machine_mode old_mode
= undo
->old_contents
.m
;
4139 /* Temporarily revert mode back. */
4140 adjust_reg_mode (reg
, old_mode
);
4142 if (reg
== i2dest
&& i2scratch
)
4144 /* If we used i2dest as a scratch register with a
4145 different mode, substitute it for the original
4146 i2src while its original mode is temporarily
4147 restored, and then clear i2scratch so that we don't
4148 do it again later. */
4149 propagate_for_debug (i2
, last_combined_insn
, reg
, i2src
,
4152 /* Put back the new mode. */
4153 adjust_reg_mode (reg
, new_mode
);
4157 rtx tempreg
= gen_raw_REG (old_mode
, REGNO (reg
));
4158 rtx_insn
*first
, *last
;
4163 last
= last_combined_insn
;
4168 last
= undobuf
.other_insn
;
4170 if (DF_INSN_LUID (last
)
4171 < DF_INSN_LUID (last_combined_insn
))
4172 last
= last_combined_insn
;
4175 /* We're dealing with a reg that changed mode but not
4176 meaning, so we want to turn it into a subreg for
4177 the new mode. However, because of REG sharing and
4178 because its mode had already changed, we have to do
4179 it in two steps. First, replace any debug uses of
4180 reg, with its original mode temporarily restored,
4181 with this copy we have created; then, replace the
4182 copy with the SUBREG of the original shared reg,
4183 once again changed to the new mode. */
4184 propagate_for_debug (first
, last
, reg
, tempreg
,
4186 adjust_reg_mode (reg
, new_mode
);
4187 propagate_for_debug (first
, last
, tempreg
,
4188 lowpart_subreg (old_mode
, reg
, new_mode
),
4194 /* If we will be able to accept this, we have made a
4195 change to the destination of I3. This requires us to
4196 do a few adjustments. */
4198 if (changed_i3_dest
)
4200 PATTERN (i3
) = newpat
;
4201 adjust_for_new_dest (i3
);
4204 /* If I2 didn't change, this is not a combination (but a simplification or
4205 canonicalisation with context), which should not be done here. Doing
4206 it here explodes the algorithm. Don't. */
4207 if (rtx_equal_p (newi2pat
, PATTERN (i2
)))
4210 fprintf (dump_file
, "i2 didn't change, not doing this\n");
4215 /* We now know that we can do this combination. Merge the insns and
4216 update the status of registers and LOG_LINKS. */
4218 if (undobuf
.other_insn
)
4222 PATTERN (undobuf
.other_insn
) = other_pat
;
4224 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4225 ensure that they are still valid. Then add any non-duplicate
4226 notes added by recog_for_combine. */
4227 for (note
= REG_NOTES (undobuf
.other_insn
); note
; note
= next
)
4229 next
= XEXP (note
, 1);
4231 if ((REG_NOTE_KIND (note
) == REG_DEAD
4232 && !reg_referenced_p (XEXP (note
, 0),
4233 PATTERN (undobuf
.other_insn
)))
4234 ||(REG_NOTE_KIND (note
) == REG_UNUSED
4235 && !reg_set_p (XEXP (note
, 0),
4236 PATTERN (undobuf
.other_insn
)))
4237 /* Simply drop equal note since it may be no longer valid
4238 for other_insn. It may be possible to record that CC
4239 register is changed and only discard those notes, but
4240 in practice it's unnecessary complication and doesn't
4241 give any meaningful improvement.
4244 || REG_NOTE_KIND (note
) == REG_EQUAL
4245 || REG_NOTE_KIND (note
) == REG_EQUIV
)
4246 remove_note (undobuf
.other_insn
, note
);
4249 distribute_notes (new_other_notes
, undobuf
.other_insn
,
4250 undobuf
.other_insn
, NULL
, NULL_RTX
, NULL_RTX
,
4256 /* I3 now uses what used to be its destination and which is now
4257 I2's destination. This requires us to do a few adjustments. */
4258 PATTERN (i3
) = newpat
;
4259 adjust_for_new_dest (i3
);
4262 if (swap_i2i3
|| split_i2i3
)
4264 /* We might need a LOG_LINK from I3 to I2. But then we used to
4265 have one, so we still will.
4267 However, some later insn might be using I2's dest and have
4268 a LOG_LINK pointing at I3. We should change it to point at
4271 /* newi2pat is usually a SET here; however, recog_for_combine might
4272 have added some clobbers. */
4274 if (GET_CODE (x
) == PARALLEL
)
4275 x
= XVECEXP (newi2pat
, 0, 0);
4277 if (REG_P (SET_DEST (x
))
4278 || (GET_CODE (SET_DEST (x
)) == SUBREG
4279 && REG_P (SUBREG_REG (SET_DEST (x
)))))
4281 unsigned int regno
= reg_or_subregno (SET_DEST (x
));
4284 for (rtx_insn
*insn
= NEXT_INSN (i3
);
4288 && BLOCK_FOR_INSN (insn
) == this_basic_block
;
4289 insn
= NEXT_INSN (insn
))
4291 if (DEBUG_INSN_P (insn
))
4293 struct insn_link
*link
;
4294 FOR_EACH_LOG_LINK (link
, insn
)
4295 if (link
->insn
== i3
&& link
->regno
== regno
)
4306 rtx i3notes
, i2notes
, i1notes
= 0, i0notes
= 0;
4307 struct insn_link
*i3links
, *i2links
, *i1links
= 0, *i0links
= 0;
4310 /* Compute which registers we expect to eliminate. newi2pat may be setting
4311 either i3dest or i2dest, so we must check it. */
4312 rtx elim_i2
= ((newi2pat
&& reg_set_p (i2dest
, newi2pat
))
4313 || i2dest_in_i2src
|| i2dest_in_i1src
|| i2dest_in_i0src
4316 /* For i1, we need to compute both local elimination and global
4317 elimination information with respect to newi2pat because i1dest
4318 may be the same as i3dest, in which case newi2pat may be setting
4319 i1dest. Global information is used when distributing REG_DEAD
4320 note for i2 and i3, in which case it does matter if newi2pat sets
4323 Local information is used when distributing REG_DEAD note for i1,
4324 in which case it doesn't matter if newi2pat sets i1dest or not.
4325 See PR62151, if we have four insns combination:
4327 i1: r1 <- i1src (using r0)
4329 i2: r0 <- i2src (using r1)
4330 i3: r3 <- i3src (using r0)
4332 From i1's point of view, r0 is eliminated, no matter if it is set
4333 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4334 should be discarded.
4336 Note local information only affects cases in forms like "I1->I2->I3",
4337 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4338 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4340 rtx local_elim_i1
= (i1
== 0 || i1dest_in_i1src
|| i1dest_in_i0src
4343 rtx elim_i1
= (local_elim_i1
== 0
4344 || (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
4346 /* Same case as i1. */
4347 rtx local_elim_i0
= (i0
== 0 || i0dest_in_i0src
|| !i0dest_killed
4349 rtx elim_i0
= (local_elim_i0
== 0
4350 || (newi2pat
&& reg_set_p (i0dest
, newi2pat
))
4353 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4355 i3notes
= REG_NOTES (i3
), i3links
= LOG_LINKS (i3
);
4356 i2notes
= REG_NOTES (i2
), i2links
= LOG_LINKS (i2
);
4358 i1notes
= REG_NOTES (i1
), i1links
= LOG_LINKS (i1
);
4360 i0notes
= REG_NOTES (i0
), i0links
= LOG_LINKS (i0
);
4362 /* Ensure that we do not have something that should not be shared but
4363 occurs multiple times in the new insns. Check this by first
4364 resetting all the `used' flags and then copying anything is shared. */
4366 reset_used_flags (i3notes
);
4367 reset_used_flags (i2notes
);
4368 reset_used_flags (i1notes
);
4369 reset_used_flags (i0notes
);
4370 reset_used_flags (newpat
);
4371 reset_used_flags (newi2pat
);
4372 if (undobuf
.other_insn
)
4373 reset_used_flags (PATTERN (undobuf
.other_insn
));
4375 i3notes
= copy_rtx_if_shared (i3notes
);
4376 i2notes
= copy_rtx_if_shared (i2notes
);
4377 i1notes
= copy_rtx_if_shared (i1notes
);
4378 i0notes
= copy_rtx_if_shared (i0notes
);
4379 newpat
= copy_rtx_if_shared (newpat
);
4380 newi2pat
= copy_rtx_if_shared (newi2pat
);
4381 if (undobuf
.other_insn
)
4382 reset_used_flags (PATTERN (undobuf
.other_insn
));
4384 INSN_CODE (i3
) = insn_code_number
;
4385 PATTERN (i3
) = newpat
;
4387 if (CALL_P (i3
) && CALL_INSN_FUNCTION_USAGE (i3
))
4389 for (rtx link
= CALL_INSN_FUNCTION_USAGE (i3
); link
;
4390 link
= XEXP (link
, 1))
4394 /* I2SRC must still be meaningful at this point. Some
4395 splitting operations can invalidate I2SRC, but those
4396 operations do not apply to calls. */
4398 XEXP (link
, 0) = simplify_replace_rtx (XEXP (link
, 0),
4402 XEXP (link
, 0) = simplify_replace_rtx (XEXP (link
, 0),
4405 XEXP (link
, 0) = simplify_replace_rtx (XEXP (link
, 0),
4410 if (undobuf
.other_insn
)
4411 INSN_CODE (undobuf
.other_insn
) = other_code_number
;
4413 /* We had one special case above where I2 had more than one set and
4414 we replaced a destination of one of those sets with the destination
4415 of I3. In that case, we have to update LOG_LINKS of insns later
4416 in this basic block. Note that this (expensive) case is rare.
4418 Also, in this case, we must pretend that all REG_NOTEs for I2
4419 actually came from I3, so that REG_UNUSED notes from I2 will be
4420 properly handled. */
4422 if (i3_subst_into_i2
)
4424 for (i
= 0; i
< XVECLEN (PATTERN (i2
), 0); i
++)
4425 if ((GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == SET
4426 || GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == CLOBBER
)
4427 && REG_P (SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)))
4428 && SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)) != i2dest
4429 && ! find_reg_note (i2
, REG_UNUSED
,
4430 SET_DEST (XVECEXP (PATTERN (i2
), 0, i
))))
4431 for (temp_insn
= NEXT_INSN (i2
);
4433 && (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
4434 || BB_HEAD (this_basic_block
) != temp_insn
);
4435 temp_insn
= NEXT_INSN (temp_insn
))
4436 if (temp_insn
!= i3
&& NONDEBUG_INSN_P (temp_insn
))
4437 FOR_EACH_LOG_LINK (link
, temp_insn
)
4438 if (link
->insn
== i2
)
4444 while (XEXP (link
, 1))
4445 link
= XEXP (link
, 1);
4446 XEXP (link
, 1) = i2notes
;
4453 LOG_LINKS (i3
) = NULL
;
4455 LOG_LINKS (i2
) = NULL
;
4460 if (MAY_HAVE_DEBUG_BIND_INSNS
&& i2scratch
)
4461 propagate_for_debug (i2
, last_combined_insn
, i2dest
, i2src
,
4463 INSN_CODE (i2
) = i2_code_number
;
4464 PATTERN (i2
) = newi2pat
;
4468 if (MAY_HAVE_DEBUG_BIND_INSNS
&& i2src
)
4469 propagate_for_debug (i2
, last_combined_insn
, i2dest
, i2src
,
4471 SET_INSN_DELETED (i2
);
4476 LOG_LINKS (i1
) = NULL
;
4478 if (MAY_HAVE_DEBUG_BIND_INSNS
)
4479 propagate_for_debug (i1
, last_combined_insn
, i1dest
, i1src
,
4481 SET_INSN_DELETED (i1
);
4486 LOG_LINKS (i0
) = NULL
;
4488 if (MAY_HAVE_DEBUG_BIND_INSNS
)
4489 propagate_for_debug (i0
, last_combined_insn
, i0dest
, i0src
,
4491 SET_INSN_DELETED (i0
);
4494 /* Get death notes for everything that is now used in either I3 or
4495 I2 and used to die in a previous insn. If we built two new
4496 patterns, move from I1 to I2 then I2 to I3 so that we get the
4497 proper movement on registers that I2 modifies. */
4500 from_luid
= DF_INSN_LUID (i0
);
4502 from_luid
= DF_INSN_LUID (i1
);
4504 from_luid
= DF_INSN_LUID (i2
);
4506 move_deaths (newi2pat
, NULL_RTX
, from_luid
, i2
, &midnotes
);
4507 move_deaths (newpat
, newi2pat
, from_luid
, i3
, &midnotes
);
4509 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4511 distribute_notes (i3notes
, i3
, i3
, newi2pat
? i2
: NULL
,
4512 elim_i2
, elim_i1
, elim_i0
);
4514 distribute_notes (i2notes
, i2
, i3
, newi2pat
? i2
: NULL
,
4515 elim_i2
, elim_i1
, elim_i0
);
4517 distribute_notes (i1notes
, i1
, i3
, newi2pat
? i2
: NULL
,
4518 elim_i2
, local_elim_i1
, local_elim_i0
);
4520 distribute_notes (i0notes
, i0
, i3
, newi2pat
? i2
: NULL
,
4521 elim_i2
, elim_i1
, local_elim_i0
);
4523 distribute_notes (midnotes
, NULL
, i3
, newi2pat
? i2
: NULL
,
4524 elim_i2
, elim_i1
, elim_i0
);
4526 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4527 know these are REG_UNUSED and want them to go to the desired insn,
4528 so we always pass it as i3. */
4530 if (newi2pat
&& new_i2_notes
)
4531 distribute_notes (new_i2_notes
, i2
, i2
, NULL
, NULL_RTX
, NULL_RTX
,
4535 distribute_notes (new_i3_notes
, i3
, i3
, NULL
, NULL_RTX
, NULL_RTX
,
4538 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4539 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4540 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4541 in that case, it might delete I2. Similarly for I2 and I1.
4542 Show an additional death due to the REG_DEAD note we make here. If
4543 we discard it in distribute_notes, we will decrement it again. */
4547 rtx new_note
= alloc_reg_note (REG_DEAD
, i3dest_killed
, NULL_RTX
);
4548 if (newi2pat
&& reg_set_p (i3dest_killed
, newi2pat
))
4549 distribute_notes (new_note
, NULL
, i2
, NULL
, elim_i2
,
4552 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4553 elim_i2
, elim_i1
, elim_i0
);
4556 if (i2dest_in_i2src
)
4558 rtx new_note
= alloc_reg_note (REG_DEAD
, i2dest
, NULL_RTX
);
4559 if (newi2pat
&& reg_set_p (i2dest
, newi2pat
))
4560 distribute_notes (new_note
, NULL
, i2
, NULL
, NULL_RTX
,
4561 NULL_RTX
, NULL_RTX
);
4563 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4564 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4567 if (i1dest_in_i1src
)
4569 rtx new_note
= alloc_reg_note (REG_DEAD
, i1dest
, NULL_RTX
);
4570 if (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
4571 distribute_notes (new_note
, NULL
, i2
, NULL
, NULL_RTX
,
4572 NULL_RTX
, NULL_RTX
);
4574 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4575 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4578 if (i0dest_in_i0src
)
4580 rtx new_note
= alloc_reg_note (REG_DEAD
, i0dest
, NULL_RTX
);
4581 if (newi2pat
&& reg_set_p (i0dest
, newi2pat
))
4582 distribute_notes (new_note
, NULL
, i2
, NULL
, NULL_RTX
,
4583 NULL_RTX
, NULL_RTX
);
4585 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4586 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4589 distribute_links (i3links
);
4590 distribute_links (i2links
);
4591 distribute_links (i1links
);
4592 distribute_links (i0links
);
4596 struct insn_link
*link
;
4597 rtx_insn
*i2_insn
= 0;
4598 rtx i2_val
= 0, set
;
4600 /* The insn that used to set this register doesn't exist, and
4601 this life of the register may not exist either. See if one of
4602 I3's links points to an insn that sets I2DEST. If it does,
4603 that is now the last known value for I2DEST. If we don't update
4604 this and I2 set the register to a value that depended on its old
4605 contents, we will get confused. If this insn is used, thing
4606 will be set correctly in combine_instructions. */
4607 FOR_EACH_LOG_LINK (link
, i3
)
4608 if ((set
= single_set (link
->insn
)) != 0
4609 && rtx_equal_p (i2dest
, SET_DEST (set
)))
4610 i2_insn
= link
->insn
, i2_val
= SET_SRC (set
);
4612 record_value_for_reg (i2dest
, i2_insn
, i2_val
);
4614 /* If the reg formerly set in I2 died only once and that was in I3,
4615 zero its use count so it won't make `reload' do any work. */
4617 && (newi2pat
== 0 || ! reg_mentioned_p (i2dest
, newi2pat
))
4618 && ! i2dest_in_i2src
4619 && REGNO (i2dest
) < reg_n_sets_max
)
4620 INC_REG_N_SETS (REGNO (i2dest
), -1);
4623 if (i1
&& REG_P (i1dest
))
4625 struct insn_link
*link
;
4626 rtx_insn
*i1_insn
= 0;
4627 rtx i1_val
= 0, set
;
4629 FOR_EACH_LOG_LINK (link
, i3
)
4630 if ((set
= single_set (link
->insn
)) != 0
4631 && rtx_equal_p (i1dest
, SET_DEST (set
)))
4632 i1_insn
= link
->insn
, i1_val
= SET_SRC (set
);
4634 record_value_for_reg (i1dest
, i1_insn
, i1_val
);
4637 && ! i1dest_in_i1src
4638 && REGNO (i1dest
) < reg_n_sets_max
)
4639 INC_REG_N_SETS (REGNO (i1dest
), -1);
4642 if (i0
&& REG_P (i0dest
))
4644 struct insn_link
*link
;
4645 rtx_insn
*i0_insn
= 0;
4646 rtx i0_val
= 0, set
;
4648 FOR_EACH_LOG_LINK (link
, i3
)
4649 if ((set
= single_set (link
->insn
)) != 0
4650 && rtx_equal_p (i0dest
, SET_DEST (set
)))
4651 i0_insn
= link
->insn
, i0_val
= SET_SRC (set
);
4653 record_value_for_reg (i0dest
, i0_insn
, i0_val
);
4656 && ! i0dest_in_i0src
4657 && REGNO (i0dest
) < reg_n_sets_max
)
4658 INC_REG_N_SETS (REGNO (i0dest
), -1);
4661 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4662 been made to this insn. The order is important, because newi2pat
4663 can affect nonzero_bits of newpat. */
4665 note_pattern_stores (newi2pat
, set_nonzero_bits_and_sign_copies
, NULL
);
4666 note_pattern_stores (newpat
, set_nonzero_bits_and_sign_copies
, NULL
);
4669 if (undobuf
.other_insn
!= NULL_RTX
)
4673 fprintf (dump_file
, "modifying other_insn ");
4674 dump_insn_slim (dump_file
, undobuf
.other_insn
);
4676 df_insn_rescan (undobuf
.other_insn
);
4679 if (i0
&& !(NOTE_P (i0
) && (NOTE_KIND (i0
) == NOTE_INSN_DELETED
)))
4683 fprintf (dump_file
, "modifying insn i0 ");
4684 dump_insn_slim (dump_file
, i0
);
4686 df_insn_rescan (i0
);
4689 if (i1
&& !(NOTE_P (i1
) && (NOTE_KIND (i1
) == NOTE_INSN_DELETED
)))
4693 fprintf (dump_file
, "modifying insn i1 ");
4694 dump_insn_slim (dump_file
, i1
);
4696 df_insn_rescan (i1
);
4699 if (i2
&& !(NOTE_P (i2
) && (NOTE_KIND (i2
) == NOTE_INSN_DELETED
)))
4703 fprintf (dump_file
, "modifying insn i2 ");
4704 dump_insn_slim (dump_file
, i2
);
4706 df_insn_rescan (i2
);
4709 if (i3
&& !(NOTE_P (i3
) && (NOTE_KIND (i3
) == NOTE_INSN_DELETED
)))
4713 fprintf (dump_file
, "modifying insn i3 ");
4714 dump_insn_slim (dump_file
, i3
);
4716 df_insn_rescan (i3
);
4719 /* Set new_direct_jump_p if a new return or simple jump instruction
4720 has been created. Adjust the CFG accordingly. */
4721 if (returnjump_p (i3
) || any_uncondjump_p (i3
))
4723 *new_direct_jump_p
= 1;
4724 mark_jump_label (PATTERN (i3
), i3
, 0);
4725 update_cfg_for_uncondjump (i3
);
4728 if (undobuf
.other_insn
!= NULL_RTX
4729 && (returnjump_p (undobuf
.other_insn
)
4730 || any_uncondjump_p (undobuf
.other_insn
)))
4732 *new_direct_jump_p
= 1;
4733 update_cfg_for_uncondjump (undobuf
.other_insn
);
4736 if (GET_CODE (PATTERN (i3
)) == TRAP_IF
4737 && XEXP (PATTERN (i3
), 0) == const1_rtx
)
4739 basic_block bb
= BLOCK_FOR_INSN (i3
);
4741 remove_edge (split_block (bb
, i3
));
4742 emit_barrier_after_bb (bb
);
4743 *new_direct_jump_p
= 1;
4746 if (undobuf
.other_insn
4747 && GET_CODE (PATTERN (undobuf
.other_insn
)) == TRAP_IF
4748 && XEXP (PATTERN (undobuf
.other_insn
), 0) == const1_rtx
)
4750 basic_block bb
= BLOCK_FOR_INSN (undobuf
.other_insn
);
4752 remove_edge (split_block (bb
, undobuf
.other_insn
));
4753 emit_barrier_after_bb (bb
);
4754 *new_direct_jump_p
= 1;
4757 /* A noop might also need cleaning up of CFG, if it comes from the
4758 simplification of a jump. */
4760 && GET_CODE (newpat
) == SET
4761 && SET_SRC (newpat
) == pc_rtx
4762 && SET_DEST (newpat
) == pc_rtx
)
4764 *new_direct_jump_p
= 1;
4765 update_cfg_for_uncondjump (i3
);
4768 if (undobuf
.other_insn
!= NULL_RTX
4769 && JUMP_P (undobuf
.other_insn
)
4770 && GET_CODE (PATTERN (undobuf
.other_insn
)) == SET
4771 && SET_SRC (PATTERN (undobuf
.other_insn
)) == pc_rtx
4772 && SET_DEST (PATTERN (undobuf
.other_insn
)) == pc_rtx
)
4774 *new_direct_jump_p
= 1;
4775 update_cfg_for_uncondjump (undobuf
.other_insn
);
4778 combine_successes
++;
4781 rtx_insn
*ret
= newi2pat
? i2
: i3
;
4782 if (added_links_insn
&& DF_INSN_LUID (added_links_insn
) < DF_INSN_LUID (ret
))
4783 ret
= added_links_insn
;
4784 if (added_notes_insn
&& DF_INSN_LUID (added_notes_insn
) < DF_INSN_LUID (ret
))
4785 ret
= added_notes_insn
;
4790 /* Get a marker for undoing to the current state. */
4793 get_undo_marker (void)
4795 return undobuf
.undos
;
4798 /* Undo the modifications up to the marker. */
4801 undo_to_marker (void *marker
)
4803 struct undo
*undo
, *next
;
4805 for (undo
= undobuf
.undos
; undo
!= marker
; undo
= next
)
4813 *undo
->where
.r
= undo
->old_contents
.r
;
4816 *undo
->where
.i
= undo
->old_contents
.i
;
4819 adjust_reg_mode (regno_reg_rtx
[undo
->where
.regno
],
4820 undo
->old_contents
.m
);
4823 *undo
->where
.l
= undo
->old_contents
.l
;
4829 undo
->next
= undobuf
.frees
;
4830 undobuf
.frees
= undo
;
4833 undobuf
.undos
= (struct undo
*) marker
;
4836 /* Undo all the modifications recorded in undobuf. */
4844 /* We've committed to accepting the changes we made. Move all
4845 of the undos to the free list. */
4850 struct undo
*undo
, *next
;
4852 for (undo
= undobuf
.undos
; undo
; undo
= next
)
4855 undo
->next
= undobuf
.frees
;
4856 undobuf
.frees
= undo
;
4861 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4862 where we have an arithmetic expression and return that point. LOC will
4865 try_combine will call this function to see if an insn can be split into
4869 find_split_point (rtx
*loc
, rtx_insn
*insn
, bool set_src
)
4872 enum rtx_code code
= GET_CODE (x
);
4874 unsigned HOST_WIDE_INT len
= 0;
4875 HOST_WIDE_INT pos
= 0;
4876 bool unsignedp
= false;
4877 rtx inner
= NULL_RTX
;
4878 scalar_int_mode mode
, inner_mode
;
4880 /* First special-case some codes. */
4884 #ifdef INSN_SCHEDULING
4885 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4887 if (MEM_P (SUBREG_REG (x
)))
4890 return find_split_point (&SUBREG_REG (x
), insn
, false);
4893 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4894 using LO_SUM and HIGH. */
4895 if (HAVE_lo_sum
&& (GET_CODE (XEXP (x
, 0)) == CONST
4896 || GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
))
4898 machine_mode address_mode
= get_address_mode (x
);
4901 gen_rtx_LO_SUM (address_mode
,
4902 gen_rtx_HIGH (address_mode
, XEXP (x
, 0)),
4904 return &XEXP (XEXP (x
, 0), 0);
4907 /* If we have a PLUS whose second operand is a constant and the
4908 address is not valid, perhaps we can split it up using
4909 the machine-specific way to split large constants. We use
4910 the first pseudo-reg (one of the virtual regs) as a placeholder;
4911 it will not remain in the result. */
4912 if (GET_CODE (XEXP (x
, 0)) == PLUS
4913 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
4914 && ! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4915 MEM_ADDR_SPACE (x
)))
4917 rtx reg
= regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
4918 rtx_insn
*seq
= combine_split_insns (gen_rtx_SET (reg
, XEXP (x
, 0)),
4921 /* This should have produced two insns, each of which sets our
4922 placeholder. If the source of the second is a valid address,
4923 we can put both sources together and make a split point
4927 && NEXT_INSN (seq
) != NULL_RTX
4928 && NEXT_INSN (NEXT_INSN (seq
)) == NULL_RTX
4929 && NONJUMP_INSN_P (seq
)
4930 && GET_CODE (PATTERN (seq
)) == SET
4931 && SET_DEST (PATTERN (seq
)) == reg
4932 && ! reg_mentioned_p (reg
,
4933 SET_SRC (PATTERN (seq
)))
4934 && NONJUMP_INSN_P (NEXT_INSN (seq
))
4935 && GET_CODE (PATTERN (NEXT_INSN (seq
))) == SET
4936 && SET_DEST (PATTERN (NEXT_INSN (seq
))) == reg
4937 && memory_address_addr_space_p
4938 (GET_MODE (x
), SET_SRC (PATTERN (NEXT_INSN (seq
))),
4939 MEM_ADDR_SPACE (x
)))
4941 rtx src1
= SET_SRC (PATTERN (seq
));
4942 rtx src2
= SET_SRC (PATTERN (NEXT_INSN (seq
)));
4944 /* Replace the placeholder in SRC2 with SRC1. If we can
4945 find where in SRC2 it was placed, that can become our
4946 split point and we can replace this address with SRC2.
4947 Just try two obvious places. */
4949 src2
= replace_rtx (src2
, reg
, src1
);
4951 if (XEXP (src2
, 0) == src1
)
4952 split
= &XEXP (src2
, 0);
4953 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2
, 0)))[0] == 'e'
4954 && XEXP (XEXP (src2
, 0), 0) == src1
)
4955 split
= &XEXP (XEXP (src2
, 0), 0);
4959 SUBST (XEXP (x
, 0), src2
);
4964 /* If that didn't work and we have a nested plus, like:
4965 ((REG1 * CONST1) + REG2) + CONST2 and (REG1 + REG2) + CONST2
4966 is valid address, try to split (REG1 * CONST1). */
4967 if (GET_CODE (XEXP (XEXP (x
, 0), 0)) == PLUS
4968 && !OBJECT_P (XEXP (XEXP (XEXP (x
, 0), 0), 0))
4969 && OBJECT_P (XEXP (XEXP (XEXP (x
, 0), 0), 1))
4970 && ! (GET_CODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)) == SUBREG
4971 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x
, 0),
4974 rtx tem
= XEXP (XEXP (XEXP (x
, 0), 0), 0);
4975 XEXP (XEXP (XEXP (x
, 0), 0), 0) = reg
;
4976 if (memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4977 MEM_ADDR_SPACE (x
)))
4979 XEXP (XEXP (XEXP (x
, 0), 0), 0) = tem
;
4980 return &XEXP (XEXP (XEXP (x
, 0), 0), 0);
4982 XEXP (XEXP (XEXP (x
, 0), 0), 0) = tem
;
4984 else if (GET_CODE (XEXP (XEXP (x
, 0), 0)) == PLUS
4985 && OBJECT_P (XEXP (XEXP (XEXP (x
, 0), 0), 0))
4986 && !OBJECT_P (XEXP (XEXP (XEXP (x
, 0), 0), 1))
4987 && ! (GET_CODE (XEXP (XEXP (XEXP (x
, 0), 0), 1)) == SUBREG
4988 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x
, 0),
4991 rtx tem
= XEXP (XEXP (XEXP (x
, 0), 0), 1);
4992 XEXP (XEXP (XEXP (x
, 0), 0), 1) = reg
;
4993 if (memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4994 MEM_ADDR_SPACE (x
)))
4996 XEXP (XEXP (XEXP (x
, 0), 0), 1) = tem
;
4997 return &XEXP (XEXP (XEXP (x
, 0), 0), 1);
4999 XEXP (XEXP (XEXP (x
, 0), 0), 1) = tem
;
5002 /* If that didn't work, perhaps the first operand is complex and
5003 needs to be computed separately, so make a split point there.
5004 This will occur on machines that just support REG + CONST
5005 and have a constant moved through some previous computation. */
5006 if (!OBJECT_P (XEXP (XEXP (x
, 0), 0))
5007 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
5008 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
5009 return &XEXP (XEXP (x
, 0), 0);
5012 /* If we have a PLUS whose first operand is complex, try computing it
5013 separately by making a split there. */
5014 if (GET_CODE (XEXP (x
, 0)) == PLUS
5015 && ! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
5017 && ! OBJECT_P (XEXP (XEXP (x
, 0), 0))
5018 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
5019 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
5020 return &XEXP (XEXP (x
, 0), 0);
5024 /* See if we can split SET_SRC as it stands. */
5025 split
= find_split_point (&SET_SRC (x
), insn
, true);
5026 if (split
&& split
!= &SET_SRC (x
))
5029 /* See if we can split SET_DEST as it stands. */
5030 split
= find_split_point (&SET_DEST (x
), insn
, false);
5031 if (split
&& split
!= &SET_DEST (x
))
5034 /* See if this is a bitfield assignment with everything constant. If
5035 so, this is an IOR of an AND, so split it into that. */
5036 if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
5037 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (SET_DEST (x
), 0)),
5039 && HWI_COMPUTABLE_MODE_P (inner_mode
)
5040 && CONST_INT_P (XEXP (SET_DEST (x
), 1))
5041 && CONST_INT_P (XEXP (SET_DEST (x
), 2))
5042 && CONST_INT_P (SET_SRC (x
))
5043 && ((INTVAL (XEXP (SET_DEST (x
), 1))
5044 + INTVAL (XEXP (SET_DEST (x
), 2)))
5045 <= GET_MODE_PRECISION (inner_mode
))
5046 && ! side_effects_p (XEXP (SET_DEST (x
), 0)))
5048 HOST_WIDE_INT pos
= INTVAL (XEXP (SET_DEST (x
), 2));
5049 unsigned HOST_WIDE_INT len
= INTVAL (XEXP (SET_DEST (x
), 1));
5050 rtx dest
= XEXP (SET_DEST (x
), 0);
5051 unsigned HOST_WIDE_INT mask
= (HOST_WIDE_INT_1U
<< len
) - 1;
5052 unsigned HOST_WIDE_INT src
= INTVAL (SET_SRC (x
)) & mask
;
5055 if (BITS_BIG_ENDIAN
)
5056 pos
= GET_MODE_PRECISION (inner_mode
) - len
- pos
;
5058 or_mask
= gen_int_mode (src
<< pos
, inner_mode
);
5061 simplify_gen_binary (IOR
, inner_mode
, dest
, or_mask
));
5064 rtx negmask
= gen_int_mode (~(mask
<< pos
), inner_mode
);
5066 simplify_gen_binary (IOR
, inner_mode
,
5067 simplify_gen_binary (AND
, inner_mode
,
5072 SUBST (SET_DEST (x
), dest
);
5074 split
= find_split_point (&SET_SRC (x
), insn
, true);
5075 if (split
&& split
!= &SET_SRC (x
))
5079 /* Otherwise, see if this is an operation that we can split into two.
5080 If so, try to split that. */
5081 code
= GET_CODE (SET_SRC (x
));
5086 /* If we are AND'ing with a large constant that is only a single
5087 bit and the result is only being used in a context where we
5088 need to know if it is zero or nonzero, replace it with a bit
5089 extraction. This will avoid the large constant, which might
5090 have taken more than one insn to make. If the constant were
5091 not a valid argument to the AND but took only one insn to make,
5092 this is no worse, but if it took more than one insn, it will
5095 if (CONST_INT_P (XEXP (SET_SRC (x
), 1))
5096 && REG_P (XEXP (SET_SRC (x
), 0))
5097 && (pos
= exact_log2 (UINTVAL (XEXP (SET_SRC (x
), 1)))) >= 7
5098 && REG_P (SET_DEST (x
))
5099 && (split
= find_single_use (SET_DEST (x
), insn
, NULL
)) != 0
5100 && (GET_CODE (*split
) == EQ
|| GET_CODE (*split
) == NE
)
5101 && XEXP (*split
, 0) == SET_DEST (x
)
5102 && XEXP (*split
, 1) == const0_rtx
)
5104 rtx extraction
= make_extraction (GET_MODE (SET_DEST (x
)),
5105 XEXP (SET_SRC (x
), 0),
5107 true, false, false);
5108 if (extraction
!= 0)
5110 SUBST (SET_SRC (x
), extraction
);
5111 return find_split_point (loc
, insn
, false);
5117 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5118 is known to be on, this can be converted into a NEG of a shift. */
5119 if (STORE_FLAG_VALUE
== -1 && XEXP (SET_SRC (x
), 1) == const0_rtx
5120 && GET_MODE (SET_SRC (x
)) == GET_MODE (XEXP (SET_SRC (x
), 0))
5121 && ((pos
= exact_log2 (nonzero_bits (XEXP (SET_SRC (x
), 0),
5122 GET_MODE (XEXP (SET_SRC (x
),
5125 machine_mode mode
= GET_MODE (XEXP (SET_SRC (x
), 0));
5126 rtx pos_rtx
= gen_int_shift_amount (mode
, pos
);
5129 gen_rtx_LSHIFTRT (mode
,
5130 XEXP (SET_SRC (x
), 0),
5133 split
= find_split_point (&SET_SRC (x
), insn
, true);
5134 if (split
&& split
!= &SET_SRC (x
))
5140 inner
= XEXP (SET_SRC (x
), 0);
5142 /* We can't optimize if either mode is a partial integer
5143 mode as we don't know how many bits are significant
5145 if (!is_int_mode (GET_MODE (inner
), &inner_mode
)
5146 || GET_MODE_CLASS (GET_MODE (SET_SRC (x
))) == MODE_PARTIAL_INT
)
5150 len
= GET_MODE_PRECISION (inner_mode
);
5156 if (is_a
<scalar_int_mode
> (GET_MODE (XEXP (SET_SRC (x
), 0)),
5158 && CONST_INT_P (XEXP (SET_SRC (x
), 1))
5159 && CONST_INT_P (XEXP (SET_SRC (x
), 2)))
5161 inner
= XEXP (SET_SRC (x
), 0);
5162 len
= INTVAL (XEXP (SET_SRC (x
), 1));
5163 pos
= INTVAL (XEXP (SET_SRC (x
), 2));
5165 if (BITS_BIG_ENDIAN
)
5166 pos
= GET_MODE_PRECISION (inner_mode
) - len
- pos
;
5167 unsignedp
= (code
== ZERO_EXTRACT
);
5176 && known_subrange_p (pos
, len
,
5177 0, GET_MODE_PRECISION (GET_MODE (inner
)))
5178 && is_a
<scalar_int_mode
> (GET_MODE (SET_SRC (x
)), &mode
))
5180 /* For unsigned, we have a choice of a shift followed by an
5181 AND or two shifts. Use two shifts for field sizes where the
5182 constant might be too large. We assume here that we can
5183 always at least get 8-bit constants in an AND insn, which is
5184 true for every current RISC. */
5186 if (unsignedp
&& len
<= 8)
5188 unsigned HOST_WIDE_INT mask
5189 = (HOST_WIDE_INT_1U
<< len
) - 1;
5190 rtx pos_rtx
= gen_int_shift_amount (mode
, pos
);
5194 (mode
, gen_lowpart (mode
, inner
), pos_rtx
),
5195 gen_int_mode (mask
, mode
)));
5197 split
= find_split_point (&SET_SRC (x
), insn
, true);
5198 if (split
&& split
!= &SET_SRC (x
))
5203 int left_bits
= GET_MODE_PRECISION (mode
) - len
- pos
;
5204 int right_bits
= GET_MODE_PRECISION (mode
) - len
;
5207 (unsignedp
? LSHIFTRT
: ASHIFTRT
, mode
,
5208 gen_rtx_ASHIFT (mode
,
5209 gen_lowpart (mode
, inner
),
5210 gen_int_shift_amount (mode
, left_bits
)),
5211 gen_int_shift_amount (mode
, right_bits
)));
5213 split
= find_split_point (&SET_SRC (x
), insn
, true);
5214 if (split
&& split
!= &SET_SRC (x
))
5219 /* See if this is a simple operation with a constant as the second
5220 operand. It might be that this constant is out of range and hence
5221 could be used as a split point. */
5222 if (BINARY_P (SET_SRC (x
))
5223 && CONSTANT_P (XEXP (SET_SRC (x
), 1))
5224 && (OBJECT_P (XEXP (SET_SRC (x
), 0))
5225 || (GET_CODE (XEXP (SET_SRC (x
), 0)) == SUBREG
5226 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x
), 0))))))
5227 return &XEXP (SET_SRC (x
), 1);
5229 /* Finally, see if this is a simple operation with its first operand
5230 not in a register. The operation might require this operand in a
5231 register, so return it as a split point. We can always do this
5232 because if the first operand were another operation, we would have
5233 already found it as a split point. */
5234 if ((BINARY_P (SET_SRC (x
)) || UNARY_P (SET_SRC (x
)))
5235 && ! register_operand (XEXP (SET_SRC (x
), 0), VOIDmode
))
5236 return &XEXP (SET_SRC (x
), 0);
5242 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5243 it is better to write this as (not (ior A B)) so we can split it.
5244 Similarly for IOR. */
5245 if (GET_CODE (XEXP (x
, 0)) == NOT
&& GET_CODE (XEXP (x
, 1)) == NOT
)
5248 gen_rtx_NOT (GET_MODE (x
),
5249 gen_rtx_fmt_ee (code
== IOR
? AND
: IOR
,
5251 XEXP (XEXP (x
, 0), 0),
5252 XEXP (XEXP (x
, 1), 0))));
5253 return find_split_point (loc
, insn
, set_src
);
5256 /* Many RISC machines have a large set of logical insns. If the
5257 second operand is a NOT, put it first so we will try to split the
5258 other operand first. */
5259 if (GET_CODE (XEXP (x
, 1)) == NOT
)
5261 rtx tem
= XEXP (x
, 0);
5262 SUBST (XEXP (x
, 0), XEXP (x
, 1));
5263 SUBST (XEXP (x
, 1), tem
);
5269 /* Canonicalization can produce (minus A (mult B C)), where C is a
5270 constant. It may be better to try splitting (plus (mult B -C) A)
5271 instead if this isn't a multiply by a power of two. */
5272 if (set_src
&& code
== MINUS
&& GET_CODE (XEXP (x
, 1)) == MULT
5273 && GET_CODE (XEXP (XEXP (x
, 1), 1)) == CONST_INT
5274 && !pow2p_hwi (INTVAL (XEXP (XEXP (x
, 1), 1))))
5276 machine_mode mode
= GET_MODE (x
);
5277 unsigned HOST_WIDE_INT this_int
= INTVAL (XEXP (XEXP (x
, 1), 1));
5278 HOST_WIDE_INT other_int
= trunc_int_for_mode (-this_int
, mode
);
5279 SUBST (*loc
, gen_rtx_PLUS (mode
,
5281 XEXP (XEXP (x
, 1), 0),
5282 gen_int_mode (other_int
,
5285 return find_split_point (loc
, insn
, set_src
);
5288 /* Split at a multiply-accumulate instruction. However if this is
5289 the SET_SRC, we likely do not have such an instruction and it's
5290 worthless to try this split. */
5292 && (GET_CODE (XEXP (x
, 0)) == MULT
5293 || (GET_CODE (XEXP (x
, 0)) == ASHIFT
5294 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)))
5301 /* Otherwise, select our actions depending on our rtx class. */
5302 switch (GET_RTX_CLASS (code
))
5304 case RTX_BITFIELD_OPS
: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5306 split
= find_split_point (&XEXP (x
, 2), insn
, false);
5311 case RTX_COMM_ARITH
:
5313 case RTX_COMM_COMPARE
:
5314 split
= find_split_point (&XEXP (x
, 1), insn
, false);
5319 /* Some machines have (and (shift ...) ...) insns. If X is not
5320 an AND, but XEXP (X, 0) is, use it as our split point. */
5321 if (GET_CODE (x
) != AND
&& GET_CODE (XEXP (x
, 0)) == AND
)
5322 return &XEXP (x
, 0);
5324 split
= find_split_point (&XEXP (x
, 0), insn
, false);
5330 /* Otherwise, we don't have a split point. */
5335 /* Throughout X, replace FROM with TO, and return the result.
5336 The result is TO if X is FROM;
5337 otherwise the result is X, but its contents may have been modified.
5338 If they were modified, a record was made in undobuf so that
5339 undo_all will (among other things) return X to its original state.
5341 If the number of changes necessary is too much to record to undo,
5342 the excess changes are not made, so the result is invalid.
5343 The changes already made can still be undone.
5344 undobuf.num_undo is incremented for such changes, so by testing that
5345 the caller can tell whether the result is valid.
5347 `n_occurrences' is incremented each time FROM is replaced.
5349 IN_DEST is true if we are processing the SET_DEST of a SET.
5351 IN_COND is true if we are at the top level of a condition.
5353 UNIQUE_COPY is true if each substitution must be unique. We do this
5354 by copying if `n_occurrences' is nonzero. */
5357 subst (rtx x
, rtx from
, rtx to
, bool in_dest
, bool in_cond
, bool unique_copy
)
5359 enum rtx_code code
= GET_CODE (x
);
5360 machine_mode op0_mode
= VOIDmode
;
5365 /* Two expressions are equal if they are identical copies of a shared
5366 RTX or if they are both registers with the same register number
5369 #define COMBINE_RTX_EQUAL_P(X,Y) \
5371 || (REG_P (X) && REG_P (Y) \
5372 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5374 /* Do not substitute into clobbers of regs -- this will never result in
5376 if (GET_CODE (x
) == CLOBBER
&& REG_P (XEXP (x
, 0)))
5379 if (! in_dest
&& COMBINE_RTX_EQUAL_P (x
, from
))
5382 return (unique_copy
&& n_occurrences
> 1 ? copy_rtx (to
) : to
);
5385 /* If X and FROM are the same register but different modes, they
5386 will not have been seen as equal above. However, the log links code
5387 will make a LOG_LINKS entry for that case. If we do nothing, we
5388 will try to rerecognize our original insn and, when it succeeds,
5389 we will delete the feeding insn, which is incorrect.
5391 So force this insn not to match in this (rare) case. */
5392 if (! in_dest
&& code
== REG
&& REG_P (from
)
5393 && reg_overlap_mentioned_p (x
, from
))
5394 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
5396 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5397 of which may contain things that can be combined. */
5398 if (code
!= MEM
&& code
!= LO_SUM
&& OBJECT_P (x
))
5401 /* It is possible to have a subexpression appear twice in the insn.
5402 Suppose that FROM is a register that appears within TO.
5403 Then, after that subexpression has been scanned once by `subst',
5404 the second time it is scanned, TO may be found. If we were
5405 to scan TO here, we would find FROM within it and create a
5406 self-referent rtl structure which is completely wrong. */
5407 if (COMBINE_RTX_EQUAL_P (x
, to
))
5410 /* Parallel asm_operands need special attention because all of the
5411 inputs are shared across the arms. Furthermore, unsharing the
5412 rtl results in recognition failures. Failure to handle this case
5413 specially can result in circular rtl.
5415 Solve this by doing a normal pass across the first entry of the
5416 parallel, and only processing the SET_DESTs of the subsequent
5419 if (code
== PARALLEL
5420 && GET_CODE (XVECEXP (x
, 0, 0)) == SET
5421 && GET_CODE (SET_SRC (XVECEXP (x
, 0, 0))) == ASM_OPERANDS
)
5423 new_rtx
= subst (XVECEXP (x
, 0, 0), from
, to
, false, false, unique_copy
);
5425 /* If this substitution failed, this whole thing fails. */
5426 if (GET_CODE (new_rtx
) == CLOBBER
5427 && XEXP (new_rtx
, 0) == const0_rtx
)
5430 SUBST (XVECEXP (x
, 0, 0), new_rtx
);
5432 for (i
= XVECLEN (x
, 0) - 1; i
>= 1; i
--)
5434 rtx dest
= SET_DEST (XVECEXP (x
, 0, i
));
5436 if (!REG_P (dest
) && GET_CODE (dest
) != PC
)
5438 new_rtx
= subst (dest
, from
, to
, false, false, unique_copy
);
5440 /* If this substitution failed, this whole thing fails. */
5441 if (GET_CODE (new_rtx
) == CLOBBER
5442 && XEXP (new_rtx
, 0) == const0_rtx
)
5445 SUBST (SET_DEST (XVECEXP (x
, 0, i
)), new_rtx
);
5451 len
= GET_RTX_LENGTH (code
);
5452 fmt
= GET_RTX_FORMAT (code
);
5454 /* We don't need to process a SET_DEST that is a register or PC, so
5455 set up to skip this common case. All other cases where we want
5456 to suppress replacing something inside a SET_SRC are handled via
5457 the IN_DEST operand. */
5459 && (REG_P (SET_DEST (x
))
5460 || GET_CODE (SET_DEST (x
)) == PC
))
5463 /* Trying to simplify the operands of a widening MULT is not likely
5464 to create RTL matching a machine insn. */
5466 && (GET_CODE (XEXP (x
, 0)) == ZERO_EXTEND
5467 || GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
)
5468 && (GET_CODE (XEXP (x
, 1)) == ZERO_EXTEND
5469 || GET_CODE (XEXP (x
, 1)) == SIGN_EXTEND
)
5470 && REG_P (XEXP (XEXP (x
, 0), 0))
5471 && REG_P (XEXP (XEXP (x
, 1), 0))
5476 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5479 op0_mode
= GET_MODE (XEXP (x
, 0));
5481 for (i
= 0; i
< len
; i
++)
5486 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5488 if (COMBINE_RTX_EQUAL_P (XVECEXP (x
, i
, j
), from
))
5490 new_rtx
= (unique_copy
&& n_occurrences
5491 ? copy_rtx (to
) : to
);
5496 new_rtx
= subst (XVECEXP (x
, i
, j
), from
, to
,
5497 false, false, unique_copy
);
5499 /* If this substitution failed, this whole thing
5501 if (GET_CODE (new_rtx
) == CLOBBER
5502 && XEXP (new_rtx
, 0) == const0_rtx
)
5506 SUBST (XVECEXP (x
, i
, j
), new_rtx
);
5509 else if (fmt
[i
] == 'e')
5511 /* If this is a register being set, ignore it. */
5512 new_rtx
= XEXP (x
, i
);
5515 && (((code
== SUBREG
|| code
== ZERO_EXTRACT
)
5517 || code
== STRICT_LOW_PART
))
5520 else if (COMBINE_RTX_EQUAL_P (XEXP (x
, i
), from
))
5522 /* In general, don't install a subreg involving two
5523 modes not tieable. It can worsen register
5524 allocation, and can even make invalid reload
5525 insns, since the reg inside may need to be copied
5526 from in the outside mode, and that may be invalid
5527 if it is an fp reg copied in integer mode.
5529 We allow an exception to this: It is valid if
5530 it is inside another SUBREG and the mode of that
5531 SUBREG and the mode of the inside of TO is
5534 if (GET_CODE (to
) == SUBREG
5535 && !targetm
.modes_tieable_p (GET_MODE (to
),
5536 GET_MODE (SUBREG_REG (to
)))
5537 && ! (code
== SUBREG
5538 && (targetm
.modes_tieable_p
5539 (GET_MODE (x
), GET_MODE (SUBREG_REG (to
))))))
5540 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5544 && REGNO (to
) < FIRST_PSEUDO_REGISTER
5545 && simplify_subreg_regno (REGNO (to
), GET_MODE (to
),
5548 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5550 new_rtx
= (unique_copy
&& n_occurrences
? copy_rtx (to
) : to
);
5554 /* If we are in a SET_DEST, suppress most cases unless we
5555 have gone inside a MEM, in which case we want to
5556 simplify the address. We assume here that things that
5557 are actually part of the destination have their inner
5558 parts in the first expression. This is true for SUBREG,
5559 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5560 things aside from REG and MEM that should appear in a
5562 new_rtx
= subst (XEXP (x
, i
), from
, to
,
5564 && (code
== SUBREG
|| code
== STRICT_LOW_PART
5565 || code
== ZERO_EXTRACT
))
5568 code
== IF_THEN_ELSE
&& i
== 0,
5571 /* If we found that we will have to reject this combination,
5572 indicate that by returning the CLOBBER ourselves, rather than
5573 an expression containing it. This will speed things up as
5574 well as prevent accidents where two CLOBBERs are considered
5575 to be equal, thus producing an incorrect simplification. */
5577 if (GET_CODE (new_rtx
) == CLOBBER
&& XEXP (new_rtx
, 0) == const0_rtx
)
5580 if (GET_CODE (x
) == SUBREG
&& CONST_SCALAR_INT_P (new_rtx
))
5582 machine_mode mode
= GET_MODE (x
);
5584 x
= simplify_subreg (GET_MODE (x
), new_rtx
,
5585 GET_MODE (SUBREG_REG (x
)),
5588 x
= gen_rtx_CLOBBER (mode
, const0_rtx
);
5590 else if (CONST_SCALAR_INT_P (new_rtx
)
5591 && (GET_CODE (x
) == ZERO_EXTEND
5592 || GET_CODE (x
) == SIGN_EXTEND
5593 || GET_CODE (x
) == FLOAT
5594 || GET_CODE (x
) == UNSIGNED_FLOAT
))
5596 x
= simplify_unary_operation (GET_CODE (x
), GET_MODE (x
),
5598 GET_MODE (XEXP (x
, 0)));
5600 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5602 /* CONST_INTs shouldn't be substituted into PRE_DEC, PRE_MODIFY
5603 etc. arguments, otherwise we can ICE before trying to recog
5604 it. See PR104446. */
5605 else if (CONST_SCALAR_INT_P (new_rtx
)
5606 && GET_RTX_CLASS (GET_CODE (x
)) == RTX_AUTOINC
)
5607 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5609 SUBST (XEXP (x
, i
), new_rtx
);
5614 /* Check if we are loading something from the constant pool via float
5615 extension; in this case we would undo compress_float_constant
5616 optimization and degenerate constant load to an immediate value. */
5617 if (GET_CODE (x
) == FLOAT_EXTEND
5618 && MEM_P (XEXP (x
, 0))
5619 && MEM_READONLY_P (XEXP (x
, 0)))
5621 rtx tmp
= avoid_constant_pool_reference (x
);
5626 /* Try to simplify X. If the simplification changed the code, it is likely
5627 that further simplification will help, so loop, but limit the number
5628 of repetitions that will be performed. */
5630 for (i
= 0; i
< 4; i
++)
5632 /* If X is sufficiently simple, don't bother trying to do anything
5634 if (code
!= CONST_INT
&& code
!= REG
&& code
!= CLOBBER
)
5635 x
= combine_simplify_rtx (x
, op0_mode
, in_dest
, in_cond
);
5637 if (GET_CODE (x
) == code
)
5640 code
= GET_CODE (x
);
5642 /* We no longer know the original mode of operand 0 since we
5643 have changed the form of X) */
5644 op0_mode
= VOIDmode
;
5650 /* If X is a commutative operation whose operands are not in the canonical
5651 order, use substitutions to swap them. */
5654 maybe_swap_commutative_operands (rtx x
)
5656 if (COMMUTATIVE_ARITH_P (x
)
5657 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
5659 rtx temp
= XEXP (x
, 0);
5660 SUBST (XEXP (x
, 0), XEXP (x
, 1));
5661 SUBST (XEXP (x
, 1), temp
);
5664 /* Canonicalize (vec_merge (fma op2 op1 op3) op1 mask) to
5665 (vec_merge (fma op1 op2 op3) op1 mask). */
5666 if (GET_CODE (x
) == VEC_MERGE
5667 && GET_CODE (XEXP (x
, 0)) == FMA
)
5669 rtx fma_op1
= XEXP (XEXP (x
, 0), 0);
5670 rtx fma_op2
= XEXP (XEXP (x
, 0), 1);
5671 rtx masked_op
= XEXP (x
, 1);
5672 if (rtx_equal_p (masked_op
, fma_op2
))
5674 if (GET_CODE (fma_op1
) == NEG
)
5676 /* Keep the negate canonicalized to the first operand. */
5677 fma_op1
= XEXP (fma_op1
, 0);
5678 SUBST (XEXP (XEXP (XEXP (x
, 0), 0), 0), fma_op2
);
5679 SUBST (XEXP (XEXP (x
, 0), 1), fma_op1
);
5683 SUBST (XEXP (XEXP (x
, 0), 0), fma_op2
);
5684 SUBST (XEXP (XEXP (x
, 0), 1), fma_op1
);
5689 unsigned n_elts
= 0;
5690 if (GET_CODE (x
) == VEC_MERGE
5691 && CONST_INT_P (XEXP (x
, 2))
5692 && GET_MODE_NUNITS (GET_MODE (x
)).is_constant (&n_elts
)
5693 && (swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1))
5694 /* Two operands have same precedence, then
5695 first bit of mask select first operand. */
5696 || (!swap_commutative_operands_p (XEXP (x
, 1), XEXP (x
, 0))
5697 && !(UINTVAL (XEXP (x
, 2)) & 1))))
5699 rtx temp
= XEXP (x
, 0);
5700 unsigned HOST_WIDE_INT sel
= UINTVAL (XEXP (x
, 2));
5701 unsigned HOST_WIDE_INT mask
= HOST_WIDE_INT_1U
;
5702 if (n_elts
== HOST_BITS_PER_WIDE_INT
)
5705 mask
= (HOST_WIDE_INT_1U
<< n_elts
) - 1;
5706 SUBST (XEXP (x
, 0), XEXP (x
, 1));
5707 SUBST (XEXP (x
, 1), temp
);
5708 SUBST (XEXP (x
, 2), GEN_INT (~sel
& mask
));
5712 /* Simplify X, a piece of RTL. We just operate on the expression at the
5713 outer level; call `subst' to simplify recursively. Return the new
5716 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is true
5717 if we are inside a SET_DEST. IN_COND is true if we are at the top level
5721 combine_simplify_rtx (rtx x
, machine_mode op0_mode
, bool in_dest
, bool in_cond
)
5723 enum rtx_code code
= GET_CODE (x
);
5724 machine_mode mode
= GET_MODE (x
);
5725 scalar_int_mode int_mode
;
5729 /* If this is a commutative operation, put a constant last and a complex
5730 expression first. We don't need to do this for comparisons here. */
5731 maybe_swap_commutative_operands (x
);
5733 /* Try to fold this expression in case we have constants that weren't
5736 switch (GET_RTX_CLASS (code
))
5739 if (op0_mode
== VOIDmode
)
5740 op0_mode
= GET_MODE (XEXP (x
, 0));
5741 temp
= simplify_unary_operation (code
, mode
, XEXP (x
, 0), op0_mode
);
5744 case RTX_COMM_COMPARE
:
5746 machine_mode cmp_mode
= GET_MODE (XEXP (x
, 0));
5747 if (cmp_mode
== VOIDmode
)
5749 cmp_mode
= GET_MODE (XEXP (x
, 1));
5750 if (cmp_mode
== VOIDmode
)
5751 cmp_mode
= op0_mode
;
5753 temp
= simplify_relational_operation (code
, mode
, cmp_mode
,
5754 XEXP (x
, 0), XEXP (x
, 1));
5757 case RTX_COMM_ARITH
:
5759 temp
= simplify_binary_operation (code
, mode
, XEXP (x
, 0), XEXP (x
, 1));
5761 case RTX_BITFIELD_OPS
:
5763 temp
= simplify_ternary_operation (code
, mode
, op0_mode
, XEXP (x
, 0),
5764 XEXP (x
, 1), XEXP (x
, 2));
5773 code
= GET_CODE (temp
);
5774 op0_mode
= VOIDmode
;
5775 mode
= GET_MODE (temp
);
5778 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5779 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5780 things. Check for cases where both arms are testing the same
5783 Don't do anything if all operands are very simple. */
5786 && ((!OBJECT_P (XEXP (x
, 0))
5787 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5788 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))
5789 || (!OBJECT_P (XEXP (x
, 1))
5790 && ! (GET_CODE (XEXP (x
, 1)) == SUBREG
5791 && OBJECT_P (SUBREG_REG (XEXP (x
, 1)))))))
5793 && (!OBJECT_P (XEXP (x
, 0))
5794 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5795 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))))
5797 rtx cond
, true_rtx
, false_rtx
;
5799 cond
= if_then_else_cond (x
, &true_rtx
, &false_rtx
);
5801 /* If everything is a comparison, what we have is highly unlikely
5802 to be simpler, so don't use it. */
5803 && ! (COMPARISON_P (x
)
5804 && (COMPARISON_P (true_rtx
) || COMPARISON_P (false_rtx
)))
5805 /* Similarly, if we end up with one of the expressions the same
5806 as the original, it is certainly not simpler. */
5807 && ! rtx_equal_p (x
, true_rtx
)
5808 && ! rtx_equal_p (x
, false_rtx
))
5810 rtx cop1
= const0_rtx
;
5811 enum rtx_code cond_code
= simplify_comparison (NE
, &cond
, &cop1
);
5813 if (cond_code
== NE
&& COMPARISON_P (cond
))
5816 /* Simplify the alternative arms; this may collapse the true and
5817 false arms to store-flag values. Be careful to use copy_rtx
5818 here since true_rtx or false_rtx might share RTL with x as a
5819 result of the if_then_else_cond call above. */
5820 true_rtx
= subst (copy_rtx (true_rtx
), pc_rtx
, pc_rtx
,
5821 false, false, false);
5822 false_rtx
= subst (copy_rtx (false_rtx
), pc_rtx
, pc_rtx
,
5823 false, false, false);
5825 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5826 is unlikely to be simpler. */
5827 if (general_operand (true_rtx
, VOIDmode
)
5828 && general_operand (false_rtx
, VOIDmode
))
5830 enum rtx_code reversed
;
5832 /* Restarting if we generate a store-flag expression will cause
5833 us to loop. Just drop through in this case. */
5835 /* If the result values are STORE_FLAG_VALUE and zero, we can
5836 just make the comparison operation. */
5837 if (true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
5838 x
= simplify_gen_relational (cond_code
, mode
, VOIDmode
,
5840 else if (true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
5841 && ((reversed
= reversed_comparison_code_parts
5842 (cond_code
, cond
, cop1
, NULL
))
5844 x
= simplify_gen_relational (reversed
, mode
, VOIDmode
,
5847 /* Likewise, we can make the negate of a comparison operation
5848 if the result values are - STORE_FLAG_VALUE and zero. */
5849 else if (CONST_INT_P (true_rtx
)
5850 && INTVAL (true_rtx
) == - STORE_FLAG_VALUE
5851 && false_rtx
== const0_rtx
)
5852 x
= simplify_gen_unary (NEG
, mode
,
5853 simplify_gen_relational (cond_code
,
5857 else if (CONST_INT_P (false_rtx
)
5858 && INTVAL (false_rtx
) == - STORE_FLAG_VALUE
5859 && true_rtx
== const0_rtx
5860 && ((reversed
= reversed_comparison_code_parts
5861 (cond_code
, cond
, cop1
, NULL
))
5863 x
= simplify_gen_unary (NEG
, mode
,
5864 simplify_gen_relational (reversed
,
5869 code
= GET_CODE (x
);
5870 op0_mode
= VOIDmode
;
5875 /* First see if we can apply the inverse distributive law. */
5876 if (code
== PLUS
|| code
== MINUS
5877 || code
== AND
|| code
== IOR
|| code
== XOR
)
5879 x
= apply_distributive_law (x
);
5880 code
= GET_CODE (x
);
5881 op0_mode
= VOIDmode
;
5884 /* If CODE is an associative operation not otherwise handled, see if we
5885 can associate some operands. This can win if they are constants or
5886 if they are logically related (i.e. (a & b) & a). */
5887 if ((code
== PLUS
|| code
== MINUS
|| code
== MULT
|| code
== DIV
5888 || code
== AND
|| code
== IOR
|| code
== XOR
5889 || code
== SMAX
|| code
== SMIN
|| code
== UMAX
|| code
== UMIN
)
5890 && ((INTEGRAL_MODE_P (mode
) && code
!= DIV
)
5891 || (flag_associative_math
&& FLOAT_MODE_P (mode
))))
5893 if (GET_CODE (XEXP (x
, 0)) == code
)
5895 rtx other
= XEXP (XEXP (x
, 0), 0);
5896 rtx inner_op0
= XEXP (XEXP (x
, 0), 1);
5897 rtx inner_op1
= XEXP (x
, 1);
5900 /* Make sure we pass the constant operand if any as the second
5901 one if this is a commutative operation. */
5902 if (CONSTANT_P (inner_op0
) && COMMUTATIVE_ARITH_P (x
))
5903 std::swap (inner_op0
, inner_op1
);
5904 inner
= simplify_binary_operation (code
== MINUS
? PLUS
5905 : code
== DIV
? MULT
5907 mode
, inner_op0
, inner_op1
);
5909 /* For commutative operations, try the other pair if that one
5911 if (inner
== 0 && COMMUTATIVE_ARITH_P (x
))
5913 other
= XEXP (XEXP (x
, 0), 1);
5914 inner
= simplify_binary_operation (code
, mode
,
5915 XEXP (XEXP (x
, 0), 0),
5920 return simplify_gen_binary (code
, mode
, other
, inner
);
5924 /* A little bit of algebraic simplification here. */
5928 /* Ensure that our address has any ASHIFTs converted to MULT in case
5929 address-recognizing predicates are called later. */
5930 temp
= make_compound_operation (XEXP (x
, 0), MEM
);
5931 SUBST (XEXP (x
, 0), temp
);
5935 if (op0_mode
== VOIDmode
)
5936 op0_mode
= GET_MODE (SUBREG_REG (x
));
5938 /* See if this can be moved to simplify_subreg. */
5939 if (CONSTANT_P (SUBREG_REG (x
))
5940 && known_eq (subreg_lowpart_offset (mode
, op0_mode
), SUBREG_BYTE (x
))
5941 /* Don't call gen_lowpart if the inner mode
5942 is VOIDmode and we cannot simplify it, as SUBREG without
5943 inner mode is invalid. */
5944 && (GET_MODE (SUBREG_REG (x
)) != VOIDmode
5945 || gen_lowpart_common (mode
, SUBREG_REG (x
))))
5946 return gen_lowpart (mode
, SUBREG_REG (x
));
5948 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x
))) == MODE_CC
)
5952 temp
= simplify_subreg (mode
, SUBREG_REG (x
), op0_mode
,
5957 /* If op is known to have all lower bits zero, the result is zero. */
5958 scalar_int_mode int_mode
, int_op0_mode
;
5960 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
5961 && is_a
<scalar_int_mode
> (op0_mode
, &int_op0_mode
)
5962 && (GET_MODE_PRECISION (int_mode
)
5963 < GET_MODE_PRECISION (int_op0_mode
))
5964 && known_eq (subreg_lowpart_offset (int_mode
, int_op0_mode
),
5966 && HWI_COMPUTABLE_MODE_P (int_op0_mode
)
5967 && ((nonzero_bits (SUBREG_REG (x
), int_op0_mode
)
5968 & GET_MODE_MASK (int_mode
)) == 0)
5969 && !side_effects_p (SUBREG_REG (x
)))
5970 return CONST0_RTX (int_mode
);
5973 /* Don't change the mode of the MEM if that would change the meaning
5975 if (MEM_P (SUBREG_REG (x
))
5976 && (MEM_VOLATILE_P (SUBREG_REG (x
))
5977 || mode_dependent_address_p (XEXP (SUBREG_REG (x
), 0),
5978 MEM_ADDR_SPACE (SUBREG_REG (x
)))))
5979 return gen_rtx_CLOBBER (mode
, const0_rtx
);
5981 /* Note that we cannot do any narrowing for non-constants since
5982 we might have been counting on using the fact that some bits were
5983 zero. We now do this in the SET. */
5988 temp
= expand_compound_operation (XEXP (x
, 0));
5990 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5991 replaced by (lshiftrt X C). This will convert
5992 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5994 if (GET_CODE (temp
) == ASHIFTRT
5995 && CONST_INT_P (XEXP (temp
, 1))
5996 && INTVAL (XEXP (temp
, 1)) == GET_MODE_UNIT_PRECISION (mode
) - 1)
5997 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (temp
, 0),
5998 INTVAL (XEXP (temp
, 1)));
6000 /* If X has only a single bit that might be nonzero, say, bit I, convert
6001 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
6002 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
6003 (sign_extract X 1 Y). But only do this if TEMP isn't a register
6004 or a SUBREG of one since we'd be making the expression more
6005 complex if it was just a register. */
6008 && ! (GET_CODE (temp
) == SUBREG
6009 && REG_P (SUBREG_REG (temp
)))
6010 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
6011 && (i
= exact_log2 (nonzero_bits (temp
, int_mode
))) >= 0)
6013 rtx temp1
= simplify_shift_const
6014 (NULL_RTX
, ASHIFTRT
, int_mode
,
6015 simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
, temp
,
6016 GET_MODE_PRECISION (int_mode
) - 1 - i
),
6017 GET_MODE_PRECISION (int_mode
) - 1 - i
);
6019 /* If all we did was surround TEMP with the two shifts, we
6020 haven't improved anything, so don't use it. Otherwise,
6021 we are better off with TEMP1. */
6022 if (GET_CODE (temp1
) != ASHIFTRT
6023 || GET_CODE (XEXP (temp1
, 0)) != ASHIFT
6024 || XEXP (XEXP (temp1
, 0), 0) != temp
)
6030 /* We can't handle truncation to a partial integer mode here
6031 because we don't know the real bitsize of the partial
6033 if (GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
6036 if (HWI_COMPUTABLE_MODE_P (mode
))
6038 force_to_mode (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)),
6039 GET_MODE_MASK (mode
), false));
6041 /* We can truncate a constant value and return it. */
6044 if (poly_int_rtx_p (XEXP (x
, 0), &c
))
6045 return gen_int_mode (c
, mode
);
6048 /* Similarly to what we do in simplify-rtx.cc, a truncate of a register
6049 whose value is a comparison can be replaced with a subreg if
6050 STORE_FLAG_VALUE permits. */
6051 if (HWI_COMPUTABLE_MODE_P (mode
)
6052 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (mode
)) == 0
6053 && (temp
= get_last_value (XEXP (x
, 0)))
6054 && COMPARISON_P (temp
)
6055 && TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (XEXP (x
, 0))))
6056 return gen_lowpart (mode
, XEXP (x
, 0));
6060 /* (const (const X)) can become (const X). Do it this way rather than
6061 returning the inner CONST since CONST can be shared with a
6063 if (GET_CODE (XEXP (x
, 0)) == CONST
)
6064 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
6068 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
6069 can add in an offset. find_split_point will split this address up
6070 again if it doesn't match. */
6071 if (HAVE_lo_sum
&& GET_CODE (XEXP (x
, 0)) == HIGH
6072 && rtx_equal_p (XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)))
6077 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6078 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6079 bit-field and can be replaced by either a sign_extend or a
6080 sign_extract. The `and' may be a zero_extend and the two
6081 <c>, -<c> constants may be reversed. */
6082 if (GET_CODE (XEXP (x
, 0)) == XOR
6083 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
6084 && CONST_INT_P (XEXP (x
, 1))
6085 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
6086 && INTVAL (XEXP (x
, 1)) == -INTVAL (XEXP (XEXP (x
, 0), 1))
6087 && ((i
= exact_log2 (UINTVAL (XEXP (XEXP (x
, 0), 1)))) >= 0
6088 || (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0)
6089 && HWI_COMPUTABLE_MODE_P (int_mode
)
6090 && ((GET_CODE (XEXP (XEXP (x
, 0), 0)) == AND
6091 && CONST_INT_P (XEXP (XEXP (XEXP (x
, 0), 0), 1))
6092 && (UINTVAL (XEXP (XEXP (XEXP (x
, 0), 0), 1))
6093 == (HOST_WIDE_INT_1U
<< (i
+ 1)) - 1))
6094 || (GET_CODE (XEXP (XEXP (x
, 0), 0)) == ZERO_EXTEND
6095 && known_eq ((GET_MODE_PRECISION
6096 (GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)))),
6097 (unsigned int) i
+ 1))))
6098 return simplify_shift_const
6099 (NULL_RTX
, ASHIFTRT
, int_mode
,
6100 simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
,
6101 XEXP (XEXP (XEXP (x
, 0), 0), 0),
6102 GET_MODE_PRECISION (int_mode
) - (i
+ 1)),
6103 GET_MODE_PRECISION (int_mode
) - (i
+ 1));
6105 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6106 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6107 the bitsize of the mode - 1. This allows simplification of
6108 "a = (b & 8) == 0;" */
6109 if (XEXP (x
, 1) == constm1_rtx
6110 && !REG_P (XEXP (x
, 0))
6111 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
6112 && REG_P (SUBREG_REG (XEXP (x
, 0))))
6113 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
6114 && nonzero_bits (XEXP (x
, 0), int_mode
) == 1)
6115 return simplify_shift_const
6116 (NULL_RTX
, ASHIFTRT
, int_mode
,
6117 simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
,
6118 gen_rtx_XOR (int_mode
, XEXP (x
, 0),
6120 GET_MODE_PRECISION (int_mode
) - 1),
6121 GET_MODE_PRECISION (int_mode
) - 1);
6123 /* If we are adding two things that have no bits in common, convert
6124 the addition into an IOR. This will often be further simplified,
6125 for example in cases like ((a & 1) + (a & 2)), which can
6128 if (HWI_COMPUTABLE_MODE_P (mode
)
6129 && (nonzero_bits (XEXP (x
, 0), mode
)
6130 & nonzero_bits (XEXP (x
, 1), mode
)) == 0)
6132 /* Try to simplify the expression further. */
6133 rtx tor
= simplify_gen_binary (IOR
, mode
, XEXP (x
, 0), XEXP (x
, 1));
6134 temp
= combine_simplify_rtx (tor
, VOIDmode
, in_dest
, false);
6136 /* If we could, great. If not, do not go ahead with the IOR
6137 replacement, since PLUS appears in many special purpose
6138 address arithmetic instructions. */
6139 if (GET_CODE (temp
) != CLOBBER
6140 && (GET_CODE (temp
) != IOR
6141 || ((XEXP (temp
, 0) != XEXP (x
, 0)
6142 || XEXP (temp
, 1) != XEXP (x
, 1))
6143 && (XEXP (temp
, 0) != XEXP (x
, 1)
6144 || XEXP (temp
, 1) != XEXP (x
, 0)))))
6148 /* Canonicalize x + x into x << 1. */
6149 if (GET_MODE_CLASS (mode
) == MODE_INT
6150 && rtx_equal_p (XEXP (x
, 0), XEXP (x
, 1))
6151 && !side_effects_p (XEXP (x
, 0)))
6152 return simplify_gen_binary (ASHIFT
, mode
, XEXP (x
, 0), const1_rtx
);
6157 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6158 (and <foo> (const_int pow2-1)) */
6159 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
6160 && GET_CODE (XEXP (x
, 1)) == AND
6161 && CONST_INT_P (XEXP (XEXP (x
, 1), 1))
6162 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x
, 1), 1)))
6163 && rtx_equal_p (XEXP (XEXP (x
, 1), 0), XEXP (x
, 0)))
6164 return simplify_and_const_int (NULL_RTX
, int_mode
, XEXP (x
, 0),
6165 -INTVAL (XEXP (XEXP (x
, 1), 1)) - 1);
6169 /* If we have (mult (plus A B) C), apply the distributive law and then
6170 the inverse distributive law to see if things simplify. This
6171 occurs mostly in addresses, often when unrolling loops. */
6173 if (GET_CODE (XEXP (x
, 0)) == PLUS
)
6175 rtx result
= distribute_and_simplify_rtx (x
, 0);
6180 /* Try simplify a*(b/c) as (a*b)/c. */
6181 if (FLOAT_MODE_P (mode
) && flag_associative_math
6182 && GET_CODE (XEXP (x
, 0)) == DIV
)
6184 rtx tem
= simplify_binary_operation (MULT
, mode
,
6185 XEXP (XEXP (x
, 0), 0),
6188 return simplify_gen_binary (DIV
, mode
, tem
, XEXP (XEXP (x
, 0), 1));
6193 /* If this is a divide by a power of two, treat it as a shift if
6194 its first operand is a shift. */
6195 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
6196 && CONST_INT_P (XEXP (x
, 1))
6197 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0
6198 && (GET_CODE (XEXP (x
, 0)) == ASHIFT
6199 || GET_CODE (XEXP (x
, 0)) == LSHIFTRT
6200 || GET_CODE (XEXP (x
, 0)) == ASHIFTRT
6201 || GET_CODE (XEXP (x
, 0)) == ROTATE
6202 || GET_CODE (XEXP (x
, 0)) == ROTATERT
))
6203 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, int_mode
,
6208 case GT
: case GTU
: case GE
: case GEU
:
6209 case LT
: case LTU
: case LE
: case LEU
:
6210 case UNEQ
: case LTGT
:
6211 case UNGT
: case UNGE
:
6212 case UNLT
: case UNLE
:
6213 case UNORDERED
: case ORDERED
:
6214 /* If the first operand is a condition code, we can't do anything
6216 if (GET_CODE (XEXP (x
, 0)) == COMPARE
6217 || GET_MODE_CLASS (GET_MODE (XEXP (x
, 0))) != MODE_CC
)
6219 rtx op0
= XEXP (x
, 0);
6220 rtx op1
= XEXP (x
, 1);
6221 enum rtx_code new_code
;
6223 if (GET_CODE (op0
) == COMPARE
)
6224 op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
6226 /* Simplify our comparison, if possible. */
6227 new_code
= simplify_comparison (code
, &op0
, &op1
);
6229 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6230 if only the low-order bit is possibly nonzero in X (such as when
6231 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6232 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6233 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6236 Remove any ZERO_EXTRACT we made when thinking this was a
6237 comparison. It may now be simpler to use, e.g., an AND. If a
6238 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6239 the call to make_compound_operation in the SET case.
6241 Don't apply these optimizations if the caller would
6242 prefer a comparison rather than a value.
6243 E.g., for the condition in an IF_THEN_ELSE most targets need
6244 an explicit comparison. */
6249 else if (STORE_FLAG_VALUE
== 1
6251 && is_int_mode (mode
, &int_mode
)
6252 && op1
== const0_rtx
6253 && int_mode
== GET_MODE (op0
)
6254 && nonzero_bits (op0
, int_mode
) == 1)
6255 return gen_lowpart (int_mode
,
6256 expand_compound_operation (op0
));
6258 else if (STORE_FLAG_VALUE
== 1
6260 && is_int_mode (mode
, &int_mode
)
6261 && op1
== const0_rtx
6262 && int_mode
== GET_MODE (op0
)
6263 && (num_sign_bit_copies (op0
, int_mode
)
6264 == GET_MODE_PRECISION (int_mode
)))
6266 op0
= expand_compound_operation (op0
);
6267 return simplify_gen_unary (NEG
, int_mode
,
6268 gen_lowpart (int_mode
, op0
),
6272 else if (STORE_FLAG_VALUE
== 1
6274 && is_int_mode (mode
, &int_mode
)
6275 && op1
== const0_rtx
6276 && int_mode
== GET_MODE (op0
)
6277 && nonzero_bits (op0
, int_mode
) == 1)
6279 op0
= expand_compound_operation (op0
);
6280 return simplify_gen_binary (XOR
, int_mode
,
6281 gen_lowpart (int_mode
, op0
),
6285 else if (STORE_FLAG_VALUE
== 1
6287 && is_int_mode (mode
, &int_mode
)
6288 && op1
== const0_rtx
6289 && int_mode
== GET_MODE (op0
)
6290 && (num_sign_bit_copies (op0
, int_mode
)
6291 == GET_MODE_PRECISION (int_mode
)))
6293 op0
= expand_compound_operation (op0
);
6294 return plus_constant (int_mode
, gen_lowpart (int_mode
, op0
), 1);
6297 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6302 else if (STORE_FLAG_VALUE
== -1
6304 && is_int_mode (mode
, &int_mode
)
6305 && op1
== const0_rtx
6306 && int_mode
== GET_MODE (op0
)
6307 && (num_sign_bit_copies (op0
, int_mode
)
6308 == GET_MODE_PRECISION (int_mode
)))
6309 return gen_lowpart (int_mode
, expand_compound_operation (op0
));
6311 else if (STORE_FLAG_VALUE
== -1
6313 && is_int_mode (mode
, &int_mode
)
6314 && op1
== const0_rtx
6315 && int_mode
== GET_MODE (op0
)
6316 && nonzero_bits (op0
, int_mode
) == 1)
6318 op0
= expand_compound_operation (op0
);
6319 return simplify_gen_unary (NEG
, int_mode
,
6320 gen_lowpart (int_mode
, op0
),
6324 else if (STORE_FLAG_VALUE
== -1
6326 && is_int_mode (mode
, &int_mode
)
6327 && op1
== const0_rtx
6328 && int_mode
== GET_MODE (op0
)
6329 && (num_sign_bit_copies (op0
, int_mode
)
6330 == GET_MODE_PRECISION (int_mode
)))
6332 op0
= expand_compound_operation (op0
);
6333 return simplify_gen_unary (NOT
, int_mode
,
6334 gen_lowpart (int_mode
, op0
),
6338 /* If X is 0/1, (eq X 0) is X-1. */
6339 else if (STORE_FLAG_VALUE
== -1
6341 && is_int_mode (mode
, &int_mode
)
6342 && op1
== const0_rtx
6343 && int_mode
== GET_MODE (op0
)
6344 && nonzero_bits (op0
, int_mode
) == 1)
6346 op0
= expand_compound_operation (op0
);
6347 return plus_constant (int_mode
, gen_lowpart (int_mode
, op0
), -1);
6350 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6351 one bit that might be nonzero, we can convert (ne x 0) to
6352 (ashift x c) where C puts the bit in the sign bit. Remove any
6353 AND with STORE_FLAG_VALUE when we are done, since we are only
6354 going to test the sign bit. */
6356 && is_int_mode (mode
, &int_mode
)
6357 && HWI_COMPUTABLE_MODE_P (int_mode
)
6358 && val_signbit_p (int_mode
, STORE_FLAG_VALUE
)
6359 && op1
== const0_rtx
6360 && int_mode
== GET_MODE (op0
)
6361 && (i
= exact_log2 (nonzero_bits (op0
, int_mode
))) >= 0)
6363 x
= simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
,
6364 expand_compound_operation (op0
),
6365 GET_MODE_PRECISION (int_mode
) - 1 - i
);
6366 if (GET_CODE (x
) == AND
&& XEXP (x
, 1) == const_true_rtx
)
6372 /* If the code changed, return a whole new comparison.
6373 We also need to avoid using SUBST in cases where
6374 simplify_comparison has widened a comparison with a CONST_INT,
6375 since in that case the wider CONST_INT may fail the sanity
6376 checks in do_SUBST. */
6377 if (new_code
!= code
6378 || (CONST_INT_P (op1
)
6379 && GET_MODE (op0
) != GET_MODE (XEXP (x
, 0))
6380 && GET_MODE (op0
) != GET_MODE (XEXP (x
, 1))))
6381 return gen_rtx_fmt_ee (new_code
, mode
, op0
, op1
);
6383 /* Otherwise, keep this operation, but maybe change its operands.
6384 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6385 SUBST (XEXP (x
, 0), op0
);
6386 SUBST (XEXP (x
, 1), op1
);
6391 return simplify_if_then_else (x
);
6397 /* If we are processing SET_DEST, we are done. */
6401 return expand_compound_operation (x
);
6404 return simplify_set (x
);
6408 return simplify_logical (x
);
6415 /* If this is a shift by a constant amount, simplify it. */
6416 if (CONST_INT_P (XEXP (x
, 1)))
6417 return simplify_shift_const (x
, code
, mode
, XEXP (x
, 0),
6418 INTVAL (XEXP (x
, 1)));
6420 else if (SHIFT_COUNT_TRUNCATED
&& !REG_P (XEXP (x
, 1)))
6422 force_to_mode (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)),
6424 << exact_log2 (GET_MODE_UNIT_BITSIZE
6425 (GET_MODE (x
)))) - 1, false));
6429 rtx trueop0
= XEXP (x
, 0);
6430 mode
= GET_MODE (trueop0
);
6431 rtx trueop1
= XEXP (x
, 1);
6432 /* If we select a low-part subreg, return that. */
6433 if (vec_series_lowpart_p (GET_MODE (x
), mode
, trueop1
))
6435 rtx new_rtx
= lowpart_subreg (GET_MODE (x
), trueop0
, mode
);
6436 if (new_rtx
!= NULL_RTX
)
6448 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6451 simplify_if_then_else (rtx x
)
6453 machine_mode mode
= GET_MODE (x
);
6454 rtx cond
= XEXP (x
, 0);
6455 rtx true_rtx
= XEXP (x
, 1);
6456 rtx false_rtx
= XEXP (x
, 2);
6457 enum rtx_code true_code
= GET_CODE (cond
);
6458 bool comparison_p
= COMPARISON_P (cond
);
6461 enum rtx_code false_code
;
6463 scalar_int_mode int_mode
, inner_mode
;
6465 /* Simplify storing of the truth value. */
6466 if (comparison_p
&& true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
6467 return simplify_gen_relational (true_code
, mode
, VOIDmode
,
6468 XEXP (cond
, 0), XEXP (cond
, 1));
6470 /* Also when the truth value has to be reversed. */
6472 && true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
6473 && (reversed
= reversed_comparison (cond
, mode
)))
6476 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6477 in it is being compared against certain values. Get the true and false
6478 comparisons and see if that says anything about the value of each arm. */
6481 && ((false_code
= reversed_comparison_code (cond
, NULL
))
6483 && REG_P (XEXP (cond
, 0)))
6486 rtx from
= XEXP (cond
, 0);
6487 rtx true_val
= XEXP (cond
, 1);
6488 rtx false_val
= true_val
;
6489 bool swapped
= false;
6491 /* If FALSE_CODE is EQ, swap the codes and arms. */
6493 if (false_code
== EQ
)
6495 swapped
= true, true_code
= EQ
, false_code
= NE
;
6496 std::swap (true_rtx
, false_rtx
);
6499 scalar_int_mode from_mode
;
6500 if (is_a
<scalar_int_mode
> (GET_MODE (from
), &from_mode
))
6502 /* If we are comparing against zero and the expression being
6503 tested has only a single bit that might be nonzero, that is
6504 its value when it is not equal to zero. Similarly if it is
6505 known to be -1 or 0. */
6507 && true_val
== const0_rtx
6508 && pow2p_hwi (nzb
= nonzero_bits (from
, from_mode
)))
6511 false_val
= gen_int_mode (nzb
, from_mode
);
6513 else if (true_code
== EQ
6514 && true_val
== const0_rtx
6515 && (num_sign_bit_copies (from
, from_mode
)
6516 == GET_MODE_PRECISION (from_mode
)))
6519 false_val
= constm1_rtx
;
6523 /* Now simplify an arm if we know the value of the register in the
6524 branch and it is used in the arm. Be careful due to the potential
6525 of locally-shared RTL. */
6527 if (reg_mentioned_p (from
, true_rtx
))
6528 true_rtx
= subst (known_cond (copy_rtx (true_rtx
), true_code
,
6530 pc_rtx
, pc_rtx
, false, false, false);
6531 if (reg_mentioned_p (from
, false_rtx
))
6532 false_rtx
= subst (known_cond (copy_rtx (false_rtx
), false_code
,
6534 pc_rtx
, pc_rtx
, false, false, false);
6536 SUBST (XEXP (x
, 1), swapped
? false_rtx
: true_rtx
);
6537 SUBST (XEXP (x
, 2), swapped
? true_rtx
: false_rtx
);
6539 true_rtx
= XEXP (x
, 1);
6540 false_rtx
= XEXP (x
, 2);
6541 true_code
= GET_CODE (cond
);
6544 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6545 reversed, do so to avoid needing two sets of patterns for
6546 subtract-and-branch insns. Similarly if we have a constant in the true
6547 arm, the false arm is the same as the first operand of the comparison, or
6548 the false arm is more complicated than the true arm. */
6551 && reversed_comparison_code (cond
, NULL
) != UNKNOWN
6552 && (true_rtx
== pc_rtx
6553 || (CONSTANT_P (true_rtx
)
6554 && !CONST_INT_P (false_rtx
) && false_rtx
!= pc_rtx
)
6555 || true_rtx
== const0_rtx
6556 || (OBJECT_P (true_rtx
) && !OBJECT_P (false_rtx
))
6557 || (GET_CODE (true_rtx
) == SUBREG
&& OBJECT_P (SUBREG_REG (true_rtx
))
6558 && !OBJECT_P (false_rtx
))
6559 || reg_mentioned_p (true_rtx
, false_rtx
)
6560 || rtx_equal_p (false_rtx
, XEXP (cond
, 0))))
6562 SUBST (XEXP (x
, 0), reversed_comparison (cond
, GET_MODE (cond
)));
6563 SUBST (XEXP (x
, 1), false_rtx
);
6564 SUBST (XEXP (x
, 2), true_rtx
);
6566 std::swap (true_rtx
, false_rtx
);
6569 /* It is possible that the conditional has been simplified out. */
6570 true_code
= GET_CODE (cond
);
6571 comparison_p
= COMPARISON_P (cond
);
6574 /* If the two arms are identical, we don't need the comparison. */
6576 if (rtx_equal_p (true_rtx
, false_rtx
) && ! side_effects_p (cond
))
6579 /* Convert a == b ? b : a to "a". */
6580 if (true_code
== EQ
&& ! side_effects_p (cond
)
6581 && !HONOR_NANS (mode
)
6582 && rtx_equal_p (XEXP (cond
, 0), false_rtx
)
6583 && rtx_equal_p (XEXP (cond
, 1), true_rtx
))
6585 else if (true_code
== NE
&& ! side_effects_p (cond
)
6586 && !HONOR_NANS (mode
)
6587 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
6588 && rtx_equal_p (XEXP (cond
, 1), false_rtx
))
6591 /* Look for cases where we have (abs x) or (neg (abs X)). */
6593 if (GET_MODE_CLASS (mode
) == MODE_INT
6595 && XEXP (cond
, 1) == const0_rtx
6596 && GET_CODE (false_rtx
) == NEG
6597 && rtx_equal_p (true_rtx
, XEXP (false_rtx
, 0))
6598 && rtx_equal_p (true_rtx
, XEXP (cond
, 0))
6599 && ! side_effects_p (true_rtx
))
6604 return simplify_gen_unary (ABS
, mode
, true_rtx
, mode
);
6608 simplify_gen_unary (NEG
, mode
,
6609 simplify_gen_unary (ABS
, mode
, true_rtx
, mode
),
6615 /* Look for MIN or MAX. */
6617 if ((! FLOAT_MODE_P (mode
)
6618 || (flag_unsafe_math_optimizations
6619 && !HONOR_NANS (mode
)
6620 && !HONOR_SIGNED_ZEROS (mode
)))
6622 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
6623 && rtx_equal_p (XEXP (cond
, 1), false_rtx
)
6624 && ! side_effects_p (cond
))
6629 return simplify_gen_binary (SMAX
, mode
, true_rtx
, false_rtx
);
6632 return simplify_gen_binary (SMIN
, mode
, true_rtx
, false_rtx
);
6635 return simplify_gen_binary (UMAX
, mode
, true_rtx
, false_rtx
);
6638 return simplify_gen_binary (UMIN
, mode
, true_rtx
, false_rtx
);
6643 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6644 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6645 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6646 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6647 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6648 neither 1 or -1, but it isn't worth checking for. */
6650 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
6652 && is_int_mode (mode
, &int_mode
)
6653 && ! side_effects_p (x
))
6655 rtx t
= make_compound_operation (true_rtx
, SET
);
6656 rtx f
= make_compound_operation (false_rtx
, SET
);
6657 rtx cond_op0
= XEXP (cond
, 0);
6658 rtx cond_op1
= XEXP (cond
, 1);
6659 enum rtx_code op
= UNKNOWN
, extend_op
= UNKNOWN
;
6660 scalar_int_mode m
= int_mode
;
6661 rtx z
= 0, c1
= NULL_RTX
;
6663 if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == MINUS
6664 || GET_CODE (t
) == IOR
|| GET_CODE (t
) == XOR
6665 || GET_CODE (t
) == ASHIFT
6666 || GET_CODE (t
) == LSHIFTRT
|| GET_CODE (t
) == ASHIFTRT
)
6667 && rtx_equal_p (XEXP (t
, 0), f
))
6668 c1
= XEXP (t
, 1), op
= GET_CODE (t
), z
= f
;
6670 /* If an identity-zero op is commutative, check whether there
6671 would be a match if we swapped the operands. */
6672 else if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == IOR
6673 || GET_CODE (t
) == XOR
)
6674 && rtx_equal_p (XEXP (t
, 1), f
))
6675 c1
= XEXP (t
, 0), op
= GET_CODE (t
), z
= f
;
6676 else if (GET_CODE (t
) == SIGN_EXTEND
6677 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (t
, 0)), &inner_mode
)
6678 && (GET_CODE (XEXP (t
, 0)) == PLUS
6679 || GET_CODE (XEXP (t
, 0)) == MINUS
6680 || GET_CODE (XEXP (t
, 0)) == IOR
6681 || GET_CODE (XEXP (t
, 0)) == XOR
6682 || GET_CODE (XEXP (t
, 0)) == ASHIFT
6683 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
6684 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
6685 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
6686 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
6687 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
6688 && (num_sign_bit_copies (f
, GET_MODE (f
))
6690 (GET_MODE_PRECISION (int_mode
)
6691 - GET_MODE_PRECISION (inner_mode
))))
6693 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6694 extend_op
= SIGN_EXTEND
;
6697 else if (GET_CODE (t
) == SIGN_EXTEND
6698 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (t
, 0)), &inner_mode
)
6699 && (GET_CODE (XEXP (t
, 0)) == PLUS
6700 || GET_CODE (XEXP (t
, 0)) == IOR
6701 || GET_CODE (XEXP (t
, 0)) == XOR
)
6702 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
6703 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
6704 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
6705 && (num_sign_bit_copies (f
, GET_MODE (f
))
6707 (GET_MODE_PRECISION (int_mode
)
6708 - GET_MODE_PRECISION (inner_mode
))))
6710 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6711 extend_op
= SIGN_EXTEND
;
6714 else if (GET_CODE (t
) == ZERO_EXTEND
6715 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (t
, 0)), &inner_mode
)
6716 && (GET_CODE (XEXP (t
, 0)) == PLUS
6717 || GET_CODE (XEXP (t
, 0)) == MINUS
6718 || GET_CODE (XEXP (t
, 0)) == IOR
6719 || GET_CODE (XEXP (t
, 0)) == XOR
6720 || GET_CODE (XEXP (t
, 0)) == ASHIFT
6721 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
6722 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
6723 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
6724 && HWI_COMPUTABLE_MODE_P (int_mode
)
6725 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
6726 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
6727 && ((nonzero_bits (f
, GET_MODE (f
))
6728 & ~GET_MODE_MASK (inner_mode
))
6731 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6732 extend_op
= ZERO_EXTEND
;
6735 else if (GET_CODE (t
) == ZERO_EXTEND
6736 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (t
, 0)), &inner_mode
)
6737 && (GET_CODE (XEXP (t
, 0)) == PLUS
6738 || GET_CODE (XEXP (t
, 0)) == IOR
6739 || GET_CODE (XEXP (t
, 0)) == XOR
)
6740 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
6741 && HWI_COMPUTABLE_MODE_P (int_mode
)
6742 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
6743 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
6744 && ((nonzero_bits (f
, GET_MODE (f
))
6745 & ~GET_MODE_MASK (inner_mode
))
6748 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6749 extend_op
= ZERO_EXTEND
;
6755 machine_mode cm
= m
;
6756 if ((op
== ASHIFT
|| op
== LSHIFTRT
|| op
== ASHIFTRT
)
6757 && GET_MODE (c1
) != VOIDmode
)
6759 temp
= subst (simplify_gen_relational (true_code
, cm
, VOIDmode
,
6760 cond_op0
, cond_op1
),
6761 pc_rtx
, pc_rtx
, false, false, false);
6762 temp
= simplify_gen_binary (MULT
, cm
, temp
,
6763 simplify_gen_binary (MULT
, cm
, c1
,
6765 temp
= subst (temp
, pc_rtx
, pc_rtx
, false, false, false);
6766 temp
= simplify_gen_binary (op
, m
, gen_lowpart (m
, z
), temp
);
6768 if (extend_op
!= UNKNOWN
)
6769 temp
= simplify_gen_unary (extend_op
, int_mode
, temp
, m
);
6775 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6776 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6777 negation of a single bit, we can convert this operation to a shift. We
6778 can actually do this more generally, but it doesn't seem worth it. */
6781 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
6782 && XEXP (cond
, 1) == const0_rtx
6783 && false_rtx
== const0_rtx
6784 && CONST_INT_P (true_rtx
)
6785 && ((nonzero_bits (XEXP (cond
, 0), int_mode
) == 1
6786 && (i
= exact_log2 (UINTVAL (true_rtx
))) >= 0)
6787 || ((num_sign_bit_copies (XEXP (cond
, 0), int_mode
)
6788 == GET_MODE_PRECISION (int_mode
))
6789 && (i
= exact_log2 (-UINTVAL (true_rtx
))) >= 0)))
6791 simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
,
6792 gen_lowpart (int_mode
, XEXP (cond
, 0)), i
);
6794 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6795 non-zero bit in A is C1. */
6796 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
6797 && false_rtx
== const0_rtx
&& CONST_INT_P (true_rtx
)
6798 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
6799 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (cond
, 0)), &inner_mode
)
6800 && (UINTVAL (true_rtx
) & GET_MODE_MASK (int_mode
))
6801 == nonzero_bits (XEXP (cond
, 0), inner_mode
)
6802 && (i
= exact_log2 (UINTVAL (true_rtx
) & GET_MODE_MASK (int_mode
))) >= 0)
6804 rtx val
= XEXP (cond
, 0);
6805 if (inner_mode
== int_mode
)
6807 else if (GET_MODE_PRECISION (inner_mode
) < GET_MODE_PRECISION (int_mode
))
6808 return simplify_gen_unary (ZERO_EXTEND
, int_mode
, val
, inner_mode
);
6814 /* Simplify X, a SET expression. Return the new expression. */
6817 simplify_set (rtx x
)
6819 rtx src
= SET_SRC (x
);
6820 rtx dest
= SET_DEST (x
);
6822 = GET_MODE (src
) != VOIDmode
? GET_MODE (src
) : GET_MODE (dest
);
6823 rtx_insn
*other_insn
;
6825 scalar_int_mode int_mode
;
6827 /* (set (pc) (return)) gets written as (return). */
6828 if (GET_CODE (dest
) == PC
&& ANY_RETURN_P (src
))
6831 /* Now that we know for sure which bits of SRC we are using, see if we can
6832 simplify the expression for the object knowing that we only need the
6835 if (GET_MODE_CLASS (mode
) == MODE_INT
&& HWI_COMPUTABLE_MODE_P (mode
))
6837 src
= force_to_mode (src
, mode
, HOST_WIDE_INT_M1U
, false);
6838 SUBST (SET_SRC (x
), src
);
6841 /* If the source is a COMPARE, look for the use of the comparison result
6842 and try to simplify it unless we already have used undobuf.other_insn. */
6843 if ((GET_MODE_CLASS (mode
) == MODE_CC
|| GET_CODE (src
) == COMPARE
)
6844 && (cc_use
= find_single_use (dest
, subst_insn
, &other_insn
)) != 0
6845 && (undobuf
.other_insn
== 0 || other_insn
== undobuf
.other_insn
)
6846 && COMPARISON_P (*cc_use
)
6847 && rtx_equal_p (XEXP (*cc_use
, 0), dest
))
6849 enum rtx_code old_code
= GET_CODE (*cc_use
);
6850 enum rtx_code new_code
;
6852 bool other_changed
= false;
6853 rtx inner_compare
= NULL_RTX
;
6854 machine_mode compare_mode
= GET_MODE (dest
);
6856 if (GET_CODE (src
) == COMPARE
)
6858 op0
= XEXP (src
, 0), op1
= XEXP (src
, 1);
6859 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
6861 inner_compare
= op0
;
6862 op0
= XEXP (inner_compare
, 0), op1
= XEXP (inner_compare
, 1);
6866 op0
= src
, op1
= CONST0_RTX (GET_MODE (src
));
6868 tmp
= simplify_relational_operation (old_code
, compare_mode
, VOIDmode
,
6871 new_code
= old_code
;
6872 else if (!CONSTANT_P (tmp
))
6874 new_code
= GET_CODE (tmp
);
6875 op0
= XEXP (tmp
, 0);
6876 op1
= XEXP (tmp
, 1);
6880 rtx pat
= PATTERN (other_insn
);
6881 undobuf
.other_insn
= other_insn
;
6882 SUBST (*cc_use
, tmp
);
6884 /* Attempt to simplify CC user. */
6885 if (GET_CODE (pat
) == SET
)
6887 rtx new_rtx
= simplify_rtx (SET_SRC (pat
));
6888 if (new_rtx
!= NULL_RTX
)
6889 SUBST (SET_SRC (pat
), new_rtx
);
6892 /* Convert X into a no-op move. */
6893 SUBST (SET_DEST (x
), pc_rtx
);
6894 SUBST (SET_SRC (x
), pc_rtx
);
6898 /* Simplify our comparison, if possible. */
6899 new_code
= simplify_comparison (new_code
, &op0
, &op1
);
6901 #ifdef SELECT_CC_MODE
6902 /* If this machine has CC modes other than CCmode, check to see if we
6903 need to use a different CC mode here. */
6904 if (GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
6905 compare_mode
= GET_MODE (op0
);
6906 else if (inner_compare
6907 && GET_MODE_CLASS (GET_MODE (inner_compare
)) == MODE_CC
6908 && new_code
== old_code
6909 && op0
== XEXP (inner_compare
, 0)
6910 && op1
== XEXP (inner_compare
, 1))
6911 compare_mode
= GET_MODE (inner_compare
);
6913 compare_mode
= SELECT_CC_MODE (new_code
, op0
, op1
);
6915 /* If the mode changed, we have to change SET_DEST, the mode in the
6916 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6917 a hard register, just build new versions with the proper mode. If it
6918 is a pseudo, we lose unless it is only time we set the pseudo, in
6919 which case we can safely change its mode. */
6920 if (compare_mode
!= GET_MODE (dest
))
6922 if (can_change_dest_mode (dest
, 0, compare_mode
))
6924 unsigned int regno
= REGNO (dest
);
6927 if (regno
< FIRST_PSEUDO_REGISTER
)
6928 new_dest
= gen_rtx_REG (compare_mode
, regno
);
6931 subst_mode (regno
, compare_mode
);
6932 new_dest
= regno_reg_rtx
[regno
];
6935 SUBST (SET_DEST (x
), new_dest
);
6936 SUBST (XEXP (*cc_use
, 0), new_dest
);
6937 other_changed
= true;
6942 #endif /* SELECT_CC_MODE */
6944 /* If the code changed, we have to build a new comparison in
6945 undobuf.other_insn. */
6946 if (new_code
!= old_code
)
6948 bool other_changed_previously
= other_changed
;
6949 unsigned HOST_WIDE_INT mask
;
6950 rtx old_cc_use
= *cc_use
;
6952 SUBST (*cc_use
, gen_rtx_fmt_ee (new_code
, GET_MODE (*cc_use
),
6954 other_changed
= true;
6956 /* If the only change we made was to change an EQ into an NE or
6957 vice versa, OP0 has only one bit that might be nonzero, and OP1
6958 is zero, check if changing the user of the condition code will
6959 produce a valid insn. If it won't, we can keep the original code
6960 in that insn by surrounding our operation with an XOR. */
6962 if (((old_code
== NE
&& new_code
== EQ
)
6963 || (old_code
== EQ
&& new_code
== NE
))
6964 && ! other_changed_previously
&& op1
== const0_rtx
6965 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0
))
6966 && pow2p_hwi (mask
= nonzero_bits (op0
, GET_MODE (op0
))))
6968 rtx pat
= PATTERN (other_insn
), note
= 0;
6970 if ((recog_for_combine (&pat
, other_insn
, ¬e
) < 0
6971 && ! check_asm_operands (pat
)))
6973 *cc_use
= old_cc_use
;
6974 other_changed
= false;
6976 op0
= simplify_gen_binary (XOR
, GET_MODE (op0
), op0
,
6984 undobuf
.other_insn
= other_insn
;
6986 /* Don't generate a compare of a CC with 0, just use that CC. */
6987 if (GET_MODE (op0
) == compare_mode
&& op1
== const0_rtx
)
6989 SUBST (SET_SRC (x
), op0
);
6992 /* Otherwise, if we didn't previously have the same COMPARE we
6993 want, create it from scratch. */
6994 else if (GET_CODE (src
) != COMPARE
|| GET_MODE (src
) != compare_mode
6995 || XEXP (src
, 0) != op0
|| XEXP (src
, 1) != op1
)
6997 SUBST (SET_SRC (x
), gen_rtx_COMPARE (compare_mode
, op0
, op1
));
7003 /* Get SET_SRC in a form where we have placed back any
7004 compound expressions. Then do the checks below. */
7005 src
= make_compound_operation (src
, SET
);
7006 SUBST (SET_SRC (x
), src
);
7009 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
7010 and X being a REG or (subreg (reg)), we may be able to convert this to
7011 (set (subreg:m2 x) (op)).
7013 We can always do this if M1 is narrower than M2 because that means that
7014 we only care about the low bits of the result.
7016 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
7017 perform a narrower operation than requested since the high-order bits will
7018 be undefined. On machine where it is defined, this transformation is safe
7019 as long as M1 and M2 have the same number of words. */
7021 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
7022 && !OBJECT_P (SUBREG_REG (src
))
7023 && (known_equal_after_align_up
7024 (GET_MODE_SIZE (GET_MODE (src
)),
7025 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
))),
7027 && (WORD_REGISTER_OPERATIONS
|| !paradoxical_subreg_p (src
))
7028 && ! (REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
7029 && !REG_CAN_CHANGE_MODE_P (REGNO (dest
),
7030 GET_MODE (SUBREG_REG (src
)),
7033 || (GET_CODE (dest
) == SUBREG
7034 && REG_P (SUBREG_REG (dest
)))))
7036 SUBST (SET_DEST (x
),
7037 gen_lowpart (GET_MODE (SUBREG_REG (src
)),
7039 SUBST (SET_SRC (x
), SUBREG_REG (src
));
7041 src
= SET_SRC (x
), dest
= SET_DEST (x
);
7044 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
7045 would require a paradoxical subreg. Replace the subreg with a
7046 zero_extend to avoid the reload that would otherwise be required.
7047 Don't do this unless we have a scalar integer mode, otherwise the
7048 transformation is incorrect. */
7050 enum rtx_code extend_op
;
7051 if (paradoxical_subreg_p (src
)
7052 && MEM_P (SUBREG_REG (src
))
7053 && SCALAR_INT_MODE_P (GET_MODE (src
))
7054 && (extend_op
= load_extend_op (GET_MODE (SUBREG_REG (src
)))) != UNKNOWN
)
7057 gen_rtx_fmt_e (extend_op
, GET_MODE (src
), SUBREG_REG (src
)));
7062 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
7063 are comparing an item known to be 0 or -1 against 0, use a logical
7064 operation instead. Check for one of the arms being an IOR of the other
7065 arm with some value. We compute three terms to be IOR'ed together. In
7066 practice, at most two will be nonzero. Then we do the IOR's. */
7068 if (GET_CODE (dest
) != PC
7069 && GET_CODE (src
) == IF_THEN_ELSE
7070 && is_int_mode (GET_MODE (src
), &int_mode
)
7071 && (GET_CODE (XEXP (src
, 0)) == EQ
|| GET_CODE (XEXP (src
, 0)) == NE
)
7072 && XEXP (XEXP (src
, 0), 1) == const0_rtx
7073 && int_mode
== GET_MODE (XEXP (XEXP (src
, 0), 0))
7074 && (!HAVE_conditional_move
7075 || ! can_conditionally_move_p (int_mode
))
7076 && (num_sign_bit_copies (XEXP (XEXP (src
, 0), 0), int_mode
)
7077 == GET_MODE_PRECISION (int_mode
))
7078 && ! side_effects_p (src
))
7080 rtx true_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
7081 ? XEXP (src
, 1) : XEXP (src
, 2));
7082 rtx false_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
7083 ? XEXP (src
, 2) : XEXP (src
, 1));
7084 rtx term1
= const0_rtx
, term2
, term3
;
7086 if (GET_CODE (true_rtx
) == IOR
7087 && rtx_equal_p (XEXP (true_rtx
, 0), false_rtx
))
7088 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 1), false_rtx
= const0_rtx
;
7089 else if (GET_CODE (true_rtx
) == IOR
7090 && rtx_equal_p (XEXP (true_rtx
, 1), false_rtx
))
7091 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 0), false_rtx
= const0_rtx
;
7092 else if (GET_CODE (false_rtx
) == IOR
7093 && rtx_equal_p (XEXP (false_rtx
, 0), true_rtx
))
7094 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 1), true_rtx
= const0_rtx
;
7095 else if (GET_CODE (false_rtx
) == IOR
7096 && rtx_equal_p (XEXP (false_rtx
, 1), true_rtx
))
7097 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 0), true_rtx
= const0_rtx
;
7099 term2
= simplify_gen_binary (AND
, int_mode
,
7100 XEXP (XEXP (src
, 0), 0), true_rtx
);
7101 term3
= simplify_gen_binary (AND
, int_mode
,
7102 simplify_gen_unary (NOT
, int_mode
,
7103 XEXP (XEXP (src
, 0), 0),
7108 simplify_gen_binary (IOR
, int_mode
,
7109 simplify_gen_binary (IOR
, int_mode
,
7116 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7117 whole thing fail. */
7118 if (GET_CODE (src
) == CLOBBER
&& XEXP (src
, 0) == const0_rtx
)
7120 else if (GET_CODE (dest
) == CLOBBER
&& XEXP (dest
, 0) == const0_rtx
)
7123 /* Convert this into a field assignment operation, if possible. */
7124 return make_field_assignment (x
);
7127 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7131 simplify_logical (rtx x
)
7133 rtx op0
= XEXP (x
, 0);
7134 rtx op1
= XEXP (x
, 1);
7135 scalar_int_mode mode
;
7137 switch (GET_CODE (x
))
7140 /* We can call simplify_and_const_int only if we don't lose
7141 any (sign) bits when converting INTVAL (op1) to
7142 "unsigned HOST_WIDE_INT". */
7143 if (is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
)
7144 && CONST_INT_P (op1
)
7145 && (HWI_COMPUTABLE_MODE_P (mode
)
7146 || INTVAL (op1
) > 0))
7148 x
= simplify_and_const_int (x
, mode
, op0
, INTVAL (op1
));
7149 if (GET_CODE (x
) != AND
)
7156 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7157 apply the distributive law and then the inverse distributive
7158 law to see if things simplify. */
7159 if (GET_CODE (op0
) == IOR
|| GET_CODE (op0
) == XOR
)
7161 rtx result
= distribute_and_simplify_rtx (x
, 0);
7165 if (GET_CODE (op1
) == IOR
|| GET_CODE (op1
) == XOR
)
7167 rtx result
= distribute_and_simplify_rtx (x
, 1);
7174 /* If we have (ior (and A B) C), apply the distributive law and then
7175 the inverse distributive law to see if things simplify. */
7177 if (GET_CODE (op0
) == AND
)
7179 rtx result
= distribute_and_simplify_rtx (x
, 0);
7184 if (GET_CODE (op1
) == AND
)
7186 rtx result
= distribute_and_simplify_rtx (x
, 1);
7199 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7200 operations" because they can be replaced with two more basic operations.
7201 ZERO_EXTEND is also considered "compound" because it can be replaced with
7202 an AND operation, which is simpler, though only one operation.
7204 The function expand_compound_operation is called with an rtx expression
7205 and will convert it to the appropriate shifts and AND operations,
7206 simplifying at each stage.
7208 The function make_compound_operation is called to convert an expression
7209 consisting of shifts and ANDs into the equivalent compound expression.
7210 It is the inverse of this function, loosely speaking. */
7213 expand_compound_operation (rtx x
)
7215 unsigned HOST_WIDE_INT pos
= 0, len
;
7216 bool unsignedp
= false;
7217 unsigned int modewidth
;
7219 scalar_int_mode inner_mode
;
7221 switch (GET_CODE (x
))
7227 /* We can't necessarily use a const_int for a multiword mode;
7228 it depends on implicitly extending the value.
7229 Since we don't know the right way to extend it,
7230 we can't tell whether the implicit way is right.
7232 Even for a mode that is no wider than a const_int,
7233 we can't win, because we need to sign extend one of its bits through
7234 the rest of it, and we don't know which bit. */
7235 if (CONST_INT_P (XEXP (x
, 0)))
7238 /* Reject modes that aren't scalar integers because turning vector
7239 or complex modes into shifts causes problems. */
7240 if (!is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &inner_mode
))
7243 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7244 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7245 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7246 reloaded. If not for that, MEM's would very rarely be safe.
7248 Reject modes bigger than a word, because we might not be able
7249 to reference a two-register group starting with an arbitrary register
7250 (and currently gen_lowpart might crash for a SUBREG). */
7252 if (GET_MODE_SIZE (inner_mode
) > UNITS_PER_WORD
)
7255 len
= GET_MODE_PRECISION (inner_mode
);
7256 /* If the inner object has VOIDmode (the only way this can happen
7257 is if it is an ASM_OPERANDS), we can't do anything since we don't
7258 know how much masking to do. */
7270 /* If the operand is a CLOBBER, just return it. */
7271 if (GET_CODE (XEXP (x
, 0)) == CLOBBER
)
7274 if (!CONST_INT_P (XEXP (x
, 1))
7275 || !CONST_INT_P (XEXP (x
, 2)))
7278 /* Reject modes that aren't scalar integers because turning vector
7279 or complex modes into shifts causes problems. */
7280 if (!is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &inner_mode
))
7283 len
= INTVAL (XEXP (x
, 1));
7284 pos
= INTVAL (XEXP (x
, 2));
7286 /* This should stay within the object being extracted, fail otherwise. */
7287 if (len
+ pos
> GET_MODE_PRECISION (inner_mode
))
7290 if (BITS_BIG_ENDIAN
)
7291 pos
= GET_MODE_PRECISION (inner_mode
) - len
- pos
;
7299 /* We've rejected non-scalar operations by now. */
7300 scalar_int_mode mode
= as_a
<scalar_int_mode
> (GET_MODE (x
));
7302 /* Convert sign extension to zero extension, if we know that the high
7303 bit is not set, as this is easier to optimize. It will be converted
7304 back to cheaper alternative in make_extraction. */
7305 if (GET_CODE (x
) == SIGN_EXTEND
7306 && HWI_COMPUTABLE_MODE_P (mode
)
7307 && ((nonzero_bits (XEXP (x
, 0), inner_mode
)
7308 & ~(((unsigned HOST_WIDE_INT
) GET_MODE_MASK (inner_mode
)) >> 1))
7311 rtx temp
= gen_rtx_ZERO_EXTEND (mode
, XEXP (x
, 0));
7312 rtx temp2
= expand_compound_operation (temp
);
7314 /* Make sure this is a profitable operation. */
7315 if (set_src_cost (x
, mode
, optimize_this_for_speed_p
)
7316 > set_src_cost (temp2
, mode
, optimize_this_for_speed_p
))
7318 else if (set_src_cost (x
, mode
, optimize_this_for_speed_p
)
7319 > set_src_cost (temp
, mode
, optimize_this_for_speed_p
))
7325 /* We can optimize some special cases of ZERO_EXTEND. */
7326 if (GET_CODE (x
) == ZERO_EXTEND
)
7328 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7329 know that the last value didn't have any inappropriate bits
7331 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
7332 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == mode
7333 && HWI_COMPUTABLE_MODE_P (mode
)
7334 && (nonzero_bits (XEXP (XEXP (x
, 0), 0), mode
)
7335 & ~GET_MODE_MASK (inner_mode
)) == 0)
7336 return XEXP (XEXP (x
, 0), 0);
7338 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7339 if (GET_CODE (XEXP (x
, 0)) == SUBREG
7340 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == mode
7341 && subreg_lowpart_p (XEXP (x
, 0))
7342 && HWI_COMPUTABLE_MODE_P (mode
)
7343 && (nonzero_bits (SUBREG_REG (XEXP (x
, 0)), mode
)
7344 & ~GET_MODE_MASK (inner_mode
)) == 0)
7345 return SUBREG_REG (XEXP (x
, 0));
7347 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7348 is a comparison and STORE_FLAG_VALUE permits. This is like
7349 the first case, but it works even when MODE is larger
7350 than HOST_WIDE_INT. */
7351 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
7352 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == mode
7353 && COMPARISON_P (XEXP (XEXP (x
, 0), 0))
7354 && GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
7355 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (inner_mode
)) == 0)
7356 return XEXP (XEXP (x
, 0), 0);
7358 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7359 if (GET_CODE (XEXP (x
, 0)) == SUBREG
7360 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == mode
7361 && subreg_lowpart_p (XEXP (x
, 0))
7362 && COMPARISON_P (SUBREG_REG (XEXP (x
, 0)))
7363 && GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
7364 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (inner_mode
)) == 0)
7365 return SUBREG_REG (XEXP (x
, 0));
7369 /* If we reach here, we want to return a pair of shifts. The inner
7370 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7371 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7372 logical depending on the value of UNSIGNEDP.
7374 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7375 converted into an AND of a shift.
7377 We must check for the case where the left shift would have a negative
7378 count. This can happen in a case like (x >> 31) & 255 on machines
7379 that can't shift by a constant. On those machines, we would first
7380 combine the shift with the AND to produce a variable-position
7381 extraction. Then the constant of 31 would be substituted in
7382 to produce such a position. */
7384 modewidth
= GET_MODE_PRECISION (mode
);
7385 if (modewidth
>= pos
+ len
)
7387 tem
= gen_lowpart (mode
, XEXP (x
, 0));
7388 if (!tem
|| GET_CODE (tem
) == CLOBBER
)
7390 tem
= simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
7391 tem
, modewidth
- pos
- len
);
7392 tem
= simplify_shift_const (NULL_RTX
, unsignedp
? LSHIFTRT
: ASHIFTRT
,
7393 mode
, tem
, modewidth
- len
);
7395 else if (unsignedp
&& len
< HOST_BITS_PER_WIDE_INT
)
7397 tem
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, inner_mode
,
7399 tem
= gen_lowpart (mode
, tem
);
7400 if (!tem
|| GET_CODE (tem
) == CLOBBER
)
7402 tem
= simplify_and_const_int (NULL_RTX
, mode
, tem
,
7403 (HOST_WIDE_INT_1U
<< len
) - 1);
7406 /* Any other cases we can't handle. */
7409 /* If we couldn't do this for some reason, return the original
7411 if (GET_CODE (tem
) == CLOBBER
)
7417 /* X is a SET which contains an assignment of one object into
7418 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7419 or certain SUBREGS). If possible, convert it into a series of
7422 We half-heartedly support variable positions, but do not at all
7423 support variable lengths. */
7426 expand_field_assignment (const_rtx x
)
7429 rtx pos
; /* Always counts from low bit. */
7431 rtx mask
, cleared
, masked
;
7432 scalar_int_mode compute_mode
;
7434 /* Loop until we find something we can't simplify. */
7437 if (GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
7438 && GET_CODE (XEXP (SET_DEST (x
), 0)) == SUBREG
)
7440 rtx x0
= XEXP (SET_DEST (x
), 0);
7441 if (!GET_MODE_PRECISION (GET_MODE (x0
)).is_constant (&len
))
7443 inner
= SUBREG_REG (XEXP (SET_DEST (x
), 0));
7444 pos
= gen_int_mode (subreg_lsb (XEXP (SET_DEST (x
), 0)),
7447 else if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
7448 && CONST_INT_P (XEXP (SET_DEST (x
), 1)))
7450 inner
= XEXP (SET_DEST (x
), 0);
7451 if (!GET_MODE_PRECISION (GET_MODE (inner
)).is_constant (&inner_len
))
7454 len
= INTVAL (XEXP (SET_DEST (x
), 1));
7455 pos
= XEXP (SET_DEST (x
), 2);
7457 /* A constant position should stay within the width of INNER. */
7458 if (CONST_INT_P (pos
) && INTVAL (pos
) + len
> inner_len
)
7461 if (BITS_BIG_ENDIAN
)
7463 if (CONST_INT_P (pos
))
7464 pos
= GEN_INT (inner_len
- len
- INTVAL (pos
));
7465 else if (GET_CODE (pos
) == MINUS
7466 && CONST_INT_P (XEXP (pos
, 1))
7467 && INTVAL (XEXP (pos
, 1)) == inner_len
- len
)
7468 /* If position is ADJUST - X, new position is X. */
7469 pos
= XEXP (pos
, 0);
7471 pos
= simplify_gen_binary (MINUS
, GET_MODE (pos
),
7472 gen_int_mode (inner_len
- len
,
7478 /* If the destination is a subreg that overwrites the whole of the inner
7479 register, we can move the subreg to the source. */
7480 else if (GET_CODE (SET_DEST (x
)) == SUBREG
7481 /* We need SUBREGs to compute nonzero_bits properly. */
7482 && nonzero_sign_valid
7483 && !read_modify_subreg_p (SET_DEST (x
)))
7485 x
= gen_rtx_SET (SUBREG_REG (SET_DEST (x
)),
7487 (GET_MODE (SUBREG_REG (SET_DEST (x
))),
7494 while (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
7495 inner
= SUBREG_REG (inner
);
7497 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7498 if (!is_a
<scalar_int_mode
> (GET_MODE (inner
), &compute_mode
))
7500 /* Don't do anything for vector or complex integral types. */
7501 if (! FLOAT_MODE_P (GET_MODE (inner
)))
7504 /* Try to find an integral mode to pun with. */
7505 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner
)), 0)
7506 .exists (&compute_mode
))
7509 inner
= gen_lowpart (compute_mode
, inner
);
7512 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7513 if (len
>= HOST_BITS_PER_WIDE_INT
)
7516 /* Don't try to compute in too wide unsupported modes. */
7517 if (!targetm
.scalar_mode_supported_p (compute_mode
))
7520 /* gen_lowpart_for_combine returns CLOBBER on failure. */
7521 rtx lowpart
= gen_lowpart (compute_mode
, SET_SRC (x
));
7522 if (GET_CODE (lowpart
) == CLOBBER
)
7525 /* Now compute the equivalent expression. Make a copy of INNER
7526 for the SET_DEST in case it is a MEM into which we will substitute;
7527 we don't want shared RTL in that case. */
7528 mask
= gen_int_mode ((HOST_WIDE_INT_1U
<< len
) - 1,
7530 cleared
= simplify_gen_binary (AND
, compute_mode
,
7531 simplify_gen_unary (NOT
, compute_mode
,
7532 simplify_gen_binary (ASHIFT
,
7537 masked
= simplify_gen_binary (ASHIFT
, compute_mode
,
7538 simplify_gen_binary (
7539 AND
, compute_mode
, lowpart
, mask
),
7542 x
= gen_rtx_SET (copy_rtx (inner
),
7543 simplify_gen_binary (IOR
, compute_mode
,
7550 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7551 it is an RTX that represents the (variable) starting position; otherwise,
7552 POS is the (constant) starting bit position. Both are counted from the LSB.
7554 UNSIGNEDP is true for an unsigned reference and zero for a signed one.
7556 IN_DEST is true if this is a reference in the destination of a SET.
7557 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7558 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7561 IN_COMPARE is true if we are in a COMPARE. This means that a
7562 ZERO_EXTRACT should be built even for bits starting at bit 0.
7564 MODE is the desired mode of the result (if IN_DEST == 0).
7566 The result is an RTX for the extraction or NULL_RTX if the target
7570 make_extraction (machine_mode mode
, rtx inner
, HOST_WIDE_INT pos
,
7571 rtx pos_rtx
, unsigned HOST_WIDE_INT len
, bool unsignedp
,
7572 bool in_dest
, bool in_compare
)
7574 /* This mode describes the size of the storage area
7575 to fetch the overall value from. Within that, we
7576 ignore the POS lowest bits, etc. */
7577 machine_mode is_mode
= GET_MODE (inner
);
7578 machine_mode inner_mode
;
7579 scalar_int_mode wanted_inner_mode
;
7580 scalar_int_mode wanted_inner_reg_mode
= word_mode
;
7581 scalar_int_mode pos_mode
= word_mode
;
7582 machine_mode extraction_mode
= word_mode
;
7584 rtx orig_pos_rtx
= pos_rtx
;
7585 HOST_WIDE_INT orig_pos
;
7587 if (pos_rtx
&& CONST_INT_P (pos_rtx
))
7588 pos
= INTVAL (pos_rtx
), pos_rtx
= 0;
7590 if (GET_CODE (inner
) == SUBREG
7591 && subreg_lowpart_p (inner
)
7592 && (paradoxical_subreg_p (inner
)
7593 /* If trying or potentionally trying to extract
7594 bits outside of is_mode, don't look through
7595 non-paradoxical SUBREGs. See PR82192. */
7596 || (pos_rtx
== NULL_RTX
7597 && known_le (pos
+ len
, GET_MODE_PRECISION (is_mode
)))))
7599 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7600 consider just the QI as the memory to extract from.
7601 The subreg adds or removes high bits; its mode is
7602 irrelevant to the meaning of this extraction,
7603 since POS and LEN count from the lsb. */
7604 if (MEM_P (SUBREG_REG (inner
)))
7605 is_mode
= GET_MODE (SUBREG_REG (inner
));
7606 inner
= SUBREG_REG (inner
);
7608 else if (GET_CODE (inner
) == ASHIFT
7609 && CONST_INT_P (XEXP (inner
, 1))
7610 && pos_rtx
== 0 && pos
== 0
7611 && len
> UINTVAL (XEXP (inner
, 1)))
7613 /* We're extracting the least significant bits of an rtx
7614 (ashift X (const_int C)), where LEN > C. Extract the
7615 least significant (LEN - C) bits of X, giving an rtx
7616 whose mode is MODE, then shift it left C times. */
7617 new_rtx
= make_extraction (mode
, XEXP (inner
, 0),
7618 0, 0, len
- INTVAL (XEXP (inner
, 1)),
7619 unsignedp
, in_dest
, in_compare
);
7621 return gen_rtx_ASHIFT (mode
, new_rtx
, XEXP (inner
, 1));
7623 else if (GET_CODE (inner
) == MULT
7624 && CONST_INT_P (XEXP (inner
, 1))
7625 && pos_rtx
== 0 && pos
== 0)
7627 /* We're extracting the least significant bits of an rtx
7628 (mult X (const_int 2^C)), where LEN > C. Extract the
7629 least significant (LEN - C) bits of X, giving an rtx
7630 whose mode is MODE, then multiply it by 2^C. */
7631 const HOST_WIDE_INT shift_amt
= exact_log2 (INTVAL (XEXP (inner
, 1)));
7632 if (len
> 1 && IN_RANGE (shift_amt
, 1, len
- 1))
7634 new_rtx
= make_extraction (mode
, XEXP (inner
, 0),
7635 0, 0, len
- shift_amt
,
7636 unsignedp
, in_dest
, in_compare
);
7638 return gen_rtx_MULT (mode
, new_rtx
, XEXP (inner
, 1));
7641 else if (GET_CODE (inner
) == TRUNCATE
7642 /* If trying or potentionally trying to extract
7643 bits outside of is_mode, don't look through
7644 TRUNCATE. See PR82192. */
7645 && pos_rtx
== NULL_RTX
7646 && known_le (pos
+ len
, GET_MODE_PRECISION (is_mode
)))
7647 inner
= XEXP (inner
, 0);
7649 inner_mode
= GET_MODE (inner
);
7651 /* See if this can be done without an extraction. We never can if the
7652 width of the field is not the same as that of some integer mode. For
7653 registers, we can only avoid the extraction if the position is at the
7654 low-order bit and this is either not in the destination or we have the
7655 appropriate STRICT_LOW_PART operation available.
7657 For MEM, we can avoid an extract if the field starts on an appropriate
7658 boundary and we can change the mode of the memory reference. */
7660 scalar_int_mode tmode
;
7661 if (int_mode_for_size (len
, 1).exists (&tmode
)
7662 && ((pos_rtx
== 0 && (pos
% BITS_PER_WORD
) == 0
7664 && (pos
== 0 || REG_P (inner
))
7665 && (inner_mode
== tmode
7667 || TRULY_NOOP_TRUNCATION_MODES_P (tmode
, inner_mode
)
7668 || reg_truncated_to_mode (tmode
, inner
))
7671 && have_insn_for (STRICT_LOW_PART
, tmode
))))
7672 || (MEM_P (inner
) && pos_rtx
== 0
7674 % (STRICT_ALIGNMENT
? GET_MODE_ALIGNMENT (tmode
)
7675 : BITS_PER_UNIT
)) == 0
7676 /* We can't do this if we are widening INNER_MODE (it
7677 may not be aligned, for one thing). */
7678 && !paradoxical_subreg_p (tmode
, inner_mode
)
7679 && known_le (pos
+ len
, GET_MODE_PRECISION (is_mode
))
7680 && (inner_mode
== tmode
7681 || (! mode_dependent_address_p (XEXP (inner
, 0),
7682 MEM_ADDR_SPACE (inner
))
7683 && ! MEM_VOLATILE_P (inner
))))))
7685 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7686 field. If the original and current mode are the same, we need not
7687 adjust the offset. Otherwise, we do if bytes big endian.
7689 If INNER is not a MEM, get a piece consisting of just the field
7690 of interest (in this case POS % BITS_PER_WORD must be 0). */
7696 /* POS counts from lsb, but make OFFSET count in memory order. */
7697 if (BYTES_BIG_ENDIAN
)
7698 offset
= bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode
)
7701 offset
= pos
/ BITS_PER_UNIT
;
7703 new_rtx
= adjust_address_nv (inner
, tmode
, offset
);
7705 else if (REG_P (inner
))
7707 if (tmode
!= inner_mode
)
7709 /* We can't call gen_lowpart in a DEST since we
7710 always want a SUBREG (see below) and it would sometimes
7711 return a new hard register. */
7715 = subreg_offset_from_lsb (tmode
, inner_mode
, pos
);
7717 /* Avoid creating invalid subregs, for example when
7718 simplifying (x>>32)&255. */
7719 if (!validate_subreg (tmode
, inner_mode
, inner
, offset
))
7722 new_rtx
= gen_rtx_SUBREG (tmode
, inner
, offset
);
7725 new_rtx
= gen_lowpart (tmode
, inner
);
7731 new_rtx
= force_to_mode (inner
, tmode
,
7732 len
>= HOST_BITS_PER_WIDE_INT
7734 : (HOST_WIDE_INT_1U
<< len
) - 1, false);
7736 /* If this extraction is going into the destination of a SET,
7737 make a STRICT_LOW_PART unless we made a MEM. */
7740 return (MEM_P (new_rtx
) ? new_rtx
7741 : (GET_CODE (new_rtx
) != SUBREG
7742 ? gen_rtx_CLOBBER (tmode
, const0_rtx
)
7743 : gen_rtx_STRICT_LOW_PART (VOIDmode
, new_rtx
)));
7748 if (CONST_SCALAR_INT_P (new_rtx
))
7749 return simplify_unary_operation (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
7750 mode
, new_rtx
, tmode
);
7752 /* If we know that no extraneous bits are set, and that the high
7753 bit is not set, convert the extraction to the cheaper of
7754 sign and zero extension, that are equivalent in these cases. */
7755 if (flag_expensive_optimizations
7756 && (HWI_COMPUTABLE_MODE_P (tmode
)
7757 && ((nonzero_bits (new_rtx
, tmode
)
7758 & ~(((unsigned HOST_WIDE_INT
)GET_MODE_MASK (tmode
)) >> 1))
7761 rtx temp
= gen_rtx_ZERO_EXTEND (mode
, new_rtx
);
7762 rtx temp1
= gen_rtx_SIGN_EXTEND (mode
, new_rtx
);
7764 /* Prefer ZERO_EXTENSION, since it gives more information to
7766 if (set_src_cost (temp
, mode
, optimize_this_for_speed_p
)
7767 <= set_src_cost (temp1
, mode
, optimize_this_for_speed_p
))
7772 /* Otherwise, sign- or zero-extend unless we already are in the
7775 return (gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
7779 /* Unless this is a COMPARE or we have a funny memory reference,
7780 don't do anything with zero-extending field extracts starting at
7781 the low-order bit since they are simple AND operations. */
7782 if (pos_rtx
== 0 && pos
== 0 && ! in_dest
7783 && ! in_compare
&& unsignedp
)
7786 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7787 if the position is not a constant and the length is not 1. In all
7788 other cases, we would only be going outside our object in cases when
7789 an original shift would have been undefined. */
7791 && ((pos_rtx
== 0 && maybe_gt (pos
+ len
, GET_MODE_PRECISION (is_mode
)))
7792 || (pos_rtx
!= 0 && len
!= 1)))
7795 enum extraction_pattern pattern
= (in_dest
? EP_insv
7796 : unsignedp
? EP_extzv
: EP_extv
);
7798 /* If INNER is not from memory, we want it to have the mode of a register
7799 extraction pattern's structure operand, or word_mode if there is no
7800 such pattern. The same applies to extraction_mode and pos_mode
7801 and their respective operands.
7803 For memory, assume that the desired extraction_mode and pos_mode
7804 are the same as for a register operation, since at present we don't
7805 have named patterns for aligned memory structures. */
7806 class extraction_insn insn
;
7807 unsigned int inner_size
;
7808 if (GET_MODE_BITSIZE (inner_mode
).is_constant (&inner_size
)
7809 && get_best_reg_extraction_insn (&insn
, pattern
, inner_size
, mode
))
7811 wanted_inner_reg_mode
= insn
.struct_mode
.require ();
7812 pos_mode
= insn
.pos_mode
;
7813 extraction_mode
= insn
.field_mode
;
7816 /* Never narrow an object, since that might not be safe. */
7818 if (mode
!= VOIDmode
7819 && partial_subreg_p (extraction_mode
, mode
))
7820 extraction_mode
= mode
;
7822 /* Punt if len is too large for extraction_mode. */
7823 if (maybe_gt (len
, GET_MODE_PRECISION (extraction_mode
)))
7827 wanted_inner_mode
= wanted_inner_reg_mode
;
7830 /* Be careful not to go beyond the extracted object and maintain the
7831 natural alignment of the memory. */
7832 wanted_inner_mode
= smallest_int_mode_for_size (len
).require ();
7833 while (pos
% GET_MODE_BITSIZE (wanted_inner_mode
) + len
7834 > GET_MODE_BITSIZE (wanted_inner_mode
))
7835 wanted_inner_mode
= GET_MODE_WIDER_MODE (wanted_inner_mode
).require ();
7840 if (BITS_BIG_ENDIAN
)
7842 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7843 BITS_BIG_ENDIAN style. If position is constant, compute new
7844 position. Otherwise, build subtraction.
7845 Note that POS is relative to the mode of the original argument.
7846 If it's a MEM we need to recompute POS relative to that.
7847 However, if we're extracting from (or inserting into) a register,
7848 we want to recompute POS relative to wanted_inner_mode. */
7851 width
= GET_MODE_BITSIZE (wanted_inner_mode
);
7852 else if (!GET_MODE_BITSIZE (is_mode
).is_constant (&width
))
7856 pos
= width
- len
- pos
;
7859 = gen_rtx_MINUS (GET_MODE (pos_rtx
),
7860 gen_int_mode (width
- len
, GET_MODE (pos_rtx
)),
7862 /* POS may be less than 0 now, but we check for that below.
7863 Note that it can only be less than 0 if !MEM_P (inner). */
7866 /* If INNER has a wider mode, and this is a constant extraction, try to
7867 make it smaller and adjust the byte to point to the byte containing
7869 if (wanted_inner_mode
!= VOIDmode
7870 && inner_mode
!= wanted_inner_mode
7872 && partial_subreg_p (wanted_inner_mode
, is_mode
)
7874 && ! mode_dependent_address_p (XEXP (inner
, 0), MEM_ADDR_SPACE (inner
))
7875 && ! MEM_VOLATILE_P (inner
))
7877 poly_int64 offset
= 0;
7879 /* The computations below will be correct if the machine is big
7880 endian in both bits and bytes or little endian in bits and bytes.
7881 If it is mixed, we must adjust. */
7883 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7884 adjust OFFSET to compensate. */
7885 if (BYTES_BIG_ENDIAN
7886 && paradoxical_subreg_p (is_mode
, inner_mode
))
7887 offset
-= GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (inner_mode
);
7889 /* We can now move to the desired byte. */
7890 offset
+= (pos
/ GET_MODE_BITSIZE (wanted_inner_mode
))
7891 * GET_MODE_SIZE (wanted_inner_mode
);
7892 pos
%= GET_MODE_BITSIZE (wanted_inner_mode
);
7894 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
7895 && is_mode
!= wanted_inner_mode
)
7896 offset
= (GET_MODE_SIZE (is_mode
)
7897 - GET_MODE_SIZE (wanted_inner_mode
) - offset
);
7899 inner
= adjust_address_nv (inner
, wanted_inner_mode
, offset
);
7902 /* If INNER is not memory, get it into the proper mode. If we are changing
7903 its mode, POS must be a constant and smaller than the size of the new
7905 else if (!MEM_P (inner
))
7907 /* On the LHS, don't create paradoxical subregs implicitely truncating
7908 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7910 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner
),
7914 if (GET_MODE (inner
) != wanted_inner_mode
7916 || orig_pos
+ len
> GET_MODE_BITSIZE (wanted_inner_mode
)))
7922 inner
= force_to_mode (inner
, wanted_inner_mode
,
7924 || len
+ orig_pos
>= HOST_BITS_PER_WIDE_INT
7926 : (((HOST_WIDE_INT_1U
<< len
) - 1)
7927 << orig_pos
), false);
7930 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7931 have to zero extend. Otherwise, we can just use a SUBREG.
7933 We dealt with constant rtxes earlier, so pos_rtx cannot
7934 have VOIDmode at this point. */
7936 && (GET_MODE_SIZE (pos_mode
)
7937 > GET_MODE_SIZE (as_a
<scalar_int_mode
> (GET_MODE (pos_rtx
)))))
7939 rtx temp
= simplify_gen_unary (ZERO_EXTEND
, pos_mode
, pos_rtx
,
7940 GET_MODE (pos_rtx
));
7942 /* If we know that no extraneous bits are set, and that the high
7943 bit is not set, convert extraction to cheaper one - either
7944 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7946 if (flag_expensive_optimizations
7947 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx
))
7948 && ((nonzero_bits (pos_rtx
, GET_MODE (pos_rtx
))
7949 & ~(((unsigned HOST_WIDE_INT
)
7950 GET_MODE_MASK (GET_MODE (pos_rtx
)))
7954 rtx temp1
= simplify_gen_unary (SIGN_EXTEND
, pos_mode
, pos_rtx
,
7955 GET_MODE (pos_rtx
));
7957 /* Prefer ZERO_EXTENSION, since it gives more information to
7959 if (set_src_cost (temp1
, pos_mode
, optimize_this_for_speed_p
)
7960 < set_src_cost (temp
, pos_mode
, optimize_this_for_speed_p
))
7966 /* Make POS_RTX unless we already have it and it is correct. If we don't
7967 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7969 if (pos_rtx
== 0 && orig_pos_rtx
!= 0 && INTVAL (orig_pos_rtx
) == pos
)
7970 pos_rtx
= orig_pos_rtx
;
7972 else if (pos_rtx
== 0)
7973 pos_rtx
= GEN_INT (pos
);
7975 /* Make the required operation. See if we can use existing rtx. */
7976 new_rtx
= gen_rtx_fmt_eee (unsignedp
? ZERO_EXTRACT
: SIGN_EXTRACT
,
7977 extraction_mode
, inner
, GEN_INT (len
), pos_rtx
);
7979 new_rtx
= gen_lowpart (mode
, new_rtx
);
7984 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
7985 can be commuted with any other operations in X. Return X without
7986 that shift if so. */
7989 extract_left_shift (scalar_int_mode mode
, rtx x
, int count
)
7991 enum rtx_code code
= GET_CODE (x
);
7997 /* This is the shift itself. If it is wide enough, we will return
7998 either the value being shifted if the shift count is equal to
7999 COUNT or a shift for the difference. */
8000 if (CONST_INT_P (XEXP (x
, 1))
8001 && INTVAL (XEXP (x
, 1)) >= count
)
8002 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (x
, 0),
8003 INTVAL (XEXP (x
, 1)) - count
);
8007 if ((tem
= extract_left_shift (mode
, XEXP (x
, 0), count
)) != 0)
8008 return simplify_gen_unary (code
, mode
, tem
, mode
);
8012 case PLUS
: case IOR
: case XOR
: case AND
:
8013 /* If we can safely shift this constant and we find the inner shift,
8014 make a new operation. */
8015 if (CONST_INT_P (XEXP (x
, 1))
8016 && (UINTVAL (XEXP (x
, 1))
8017 & (((HOST_WIDE_INT_1U
<< count
)) - 1)) == 0
8018 && (tem
= extract_left_shift (mode
, XEXP (x
, 0), count
)) != 0)
8020 HOST_WIDE_INT val
= INTVAL (XEXP (x
, 1)) >> count
;
8021 return simplify_gen_binary (code
, mode
, tem
,
8022 gen_int_mode (val
, mode
));
8033 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
8034 level of the expression and MODE is its mode. IN_CODE is as for
8035 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
8036 that should be used when recursing on operands of *X_PTR.
8038 There are two possible actions:
8040 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
8041 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
8043 - Return a new rtx, which the caller returns directly. */
8046 make_compound_operation_int (scalar_int_mode mode
, rtx
*x_ptr
,
8047 enum rtx_code in_code
,
8048 enum rtx_code
*next_code_ptr
)
8051 enum rtx_code next_code
= *next_code_ptr
;
8052 enum rtx_code code
= GET_CODE (x
);
8053 int mode_width
= GET_MODE_PRECISION (mode
);
8058 scalar_int_mode inner_mode
;
8059 bool equality_comparison
= false;
8063 equality_comparison
= true;
8067 /* Process depending on the code of this operation. If NEW is set
8068 nonzero, it will be returned. */
8073 /* Convert shifts by constants into multiplications if inside
8075 if (in_code
== MEM
&& CONST_INT_P (XEXP (x
, 1))
8076 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
8077 && INTVAL (XEXP (x
, 1)) >= 0)
8079 HOST_WIDE_INT count
= INTVAL (XEXP (x
, 1));
8080 HOST_WIDE_INT multval
= HOST_WIDE_INT_1
<< count
;
8082 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
8083 if (GET_CODE (new_rtx
) == NEG
)
8085 new_rtx
= XEXP (new_rtx
, 0);
8088 multval
= trunc_int_for_mode (multval
, mode
);
8089 new_rtx
= gen_rtx_MULT (mode
, new_rtx
, gen_int_mode (multval
, mode
));
8096 lhs
= make_compound_operation (lhs
, next_code
);
8097 rhs
= make_compound_operation (rhs
, next_code
);
8098 if (GET_CODE (lhs
) == MULT
&& GET_CODE (XEXP (lhs
, 0)) == NEG
)
8100 tem
= simplify_gen_binary (MULT
, mode
, XEXP (XEXP (lhs
, 0), 0),
8102 new_rtx
= simplify_gen_binary (MINUS
, mode
, rhs
, tem
);
8104 else if (GET_CODE (lhs
) == MULT
8105 && (CONST_INT_P (XEXP (lhs
, 1)) && INTVAL (XEXP (lhs
, 1)) < 0))
8107 tem
= simplify_gen_binary (MULT
, mode
, XEXP (lhs
, 0),
8108 simplify_gen_unary (NEG
, mode
,
8111 new_rtx
= simplify_gen_binary (MINUS
, mode
, rhs
, tem
);
8115 SUBST (XEXP (x
, 0), lhs
);
8116 SUBST (XEXP (x
, 1), rhs
);
8118 maybe_swap_commutative_operands (x
);
8124 lhs
= make_compound_operation (lhs
, next_code
);
8125 rhs
= make_compound_operation (rhs
, next_code
);
8126 if (GET_CODE (rhs
) == MULT
&& GET_CODE (XEXP (rhs
, 0)) == NEG
)
8128 tem
= simplify_gen_binary (MULT
, mode
, XEXP (XEXP (rhs
, 0), 0),
8130 return simplify_gen_binary (PLUS
, mode
, tem
, lhs
);
8132 else if (GET_CODE (rhs
) == MULT
8133 && (CONST_INT_P (XEXP (rhs
, 1)) && INTVAL (XEXP (rhs
, 1)) < 0))
8135 tem
= simplify_gen_binary (MULT
, mode
, XEXP (rhs
, 0),
8136 simplify_gen_unary (NEG
, mode
,
8139 return simplify_gen_binary (PLUS
, mode
, tem
, lhs
);
8143 SUBST (XEXP (x
, 0), lhs
);
8144 SUBST (XEXP (x
, 1), rhs
);
8149 /* If the second operand is not a constant, we can't do anything
8151 if (!CONST_INT_P (XEXP (x
, 1)))
8154 /* If the constant is a power of two minus one and the first operand
8155 is a logical right shift, make an extraction. */
8156 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8157 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
8159 new_rtx
= make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
8160 new_rtx
= make_extraction (mode
, new_rtx
, 0, XEXP (XEXP (x
, 0), 1),
8161 i
, true, false, in_code
== COMPARE
);
8164 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8165 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
8166 && subreg_lowpart_p (XEXP (x
, 0))
8167 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (XEXP (x
, 0))),
8169 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == LSHIFTRT
8170 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
8172 rtx inner_x0
= SUBREG_REG (XEXP (x
, 0));
8173 new_rtx
= make_compound_operation (XEXP (inner_x0
, 0), next_code
);
8174 new_rtx
= make_extraction (inner_mode
, new_rtx
, 0,
8176 i
, true, false, in_code
== COMPARE
);
8178 /* If we narrowed the mode when dropping the subreg, then we lose. */
8179 if (GET_MODE_SIZE (inner_mode
) < GET_MODE_SIZE (mode
))
8182 /* If that didn't give anything, see if the AND simplifies on
8184 if (!new_rtx
&& i
>= 0)
8186 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
8187 new_rtx
= make_extraction (mode
, new_rtx
, 0, NULL_RTX
, i
,
8188 true, false, in_code
== COMPARE
);
8191 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8192 else if ((GET_CODE (XEXP (x
, 0)) == XOR
8193 || GET_CODE (XEXP (x
, 0)) == IOR
)
8194 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == LSHIFTRT
8195 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == LSHIFTRT
8196 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
8198 /* Apply the distributive law, and then try to make extractions. */
8199 new_rtx
= gen_rtx_fmt_ee (GET_CODE (XEXP (x
, 0)), mode
,
8200 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 0),
8202 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 1),
8204 new_rtx
= make_compound_operation (new_rtx
, in_code
);
8207 /* If we are have (and (rotate X C) M) and C is larger than the number
8208 of bits in M, this is an extraction. */
8210 else if (GET_CODE (XEXP (x
, 0)) == ROTATE
8211 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8212 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0
8213 && i
<= INTVAL (XEXP (XEXP (x
, 0), 1)))
8215 new_rtx
= make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
8216 new_rtx
= make_extraction (mode
, new_rtx
,
8217 (GET_MODE_PRECISION (mode
)
8218 - INTVAL (XEXP (XEXP (x
, 0), 1))),
8219 NULL_RTX
, i
, true, false,
8220 in_code
== COMPARE
);
8223 /* On machines without logical shifts, if the operand of the AND is
8224 a logical shift and our mask turns off all the propagated sign
8225 bits, we can replace the logical shift with an arithmetic shift. */
8226 else if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8227 && !have_insn_for (LSHIFTRT
, mode
)
8228 && have_insn_for (ASHIFTRT
, mode
)
8229 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8230 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
8231 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
8232 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
8234 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
8236 mask
>>= INTVAL (XEXP (XEXP (x
, 0), 1));
8237 if ((INTVAL (XEXP (x
, 1)) & ~mask
) == 0)
8239 gen_rtx_ASHIFTRT (mode
,
8240 make_compound_operation (XEXP (XEXP (x
,
8244 XEXP (XEXP (x
, 0), 1)));
8247 /* If the constant is one less than a power of two, this might be
8248 representable by an extraction even if no shift is present.
8249 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8250 we are in a COMPARE. */
8251 else if ((i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
8252 new_rtx
= make_extraction (mode
,
8253 make_compound_operation (XEXP (x
, 0),
8256 true, false, in_code
== COMPARE
);
8258 /* If we are in a comparison and this is an AND with a power of two,
8259 convert this into the appropriate bit extract. */
8260 else if (in_code
== COMPARE
8261 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0
8262 && (equality_comparison
|| i
< GET_MODE_PRECISION (mode
) - 1))
8263 new_rtx
= make_extraction (mode
,
8264 make_compound_operation (XEXP (x
, 0),
8266 i
, NULL_RTX
, 1, true, false, true);
8268 /* If the one operand is a paradoxical subreg of a register or memory and
8269 the constant (limited to the smaller mode) has only zero bits where
8270 the sub expression has known zero bits, this can be expressed as
8272 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
)
8276 sub
= XEXP (XEXP (x
, 0), 0);
8277 machine_mode sub_mode
= GET_MODE (sub
);
8279 if ((REG_P (sub
) || MEM_P (sub
))
8280 && GET_MODE_PRECISION (sub_mode
).is_constant (&sub_width
)
8281 && sub_width
< mode_width
8282 && (!WORD_REGISTER_OPERATIONS
8283 || sub_width
>= BITS_PER_WORD
8284 /* On WORD_REGISTER_OPERATIONS targets the bits
8285 beyond sub_mode aren't considered undefined,
8286 so optimize only if it is a MEM load when MEM loads
8287 zero extend, because then the upper bits are all zero. */
8289 && load_extend_op (sub_mode
) == ZERO_EXTEND
)))
8291 unsigned HOST_WIDE_INT mode_mask
= GET_MODE_MASK (sub_mode
);
8292 unsigned HOST_WIDE_INT mask
;
8294 /* Original AND constant with all the known zero bits set. */
8295 mask
= UINTVAL (XEXP (x
, 1)) | (~nonzero_bits (sub
, sub_mode
));
8296 if ((mask
& mode_mask
) == mode_mask
)
8298 new_rtx
= make_compound_operation (sub
, next_code
);
8299 new_rtx
= make_extraction (mode
, new_rtx
, 0, 0, sub_width
,
8300 true, false, in_code
== COMPARE
);
8308 /* If the sign bit is known to be zero, replace this with an
8309 arithmetic shift. */
8310 if (have_insn_for (ASHIFTRT
, mode
)
8311 && ! have_insn_for (LSHIFTRT
, mode
)
8312 && mode_width
<= HOST_BITS_PER_WIDE_INT
8313 && (nonzero_bits (XEXP (x
, 0), mode
) & (1 << (mode_width
- 1))) == 0)
8315 new_rtx
= gen_rtx_ASHIFTRT (mode
,
8316 make_compound_operation (XEXP (x
, 0),
8328 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8329 this is a SIGN_EXTRACT. */
8330 if (CONST_INT_P (rhs
)
8331 && GET_CODE (lhs
) == ASHIFT
8332 && CONST_INT_P (XEXP (lhs
, 1))
8333 && INTVAL (rhs
) >= INTVAL (XEXP (lhs
, 1))
8334 && INTVAL (XEXP (lhs
, 1)) >= 0
8335 && INTVAL (rhs
) < mode_width
)
8337 new_rtx
= make_compound_operation (XEXP (lhs
, 0), next_code
);
8338 new_rtx
= make_extraction (mode
, new_rtx
,
8339 INTVAL (rhs
) - INTVAL (XEXP (lhs
, 1)),
8340 NULL_RTX
, mode_width
- INTVAL (rhs
),
8341 code
== LSHIFTRT
, false,
8342 in_code
== COMPARE
);
8346 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8347 If so, try to merge the shifts into a SIGN_EXTEND. We could
8348 also do this for some cases of SIGN_EXTRACT, but it doesn't
8349 seem worth the effort; the case checked for occurs on Alpha. */
8352 && ! (GET_CODE (lhs
) == SUBREG
8353 && (OBJECT_P (SUBREG_REG (lhs
))))
8354 && CONST_INT_P (rhs
)
8355 && INTVAL (rhs
) >= 0
8356 && INTVAL (rhs
) < HOST_BITS_PER_WIDE_INT
8357 && INTVAL (rhs
) < mode_width
8358 && (new_rtx
= extract_left_shift (mode
, lhs
, INTVAL (rhs
))) != 0)
8359 new_rtx
= make_extraction (mode
, make_compound_operation (new_rtx
,
8361 0, NULL_RTX
, mode_width
- INTVAL (rhs
),
8362 code
== LSHIFTRT
, false, in_code
== COMPARE
);
8367 /* Call ourselves recursively on the inner expression. If we are
8368 narrowing the object and it has a different RTL code from
8369 what it originally did, do this SUBREG as a force_to_mode. */
8371 rtx inner
= SUBREG_REG (x
), simplified
;
8372 enum rtx_code subreg_code
= in_code
;
8374 /* If the SUBREG is masking of a logical right shift,
8375 make an extraction. */
8376 if (GET_CODE (inner
) == LSHIFTRT
8377 && is_a
<scalar_int_mode
> (GET_MODE (inner
), &inner_mode
)
8378 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (inner_mode
)
8379 && CONST_INT_P (XEXP (inner
, 1))
8380 && UINTVAL (XEXP (inner
, 1)) < GET_MODE_PRECISION (inner_mode
)
8381 && subreg_lowpart_p (x
))
8383 new_rtx
= make_compound_operation (XEXP (inner
, 0), next_code
);
8384 int width
= GET_MODE_PRECISION (inner_mode
)
8385 - INTVAL (XEXP (inner
, 1));
8386 if (width
> mode_width
)
8388 new_rtx
= make_extraction (mode
, new_rtx
, 0, XEXP (inner
, 1),
8389 width
, true, false, in_code
== COMPARE
);
8393 /* If in_code is COMPARE, it isn't always safe to pass it through
8394 to the recursive make_compound_operation call. */
8395 if (subreg_code
== COMPARE
8396 && (!subreg_lowpart_p (x
)
8397 || GET_CODE (inner
) == SUBREG
8398 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8399 is (const_int 0), rather than
8400 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8401 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8402 for non-equality comparisons against 0 is not equivalent
8403 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8404 || (GET_CODE (inner
) == AND
8405 && CONST_INT_P (XEXP (inner
, 1))
8406 && partial_subreg_p (x
)
8407 && exact_log2 (UINTVAL (XEXP (inner
, 1)))
8408 >= GET_MODE_BITSIZE (mode
) - 1)))
8411 tem
= make_compound_operation (inner
, subreg_code
);
8414 = simplify_subreg (mode
, tem
, GET_MODE (inner
), SUBREG_BYTE (x
));
8418 if (GET_CODE (tem
) != GET_CODE (inner
)
8419 && partial_subreg_p (x
)
8420 && subreg_lowpart_p (x
))
8423 = force_to_mode (tem
, mode
, HOST_WIDE_INT_M1U
, false);
8425 /* If we have something other than a SUBREG, we might have
8426 done an expansion, so rerun ourselves. */
8427 if (GET_CODE (newer
) != SUBREG
)
8428 newer
= make_compound_operation (newer
, in_code
);
8430 /* force_to_mode can expand compounds. If it just re-expanded
8431 the compound, use gen_lowpart to convert to the desired
8433 if (rtx_equal_p (newer
, x
)
8434 /* Likewise if it re-expanded the compound only partially.
8435 This happens for SUBREG of ZERO_EXTRACT if they extract
8436 the same number of bits. */
8437 || (GET_CODE (newer
) == SUBREG
8438 && (GET_CODE (SUBREG_REG (newer
)) == LSHIFTRT
8439 || GET_CODE (SUBREG_REG (newer
)) == ASHIFTRT
)
8440 && GET_CODE (inner
) == AND
8441 && rtx_equal_p (SUBREG_REG (newer
), XEXP (inner
, 0))))
8442 return gen_lowpart (GET_MODE (x
), tem
);
8457 *x_ptr
= gen_lowpart (mode
, new_rtx
);
8458 *next_code_ptr
= next_code
;
8462 /* Look at the expression rooted at X. Look for expressions
8463 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8464 Form these expressions.
8466 Return the new rtx, usually just X.
8468 Also, for machines like the VAX that don't have logical shift insns,
8469 try to convert logical to arithmetic shift operations in cases where
8470 they are equivalent. This undoes the canonicalizations to logical
8471 shifts done elsewhere.
8473 We try, as much as possible, to re-use rtl expressions to save memory.
8475 IN_CODE says what kind of expression we are processing. Normally, it is
8476 SET. In a memory address it is MEM. When processing the arguments of
8477 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8478 precisely it is an equality comparison against zero. */
8481 make_compound_operation (rtx x
, enum rtx_code in_code
)
8483 enum rtx_code code
= GET_CODE (x
);
8486 enum rtx_code next_code
;
8489 /* Select the code to be used in recursive calls. Once we are inside an
8490 address, we stay there. If we have a comparison, set to COMPARE,
8491 but once inside, go back to our default of SET. */
8493 next_code
= (code
== MEM
? MEM
8494 : ((code
== COMPARE
|| COMPARISON_P (x
))
8495 && XEXP (x
, 1) == const0_rtx
) ? COMPARE
8496 : in_code
== COMPARE
|| in_code
== EQ
? SET
: in_code
);
8498 scalar_int_mode mode
;
8499 if (is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
))
8501 rtx new_rtx
= make_compound_operation_int (mode
, &x
, in_code
,
8505 code
= GET_CODE (x
);
8508 /* Now recursively process each operand of this operation. We need to
8509 handle ZERO_EXTEND specially so that we don't lose track of the
8511 if (code
== ZERO_EXTEND
)
8513 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
8514 tem
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
8515 new_rtx
, GET_MODE (XEXP (x
, 0)));
8518 SUBST (XEXP (x
, 0), new_rtx
);
8522 fmt
= GET_RTX_FORMAT (code
);
8523 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
8526 new_rtx
= make_compound_operation (XEXP (x
, i
), next_code
);
8527 SUBST (XEXP (x
, i
), new_rtx
);
8529 else if (fmt
[i
] == 'E')
8530 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
8532 new_rtx
= make_compound_operation (XVECEXP (x
, i
, j
), next_code
);
8533 SUBST (XVECEXP (x
, i
, j
), new_rtx
);
8536 maybe_swap_commutative_operands (x
);
8540 /* Given M see if it is a value that would select a field of bits
8541 within an item, but not the entire word. Return -1 if not.
8542 Otherwise, return the starting position of the field, where 0 is the
8545 *PLEN is set to the length of the field. */
8548 get_pos_from_mask (unsigned HOST_WIDE_INT m
, unsigned HOST_WIDE_INT
*plen
)
8550 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8551 int pos
= m
? ctz_hwi (m
) : -1;
8555 /* Now shift off the low-order zero bits and see if we have a
8556 power of two minus 1. */
8557 len
= exact_log2 ((m
>> pos
) + 1);
8566 /* If X refers to a register that equals REG in value, replace these
8567 references with REG. */
8569 canon_reg_for_combine (rtx x
, rtx reg
)
8576 enum rtx_code code
= GET_CODE (x
);
8577 switch (GET_RTX_CLASS (code
))
8580 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8581 if (op0
!= XEXP (x
, 0))
8582 return simplify_gen_unary (GET_CODE (x
), GET_MODE (x
), op0
,
8587 case RTX_COMM_ARITH
:
8588 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8589 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
8590 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
8591 return simplify_gen_binary (GET_CODE (x
), GET_MODE (x
), op0
, op1
);
8595 case RTX_COMM_COMPARE
:
8596 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8597 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
8598 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
8599 return simplify_gen_relational (GET_CODE (x
), GET_MODE (x
),
8600 GET_MODE (op0
), op0
, op1
);
8604 case RTX_BITFIELD_OPS
:
8605 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8606 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
8607 op2
= canon_reg_for_combine (XEXP (x
, 2), reg
);
8608 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1) || op2
!= XEXP (x
, 2))
8609 return simplify_gen_ternary (GET_CODE (x
), GET_MODE (x
),
8610 GET_MODE (op0
), op0
, op1
, op2
);
8616 if (rtx_equal_p (get_last_value (reg
), x
)
8617 || rtx_equal_p (reg
, get_last_value (x
)))
8626 fmt
= GET_RTX_FORMAT (code
);
8628 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
8631 rtx op
= canon_reg_for_combine (XEXP (x
, i
), reg
);
8632 if (op
!= XEXP (x
, i
))
8642 else if (fmt
[i
] == 'E')
8645 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
8647 rtx op
= canon_reg_for_combine (XVECEXP (x
, i
, j
), reg
);
8648 if (op
!= XVECEXP (x
, i
, j
))
8655 XVECEXP (x
, i
, j
) = op
;
8666 /* Return X converted to MODE. If the value is already truncated to
8667 MODE we can just return a subreg even though in the general case we
8668 would need an explicit truncation. */
8671 gen_lowpart_or_truncate (machine_mode mode
, rtx x
)
8673 if (!CONST_INT_P (x
)
8674 && partial_subreg_p (mode
, GET_MODE (x
))
8675 && !TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (x
))
8676 && !(REG_P (x
) && reg_truncated_to_mode (mode
, x
)))
8678 /* Bit-cast X into an integer mode. */
8679 if (!SCALAR_INT_MODE_P (GET_MODE (x
)))
8680 x
= gen_lowpart (int_mode_for_mode (GET_MODE (x
)).require (), x
);
8681 x
= simplify_gen_unary (TRUNCATE
, int_mode_for_mode (mode
).require (),
8685 return gen_lowpart (mode
, x
);
8688 /* See if X can be simplified knowing that we will only refer to it in
8689 MODE and will only refer to those bits that are nonzero in MASK.
8690 If other bits are being computed or if masking operations are done
8691 that select a superset of the bits in MASK, they can sometimes be
8694 Return a possibly simplified expression, but always convert X to
8695 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8697 If JUST_SELECT is true, don't optimize by noticing that bits in MASK
8698 are all off in X. This is used when X will be complemented, by either
8699 NOT, NEG, or XOR. */
8702 force_to_mode (rtx x
, machine_mode mode
, unsigned HOST_WIDE_INT mask
,
8705 enum rtx_code code
= GET_CODE (x
);
8706 bool next_select
= just_select
|| code
== XOR
|| code
== NOT
|| code
== NEG
;
8707 machine_mode op_mode
;
8708 unsigned HOST_WIDE_INT nonzero
;
8710 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8711 code below will do the wrong thing since the mode of such an
8712 expression is VOIDmode.
8714 Also do nothing if X is a CLOBBER; this can happen if X was
8715 the return value from a call to gen_lowpart. */
8716 if (code
== CALL
|| code
== ASM_OPERANDS
|| code
== CLOBBER
)
8719 /* We want to perform the operation in its present mode unless we know
8720 that the operation is valid in MODE, in which case we do the operation
8722 op_mode
= ((GET_MODE_CLASS (mode
) == GET_MODE_CLASS (GET_MODE (x
))
8723 && have_insn_for (code
, mode
))
8724 ? mode
: GET_MODE (x
));
8726 /* It is not valid to do a right-shift in a narrower mode
8727 than the one it came in with. */
8728 if ((code
== LSHIFTRT
|| code
== ASHIFTRT
)
8729 && partial_subreg_p (mode
, GET_MODE (x
)))
8730 op_mode
= GET_MODE (x
);
8732 /* Truncate MASK to fit OP_MODE. */
8734 mask
&= GET_MODE_MASK (op_mode
);
8736 /* Determine what bits of X are guaranteed to be (non)zero. */
8737 nonzero
= nonzero_bits (x
, mode
);
8739 /* If none of the bits in X are needed, return a zero. */
8740 if (!just_select
&& (nonzero
& mask
) == 0 && !side_effects_p (x
))
8743 /* If X is a CONST_INT, return a new one. Do this here since the
8744 test below will fail. */
8745 if (CONST_INT_P (x
))
8747 if (SCALAR_INT_MODE_P (mode
))
8748 return gen_int_mode (INTVAL (x
) & mask
, mode
);
8751 x
= GEN_INT (INTVAL (x
) & mask
);
8752 return gen_lowpart_common (mode
, x
);
8756 /* If X is narrower than MODE and we want all the bits in X's mode, just
8757 get X in the proper mode. */
8758 if (paradoxical_subreg_p (mode
, GET_MODE (x
))
8759 && (GET_MODE_MASK (GET_MODE (x
)) & ~mask
) == 0)
8760 return gen_lowpart (mode
, x
);
8762 /* We can ignore the effect of a SUBREG if it narrows the mode or
8763 if the constant masks to zero all the bits the mode doesn't have. */
8764 if (GET_CODE (x
) == SUBREG
8765 && subreg_lowpart_p (x
)
8766 && (partial_subreg_p (x
)
8768 & GET_MODE_MASK (GET_MODE (x
))
8769 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
)))) == 0))
8770 return force_to_mode (SUBREG_REG (x
), mode
, mask
, next_select
);
8772 scalar_int_mode int_mode
, xmode
;
8773 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
8774 && is_a
<scalar_int_mode
> (GET_MODE (x
), &xmode
))
8775 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8777 return force_int_to_mode (x
, int_mode
, xmode
,
8778 as_a
<scalar_int_mode
> (op_mode
),
8781 return gen_lowpart_or_truncate (mode
, x
);
8784 /* Subroutine of force_to_mode that handles cases in which both X and
8785 the result are scalar integers. MODE is the mode of the result,
8786 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8787 is preferred for simplified versions of X. The other arguments
8788 are as for force_to_mode. */
8791 force_int_to_mode (rtx x
, scalar_int_mode mode
, scalar_int_mode xmode
,
8792 scalar_int_mode op_mode
, unsigned HOST_WIDE_INT mask
,
8795 enum rtx_code code
= GET_CODE (x
);
8796 bool next_select
= just_select
|| code
== XOR
|| code
== NOT
|| code
== NEG
;
8797 unsigned HOST_WIDE_INT fuller_mask
;
8799 poly_int64 const_op0
;
8801 /* When we have an arithmetic operation, or a shift whose count we
8802 do not know, we need to assume that all bits up to the highest-order
8803 bit in MASK will be needed. This is how we form such a mask. */
8804 if (mask
& (HOST_WIDE_INT_1U
<< (HOST_BITS_PER_WIDE_INT
- 1)))
8805 fuller_mask
= HOST_WIDE_INT_M1U
;
8807 fuller_mask
= ((HOST_WIDE_INT_1U
<< (floor_log2 (mask
) + 1)) - 1);
8812 /* If X is a (clobber (const_int)), return it since we know we are
8813 generating something that won't match. */
8820 x
= expand_compound_operation (x
);
8821 if (GET_CODE (x
) != code
)
8822 return force_to_mode (x
, mode
, mask
, next_select
);
8826 /* Similarly for a truncate. */
8827 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8830 /* If this is an AND with a constant, convert it into an AND
8831 whose constant is the AND of that constant with MASK. If it
8832 remains an AND of MASK, delete it since it is redundant. */
8834 if (CONST_INT_P (XEXP (x
, 1)))
8836 x
= simplify_and_const_int (x
, op_mode
, XEXP (x
, 0),
8837 mask
& INTVAL (XEXP (x
, 1)));
8840 /* If X is still an AND, see if it is an AND with a mask that
8841 is just some low-order bits. If so, and it is MASK, we don't
8844 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1))
8845 && (INTVAL (XEXP (x
, 1)) & GET_MODE_MASK (xmode
)) == mask
)
8848 /* If it remains an AND, try making another AND with the bits
8849 in the mode mask that aren't in MASK turned on. If the
8850 constant in the AND is wide enough, this might make a
8851 cheaper constant. */
8853 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1))
8854 && GET_MODE_MASK (xmode
) != mask
8855 && HWI_COMPUTABLE_MODE_P (xmode
))
8857 unsigned HOST_WIDE_INT cval
8858 = UINTVAL (XEXP (x
, 1)) | (GET_MODE_MASK (xmode
) & ~mask
);
8861 y
= simplify_gen_binary (AND
, xmode
, XEXP (x
, 0),
8862 gen_int_mode (cval
, xmode
));
8863 if (set_src_cost (y
, xmode
, optimize_this_for_speed_p
)
8864 < set_src_cost (x
, xmode
, optimize_this_for_speed_p
))
8874 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8875 low-order bits (as in an alignment operation) and FOO is already
8876 aligned to that boundary, mask C1 to that boundary as well.
8877 This may eliminate that PLUS and, later, the AND. */
8880 unsigned int width
= GET_MODE_PRECISION (mode
);
8881 unsigned HOST_WIDE_INT smask
= mask
;
8883 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8884 number, sign extend it. */
8886 if (width
< HOST_BITS_PER_WIDE_INT
8887 && (smask
& (HOST_WIDE_INT_1U
<< (width
- 1))) != 0)
8888 smask
|= HOST_WIDE_INT_M1U
<< width
;
8890 if (CONST_INT_P (XEXP (x
, 1))
8891 && pow2p_hwi (- smask
)
8892 && (nonzero_bits (XEXP (x
, 0), mode
) & ~smask
) == 0
8893 && (INTVAL (XEXP (x
, 1)) & ~smask
) != 0)
8894 return force_to_mode (plus_constant (xmode
, XEXP (x
, 0),
8895 (INTVAL (XEXP (x
, 1)) & smask
)),
8896 mode
, smask
, next_select
);
8902 /* Substituting into the operands of a widening MULT is not likely to
8903 create RTL matching a machine insn. */
8905 && (GET_CODE (XEXP (x
, 0)) == ZERO_EXTEND
8906 || GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
)
8907 && (GET_CODE (XEXP (x
, 1)) == ZERO_EXTEND
8908 || GET_CODE (XEXP (x
, 1)) == SIGN_EXTEND
)
8909 && REG_P (XEXP (XEXP (x
, 0), 0))
8910 && REG_P (XEXP (XEXP (x
, 1), 0)))
8911 return gen_lowpart_or_truncate (mode
, x
);
8913 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8914 most significant bit in MASK since carries from those bits will
8915 affect the bits we are interested in. */
8920 /* If X is (minus C Y) where C's least set bit is larger than any bit
8921 in the mask, then we may replace with (neg Y). */
8922 if (poly_int_rtx_p (XEXP (x
, 0), &const_op0
)
8923 && known_alignment (poly_uint64 (const_op0
)) > mask
)
8925 x
= simplify_gen_unary (NEG
, xmode
, XEXP (x
, 1), xmode
);
8926 return force_to_mode (x
, mode
, mask
, next_select
);
8929 /* Similarly, if C contains every bit in the fuller_mask, then we may
8930 replace with (not Y). */
8931 if (CONST_INT_P (XEXP (x
, 0))
8932 && ((UINTVAL (XEXP (x
, 0)) | fuller_mask
) == UINTVAL (XEXP (x
, 0))))
8934 x
= simplify_gen_unary (NOT
, xmode
, XEXP (x
, 1), xmode
);
8935 return force_to_mode (x
, mode
, mask
, next_select
);
8943 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8944 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8945 operation which may be a bitfield extraction. Ensure that the
8946 constant we form is not wider than the mode of X. */
8948 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8949 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8950 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
8951 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
8952 && CONST_INT_P (XEXP (x
, 1))
8953 && ((INTVAL (XEXP (XEXP (x
, 0), 1))
8954 + floor_log2 (INTVAL (XEXP (x
, 1))))
8955 < GET_MODE_PRECISION (xmode
))
8956 && (UINTVAL (XEXP (x
, 1))
8957 & ~nonzero_bits (XEXP (x
, 0), xmode
)) == 0)
8959 temp
= gen_int_mode ((INTVAL (XEXP (x
, 1)) & mask
)
8960 << INTVAL (XEXP (XEXP (x
, 0), 1)),
8962 temp
= simplify_gen_binary (GET_CODE (x
), xmode
,
8963 XEXP (XEXP (x
, 0), 0), temp
);
8964 x
= simplify_gen_binary (LSHIFTRT
, xmode
, temp
,
8965 XEXP (XEXP (x
, 0), 1));
8966 return force_to_mode (x
, mode
, mask
, next_select
);
8970 /* For most binary operations, just propagate into the operation and
8971 change the mode if we have an operation of that mode. */
8973 op0
= force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8974 op1
= force_to_mode (XEXP (x
, 1), mode
, mask
, next_select
);
8976 /* If we ended up truncating both operands, truncate the result of the
8977 operation instead. */
8978 if (GET_CODE (op0
) == TRUNCATE
8979 && GET_CODE (op1
) == TRUNCATE
)
8981 op0
= XEXP (op0
, 0);
8982 op1
= XEXP (op1
, 0);
8985 op0
= gen_lowpart_or_truncate (op_mode
, op0
);
8986 op1
= gen_lowpart_or_truncate (op_mode
, op1
);
8988 if (op_mode
!= xmode
|| op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
8990 x
= simplify_gen_binary (code
, op_mode
, op0
, op1
);
8996 /* For left shifts, do the same, but just for the first operand.
8997 However, we cannot do anything with shifts where we cannot
8998 guarantee that the counts are smaller than the size of the mode
8999 because such a count will have a different meaning in a
9002 if (! (CONST_INT_P (XEXP (x
, 1))
9003 && INTVAL (XEXP (x
, 1)) >= 0
9004 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (mode
))
9005 && ! (GET_MODE (XEXP (x
, 1)) != VOIDmode
9006 && (nonzero_bits (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)))
9007 < (unsigned HOST_WIDE_INT
) GET_MODE_PRECISION (mode
))))
9010 /* If the shift count is a constant and we can do arithmetic in
9011 the mode of the shift, refine which bits we need. Otherwise, use the
9012 conservative form of the mask. */
9013 if (CONST_INT_P (XEXP (x
, 1))
9014 && INTVAL (XEXP (x
, 1)) >= 0
9015 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (op_mode
)
9016 && HWI_COMPUTABLE_MODE_P (op_mode
))
9017 mask
>>= INTVAL (XEXP (x
, 1));
9021 op0
= gen_lowpart_or_truncate (op_mode
,
9022 force_to_mode (XEXP (x
, 0), mode
,
9023 mask
, next_select
));
9025 if (op_mode
!= xmode
|| op0
!= XEXP (x
, 0))
9027 x
= simplify_gen_binary (code
, op_mode
, op0
, XEXP (x
, 1));
9033 /* Here we can only do something if the shift count is a constant,
9034 this shift constant is valid for the host, and we can do arithmetic
9037 if (CONST_INT_P (XEXP (x
, 1))
9038 && INTVAL (XEXP (x
, 1)) >= 0
9039 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
9040 && HWI_COMPUTABLE_MODE_P (op_mode
))
9042 rtx inner
= XEXP (x
, 0);
9043 unsigned HOST_WIDE_INT inner_mask
;
9045 /* Select the mask of the bits we need for the shift operand. */
9046 inner_mask
= mask
<< INTVAL (XEXP (x
, 1));
9048 /* We can only change the mode of the shift if we can do arithmetic
9049 in the mode of the shift and INNER_MASK is no wider than the
9050 width of X's mode. */
9051 if ((inner_mask
& ~GET_MODE_MASK (xmode
)) != 0)
9054 inner
= force_to_mode (inner
, op_mode
, inner_mask
, next_select
);
9056 if (xmode
!= op_mode
|| inner
!= XEXP (x
, 0))
9058 x
= simplify_gen_binary (LSHIFTRT
, op_mode
, inner
, XEXP (x
, 1));
9063 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
9064 shift and AND produces only copies of the sign bit (C2 is one less
9065 than a power of two), we can do this with just a shift. */
9067 if (GET_CODE (x
) == LSHIFTRT
9068 && CONST_INT_P (XEXP (x
, 1))
9069 /* The shift puts one of the sign bit copies in the least significant
9071 && ((INTVAL (XEXP (x
, 1))
9072 + num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0))))
9073 >= GET_MODE_PRECISION (xmode
))
9074 && pow2p_hwi (mask
+ 1)
9075 /* Number of bits left after the shift must be more than the mask
9077 && ((INTVAL (XEXP (x
, 1)) + exact_log2 (mask
+ 1))
9078 <= GET_MODE_PRECISION (xmode
))
9079 /* Must be more sign bit copies than the mask needs. */
9080 && ((int) num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
9081 >= exact_log2 (mask
+ 1)))
9083 int nbits
= GET_MODE_PRECISION (xmode
) - exact_log2 (mask
+ 1);
9084 x
= simplify_gen_binary (LSHIFTRT
, xmode
, XEXP (x
, 0),
9085 gen_int_shift_amount (xmode
, nbits
));
9090 /* If we are just looking for the sign bit, we don't need this shift at
9091 all, even if it has a variable count. */
9092 if (val_signbit_p (xmode
, mask
))
9093 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
9095 /* If this is a shift by a constant, get a mask that contains those bits
9096 that are not copies of the sign bit. We then have two cases: If
9097 MASK only includes those bits, this can be a logical shift, which may
9098 allow simplifications. If MASK is a single-bit field not within
9099 those bits, we are requesting a copy of the sign bit and hence can
9100 shift the sign bit to the appropriate location. */
9102 if (CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0
9103 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
9105 unsigned HOST_WIDE_INT nonzero
;
9108 /* If the considered data is wider than HOST_WIDE_INT, we can't
9109 represent a mask for all its bits in a single scalar.
9110 But we only care about the lower bits, so calculate these. */
9112 if (GET_MODE_PRECISION (xmode
) > HOST_BITS_PER_WIDE_INT
)
9114 nonzero
= HOST_WIDE_INT_M1U
;
9116 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9117 is the number of bits a full-width mask would have set.
9118 We need only shift if these are fewer than nonzero can
9119 hold. If not, we must keep all bits set in nonzero. */
9121 if (GET_MODE_PRECISION (xmode
) - INTVAL (XEXP (x
, 1))
9122 < HOST_BITS_PER_WIDE_INT
)
9123 nonzero
>>= INTVAL (XEXP (x
, 1))
9124 + HOST_BITS_PER_WIDE_INT
9125 - GET_MODE_PRECISION (xmode
);
9129 nonzero
= GET_MODE_MASK (xmode
);
9130 nonzero
>>= INTVAL (XEXP (x
, 1));
9133 if ((mask
& ~nonzero
) == 0)
9135 x
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, xmode
,
9136 XEXP (x
, 0), INTVAL (XEXP (x
, 1)));
9137 if (GET_CODE (x
) != ASHIFTRT
)
9138 return force_to_mode (x
, mode
, mask
, next_select
);
9141 else if ((i
= exact_log2 (mask
)) >= 0)
9143 x
= simplify_shift_const
9144 (NULL_RTX
, LSHIFTRT
, xmode
, XEXP (x
, 0),
9145 GET_MODE_PRECISION (xmode
) - 1 - i
);
9147 if (GET_CODE (x
) != ASHIFTRT
)
9148 return force_to_mode (x
, mode
, mask
, next_select
);
9152 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9153 even if the shift count isn't a constant. */
9155 x
= simplify_gen_binary (LSHIFTRT
, xmode
, XEXP (x
, 0), XEXP (x
, 1));
9159 /* If this is a zero- or sign-extension operation that just affects bits
9160 we don't care about, remove it. Be sure the call above returned
9161 something that is still a shift. */
9163 if ((GET_CODE (x
) == LSHIFTRT
|| GET_CODE (x
) == ASHIFTRT
)
9164 && CONST_INT_P (XEXP (x
, 1))
9165 && INTVAL (XEXP (x
, 1)) >= 0
9166 && (INTVAL (XEXP (x
, 1))
9167 <= GET_MODE_PRECISION (xmode
) - (floor_log2 (mask
) + 1))
9168 && GET_CODE (XEXP (x
, 0)) == ASHIFT
9169 && XEXP (XEXP (x
, 0), 1) == XEXP (x
, 1))
9170 return force_to_mode (XEXP (XEXP (x
, 0), 0), mode
, mask
, next_select
);
9176 /* If the shift count is constant and we can do computations
9177 in the mode of X, compute where the bits we care about are.
9178 Otherwise, we can't do anything. Don't change the mode of
9179 the shift or propagate MODE into the shift, though. */
9180 if (CONST_INT_P (XEXP (x
, 1))
9181 && INTVAL (XEXP (x
, 1)) >= 0)
9183 temp
= simplify_binary_operation (code
== ROTATE
? ROTATERT
: ROTATE
,
9184 xmode
, gen_int_mode (mask
, xmode
),
9186 if (temp
&& CONST_INT_P (temp
))
9187 x
= simplify_gen_binary (code
, xmode
,
9188 force_to_mode (XEXP (x
, 0), xmode
,
9189 INTVAL (temp
), next_select
),
9195 /* If we just want the low-order bit, the NEG isn't needed since it
9196 won't change the low-order bit. */
9198 return force_to_mode (XEXP (x
, 0), mode
, mask
, just_select
);
9200 /* We need any bits less significant than the most significant bit in
9201 MASK since carries from those bits will affect the bits we are
9207 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9208 same as the XOR case above. Ensure that the constant we form is not
9209 wider than the mode of X. */
9211 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
9212 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
9213 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
9214 && (INTVAL (XEXP (XEXP (x
, 0), 1)) + floor_log2 (mask
)
9215 < GET_MODE_PRECISION (xmode
))
9216 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
9218 temp
= gen_int_mode (mask
<< INTVAL (XEXP (XEXP (x
, 0), 1)), xmode
);
9219 temp
= simplify_gen_binary (XOR
, xmode
, XEXP (XEXP (x
, 0), 0), temp
);
9220 x
= simplify_gen_binary (LSHIFTRT
, xmode
,
9221 temp
, XEXP (XEXP (x
, 0), 1));
9223 return force_to_mode (x
, mode
, mask
, next_select
);
9226 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9227 use the full mask inside the NOT. */
9231 op0
= gen_lowpart_or_truncate (op_mode
,
9232 force_to_mode (XEXP (x
, 0), mode
, mask
,
9234 if (op_mode
!= xmode
|| op0
!= XEXP (x
, 0))
9236 x
= simplify_gen_unary (code
, op_mode
, op0
, op_mode
);
9242 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9243 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9244 which is equal to STORE_FLAG_VALUE. */
9245 if ((mask
& ~STORE_FLAG_VALUE
) == 0
9246 && XEXP (x
, 1) == const0_rtx
9247 && GET_MODE (XEXP (x
, 0)) == mode
9248 && pow2p_hwi (nonzero_bits (XEXP (x
, 0), mode
))
9249 && (nonzero_bits (XEXP (x
, 0), mode
)
9250 == (unsigned HOST_WIDE_INT
) STORE_FLAG_VALUE
))
9251 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
9256 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9257 written in a narrower mode. We play it safe and do not do so. */
9259 op0
= gen_lowpart_or_truncate (xmode
,
9260 force_to_mode (XEXP (x
, 1), mode
,
9261 mask
, next_select
));
9262 op1
= gen_lowpart_or_truncate (xmode
,
9263 force_to_mode (XEXP (x
, 2), mode
,
9264 mask
, next_select
));
9265 if (op0
!= XEXP (x
, 1) || op1
!= XEXP (x
, 2))
9266 x
= simplify_gen_ternary (IF_THEN_ELSE
, xmode
,
9267 GET_MODE (XEXP (x
, 0)), XEXP (x
, 0),
9275 /* Ensure we return a value of the proper mode. */
9276 return gen_lowpart_or_truncate (mode
, x
);
9279 /* Return nonzero if X is an expression that has one of two values depending on
9280 whether some other value is zero or nonzero. In that case, we return the
9281 value that is being tested, *PTRUE is set to the value if the rtx being
9282 returned has a nonzero value, and *PFALSE is set to the other alternative.
9284 If we return zero, we set *PTRUE and *PFALSE to X. */
9287 if_then_else_cond (rtx x
, rtx
*ptrue
, rtx
*pfalse
)
9289 machine_mode mode
= GET_MODE (x
);
9290 enum rtx_code code
= GET_CODE (x
);
9291 rtx cond0
, cond1
, true0
, true1
, false0
, false1
;
9292 unsigned HOST_WIDE_INT nz
;
9293 scalar_int_mode int_mode
;
9295 /* If we are comparing a value against zero, we are done. */
9296 if ((code
== NE
|| code
== EQ
)
9297 && XEXP (x
, 1) == const0_rtx
)
9299 *ptrue
= (code
== NE
) ? const_true_rtx
: const0_rtx
;
9300 *pfalse
= (code
== NE
) ? const0_rtx
: const_true_rtx
;
9304 /* If this is a unary operation whose operand has one of two values, apply
9305 our opcode to compute those values. */
9306 else if (UNARY_P (x
)
9307 && (cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
)) != 0)
9309 *ptrue
= simplify_gen_unary (code
, mode
, true0
, GET_MODE (XEXP (x
, 0)));
9310 *pfalse
= simplify_gen_unary (code
, mode
, false0
,
9311 GET_MODE (XEXP (x
, 0)));
9315 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9316 make can't possibly match and would suppress other optimizations. */
9317 else if (code
== COMPARE
)
9320 /* If this is a binary operation, see if either side has only one of two
9321 values. If either one does or if both do and they are conditional on
9322 the same value, compute the new true and false values. */
9323 else if (BINARY_P (x
))
9325 rtx op0
= XEXP (x
, 0);
9326 rtx op1
= XEXP (x
, 1);
9327 cond0
= if_then_else_cond (op0
, &true0
, &false0
);
9328 cond1
= if_then_else_cond (op1
, &true1
, &false1
);
9330 if ((cond0
!= 0 && cond1
!= 0 && !rtx_equal_p (cond0
, cond1
))
9331 && (REG_P (op0
) || REG_P (op1
)))
9333 /* Try to enable a simplification by undoing work done by
9334 if_then_else_cond if it converted a REG into something more
9339 true0
= false0
= op0
;
9344 true1
= false1
= op1
;
9348 if ((cond0
!= 0 || cond1
!= 0)
9349 && ! (cond0
!= 0 && cond1
!= 0 && !rtx_equal_p (cond0
, cond1
)))
9351 /* If if_then_else_cond returned zero, then true/false are the
9352 same rtl. We must copy one of them to prevent invalid rtl
9355 true0
= copy_rtx (true0
);
9356 else if (cond1
== 0)
9357 true1
= copy_rtx (true1
);
9359 if (COMPARISON_P (x
))
9361 *ptrue
= simplify_gen_relational (code
, mode
, VOIDmode
,
9363 *pfalse
= simplify_gen_relational (code
, mode
, VOIDmode
,
9368 *ptrue
= simplify_gen_binary (code
, mode
, true0
, true1
);
9369 *pfalse
= simplify_gen_binary (code
, mode
, false0
, false1
);
9372 return cond0
? cond0
: cond1
;
9375 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9376 operands is zero when the other is nonzero, and vice-versa,
9377 and STORE_FLAG_VALUE is 1 or -1. */
9379 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
9380 && (code
== PLUS
|| code
== IOR
|| code
== XOR
|| code
== MINUS
9382 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
9384 rtx op0
= XEXP (XEXP (x
, 0), 1);
9385 rtx op1
= XEXP (XEXP (x
, 1), 1);
9387 cond0
= XEXP (XEXP (x
, 0), 0);
9388 cond1
= XEXP (XEXP (x
, 1), 0);
9390 if (COMPARISON_P (cond0
)
9391 && COMPARISON_P (cond1
)
9392 && SCALAR_INT_MODE_P (mode
)
9393 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
9394 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
9395 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
9396 || ((swap_condition (GET_CODE (cond0
))
9397 == reversed_comparison_code (cond1
, NULL
))
9398 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
9399 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
9400 && ! side_effects_p (x
))
9402 *ptrue
= simplify_gen_binary (MULT
, mode
, op0
, const_true_rtx
);
9403 *pfalse
= simplify_gen_binary (MULT
, mode
,
9405 ? simplify_gen_unary (NEG
, mode
,
9413 /* Similarly for MULT, AND and UMIN, except that for these the result
9415 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
9416 && (code
== MULT
|| code
== AND
|| code
== UMIN
)
9417 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
9419 cond0
= XEXP (XEXP (x
, 0), 0);
9420 cond1
= XEXP (XEXP (x
, 1), 0);
9422 if (COMPARISON_P (cond0
)
9423 && COMPARISON_P (cond1
)
9424 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
9425 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
9426 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
9427 || ((swap_condition (GET_CODE (cond0
))
9428 == reversed_comparison_code (cond1
, NULL
))
9429 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
9430 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
9431 && ! side_effects_p (x
))
9433 *ptrue
= *pfalse
= const0_rtx
;
9439 else if (code
== IF_THEN_ELSE
)
9441 /* If we have IF_THEN_ELSE already, extract the condition and
9442 canonicalize it if it is NE or EQ. */
9443 cond0
= XEXP (x
, 0);
9444 *ptrue
= XEXP (x
, 1), *pfalse
= XEXP (x
, 2);
9445 if (GET_CODE (cond0
) == NE
&& XEXP (cond0
, 1) == const0_rtx
)
9446 return XEXP (cond0
, 0);
9447 else if (GET_CODE (cond0
) == EQ
&& XEXP (cond0
, 1) == const0_rtx
)
9449 *ptrue
= XEXP (x
, 2), *pfalse
= XEXP (x
, 1);
9450 return XEXP (cond0
, 0);
9456 /* If X is a SUBREG, we can narrow both the true and false values
9457 if the inner expression, if there is a condition. */
9458 else if (code
== SUBREG
9459 && (cond0
= if_then_else_cond (SUBREG_REG (x
), &true0
,
9462 true0
= simplify_gen_subreg (mode
, true0
,
9463 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
9464 false0
= simplify_gen_subreg (mode
, false0
,
9465 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
9466 if (true0
&& false0
)
9474 /* If X is a constant, this isn't special and will cause confusions
9475 if we treat it as such. Likewise if it is equivalent to a constant. */
9476 else if (CONSTANT_P (x
)
9477 || ((cond0
= get_last_value (x
)) != 0 && CONSTANT_P (cond0
)))
9480 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9481 will be least confusing to the rest of the compiler. */
9482 else if (mode
== BImode
)
9484 *ptrue
= GEN_INT (STORE_FLAG_VALUE
), *pfalse
= const0_rtx
;
9488 /* If X is known to be either 0 or -1, those are the true and
9489 false values when testing X. */
9490 else if (x
== constm1_rtx
|| x
== const0_rtx
9491 || (is_a
<scalar_int_mode
> (mode
, &int_mode
)
9492 && (num_sign_bit_copies (x
, int_mode
)
9493 == GET_MODE_PRECISION (int_mode
))))
9495 *ptrue
= constm1_rtx
, *pfalse
= const0_rtx
;
9499 /* Likewise for 0 or a single bit. */
9500 else if (HWI_COMPUTABLE_MODE_P (mode
)
9501 && pow2p_hwi (nz
= nonzero_bits (x
, mode
)))
9503 *ptrue
= gen_int_mode (nz
, mode
), *pfalse
= const0_rtx
;
9507 /* Otherwise fail; show no condition with true and false values the same. */
9508 *ptrue
= *pfalse
= x
;
9512 /* Return the value of expression X given the fact that condition COND
9513 is known to be true when applied to REG as its first operand and VAL
9514 as its second. X is known to not be shared and so can be modified in
9517 We only handle the simplest cases, and specifically those cases that
9518 arise with IF_THEN_ELSE expressions. */
9521 known_cond (rtx x
, enum rtx_code cond
, rtx reg
, rtx val
)
9523 enum rtx_code code
= GET_CODE (x
);
9527 if (side_effects_p (x
))
9530 /* If either operand of the condition is a floating point value,
9531 then we have to avoid collapsing an EQ comparison. */
9533 && rtx_equal_p (x
, reg
)
9534 && ! FLOAT_MODE_P (GET_MODE (x
))
9535 && ! FLOAT_MODE_P (GET_MODE (val
)))
9538 if (cond
== UNEQ
&& rtx_equal_p (x
, reg
))
9541 /* If X is (abs REG) and we know something about REG's relationship
9542 with zero, we may be able to simplify this. */
9544 if (code
== ABS
&& rtx_equal_p (XEXP (x
, 0), reg
) && val
== const0_rtx
)
9547 case GE
: case GT
: case EQ
:
9550 return simplify_gen_unary (NEG
, GET_MODE (XEXP (x
, 0)),
9552 GET_MODE (XEXP (x
, 0)));
9557 /* The only other cases we handle are MIN, MAX, and comparisons if the
9558 operands are the same as REG and VAL. */
9560 else if (COMPARISON_P (x
) || COMMUTATIVE_ARITH_P (x
))
9562 if (rtx_equal_p (XEXP (x
, 0), val
))
9564 std::swap (val
, reg
);
9565 cond
= swap_condition (cond
);
9568 if (rtx_equal_p (XEXP (x
, 0), reg
) && rtx_equal_p (XEXP (x
, 1), val
))
9570 if (COMPARISON_P (x
))
9572 if (comparison_dominates_p (cond
, code
))
9573 return VECTOR_MODE_P (GET_MODE (x
)) ? x
: const_true_rtx
;
9575 code
= reversed_comparison_code (x
, NULL
);
9577 && comparison_dominates_p (cond
, code
))
9578 return CONST0_RTX (GET_MODE (x
));
9582 else if (code
== SMAX
|| code
== SMIN
9583 || code
== UMIN
|| code
== UMAX
)
9585 int unsignedp
= (code
== UMIN
|| code
== UMAX
);
9587 /* Do not reverse the condition when it is NE or EQ.
9588 This is because we cannot conclude anything about
9589 the value of 'SMAX (x, y)' when x is not equal to y,
9590 but we can when x equals y. */
9591 if ((code
== SMAX
|| code
== UMAX
)
9592 && ! (cond
== EQ
|| cond
== NE
))
9593 cond
= reverse_condition (cond
);
9598 return unsignedp
? x
: XEXP (x
, 1);
9600 return unsignedp
? x
: XEXP (x
, 0);
9602 return unsignedp
? XEXP (x
, 1) : x
;
9604 return unsignedp
? XEXP (x
, 0) : x
;
9611 else if (code
== SUBREG
)
9613 machine_mode inner_mode
= GET_MODE (SUBREG_REG (x
));
9614 rtx new_rtx
, r
= known_cond (SUBREG_REG (x
), cond
, reg
, val
);
9616 if (SUBREG_REG (x
) != r
)
9618 /* We must simplify subreg here, before we lose track of the
9619 original inner_mode. */
9620 new_rtx
= simplify_subreg (GET_MODE (x
), r
,
9621 inner_mode
, SUBREG_BYTE (x
));
9625 SUBST (SUBREG_REG (x
), r
);
9630 /* We don't have to handle SIGN_EXTEND here, because even in the
9631 case of replacing something with a modeless CONST_INT, a
9632 CONST_INT is already (supposed to be) a valid sign extension for
9633 its narrower mode, which implies it's already properly
9634 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9635 story is different. */
9636 else if (code
== ZERO_EXTEND
)
9638 machine_mode inner_mode
= GET_MODE (XEXP (x
, 0));
9639 rtx new_rtx
, r
= known_cond (XEXP (x
, 0), cond
, reg
, val
);
9641 if (XEXP (x
, 0) != r
)
9643 /* We must simplify the zero_extend here, before we lose
9644 track of the original inner_mode. */
9645 new_rtx
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
9650 SUBST (XEXP (x
, 0), r
);
9656 fmt
= GET_RTX_FORMAT (code
);
9657 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
9660 SUBST (XEXP (x
, i
), known_cond (XEXP (x
, i
), cond
, reg
, val
));
9661 else if (fmt
[i
] == 'E')
9662 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
9663 SUBST (XVECEXP (x
, i
, j
), known_cond (XVECEXP (x
, i
, j
),
9670 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9671 assignment as a field assignment. */
9674 rtx_equal_for_field_assignment_p (rtx x
, rtx y
, bool widen_x
)
9676 if (widen_x
&& GET_MODE (x
) != GET_MODE (y
))
9678 if (paradoxical_subreg_p (GET_MODE (x
), GET_MODE (y
)))
9680 if (BYTES_BIG_ENDIAN
!= WORDS_BIG_ENDIAN
)
9682 x
= adjust_address_nv (x
, GET_MODE (y
),
9683 byte_lowpart_offset (GET_MODE (y
),
9687 if (x
== y
|| rtx_equal_p (x
, y
))
9690 if (x
== 0 || y
== 0 || GET_MODE (x
) != GET_MODE (y
))
9693 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9694 Note that all SUBREGs of MEM are paradoxical; otherwise they
9695 would have been rewritten. */
9696 if (MEM_P (x
) && GET_CODE (y
) == SUBREG
9697 && MEM_P (SUBREG_REG (y
))
9698 && rtx_equal_p (SUBREG_REG (y
),
9699 gen_lowpart (GET_MODE (SUBREG_REG (y
)), x
)))
9702 if (MEM_P (y
) && GET_CODE (x
) == SUBREG
9703 && MEM_P (SUBREG_REG (x
))
9704 && rtx_equal_p (SUBREG_REG (x
),
9705 gen_lowpart (GET_MODE (SUBREG_REG (x
)), y
)))
9708 /* We used to see if get_last_value of X and Y were the same but that's
9709 not correct. In one direction, we'll cause the assignment to have
9710 the wrong destination and in the case, we'll import a register into this
9711 insn that might have already have been dead. So fail if none of the
9712 above cases are true. */
9716 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9717 Return that assignment if so.
9719 We only handle the most common cases. */
9722 make_field_assignment (rtx x
)
9724 rtx dest
= SET_DEST (x
);
9725 rtx src
= SET_SRC (x
);
9730 unsigned HOST_WIDE_INT len
;
9733 /* All the rules in this function are specific to scalar integers. */
9734 scalar_int_mode mode
;
9735 if (!is_a
<scalar_int_mode
> (GET_MODE (dest
), &mode
))
9738 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9739 a clear of a one-bit field. We will have changed it to
9740 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9743 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == ROTATE
9744 && CONST_INT_P (XEXP (XEXP (src
, 0), 0))
9745 && INTVAL (XEXP (XEXP (src
, 0), 0)) == -2
9746 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9748 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
9749 1, true, true, false);
9751 return gen_rtx_SET (assign
, const0_rtx
);
9755 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == SUBREG
9756 && subreg_lowpart_p (XEXP (src
, 0))
9757 && partial_subreg_p (XEXP (src
, 0))
9758 && GET_CODE (SUBREG_REG (XEXP (src
, 0))) == ROTATE
9759 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src
, 0)), 0))
9760 && INTVAL (XEXP (SUBREG_REG (XEXP (src
, 0)), 0)) == -2
9761 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9763 assign
= make_extraction (VOIDmode
, dest
, 0,
9764 XEXP (SUBREG_REG (XEXP (src
, 0)), 1),
9765 1, true, true, false);
9767 return gen_rtx_SET (assign
, const0_rtx
);
9771 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9773 if (GET_CODE (src
) == IOR
&& GET_CODE (XEXP (src
, 0)) == ASHIFT
9774 && XEXP (XEXP (src
, 0), 0) == const1_rtx
9775 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9777 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
9778 1, true, true, false);
9780 return gen_rtx_SET (assign
, const1_rtx
);
9784 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9785 SRC is an AND with all bits of that field set, then we can discard
9787 if (GET_CODE (dest
) == ZERO_EXTRACT
9788 && CONST_INT_P (XEXP (dest
, 1))
9789 && GET_CODE (src
) == AND
9790 && CONST_INT_P (XEXP (src
, 1)))
9792 HOST_WIDE_INT width
= INTVAL (XEXP (dest
, 1));
9793 unsigned HOST_WIDE_INT and_mask
= INTVAL (XEXP (src
, 1));
9794 unsigned HOST_WIDE_INT ze_mask
;
9796 if (width
>= HOST_BITS_PER_WIDE_INT
)
9799 ze_mask
= (HOST_WIDE_INT_1U
<< width
) - 1;
9801 /* Complete overlap. We can remove the source AND. */
9802 if ((and_mask
& ze_mask
) == ze_mask
)
9803 return gen_rtx_SET (dest
, XEXP (src
, 0));
9805 /* Partial overlap. We can reduce the source AND. */
9806 if ((and_mask
& ze_mask
) != and_mask
)
9808 src
= gen_rtx_AND (mode
, XEXP (src
, 0),
9809 gen_int_mode (and_mask
& ze_mask
, mode
));
9810 return gen_rtx_SET (dest
, src
);
9814 /* The other case we handle is assignments into a constant-position
9815 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9816 a mask that has all one bits except for a group of zero bits and
9817 OTHER is known to have zeros where C1 has ones, this is such an
9818 assignment. Compute the position and length from C1. Shift OTHER
9819 to the appropriate position, force it to the required mode, and
9820 make the extraction. Check for the AND in both operands. */
9822 /* One or more SUBREGs might obscure the constant-position field
9823 assignment. The first one we are likely to encounter is an outer
9824 narrowing SUBREG, which we can just strip for the purposes of
9825 identifying the constant-field assignment. */
9826 scalar_int_mode src_mode
= mode
;
9827 if (GET_CODE (src
) == SUBREG
9828 && subreg_lowpart_p (src
)
9829 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (src
)), &src_mode
))
9830 src
= SUBREG_REG (src
);
9832 if (GET_CODE (src
) != IOR
&& GET_CODE (src
) != XOR
)
9835 rhs
= expand_compound_operation (XEXP (src
, 0));
9836 lhs
= expand_compound_operation (XEXP (src
, 1));
9838 if (GET_CODE (rhs
) == AND
9839 && CONST_INT_P (XEXP (rhs
, 1))
9840 && rtx_equal_for_field_assignment_p (XEXP (rhs
, 0), dest
))
9841 c1
= INTVAL (XEXP (rhs
, 1)), other
= lhs
;
9842 /* The second SUBREG that might get in the way is a paradoxical
9843 SUBREG around the first operand of the AND. We want to
9844 pretend the operand is as wide as the destination here. We
9845 do this by adjusting the MEM to wider mode for the sole
9846 purpose of the call to rtx_equal_for_field_assignment_p. Also
9847 note this trick only works for MEMs. */
9848 else if (GET_CODE (rhs
) == AND
9849 && paradoxical_subreg_p (XEXP (rhs
, 0))
9850 && MEM_P (SUBREG_REG (XEXP (rhs
, 0)))
9851 && CONST_INT_P (XEXP (rhs
, 1))
9852 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs
, 0)),
9854 c1
= INTVAL (XEXP (rhs
, 1)), other
= lhs
;
9855 else if (GET_CODE (lhs
) == AND
9856 && CONST_INT_P (XEXP (lhs
, 1))
9857 && rtx_equal_for_field_assignment_p (XEXP (lhs
, 0), dest
))
9858 c1
= INTVAL (XEXP (lhs
, 1)), other
= rhs
;
9859 /* The second SUBREG that might get in the way is a paradoxical
9860 SUBREG around the first operand of the AND. We want to
9861 pretend the operand is as wide as the destination here. We
9862 do this by adjusting the MEM to wider mode for the sole
9863 purpose of the call to rtx_equal_for_field_assignment_p. Also
9864 note this trick only works for MEMs. */
9865 else if (GET_CODE (lhs
) == AND
9866 && paradoxical_subreg_p (XEXP (lhs
, 0))
9867 && MEM_P (SUBREG_REG (XEXP (lhs
, 0)))
9868 && CONST_INT_P (XEXP (lhs
, 1))
9869 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs
, 0)),
9871 c1
= INTVAL (XEXP (lhs
, 1)), other
= rhs
;
9875 pos
= get_pos_from_mask ((~c1
) & GET_MODE_MASK (mode
), &len
);
9877 || pos
+ len
> GET_MODE_PRECISION (mode
)
9878 || GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
9879 || (c1
& nonzero_bits (other
, mode
)) != 0)
9882 assign
= make_extraction (VOIDmode
, dest
, pos
, NULL_RTX
, len
,
9887 /* The mode to use for the source is the mode of the assignment, or of
9888 what is inside a possible STRICT_LOW_PART. */
9889 machine_mode new_mode
= (GET_CODE (assign
) == STRICT_LOW_PART
9890 ? GET_MODE (XEXP (assign
, 0)) : GET_MODE (assign
));
9892 /* Shift OTHER right POS places and make it the source, restricting it
9893 to the proper length and mode. */
9895 src
= canon_reg_for_combine (simplify_shift_const (NULL_RTX
, LSHIFTRT
,
9896 src_mode
, other
, pos
),
9898 src
= force_to_mode (src
, new_mode
,
9899 len
>= HOST_BITS_PER_WIDE_INT
9901 : (HOST_WIDE_INT_1U
<< len
) - 1, false);
9903 /* If SRC is masked by an AND that does not make a difference in
9904 the value being stored, strip it. */
9905 if (GET_CODE (assign
) == ZERO_EXTRACT
9906 && CONST_INT_P (XEXP (assign
, 1))
9907 && INTVAL (XEXP (assign
, 1)) < HOST_BITS_PER_WIDE_INT
9908 && GET_CODE (src
) == AND
9909 && CONST_INT_P (XEXP (src
, 1))
9910 && UINTVAL (XEXP (src
, 1))
9911 == (HOST_WIDE_INT_1U
<< INTVAL (XEXP (assign
, 1))) - 1)
9912 src
= XEXP (src
, 0);
9914 return gen_rtx_SET (assign
, src
);
9917 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9921 apply_distributive_law (rtx x
)
9923 enum rtx_code code
= GET_CODE (x
);
9924 enum rtx_code inner_code
;
9925 rtx lhs
, rhs
, other
;
9928 /* Distributivity is not true for floating point as it can change the
9929 value. So we don't do it unless -funsafe-math-optimizations. */
9930 if (FLOAT_MODE_P (GET_MODE (x
))
9931 && ! flag_unsafe_math_optimizations
)
9934 /* The outer operation can only be one of the following: */
9935 if (code
!= IOR
&& code
!= AND
&& code
!= XOR
9936 && code
!= PLUS
&& code
!= MINUS
)
9942 /* If either operand is a primitive we can't do anything, so get out
9944 if (OBJECT_P (lhs
) || OBJECT_P (rhs
))
9947 lhs
= expand_compound_operation (lhs
);
9948 rhs
= expand_compound_operation (rhs
);
9949 inner_code
= GET_CODE (lhs
);
9950 if (inner_code
!= GET_CODE (rhs
))
9953 /* See if the inner and outer operations distribute. */
9960 /* These all distribute except over PLUS. */
9961 if (code
== PLUS
|| code
== MINUS
)
9966 if (code
!= PLUS
&& code
!= MINUS
)
9971 /* This is also a multiply, so it distributes over everything. */
9974 /* This used to handle SUBREG, but this turned out to be counter-
9975 productive, since (subreg (op ...)) usually is not handled by
9976 insn patterns, and this "optimization" therefore transformed
9977 recognizable patterns into unrecognizable ones. Therefore the
9978 SUBREG case was removed from here.
9980 It is possible that distributing SUBREG over arithmetic operations
9981 leads to an intermediate result than can then be optimized further,
9982 e.g. by moving the outer SUBREG to the other side of a SET as done
9983 in simplify_set. This seems to have been the original intent of
9984 handling SUBREGs here.
9986 However, with current GCC this does not appear to actually happen,
9987 at least on major platforms. If some case is found where removing
9988 the SUBREG case here prevents follow-on optimizations, distributing
9989 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9995 /* Set LHS and RHS to the inner operands (A and B in the example
9996 above) and set OTHER to the common operand (C in the example).
9997 There is only one way to do this unless the inner operation is
9999 if (COMMUTATIVE_ARITH_P (lhs
)
10000 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 0)))
10001 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 1);
10002 else if (COMMUTATIVE_ARITH_P (lhs
)
10003 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 1)))
10004 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 0);
10005 else if (COMMUTATIVE_ARITH_P (lhs
)
10006 && rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 0)))
10007 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 1);
10008 else if (rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 1)))
10009 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 0);
10013 /* Form the new inner operation, seeing if it simplifies first. */
10014 tem
= simplify_gen_binary (code
, GET_MODE (x
), lhs
, rhs
);
10016 /* There is one exception to the general way of distributing:
10017 (a | c) ^ (b | c) -> (a ^ b) & ~c */
10018 if (code
== XOR
&& inner_code
== IOR
)
10021 other
= simplify_gen_unary (NOT
, GET_MODE (x
), other
, GET_MODE (x
));
10024 /* We may be able to continuing distributing the result, so call
10025 ourselves recursively on the inner operation before forming the
10026 outer operation, which we return. */
10027 return simplify_gen_binary (inner_code
, GET_MODE (x
),
10028 apply_distributive_law (tem
), other
);
10031 /* See if X is of the form (* (+ A B) C), and if so convert to
10032 (+ (* A C) (* B C)) and try to simplify.
10034 Most of the time, this results in no change. However, if some of
10035 the operands are the same or inverses of each other, simplifications
10038 For example, (and (ior A B) (not B)) can occur as the result of
10039 expanding a bit field assignment. When we apply the distributive
10040 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
10041 which then simplifies to (and (A (not B))).
10043 Note that no checks happen on the validity of applying the inverse
10044 distributive law. This is pointless since we can do it in the
10045 few places where this routine is called.
10047 N is the index of the term that is decomposed (the arithmetic operation,
10048 i.e. (+ A B) in the first example above). !N is the index of the term that
10049 is distributed, i.e. of C in the first example above. */
10051 distribute_and_simplify_rtx (rtx x
, int n
)
10054 enum rtx_code outer_code
, inner_code
;
10055 rtx decomposed
, distributed
, inner_op0
, inner_op1
, new_op0
, new_op1
, tmp
;
10057 /* Distributivity is not true for floating point as it can change the
10058 value. So we don't do it unless -funsafe-math-optimizations. */
10059 if (FLOAT_MODE_P (GET_MODE (x
))
10060 && ! flag_unsafe_math_optimizations
)
10063 decomposed
= XEXP (x
, n
);
10064 if (!ARITHMETIC_P (decomposed
))
10067 mode
= GET_MODE (x
);
10068 outer_code
= GET_CODE (x
);
10069 distributed
= XEXP (x
, !n
);
10071 inner_code
= GET_CODE (decomposed
);
10072 inner_op0
= XEXP (decomposed
, 0);
10073 inner_op1
= XEXP (decomposed
, 1);
10075 /* Special case (and (xor B C) (not A)), which is equivalent to
10076 (xor (ior A B) (ior A C)) */
10077 if (outer_code
== AND
&& inner_code
== XOR
&& GET_CODE (distributed
) == NOT
)
10079 distributed
= XEXP (distributed
, 0);
10085 /* Distribute the second term. */
10086 new_op0
= simplify_gen_binary (outer_code
, mode
, inner_op0
, distributed
);
10087 new_op1
= simplify_gen_binary (outer_code
, mode
, inner_op1
, distributed
);
10091 /* Distribute the first term. */
10092 new_op0
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op0
);
10093 new_op1
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op1
);
10096 tmp
= apply_distributive_law (simplify_gen_binary (inner_code
, mode
,
10097 new_op0
, new_op1
));
10098 if (GET_CODE (tmp
) != outer_code
10099 && (set_src_cost (tmp
, mode
, optimize_this_for_speed_p
)
10100 < set_src_cost (x
, mode
, optimize_this_for_speed_p
)))
10106 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10107 in MODE. Return an equivalent form, if different from (and VAROP
10108 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
10111 simplify_and_const_int_1 (scalar_int_mode mode
, rtx varop
,
10112 unsigned HOST_WIDE_INT constop
)
10114 unsigned HOST_WIDE_INT nonzero
;
10115 unsigned HOST_WIDE_INT orig_constop
;
10119 orig_varop
= varop
;
10120 orig_constop
= constop
;
10121 if (GET_CODE (varop
) == CLOBBER
)
10124 /* Simplify VAROP knowing that we will be only looking at some of the
10127 Note by passing in CONSTOP, we guarantee that the bits not set in
10128 CONSTOP are not significant and will never be examined. We must
10129 ensure that is the case by explicitly masking out those bits
10130 before returning. */
10131 varop
= force_to_mode (varop
, mode
, constop
, false);
10133 /* If VAROP is a CLOBBER, we will fail so return it. */
10134 if (GET_CODE (varop
) == CLOBBER
)
10137 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10138 to VAROP and return the new constant. */
10139 if (CONST_INT_P (varop
))
10140 return gen_int_mode (INTVAL (varop
) & constop
, mode
);
10142 /* See what bits may be nonzero in VAROP. Unlike the general case of
10143 a call to nonzero_bits, here we don't care about bits outside
10144 MODE unless WORD_REGISTER_OPERATIONS is true. */
10146 scalar_int_mode tmode
= mode
;
10147 if (WORD_REGISTER_OPERATIONS
&& GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
)
10149 nonzero
= nonzero_bits (varop
, tmode
) & GET_MODE_MASK (tmode
);
10151 /* Turn off all bits in the constant that are known to already be zero.
10152 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10153 which is tested below. */
10155 constop
&= nonzero
;
10157 /* If we don't have any bits left, return zero. */
10158 if (constop
== 0 && !side_effects_p (varop
))
10161 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10162 a power of two, we can replace this with an ASHIFT. */
10163 if (GET_CODE (varop
) == NEG
&& nonzero_bits (XEXP (varop
, 0), tmode
) == 1
10164 && (i
= exact_log2 (constop
)) >= 0)
10165 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (varop
, 0), i
);
10167 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10168 or XOR, then try to apply the distributive law. This may eliminate
10169 operations if either branch can be simplified because of the AND.
10170 It may also make some cases more complex, but those cases probably
10171 won't match a pattern either with or without this. */
10173 if (GET_CODE (varop
) == IOR
|| GET_CODE (varop
) == XOR
)
10175 scalar_int_mode varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
10179 apply_distributive_law
10180 (simplify_gen_binary (GET_CODE (varop
), varop_mode
,
10181 simplify_and_const_int (NULL_RTX
, varop_mode
,
10184 simplify_and_const_int (NULL_RTX
, varop_mode
,
10189 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10190 the AND and see if one of the operands simplifies to zero. If so, we
10191 may eliminate it. */
10193 if (GET_CODE (varop
) == PLUS
10194 && pow2p_hwi (constop
+ 1))
10198 o0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 0), constop
);
10199 o1
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 1), constop
);
10200 if (o0
== const0_rtx
)
10202 if (o1
== const0_rtx
)
10206 /* Make a SUBREG if necessary. If we can't make it, fail. */
10207 varop
= gen_lowpart (mode
, varop
);
10208 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
10211 /* If we are only masking insignificant bits, return VAROP. */
10212 if (constop
== nonzero
)
10215 if (varop
== orig_varop
&& constop
== orig_constop
)
10218 /* Otherwise, return an AND. */
10219 return simplify_gen_binary (AND
, mode
, varop
, gen_int_mode (constop
, mode
));
10223 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10226 Return an equivalent form, if different from X. Otherwise, return X. If
10227 X is zero, we are to always construct the equivalent form. */
10230 simplify_and_const_int (rtx x
, scalar_int_mode mode
, rtx varop
,
10231 unsigned HOST_WIDE_INT constop
)
10233 rtx tem
= simplify_and_const_int_1 (mode
, varop
, constop
);
10238 x
= simplify_gen_binary (AND
, GET_MODE (varop
), varop
,
10239 gen_int_mode (constop
, mode
));
10240 if (GET_MODE (x
) != mode
)
10241 x
= gen_lowpart (mode
, x
);
10245 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10246 We don't care about bits outside of those defined in MODE.
10247 We DO care about all the bits in MODE, even if XMODE is smaller than MODE.
10249 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10250 a shift, AND, or zero_extract, we can do better. */
10253 reg_nonzero_bits_for_combine (const_rtx x
, scalar_int_mode xmode
,
10254 scalar_int_mode mode
,
10255 unsigned HOST_WIDE_INT
*nonzero
)
10258 reg_stat_type
*rsp
;
10260 /* If X is a register whose nonzero bits value is current, use it.
10261 Otherwise, if X is a register whose value we can find, use that
10262 value. Otherwise, use the previously-computed global nonzero bits
10263 for this register. */
10265 rsp
= ®_stat
[REGNO (x
)];
10266 if (rsp
->last_set_value
!= 0
10267 && (rsp
->last_set_mode
== mode
10268 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
10269 && GET_MODE_CLASS (rsp
->last_set_mode
) == MODE_INT
10270 && GET_MODE_CLASS (mode
) == MODE_INT
))
10271 && ((rsp
->last_set_label
>= label_tick_ebb_start
10272 && rsp
->last_set_label
< label_tick
)
10273 || (rsp
->last_set_label
== label_tick
10274 && DF_INSN_LUID (rsp
->last_set
) < subst_low_luid
)
10275 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
10276 && REGNO (x
) < reg_n_sets_max
10277 && REG_N_SETS (REGNO (x
)) == 1
10278 && !REGNO_REG_SET_P
10279 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
10282 /* Note that, even if the precision of last_set_mode is lower than that
10283 of mode, record_value_for_reg invoked nonzero_bits on the register
10284 with nonzero_bits_mode (because last_set_mode is necessarily integral
10285 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10286 are all valid, hence in mode too since nonzero_bits_mode is defined
10287 to the largest HWI_COMPUTABLE_MODE_P mode. */
10288 *nonzero
&= rsp
->last_set_nonzero_bits
;
10292 tem
= get_last_value (x
);
10295 if (SHORT_IMMEDIATES_SIGN_EXTEND
)
10296 tem
= sign_extend_short_imm (tem
, xmode
, GET_MODE_PRECISION (mode
));
10301 if (nonzero_sign_valid
&& rsp
->nonzero_bits
)
10303 unsigned HOST_WIDE_INT mask
= rsp
->nonzero_bits
;
10305 if (GET_MODE_PRECISION (xmode
) < GET_MODE_PRECISION (mode
))
10306 /* We don't know anything about the upper bits. */
10307 mask
|= GET_MODE_MASK (mode
) ^ GET_MODE_MASK (xmode
);
10315 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10316 end of X that are known to be equal to the sign bit. X will be used
10317 in mode MODE; the returned value will always be between 1 and the
10318 number of bits in MODE. */
10321 reg_num_sign_bit_copies_for_combine (const_rtx x
, scalar_int_mode xmode
,
10322 scalar_int_mode mode
,
10323 unsigned int *result
)
10326 reg_stat_type
*rsp
;
10328 rsp
= ®_stat
[REGNO (x
)];
10329 if (rsp
->last_set_value
!= 0
10330 && rsp
->last_set_mode
== mode
10331 && ((rsp
->last_set_label
>= label_tick_ebb_start
10332 && rsp
->last_set_label
< label_tick
)
10333 || (rsp
->last_set_label
== label_tick
10334 && DF_INSN_LUID (rsp
->last_set
) < subst_low_luid
)
10335 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
10336 && REGNO (x
) < reg_n_sets_max
10337 && REG_N_SETS (REGNO (x
)) == 1
10338 && !REGNO_REG_SET_P
10339 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
10342 *result
= rsp
->last_set_sign_bit_copies
;
10346 tem
= get_last_value (x
);
10350 if (nonzero_sign_valid
&& rsp
->sign_bit_copies
!= 0
10351 && GET_MODE_PRECISION (xmode
) == GET_MODE_PRECISION (mode
))
10352 *result
= rsp
->sign_bit_copies
;
10357 /* Return the number of "extended" bits there are in X, when interpreted
10358 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10359 unsigned quantities, this is the number of high-order zero bits.
10360 For signed quantities, this is the number of copies of the sign bit
10361 minus 1. In both case, this function returns the number of "spare"
10362 bits. For example, if two quantities for which this function returns
10363 at least 1 are added, the addition is known not to overflow.
10365 This function will always return 0 unless called during combine, which
10366 implies that it must be called from a define_split. */
10369 extended_count (const_rtx x
, machine_mode mode
, bool unsignedp
)
10371 if (nonzero_sign_valid
== 0)
10374 scalar_int_mode int_mode
;
10376 ? (is_a
<scalar_int_mode
> (mode
, &int_mode
)
10377 && HWI_COMPUTABLE_MODE_P (int_mode
)
10378 ? (unsigned int) (GET_MODE_PRECISION (int_mode
) - 1
10379 - floor_log2 (nonzero_bits (x
, int_mode
)))
10381 : num_sign_bit_copies (x
, mode
) - 1);
10384 /* This function is called from `simplify_shift_const' to merge two
10385 outer operations. Specifically, we have already found that we need
10386 to perform operation *POP0 with constant *PCONST0 at the outermost
10387 position. We would now like to also perform OP1 with constant CONST1
10388 (with *POP0 being done last).
10390 Return true if we can do the operation and update *POP0 and *PCONST0 with
10391 the resulting operation. *PCOMP_P is set to true if we would need to
10392 complement the innermost operand, otherwise it is unchanged.
10394 MODE is the mode in which the operation will be done. No bits outside
10395 the width of this mode matter. It is assumed that the width of this mode
10396 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10398 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10399 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10400 result is simply *PCONST0.
10402 If the resulting operation cannot be expressed as one operation, we
10403 return false and do not change *POP0, *PCONST0, and *PCOMP_P. */
10406 merge_outer_ops (enum rtx_code
*pop0
, HOST_WIDE_INT
*pconst0
,
10407 enum rtx_code op1
, HOST_WIDE_INT const1
,
10408 machine_mode mode
, bool *pcomp_p
)
10410 enum rtx_code op0
= *pop0
;
10411 HOST_WIDE_INT const0
= *pconst0
;
10413 const0
&= GET_MODE_MASK (mode
);
10414 const1
&= GET_MODE_MASK (mode
);
10416 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10420 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10423 if (op1
== UNKNOWN
|| op0
== SET
)
10426 else if (op0
== UNKNOWN
)
10427 op0
= op1
, const0
= const1
;
10429 else if (op0
== op1
)
10453 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10454 else if (op0
== PLUS
|| op1
== PLUS
|| op0
== NEG
|| op1
== NEG
)
10457 /* If the two constants aren't the same, we can't do anything. The
10458 remaining six cases can all be done. */
10459 else if (const0
!= const1
)
10467 /* (a & b) | b == b */
10469 else /* op1 == XOR */
10470 /* (a ^ b) | b == a | b */
10476 /* (a & b) ^ b == (~a) & b */
10477 op0
= AND
, *pcomp_p
= true;
10478 else /* op1 == IOR */
10479 /* (a | b) ^ b == a & ~b */
10480 op0
= AND
, const0
= ~const0
;
10485 /* (a | b) & b == b */
10487 else /* op1 == XOR */
10488 /* (a ^ b) & b) == (~a) & b */
10495 /* Check for NO-OP cases. */
10496 const0
&= GET_MODE_MASK (mode
);
10498 && (op0
== IOR
|| op0
== XOR
|| op0
== PLUS
))
10500 else if (const0
== 0 && op0
== AND
)
10502 else if ((unsigned HOST_WIDE_INT
) const0
== GET_MODE_MASK (mode
)
10508 /* ??? Slightly redundant with the above mask, but not entirely.
10509 Moving this above means we'd have to sign-extend the mode mask
10510 for the final test. */
10511 if (op0
!= UNKNOWN
&& op0
!= NEG
)
10512 *pconst0
= trunc_int_for_mode (const0
, mode
);
10517 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10518 the shift in. The original shift operation CODE is performed on OP in
10519 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10520 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10521 result of the shift is subject to operation OUTER_CODE with operand
10524 static scalar_int_mode
10525 try_widen_shift_mode (enum rtx_code code
, rtx op
, int count
,
10526 scalar_int_mode orig_mode
, scalar_int_mode mode
,
10527 enum rtx_code outer_code
, HOST_WIDE_INT outer_const
)
10529 gcc_assert (GET_MODE_PRECISION (mode
) > GET_MODE_PRECISION (orig_mode
));
10531 /* In general we can't perform in wider mode for right shift and rotate. */
10535 /* We can still widen if the bits brought in from the left are identical
10536 to the sign bit of ORIG_MODE. */
10537 if (num_sign_bit_copies (op
, mode
)
10538 > (unsigned) (GET_MODE_PRECISION (mode
)
10539 - GET_MODE_PRECISION (orig_mode
)))
10544 /* Similarly here but with zero bits. */
10545 if (HWI_COMPUTABLE_MODE_P (mode
)
10546 && (nonzero_bits (op
, mode
) & ~GET_MODE_MASK (orig_mode
)) == 0)
10549 /* We can also widen if the bits brought in will be masked off. This
10550 operation is performed in ORIG_MODE. */
10551 if (outer_code
== AND
)
10553 int care_bits
= low_bitmask_len (orig_mode
, outer_const
);
10556 && GET_MODE_PRECISION (orig_mode
) - care_bits
>= count
)
10565 gcc_unreachable ();
10572 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10573 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10574 if we cannot simplify it. Otherwise, return a simplified value.
10576 The shift is normally computed in the widest mode we find in VAROP, as
10577 long as it isn't a different number of words than RESULT_MODE. Exceptions
10578 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10581 simplify_shift_const_1 (enum rtx_code code
, machine_mode result_mode
,
10582 rtx varop
, int orig_count
)
10584 enum rtx_code orig_code
= code
;
10585 rtx orig_varop
= varop
;
10587 machine_mode mode
= result_mode
;
10588 machine_mode shift_mode
;
10589 scalar_int_mode tmode
, inner_mode
, int_mode
, int_varop_mode
, int_result_mode
;
10590 /* We form (outer_op (code varop count) (outer_const)). */
10591 enum rtx_code outer_op
= UNKNOWN
;
10592 HOST_WIDE_INT outer_const
= 0;
10593 bool complement_p
= false;
10596 /* Make sure and truncate the "natural" shift on the way in. We don't
10597 want to do this inside the loop as it makes it more difficult to
10599 if (SHIFT_COUNT_TRUNCATED
)
10600 orig_count
&= GET_MODE_UNIT_BITSIZE (mode
) - 1;
10602 /* If we were given an invalid count, don't do anything except exactly
10603 what was requested. */
10605 if (orig_count
< 0 || orig_count
>= (int) GET_MODE_UNIT_PRECISION (mode
))
10608 count
= orig_count
;
10610 /* Unless one of the branches of the `if' in this loop does a `continue',
10611 we will `break' the loop after the `if'. */
10615 /* If we have an operand of (clobber (const_int 0)), fail. */
10616 if (GET_CODE (varop
) == CLOBBER
)
10619 /* Convert ROTATERT to ROTATE. */
10620 if (code
== ROTATERT
)
10622 unsigned int bitsize
= GET_MODE_UNIT_PRECISION (result_mode
);
10624 count
= bitsize
- count
;
10627 shift_mode
= result_mode
;
10628 if (shift_mode
!= mode
)
10630 /* We only change the modes of scalar shifts. */
10631 int_mode
= as_a
<scalar_int_mode
> (mode
);
10632 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
10633 shift_mode
= try_widen_shift_mode (code
, varop
, count
,
10634 int_result_mode
, int_mode
,
10635 outer_op
, outer_const
);
10638 scalar_int_mode shift_unit_mode
10639 = as_a
<scalar_int_mode
> (GET_MODE_INNER (shift_mode
));
10641 /* Handle cases where the count is greater than the size of the mode
10642 minus 1. For ASHIFT, use the size minus one as the count (this can
10643 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10644 take the count modulo the size. For other shifts, the result is
10647 Since these shifts are being produced by the compiler by combining
10648 multiple operations, each of which are defined, we know what the
10649 result is supposed to be. */
10651 if (count
> (GET_MODE_PRECISION (shift_unit_mode
) - 1))
10653 if (code
== ASHIFTRT
)
10654 count
= GET_MODE_PRECISION (shift_unit_mode
) - 1;
10655 else if (code
== ROTATE
|| code
== ROTATERT
)
10656 count
%= GET_MODE_PRECISION (shift_unit_mode
);
10659 /* We can't simply return zero because there may be an
10661 varop
= const0_rtx
;
10667 /* If we discovered we had to complement VAROP, leave. Making a NOT
10668 here would cause an infinite loop. */
10672 if (shift_mode
== shift_unit_mode
)
10674 /* An arithmetic right shift of a quantity known to be -1 or 0
10676 if (code
== ASHIFTRT
10677 && (num_sign_bit_copies (varop
, shift_unit_mode
)
10678 == GET_MODE_PRECISION (shift_unit_mode
)))
10684 /* If we are doing an arithmetic right shift and discarding all but
10685 the sign bit copies, this is equivalent to doing a shift by the
10686 bitsize minus one. Convert it into that shift because it will
10687 often allow other simplifications. */
10689 if (code
== ASHIFTRT
10690 && (count
+ num_sign_bit_copies (varop
, shift_unit_mode
)
10691 >= GET_MODE_PRECISION (shift_unit_mode
)))
10692 count
= GET_MODE_PRECISION (shift_unit_mode
) - 1;
10694 /* We simplify the tests below and elsewhere by converting
10695 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10696 `make_compound_operation' will convert it to an ASHIFTRT for
10697 those machines (such as VAX) that don't have an LSHIFTRT. */
10698 if (code
== ASHIFTRT
10699 && HWI_COMPUTABLE_MODE_P (shift_unit_mode
)
10700 && val_signbit_known_clear_p (shift_unit_mode
,
10701 nonzero_bits (varop
,
10705 if (((code
== LSHIFTRT
10706 && HWI_COMPUTABLE_MODE_P (shift_unit_mode
)
10707 && !(nonzero_bits (varop
, shift_unit_mode
) >> count
))
10709 && HWI_COMPUTABLE_MODE_P (shift_unit_mode
)
10710 && !((nonzero_bits (varop
, shift_unit_mode
) << count
)
10711 & GET_MODE_MASK (shift_unit_mode
))))
10712 && !side_effects_p (varop
))
10713 varop
= const0_rtx
;
10716 switch (GET_CODE (varop
))
10722 new_rtx
= expand_compound_operation (varop
);
10723 if (new_rtx
!= varop
)
10731 /* The following rules apply only to scalars. */
10732 if (shift_mode
!= shift_unit_mode
)
10734 int_mode
= as_a
<scalar_int_mode
> (mode
);
10736 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10737 minus the width of a smaller mode, we can do this with a
10738 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10739 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10740 && ! mode_dependent_address_p (XEXP (varop
, 0),
10741 MEM_ADDR_SPACE (varop
))
10742 && ! MEM_VOLATILE_P (varop
)
10743 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode
) - count
, 1)
10746 new_rtx
= adjust_address_nv (varop
, tmode
,
10747 BYTES_BIG_ENDIAN
? 0
10748 : count
/ BITS_PER_UNIT
);
10750 varop
= gen_rtx_fmt_e (code
== ASHIFTRT
? SIGN_EXTEND
10751 : ZERO_EXTEND
, int_mode
, new_rtx
);
10758 /* The following rules apply only to scalars. */
10759 if (shift_mode
!= shift_unit_mode
)
10761 int_mode
= as_a
<scalar_int_mode
> (mode
);
10762 int_varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
10764 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10765 the same number of words as what we've seen so far. Then store
10766 the widest mode in MODE. */
10767 if (subreg_lowpart_p (varop
)
10768 && is_int_mode (GET_MODE (SUBREG_REG (varop
)), &inner_mode
)
10769 && GET_MODE_SIZE (inner_mode
) > GET_MODE_SIZE (int_varop_mode
)
10770 && (CEIL (GET_MODE_SIZE (inner_mode
), UNITS_PER_WORD
)
10771 == CEIL (GET_MODE_SIZE (int_mode
), UNITS_PER_WORD
))
10772 && GET_MODE_CLASS (int_varop_mode
) == MODE_INT
)
10774 varop
= SUBREG_REG (varop
);
10775 if (GET_MODE_SIZE (inner_mode
) > GET_MODE_SIZE (int_mode
))
10782 /* Some machines use MULT instead of ASHIFT because MULT
10783 is cheaper. But it is still better on those machines to
10784 merge two shifts into one. */
10785 if (CONST_INT_P (XEXP (varop
, 1))
10786 && (log2
= exact_log2 (UINTVAL (XEXP (varop
, 1)))) >= 0)
10788 rtx log2_rtx
= gen_int_shift_amount (GET_MODE (varop
), log2
);
10789 varop
= simplify_gen_binary (ASHIFT
, GET_MODE (varop
),
10790 XEXP (varop
, 0), log2_rtx
);
10796 /* Similar, for when divides are cheaper. */
10797 if (CONST_INT_P (XEXP (varop
, 1))
10798 && (log2
= exact_log2 (UINTVAL (XEXP (varop
, 1)))) >= 0)
10800 rtx log2_rtx
= gen_int_shift_amount (GET_MODE (varop
), log2
);
10801 varop
= simplify_gen_binary (LSHIFTRT
, GET_MODE (varop
),
10802 XEXP (varop
, 0), log2_rtx
);
10808 /* If we are extracting just the sign bit of an arithmetic
10809 right shift, that shift is not needed. However, the sign
10810 bit of a wider mode may be different from what would be
10811 interpreted as the sign bit in a narrower mode, so, if
10812 the result is narrower, don't discard the shift. */
10813 if (code
== LSHIFTRT
10814 && count
== (GET_MODE_UNIT_BITSIZE (result_mode
) - 1)
10815 && (GET_MODE_UNIT_BITSIZE (result_mode
)
10816 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop
))))
10818 varop
= XEXP (varop
, 0);
10827 /* The following rules apply only to scalars. */
10828 if (shift_mode
!= shift_unit_mode
)
10830 int_mode
= as_a
<scalar_int_mode
> (mode
);
10831 int_varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
10832 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
10834 /* Here we have two nested shifts. The result is usually the
10835 AND of a new shift with a mask. We compute the result below. */
10836 if (CONST_INT_P (XEXP (varop
, 1))
10837 && INTVAL (XEXP (varop
, 1)) >= 0
10838 && INTVAL (XEXP (varop
, 1)) < GET_MODE_PRECISION (int_varop_mode
)
10839 && HWI_COMPUTABLE_MODE_P (int_result_mode
)
10840 && HWI_COMPUTABLE_MODE_P (int_mode
))
10842 enum rtx_code first_code
= GET_CODE (varop
);
10843 unsigned int first_count
= INTVAL (XEXP (varop
, 1));
10844 unsigned HOST_WIDE_INT mask
;
10847 /* We have one common special case. We can't do any merging if
10848 the inner code is an ASHIFTRT of a smaller mode. However, if
10849 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10850 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10851 we can convert it to
10852 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10853 This simplifies certain SIGN_EXTEND operations. */
10854 if (code
== ASHIFT
&& first_code
== ASHIFTRT
10855 && count
== (GET_MODE_PRECISION (int_result_mode
)
10856 - GET_MODE_PRECISION (int_varop_mode
)))
10858 /* C3 has the low-order C1 bits zero. */
10860 mask
= GET_MODE_MASK (int_mode
)
10861 & ~((HOST_WIDE_INT_1U
<< first_count
) - 1);
10863 varop
= simplify_and_const_int (NULL_RTX
, int_result_mode
,
10864 XEXP (varop
, 0), mask
);
10865 varop
= simplify_shift_const (NULL_RTX
, ASHIFT
,
10866 int_result_mode
, varop
, count
);
10867 count
= first_count
;
10872 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10873 than C1 high-order bits equal to the sign bit, we can convert
10874 this to either an ASHIFT or an ASHIFTRT depending on the
10877 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10879 if (code
== ASHIFTRT
&& first_code
== ASHIFT
10880 && int_varop_mode
== shift_unit_mode
10881 && (num_sign_bit_copies (XEXP (varop
, 0), shift_unit_mode
)
10884 varop
= XEXP (varop
, 0);
10885 count
-= first_count
;
10895 /* There are some cases we can't do. If CODE is ASHIFTRT,
10896 we can only do this if FIRST_CODE is also ASHIFTRT.
10898 We can't do the case when CODE is ROTATE and FIRST_CODE is
10901 If the mode of this shift is not the mode of the outer shift,
10902 we can't do this if either shift is a right shift or ROTATE.
10904 Finally, we can't do any of these if the mode is too wide
10905 unless the codes are the same.
10907 Handle the case where the shift codes are the same
10910 if (code
== first_code
)
10912 if (int_varop_mode
!= int_result_mode
10913 && (code
== ASHIFTRT
|| code
== LSHIFTRT
10914 || code
== ROTATE
))
10917 count
+= first_count
;
10918 varop
= XEXP (varop
, 0);
10922 if (code
== ASHIFTRT
10923 || (code
== ROTATE
&& first_code
== ASHIFTRT
)
10924 || GET_MODE_PRECISION (int_mode
) > HOST_BITS_PER_WIDE_INT
10925 || (int_varop_mode
!= int_result_mode
10926 && (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
10927 || first_code
== ROTATE
10928 || code
== ROTATE
)))
10931 /* To compute the mask to apply after the shift, shift the
10932 nonzero bits of the inner shift the same way the
10933 outer shift will. */
10935 mask_rtx
= gen_int_mode (nonzero_bits (varop
, int_varop_mode
),
10937 rtx count_rtx
= gen_int_shift_amount (int_result_mode
, count
);
10939 = simplify_const_binary_operation (code
, int_result_mode
,
10940 mask_rtx
, count_rtx
);
10942 /* Give up if we can't compute an outer operation to use. */
10944 || !CONST_INT_P (mask_rtx
)
10945 || ! merge_outer_ops (&outer_op
, &outer_const
, AND
,
10947 int_result_mode
, &complement_p
))
10950 /* If the shifts are in the same direction, we add the
10951 counts. Otherwise, we subtract them. */
10952 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10953 == (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
))
10954 count
+= first_count
;
10956 count
-= first_count
;
10958 /* If COUNT is positive, the new shift is usually CODE,
10959 except for the two exceptions below, in which case it is
10960 FIRST_CODE. If the count is negative, FIRST_CODE should
10963 && ((first_code
== ROTATE
&& code
== ASHIFT
)
10964 || (first_code
== ASHIFTRT
&& code
== LSHIFTRT
)))
10966 else if (count
< 0)
10967 code
= first_code
, count
= -count
;
10969 varop
= XEXP (varop
, 0);
10973 /* If we have (A << B << C) for any shift, we can convert this to
10974 (A << C << B). This wins if A is a constant. Only try this if
10975 B is not a constant. */
10977 else if (GET_CODE (varop
) == code
10978 && CONST_INT_P (XEXP (varop
, 0))
10979 && !CONST_INT_P (XEXP (varop
, 1)))
10981 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10982 sure the result will be masked. See PR70222. */
10983 if (code
== LSHIFTRT
10984 && int_mode
!= int_result_mode
10985 && !merge_outer_ops (&outer_op
, &outer_const
, AND
,
10986 GET_MODE_MASK (int_result_mode
)
10987 >> orig_count
, int_result_mode
,
10990 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10991 up outer sign extension (often left and right shift) is
10992 hardly more efficient than the original. See PR70429.
10993 Similarly punt for rotates with different modes.
10995 if ((code
== ASHIFTRT
|| code
== ROTATE
)
10996 && int_mode
!= int_result_mode
)
10999 rtx count_rtx
= gen_int_shift_amount (int_result_mode
, count
);
11000 rtx new_rtx
= simplify_const_binary_operation (code
, int_mode
,
11003 varop
= gen_rtx_fmt_ee (code
, int_mode
, new_rtx
, XEXP (varop
, 1));
11010 /* The following rules apply only to scalars. */
11011 if (shift_mode
!= shift_unit_mode
)
11014 /* Make this fit the case below. */
11015 varop
= gen_rtx_XOR (mode
, XEXP (varop
, 0), constm1_rtx
);
11021 /* The following rules apply only to scalars. */
11022 if (shift_mode
!= shift_unit_mode
)
11024 int_varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
11025 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11027 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
11028 with C the size of VAROP - 1 and the shift is logical if
11029 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11030 we have an (le X 0) operation. If we have an arithmetic shift
11031 and STORE_FLAG_VALUE is 1 or we have a logical shift with
11032 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
11034 if (GET_CODE (varop
) == IOR
&& GET_CODE (XEXP (varop
, 0)) == PLUS
11035 && XEXP (XEXP (varop
, 0), 1) == constm1_rtx
11036 && (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
11037 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
11038 && count
== (GET_MODE_PRECISION (int_varop_mode
) - 1)
11039 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
11042 varop
= gen_rtx_LE (int_varop_mode
, XEXP (varop
, 1),
11045 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
11046 varop
= gen_rtx_NEG (int_varop_mode
, varop
);
11051 /* If we have (shift (logical)), move the logical to the outside
11052 to allow it to possibly combine with another logical and the
11053 shift to combine with another shift. This also canonicalizes to
11054 what a ZERO_EXTRACT looks like. Also, some machines have
11055 (and (shift)) insns. */
11057 if (CONST_INT_P (XEXP (varop
, 1))
11058 /* We can't do this if we have (ashiftrt (xor)) and the
11059 constant has its sign bit set in shift_unit_mode with
11060 shift_unit_mode wider than result_mode. */
11061 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
11062 && int_result_mode
!= shift_unit_mode
11063 && trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
11064 shift_unit_mode
) < 0)
11065 && (new_rtx
= simplify_const_binary_operation
11066 (code
, int_result_mode
,
11067 gen_int_mode (INTVAL (XEXP (varop
, 1)), int_result_mode
),
11068 gen_int_shift_amount (int_result_mode
, count
))) != 0
11069 && CONST_INT_P (new_rtx
)
11070 && merge_outer_ops (&outer_op
, &outer_const
, GET_CODE (varop
),
11071 INTVAL (new_rtx
), int_result_mode
,
11074 varop
= XEXP (varop
, 0);
11078 /* If we can't do that, try to simplify the shift in each arm of the
11079 logical expression, make a new logical expression, and apply
11080 the inverse distributive law. This also can't be done for
11081 (ashiftrt (xor)) where we've widened the shift and the constant
11082 changes the sign bit. */
11083 if (CONST_INT_P (XEXP (varop
, 1))
11084 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
11085 && int_result_mode
!= shift_unit_mode
11086 && trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
11087 shift_unit_mode
) < 0))
11089 rtx lhs
= simplify_shift_const (NULL_RTX
, code
, shift_unit_mode
,
11090 XEXP (varop
, 0), count
);
11091 rtx rhs
= simplify_shift_const (NULL_RTX
, code
, shift_unit_mode
,
11092 XEXP (varop
, 1), count
);
11094 varop
= simplify_gen_binary (GET_CODE (varop
), shift_unit_mode
,
11096 varop
= apply_distributive_law (varop
);
11104 /* The following rules apply only to scalars. */
11105 if (shift_mode
!= shift_unit_mode
)
11107 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11109 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11110 says that the sign bit can be tested, FOO has mode MODE, C is
11111 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11112 that may be nonzero. */
11113 if (code
== LSHIFTRT
11114 && XEXP (varop
, 1) == const0_rtx
11115 && GET_MODE (XEXP (varop
, 0)) == int_result_mode
11116 && count
== (GET_MODE_PRECISION (int_result_mode
) - 1)
11117 && HWI_COMPUTABLE_MODE_P (int_result_mode
)
11118 && STORE_FLAG_VALUE
== -1
11119 && nonzero_bits (XEXP (varop
, 0), int_result_mode
) == 1
11120 && merge_outer_ops (&outer_op
, &outer_const
, XOR
, 1,
11121 int_result_mode
, &complement_p
))
11123 varop
= XEXP (varop
, 0);
11130 /* The following rules apply only to scalars. */
11131 if (shift_mode
!= shift_unit_mode
)
11133 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11135 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11136 than the number of bits in the mode is equivalent to A. */
11137 if (code
== LSHIFTRT
11138 && count
== (GET_MODE_PRECISION (int_result_mode
) - 1)
11139 && nonzero_bits (XEXP (varop
, 0), int_result_mode
) == 1)
11141 varop
= XEXP (varop
, 0);
11146 /* NEG commutes with ASHIFT since it is multiplication. Move the
11147 NEG outside to allow shifts to combine. */
11149 && merge_outer_ops (&outer_op
, &outer_const
, NEG
, 0,
11150 int_result_mode
, &complement_p
))
11152 varop
= XEXP (varop
, 0);
11158 /* The following rules apply only to scalars. */
11159 if (shift_mode
!= shift_unit_mode
)
11161 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11163 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11164 is one less than the number of bits in the mode is
11165 equivalent to (xor A 1). */
11166 if (code
== LSHIFTRT
11167 && count
== (GET_MODE_PRECISION (int_result_mode
) - 1)
11168 && XEXP (varop
, 1) == constm1_rtx
11169 && nonzero_bits (XEXP (varop
, 0), int_result_mode
) == 1
11170 && merge_outer_ops (&outer_op
, &outer_const
, XOR
, 1,
11171 int_result_mode
, &complement_p
))
11174 varop
= XEXP (varop
, 0);
11178 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11179 that might be nonzero in BAR are those being shifted out and those
11180 bits are known zero in FOO, we can replace the PLUS with FOO.
11181 Similarly in the other operand order. This code occurs when
11182 we are computing the size of a variable-size array. */
11184 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
11185 && count
< HOST_BITS_PER_WIDE_INT
11186 && nonzero_bits (XEXP (varop
, 1), int_result_mode
) >> count
== 0
11187 && (nonzero_bits (XEXP (varop
, 1), int_result_mode
)
11188 & nonzero_bits (XEXP (varop
, 0), int_result_mode
)) == 0)
11190 varop
= XEXP (varop
, 0);
11193 else if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
11194 && count
< HOST_BITS_PER_WIDE_INT
11195 && HWI_COMPUTABLE_MODE_P (int_result_mode
)
11196 && (nonzero_bits (XEXP (varop
, 0), int_result_mode
)
11198 && (nonzero_bits (XEXP (varop
, 0), int_result_mode
)
11199 & nonzero_bits (XEXP (varop
, 1), int_result_mode
)) == 0)
11201 varop
= XEXP (varop
, 1);
11205 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11207 && CONST_INT_P (XEXP (varop
, 1))
11208 && (new_rtx
= simplify_const_binary_operation
11209 (ASHIFT
, int_result_mode
,
11210 gen_int_mode (INTVAL (XEXP (varop
, 1)), int_result_mode
),
11211 gen_int_shift_amount (int_result_mode
, count
))) != 0
11212 && CONST_INT_P (new_rtx
)
11213 && merge_outer_ops (&outer_op
, &outer_const
, PLUS
,
11214 INTVAL (new_rtx
), int_result_mode
,
11217 varop
= XEXP (varop
, 0);
11221 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11222 signbit', and attempt to change the PLUS to an XOR and move it to
11223 the outer operation as is done above in the AND/IOR/XOR case
11224 leg for shift(logical). See details in logical handling above
11225 for reasoning in doing so. */
11226 if (code
== LSHIFTRT
11227 && CONST_INT_P (XEXP (varop
, 1))
11228 && mode_signbit_p (int_result_mode
, XEXP (varop
, 1))
11229 && (new_rtx
= simplify_const_binary_operation
11230 (code
, int_result_mode
,
11231 gen_int_mode (INTVAL (XEXP (varop
, 1)), int_result_mode
),
11232 gen_int_shift_amount (int_result_mode
, count
))) != 0
11233 && CONST_INT_P (new_rtx
)
11234 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
11235 INTVAL (new_rtx
), int_result_mode
,
11238 varop
= XEXP (varop
, 0);
11245 /* The following rules apply only to scalars. */
11246 if (shift_mode
!= shift_unit_mode
)
11248 int_varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
11250 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11251 with C the size of VAROP - 1 and the shift is logical if
11252 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11253 we have a (gt X 0) operation. If the shift is arithmetic with
11254 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11255 we have a (neg (gt X 0)) operation. */
11257 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
11258 && GET_CODE (XEXP (varop
, 0)) == ASHIFTRT
11259 && count
== (GET_MODE_PRECISION (int_varop_mode
) - 1)
11260 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
11261 && CONST_INT_P (XEXP (XEXP (varop
, 0), 1))
11262 && INTVAL (XEXP (XEXP (varop
, 0), 1)) == count
11263 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
11266 varop
= gen_rtx_GT (int_varop_mode
, XEXP (varop
, 1),
11269 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
11270 varop
= gen_rtx_NEG (int_varop_mode
, varop
);
11277 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11278 if the truncate does not affect the value. */
11279 if (code
== LSHIFTRT
11280 && GET_CODE (XEXP (varop
, 0)) == LSHIFTRT
11281 && CONST_INT_P (XEXP (XEXP (varop
, 0), 1))
11282 && (INTVAL (XEXP (XEXP (varop
, 0), 1))
11283 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop
, 0)))
11284 - GET_MODE_UNIT_PRECISION (GET_MODE (varop
)))))
11286 rtx varop_inner
= XEXP (varop
, 0);
11287 int new_count
= count
+ INTVAL (XEXP (varop_inner
, 1));
11288 rtx new_count_rtx
= gen_int_shift_amount (GET_MODE (varop_inner
),
11290 varop_inner
= gen_rtx_LSHIFTRT (GET_MODE (varop_inner
),
11291 XEXP (varop_inner
, 0),
11293 varop
= gen_rtx_TRUNCATE (GET_MODE (varop
), varop_inner
);
11306 shift_mode
= result_mode
;
11307 if (shift_mode
!= mode
)
11309 /* We only change the modes of scalar shifts. */
11310 int_mode
= as_a
<scalar_int_mode
> (mode
);
11311 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11312 shift_mode
= try_widen_shift_mode (code
, varop
, count
, int_result_mode
,
11313 int_mode
, outer_op
, outer_const
);
11316 /* We have now finished analyzing the shift. The result should be
11317 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11318 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11319 to the result of the shift. OUTER_CONST is the relevant constant,
11320 but we must turn off all bits turned off in the shift. */
11322 if (outer_op
== UNKNOWN
11323 && orig_code
== code
&& orig_count
== count
11324 && varop
== orig_varop
11325 && shift_mode
== GET_MODE (varop
))
11328 /* Make a SUBREG if necessary. If we can't make it, fail. */
11329 varop
= gen_lowpart (shift_mode
, varop
);
11330 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
11333 /* If we have an outer operation and we just made a shift, it is
11334 possible that we could have simplified the shift were it not
11335 for the outer operation. So try to do the simplification
11338 if (outer_op
!= UNKNOWN
)
11339 x
= simplify_shift_const_1 (code
, shift_mode
, varop
, count
);
11344 x
= simplify_gen_binary (code
, shift_mode
, varop
,
11345 gen_int_shift_amount (shift_mode
, count
));
11347 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11348 turn off all the bits that the shift would have turned off. */
11349 if (orig_code
== LSHIFTRT
&& result_mode
!= shift_mode
)
11350 /* We only change the modes of scalar shifts. */
11351 x
= simplify_and_const_int (NULL_RTX
, as_a
<scalar_int_mode
> (shift_mode
),
11352 x
, GET_MODE_MASK (result_mode
) >> orig_count
);
11354 /* Do the remainder of the processing in RESULT_MODE. */
11355 x
= gen_lowpart_or_truncate (result_mode
, x
);
11357 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11360 x
= simplify_gen_unary (NOT
, result_mode
, x
, result_mode
);
11362 if (outer_op
!= UNKNOWN
)
11364 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11366 if (GET_RTX_CLASS (outer_op
) != RTX_UNARY
11367 && GET_MODE_PRECISION (int_result_mode
) < HOST_BITS_PER_WIDE_INT
)
11368 outer_const
= trunc_int_for_mode (outer_const
, int_result_mode
);
11370 if (outer_op
== AND
)
11371 x
= simplify_and_const_int (NULL_RTX
, int_result_mode
, x
, outer_const
);
11372 else if (outer_op
== SET
)
11374 /* This means that we have determined that the result is
11375 equivalent to a constant. This should be rare. */
11376 if (!side_effects_p (x
))
11377 x
= GEN_INT (outer_const
);
11379 else if (GET_RTX_CLASS (outer_op
) == RTX_UNARY
)
11380 x
= simplify_gen_unary (outer_op
, int_result_mode
, x
, int_result_mode
);
11382 x
= simplify_gen_binary (outer_op
, int_result_mode
, x
,
11383 GEN_INT (outer_const
));
11389 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11390 The result of the shift is RESULT_MODE. If we cannot simplify it,
11391 return X or, if it is NULL, synthesize the expression with
11392 simplify_gen_binary. Otherwise, return a simplified value.
11394 The shift is normally computed in the widest mode we find in VAROP, as
11395 long as it isn't a different number of words than RESULT_MODE. Exceptions
11396 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11399 simplify_shift_const (rtx x
, enum rtx_code code
, machine_mode result_mode
,
11400 rtx varop
, int count
)
11402 rtx tem
= simplify_shift_const_1 (code
, result_mode
, varop
, count
);
11407 x
= simplify_gen_binary (code
, GET_MODE (varop
), varop
,
11408 gen_int_shift_amount (GET_MODE (varop
), count
));
11409 if (GET_MODE (x
) != result_mode
)
11410 x
= gen_lowpart (result_mode
, x
);
11415 /* A subroutine of recog_for_combine. See there for arguments and
11419 recog_for_combine_1 (rtx
*pnewpat
, rtx_insn
*insn
, rtx
*pnotes
)
11421 rtx pat
= *pnewpat
;
11422 rtx pat_without_clobbers
;
11423 int insn_code_number
;
11424 int num_clobbers_to_add
= 0;
11426 rtx notes
= NULL_RTX
;
11427 rtx old_notes
, old_pat
;
11430 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11431 we use to indicate that something didn't match. If we find such a
11432 thing, force rejection. */
11433 if (GET_CODE (pat
) == PARALLEL
)
11434 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
11435 if (GET_CODE (XVECEXP (pat
, 0, i
)) == CLOBBER
11436 && XEXP (XVECEXP (pat
, 0, i
), 0) == const0_rtx
)
11439 old_pat
= PATTERN (insn
);
11440 old_notes
= REG_NOTES (insn
);
11441 PATTERN (insn
) = pat
;
11442 REG_NOTES (insn
) = NULL_RTX
;
11444 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
11445 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
11447 if (insn_code_number
< 0)
11448 fputs ("Failed to match this instruction:\n", dump_file
);
11450 fputs ("Successfully matched this instruction:\n", dump_file
);
11451 print_rtl_single (dump_file
, pat
);
11454 /* If it isn't, there is the possibility that we previously had an insn
11455 that clobbered some register as a side effect, but the combined
11456 insn doesn't need to do that. So try once more without the clobbers
11457 unless this represents an ASM insn. */
11459 if (insn_code_number
< 0 && ! check_asm_operands (pat
)
11460 && GET_CODE (pat
) == PARALLEL
)
11464 for (pos
= 0, i
= 0; i
< XVECLEN (pat
, 0); i
++)
11465 if (GET_CODE (XVECEXP (pat
, 0, i
)) != CLOBBER
)
11468 SUBST (XVECEXP (pat
, 0, pos
), XVECEXP (pat
, 0, i
));
11472 SUBST_INT (XVECLEN (pat
, 0), pos
);
11475 pat
= XVECEXP (pat
, 0, 0);
11477 PATTERN (insn
) = pat
;
11478 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
11479 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
11481 if (insn_code_number
< 0)
11482 fputs ("Failed to match this instruction:\n", dump_file
);
11484 fputs ("Successfully matched this instruction:\n", dump_file
);
11485 print_rtl_single (dump_file
, pat
);
11489 pat_without_clobbers
= pat
;
11491 PATTERN (insn
) = old_pat
;
11492 REG_NOTES (insn
) = old_notes
;
11494 /* Recognize all noop sets, these will be killed by followup pass. */
11495 if (insn_code_number
< 0 && GET_CODE (pat
) == SET
&& set_noop_p (pat
))
11496 insn_code_number
= NOOP_MOVE_INSN_CODE
, num_clobbers_to_add
= 0;
11498 /* If we had any clobbers to add, make a new pattern than contains
11499 them. Then check to make sure that all of them are dead. */
11500 if (num_clobbers_to_add
)
11502 rtx newpat
= gen_rtx_PARALLEL (VOIDmode
,
11503 rtvec_alloc (GET_CODE (pat
) == PARALLEL
11504 ? (XVECLEN (pat
, 0)
11505 + num_clobbers_to_add
)
11506 : num_clobbers_to_add
+ 1));
11508 if (GET_CODE (pat
) == PARALLEL
)
11509 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
11510 XVECEXP (newpat
, 0, i
) = XVECEXP (pat
, 0, i
);
11512 XVECEXP (newpat
, 0, 0) = pat
;
11514 add_clobbers (newpat
, insn_code_number
);
11516 for (i
= XVECLEN (newpat
, 0) - num_clobbers_to_add
;
11517 i
< XVECLEN (newpat
, 0); i
++)
11519 if (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0))
11520 && ! reg_dead_at_p (XEXP (XVECEXP (newpat
, 0, i
), 0), insn
))
11522 if (GET_CODE (XEXP (XVECEXP (newpat
, 0, i
), 0)) != SCRATCH
)
11524 gcc_assert (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0)));
11525 notes
= alloc_reg_note (REG_UNUSED
,
11526 XEXP (XVECEXP (newpat
, 0, i
), 0), notes
);
11532 if (insn_code_number
>= 0
11533 && insn_code_number
!= NOOP_MOVE_INSN_CODE
)
11535 old_pat
= PATTERN (insn
);
11536 old_notes
= REG_NOTES (insn
);
11537 old_icode
= INSN_CODE (insn
);
11538 PATTERN (insn
) = pat
;
11539 REG_NOTES (insn
) = notes
;
11540 INSN_CODE (insn
) = insn_code_number
;
11542 /* Allow targets to reject combined insn. */
11543 if (!targetm
.legitimate_combined_insn (insn
))
11545 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
11546 fputs ("Instruction not appropriate for target.",
11549 /* Callers expect recog_for_combine to strip
11550 clobbers from the pattern on failure. */
11551 pat
= pat_without_clobbers
;
11554 insn_code_number
= -1;
11557 PATTERN (insn
) = old_pat
;
11558 REG_NOTES (insn
) = old_notes
;
11559 INSN_CODE (insn
) = old_icode
;
11565 return insn_code_number
;
11568 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11569 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11570 Return whether anything was so changed. */
11573 change_zero_ext (rtx pat
)
11575 bool changed
= false;
11576 rtx
*src
= &SET_SRC (pat
);
11578 subrtx_ptr_iterator::array_type array
;
11579 FOR_EACH_SUBRTX_PTR (iter
, array
, src
, NONCONST
)
11582 scalar_int_mode mode
, inner_mode
;
11583 if (!is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
))
11587 if (GET_CODE (x
) == ZERO_EXTRACT
11588 && CONST_INT_P (XEXP (x
, 1))
11589 && CONST_INT_P (XEXP (x
, 2))
11590 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &inner_mode
)
11591 && GET_MODE_PRECISION (inner_mode
) <= GET_MODE_PRECISION (mode
))
11593 size
= INTVAL (XEXP (x
, 1));
11595 int start
= INTVAL (XEXP (x
, 2));
11596 if (BITS_BIG_ENDIAN
)
11597 start
= GET_MODE_PRECISION (inner_mode
) - size
- start
;
11600 x
= gen_rtx_LSHIFTRT (inner_mode
, XEXP (x
, 0),
11601 gen_int_shift_amount (inner_mode
, start
));
11605 if (mode
!= inner_mode
)
11607 if (REG_P (x
) && HARD_REGISTER_P (x
)
11608 && !can_change_dest_mode (x
, 0, mode
))
11611 x
= gen_lowpart_SUBREG (mode
, x
);
11614 else if (GET_CODE (x
) == ZERO_EXTEND
11615 && GET_CODE (XEXP (x
, 0)) == SUBREG
11616 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x
, 0))))
11617 && !paradoxical_subreg_p (XEXP (x
, 0))
11618 && subreg_lowpart_p (XEXP (x
, 0)))
11620 inner_mode
= as_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)));
11621 size
= GET_MODE_PRECISION (inner_mode
);
11622 x
= SUBREG_REG (XEXP (x
, 0));
11623 if (GET_MODE (x
) != mode
)
11625 if (REG_P (x
) && HARD_REGISTER_P (x
)
11626 && !can_change_dest_mode (x
, 0, mode
))
11629 x
= gen_lowpart_SUBREG (mode
, x
);
11632 else if (GET_CODE (x
) == ZERO_EXTEND
11633 && REG_P (XEXP (x
, 0))
11634 && HARD_REGISTER_P (XEXP (x
, 0))
11635 && can_change_dest_mode (XEXP (x
, 0), 0, mode
))
11637 inner_mode
= as_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)));
11638 size
= GET_MODE_PRECISION (inner_mode
);
11639 x
= gen_rtx_REG (mode
, REGNO (XEXP (x
, 0)));
11644 if (!(GET_CODE (x
) == LSHIFTRT
11645 && CONST_INT_P (XEXP (x
, 1))
11646 && size
+ INTVAL (XEXP (x
, 1)) == GET_MODE_PRECISION (mode
)))
11648 wide_int mask
= wi::mask (size
, false, GET_MODE_PRECISION (mode
));
11649 x
= gen_rtx_AND (mode
, x
, immed_wide_int_const (mask
, mode
));
11657 FOR_EACH_SUBRTX_PTR (iter
, array
, src
, NONCONST
)
11658 maybe_swap_commutative_operands (**iter
);
11660 rtx
*dst
= &SET_DEST (pat
);
11661 scalar_int_mode mode
;
11662 if (GET_CODE (*dst
) == ZERO_EXTRACT
11663 && REG_P (XEXP (*dst
, 0))
11664 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (*dst
, 0)), &mode
)
11665 && CONST_INT_P (XEXP (*dst
, 1))
11666 && CONST_INT_P (XEXP (*dst
, 2)))
11668 rtx reg
= XEXP (*dst
, 0);
11669 int width
= INTVAL (XEXP (*dst
, 1));
11670 int offset
= INTVAL (XEXP (*dst
, 2));
11671 int reg_width
= GET_MODE_PRECISION (mode
);
11672 if (BITS_BIG_ENDIAN
)
11673 offset
= reg_width
- width
- offset
;
11676 wide_int mask
= wi::shifted_mask (offset
, width
, true, reg_width
);
11677 wide_int mask2
= wi::shifted_mask (offset
, width
, false, reg_width
);
11678 x
= gen_rtx_AND (mode
, reg
, immed_wide_int_const (mask
, mode
));
11680 y
= gen_rtx_ASHIFT (mode
, SET_SRC (pat
), GEN_INT (offset
));
11683 z
= gen_rtx_AND (mode
, y
, immed_wide_int_const (mask2
, mode
));
11684 w
= gen_rtx_IOR (mode
, x
, z
);
11685 SUBST (SET_DEST (pat
), reg
);
11686 SUBST (SET_SRC (pat
), w
);
11694 /* Like recog, but we receive the address of a pointer to a new pattern.
11695 We try to match the rtx that the pointer points to.
11696 If that fails, we may try to modify or replace the pattern,
11697 storing the replacement into the same pointer object.
11699 Modifications include deletion or addition of CLOBBERs. If the
11700 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11701 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11702 (and undo if that fails).
11704 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11705 the CLOBBERs are placed.
11707 The value is the final insn code from the pattern ultimately matched,
11711 recog_for_combine (rtx
*pnewpat
, rtx_insn
*insn
, rtx
*pnotes
)
11713 rtx pat
= *pnewpat
;
11714 int insn_code_number
= recog_for_combine_1 (pnewpat
, insn
, pnotes
);
11715 if (insn_code_number
>= 0 || check_asm_operands (pat
))
11716 return insn_code_number
;
11718 void *marker
= get_undo_marker ();
11719 bool changed
= false;
11721 if (GET_CODE (pat
) == SET
)
11723 /* For an unrecognized single set of a constant, try placing it in
11724 the constant pool, if this function already uses one. */
11725 rtx src
= SET_SRC (pat
);
11726 if (CONSTANT_P (src
)
11727 && !CONST_INT_P (src
)
11728 && crtl
->uses_const_pool
)
11730 machine_mode mode
= GET_MODE (src
);
11731 if (mode
== VOIDmode
)
11732 mode
= GET_MODE (SET_DEST (pat
));
11733 src
= force_const_mem (mode
, src
);
11736 SUBST (SET_SRC (pat
), src
);
11741 changed
= change_zero_ext (pat
);
11743 else if (GET_CODE (pat
) == PARALLEL
)
11746 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
11748 rtx set
= XVECEXP (pat
, 0, i
);
11749 if (GET_CODE (set
) == SET
)
11750 changed
|= change_zero_ext (set
);
11756 insn_code_number
= recog_for_combine_1 (pnewpat
, insn
, pnotes
);
11758 if (insn_code_number
< 0)
11759 undo_to_marker (marker
);
11762 return insn_code_number
;
11765 /* Like gen_lowpart_general but for use by combine. In combine it
11766 is not possible to create any new pseudoregs. However, it is
11767 safe to create invalid memory addresses, because combine will
11768 try to recognize them and all they will do is make the combine
11771 If for some reason this cannot do its job, an rtx
11772 (clobber (const_int 0)) is returned.
11773 An insn containing that will not be recognized. */
11776 gen_lowpart_for_combine (machine_mode omode
, rtx x
)
11778 machine_mode imode
= GET_MODE (x
);
11781 if (omode
== imode
)
11784 /* We can only support MODE being wider than a word if X is a
11785 constant integer or has a mode the same size. */
11786 if (maybe_gt (GET_MODE_SIZE (omode
), UNITS_PER_WORD
)
11787 && ! (CONST_SCALAR_INT_P (x
)
11788 || known_eq (GET_MODE_SIZE (imode
), GET_MODE_SIZE (omode
))))
11791 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11792 won't know what to do. So we will strip off the SUBREG here and
11793 process normally. */
11794 if (GET_CODE (x
) == SUBREG
&& MEM_P (SUBREG_REG (x
)))
11796 x
= SUBREG_REG (x
);
11798 /* For use in case we fall down into the address adjustments
11799 further below, we need to adjust the known mode and size of
11800 x; imode and isize, since we just adjusted x. */
11801 imode
= GET_MODE (x
);
11803 if (imode
== omode
)
11807 result
= gen_lowpart_common (omode
, x
);
11814 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11816 if (MEM_VOLATILE_P (x
)
11817 || mode_dependent_address_p (XEXP (x
, 0), MEM_ADDR_SPACE (x
)))
11820 /* If we want to refer to something bigger than the original memref,
11821 generate a paradoxical subreg instead. That will force a reload
11822 of the original memref X. */
11823 if (paradoxical_subreg_p (omode
, imode
))
11824 return gen_rtx_SUBREG (omode
, x
, 0);
11826 poly_int64 offset
= byte_lowpart_offset (omode
, imode
);
11827 return adjust_address_nv (x
, omode
, offset
);
11830 /* If X is a comparison operator, rewrite it in a new mode. This
11831 probably won't match, but may allow further simplifications. */
11832 else if (COMPARISON_P (x
)
11833 && SCALAR_INT_MODE_P (imode
)
11834 && SCALAR_INT_MODE_P (omode
))
11835 return gen_rtx_fmt_ee (GET_CODE (x
), omode
, XEXP (x
, 0), XEXP (x
, 1));
11837 /* If we couldn't simplify X any other way, just enclose it in a
11838 SUBREG. Normally, this SUBREG won't match, but some patterns may
11839 include an explicit SUBREG or we may simplify it further in combine. */
11844 if (imode
== VOIDmode
)
11846 imode
= int_mode_for_mode (omode
).require ();
11847 x
= gen_lowpart_common (imode
, x
);
11851 res
= lowpart_subreg (omode
, x
, imode
);
11857 return gen_rtx_CLOBBER (omode
, const0_rtx
);
11860 /* Try to simplify a comparison between OP0 and a constant OP1,
11861 where CODE is the comparison code that will be tested, into a
11862 (CODE OP0 const0_rtx) form.
11864 The result is a possibly different comparison code to use.
11865 *POP0 and *POP1 may be updated. */
11867 static enum rtx_code
11868 simplify_compare_const (enum rtx_code code
, machine_mode mode
,
11869 rtx
*pop0
, rtx
*pop1
)
11871 scalar_int_mode int_mode
;
11873 HOST_WIDE_INT const_op
= INTVAL (*pop1
);
11875 /* Get the constant we are comparing against and turn off all bits
11876 not on in our mode. */
11877 if (mode
!= VOIDmode
)
11878 const_op
= trunc_int_for_mode (const_op
, mode
);
11880 /* If we are comparing against a constant power of two and the value
11881 being compared can only have that single bit nonzero (e.g., it was
11882 `and'ed with that bit), we can replace this with a comparison
11885 && (code
== EQ
|| code
== NE
|| code
== GEU
|| code
== LTU
11886 /* This optimization is incorrect for signed >= INT_MIN or
11887 < INT_MIN, those are always true or always false. */
11888 || ((code
== GE
|| code
== LT
) && const_op
> 0))
11889 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
11890 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11891 && pow2p_hwi (const_op
& GET_MODE_MASK (int_mode
))
11892 && (nonzero_bits (op0
, int_mode
)
11893 == (unsigned HOST_WIDE_INT
) (const_op
& GET_MODE_MASK (int_mode
))))
11895 code
= (code
== EQ
|| code
== GE
|| code
== GEU
? NE
: EQ
);
11899 /* Similarly, if we are comparing a value known to be either -1 or
11900 0 with -1, change it to the opposite comparison against zero. */
11902 && (code
== EQ
|| code
== NE
|| code
== GT
|| code
== LE
11903 || code
== GEU
|| code
== LTU
)
11904 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
11905 && num_sign_bit_copies (op0
, int_mode
) == GET_MODE_PRECISION (int_mode
))
11907 code
= (code
== EQ
|| code
== LE
|| code
== GEU
? NE
: EQ
);
11911 /* Do some canonicalizations based on the comparison code. We prefer
11912 comparisons against zero and then prefer equality comparisons.
11913 If we can reduce the size of a constant, we will do that too. */
11917 /* < C is equivalent to <= (C - 1) */
11922 /* ... fall through to LE case below. */
11923 gcc_fallthrough ();
11929 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11936 /* If we are doing a <= 0 comparison on a value known to have
11937 a zero sign bit, we can replace this with == 0. */
11938 else if (const_op
== 0
11939 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
11940 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11941 && (nonzero_bits (op0
, int_mode
)
11942 & (HOST_WIDE_INT_1U
<< (GET_MODE_PRECISION (int_mode
) - 1)))
11948 /* >= C is equivalent to > (C - 1). */
11953 /* ... fall through to GT below. */
11954 gcc_fallthrough ();
11960 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11967 /* If we are doing a > 0 comparison on a value known to have
11968 a zero sign bit, we can replace this with != 0. */
11969 else if (const_op
== 0
11970 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
11971 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11972 && (nonzero_bits (op0
, int_mode
)
11973 & (HOST_WIDE_INT_1U
<< (GET_MODE_PRECISION (int_mode
) - 1)))
11979 /* < C is equivalent to <= (C - 1). */
11984 /* ... fall through ... */
11985 gcc_fallthrough ();
11987 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11988 else if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
11989 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11990 && (((unsigned HOST_WIDE_INT
) const_op
& GET_MODE_MASK (int_mode
))
11991 == HOST_WIDE_INT_1U
<< (GET_MODE_PRECISION (int_mode
) - 1)))
12001 /* unsigned <= 0 is equivalent to == 0 */
12004 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
12005 else if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
12006 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
12007 && ((unsigned HOST_WIDE_INT
) const_op
12008 == ((HOST_WIDE_INT_1U
12009 << (GET_MODE_PRECISION (int_mode
) - 1)) - 1)))
12017 /* >= C is equivalent to > (C - 1). */
12022 /* ... fall through ... */
12023 gcc_fallthrough ();
12026 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
12027 else if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
12028 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
12029 && (((unsigned HOST_WIDE_INT
) const_op
& GET_MODE_MASK (int_mode
))
12030 == HOST_WIDE_INT_1U
<< (GET_MODE_PRECISION (int_mode
) - 1)))
12040 /* unsigned > 0 is equivalent to != 0 */
12043 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
12044 else if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
12045 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
12046 && ((unsigned HOST_WIDE_INT
) const_op
12047 == (HOST_WIDE_INT_1U
12048 << (GET_MODE_PRECISION (int_mode
) - 1)) - 1))
12059 /* Narrow non-symmetric comparison of memory and constant as e.g.
12060 x0...x7 <= 0x3fffffffffffffff into x0 <= 0x3f where x0 is the most
12061 significant byte. Likewise, transform x0...x7 >= 0x4000000000000000 into
12063 if ((code
== LEU
|| code
== LTU
|| code
== GEU
|| code
== GTU
)
12064 && is_a
<scalar_int_mode
> (GET_MODE (op0
), &int_mode
)
12065 && HWI_COMPUTABLE_MODE_P (int_mode
)
12067 && !MEM_VOLATILE_P (op0
)
12068 /* The optimization makes only sense for constants which are big enough
12069 so that we have a chance to chop off something at all. */
12070 && ((unsigned HOST_WIDE_INT
) const_op
& GET_MODE_MASK (int_mode
)) > 0xff
12071 /* Ensure that we do not overflow during normalization. */
12073 || ((unsigned HOST_WIDE_INT
) const_op
& GET_MODE_MASK (int_mode
))
12074 < HOST_WIDE_INT_M1U
)
12075 && trunc_int_for_mode (const_op
, int_mode
) == const_op
)
12077 unsigned HOST_WIDE_INT n
12078 = (unsigned HOST_WIDE_INT
) const_op
& GET_MODE_MASK (int_mode
);
12079 enum rtx_code adjusted_code
;
12081 /* Normalize code to either LEU or GEU. */
12085 adjusted_code
= LEU
;
12087 else if (code
== GTU
)
12090 adjusted_code
= GEU
;
12093 adjusted_code
= code
;
12095 scalar_int_mode narrow_mode_iter
;
12096 FOR_EACH_MODE_UNTIL (narrow_mode_iter
, int_mode
)
12098 unsigned nbits
= GET_MODE_PRECISION (int_mode
)
12099 - GET_MODE_PRECISION (narrow_mode_iter
);
12100 unsigned HOST_WIDE_INT mask
= (HOST_WIDE_INT_1U
<< nbits
) - 1;
12101 unsigned HOST_WIDE_INT lower_bits
= n
& mask
;
12102 if ((adjusted_code
== LEU
&& lower_bits
== mask
)
12103 || (adjusted_code
== GEU
&& lower_bits
== 0))
12110 if (narrow_mode_iter
< int_mode
)
12112 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
12115 dump_file
, "narrow comparison from mode %s to %s: (MEM %s "
12116 HOST_WIDE_INT_PRINT_HEX
") to (MEM %s "
12117 HOST_WIDE_INT_PRINT_HEX
").\n", GET_MODE_NAME (int_mode
),
12118 GET_MODE_NAME (narrow_mode_iter
), GET_RTX_NAME (code
),
12119 (unsigned HOST_WIDE_INT
) const_op
& GET_MODE_MASK (int_mode
),
12120 GET_RTX_NAME (adjusted_code
), n
);
12122 poly_int64 offset
= (BYTES_BIG_ENDIAN
12124 : (GET_MODE_SIZE (int_mode
)
12125 - GET_MODE_SIZE (narrow_mode_iter
)));
12126 *pop0
= adjust_address_nv (op0
, narrow_mode_iter
, offset
);
12127 *pop1
= gen_int_mode (n
, narrow_mode_iter
);
12128 return adjusted_code
;
12132 *pop1
= GEN_INT (const_op
);
12136 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
12137 comparison code that will be tested.
12139 The result is a possibly different comparison code to use. *POP0 and
12140 *POP1 may be updated.
12142 It is possible that we might detect that a comparison is either always
12143 true or always false. However, we do not perform general constant
12144 folding in combine, so this knowledge isn't useful. Such tautologies
12145 should have been detected earlier. Hence we ignore all such cases. */
12147 static enum rtx_code
12148 simplify_comparison (enum rtx_code code
, rtx
*pop0
, rtx
*pop1
)
12154 scalar_int_mode mode
, inner_mode
, tmode
;
12155 opt_scalar_int_mode tmode_iter
;
12157 /* Try a few ways of applying the same transformation to both operands. */
12160 /* The test below this one won't handle SIGN_EXTENDs on these machines,
12161 so check specially. */
12162 if (!WORD_REGISTER_OPERATIONS
12163 && code
!= GTU
&& code
!= GEU
&& code
!= LTU
&& code
!= LEU
12164 && GET_CODE (op0
) == ASHIFTRT
&& GET_CODE (op1
) == ASHIFTRT
12165 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
12166 && GET_CODE (XEXP (op1
, 0)) == ASHIFT
12167 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == SUBREG
12168 && GET_CODE (XEXP (XEXP (op1
, 0), 0)) == SUBREG
12169 && is_a
<scalar_int_mode
> (GET_MODE (op0
), &mode
)
12170 && (is_a
<scalar_int_mode
>
12171 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0))), &inner_mode
))
12172 && inner_mode
== GET_MODE (SUBREG_REG (XEXP (XEXP (op1
, 0), 0)))
12173 && CONST_INT_P (XEXP (op0
, 1))
12174 && XEXP (op0
, 1) == XEXP (op1
, 1)
12175 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
12176 && XEXP (op0
, 1) == XEXP (XEXP (op1
, 0), 1)
12177 && (INTVAL (XEXP (op0
, 1))
12178 == (GET_MODE_PRECISION (mode
)
12179 - GET_MODE_PRECISION (inner_mode
))))
12181 op0
= SUBREG_REG (XEXP (XEXP (op0
, 0), 0));
12182 op1
= SUBREG_REG (XEXP (XEXP (op1
, 0), 0));
12185 /* If both operands are the same constant shift, see if we can ignore the
12186 shift. We can if the shift is a rotate or if the bits shifted out of
12187 this shift are known to be zero for both inputs and if the type of
12188 comparison is compatible with the shift. */
12189 if (GET_CODE (op0
) == GET_CODE (op1
)
12190 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0
))
12191 && ((GET_CODE (op0
) == ROTATE
&& (code
== NE
|| code
== EQ
))
12192 || ((GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFT
)
12193 && (code
!= GT
&& code
!= LT
&& code
!= GE
&& code
!= LE
))
12194 || (GET_CODE (op0
) == ASHIFTRT
12195 && (code
!= GTU
&& code
!= LTU
12196 && code
!= GEU
&& code
!= LEU
)))
12197 && CONST_INT_P (XEXP (op0
, 1))
12198 && INTVAL (XEXP (op0
, 1)) >= 0
12199 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
12200 && XEXP (op0
, 1) == XEXP (op1
, 1))
12202 machine_mode mode
= GET_MODE (op0
);
12203 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
12204 int shift_count
= INTVAL (XEXP (op0
, 1));
12206 if (GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFTRT
)
12207 mask
&= (mask
>> shift_count
) << shift_count
;
12208 else if (GET_CODE (op0
) == ASHIFT
)
12209 mask
= (mask
& (mask
<< shift_count
)) >> shift_count
;
12211 if ((nonzero_bits (XEXP (op0
, 0), mode
) & ~mask
) == 0
12212 && (nonzero_bits (XEXP (op1
, 0), mode
) & ~mask
) == 0)
12213 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0);
12218 /* If both operands are AND's of a paradoxical SUBREG by constant, the
12219 SUBREGs are of the same mode, and, in both cases, the AND would
12220 be redundant if the comparison was done in the narrower mode,
12221 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12222 and the operand's possibly nonzero bits are 0xffffff01; in that case
12223 if we only care about QImode, we don't need the AND). This case
12224 occurs if the output mode of an scc insn is not SImode and
12225 STORE_FLAG_VALUE == 1 (e.g., the 386).
12227 Similarly, check for a case where the AND's are ZERO_EXTEND
12228 operations from some narrower mode even though a SUBREG is not
12231 else if (GET_CODE (op0
) == AND
&& GET_CODE (op1
) == AND
12232 && CONST_INT_P (XEXP (op0
, 1))
12233 && CONST_INT_P (XEXP (op1
, 1)))
12235 rtx inner_op0
= XEXP (op0
, 0);
12236 rtx inner_op1
= XEXP (op1
, 0);
12237 HOST_WIDE_INT c0
= INTVAL (XEXP (op0
, 1));
12238 HOST_WIDE_INT c1
= INTVAL (XEXP (op1
, 1));
12239 bool changed
= false;
12241 if (paradoxical_subreg_p (inner_op0
)
12242 && GET_CODE (inner_op1
) == SUBREG
12243 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0
)))
12244 && (GET_MODE (SUBREG_REG (inner_op0
))
12245 == GET_MODE (SUBREG_REG (inner_op1
)))
12246 && ((~c0
) & nonzero_bits (SUBREG_REG (inner_op0
),
12247 GET_MODE (SUBREG_REG (inner_op0
)))) == 0
12248 && ((~c1
) & nonzero_bits (SUBREG_REG (inner_op1
),
12249 GET_MODE (SUBREG_REG (inner_op1
)))) == 0)
12251 op0
= SUBREG_REG (inner_op0
);
12252 op1
= SUBREG_REG (inner_op1
);
12254 /* The resulting comparison is always unsigned since we masked
12255 off the original sign bit. */
12256 code
= unsigned_condition (code
);
12262 FOR_EACH_MODE_UNTIL (tmode
,
12263 as_a
<scalar_int_mode
> (GET_MODE (op0
)))
12264 if ((unsigned HOST_WIDE_INT
) c0
== GET_MODE_MASK (tmode
))
12266 op0
= gen_lowpart_or_truncate (tmode
, inner_op0
);
12267 op1
= gen_lowpart_or_truncate (tmode
, inner_op1
);
12268 code
= unsigned_condition (code
);
12277 /* If both operands are NOT, we can strip off the outer operation
12278 and adjust the comparison code for swapped operands; similarly for
12279 NEG, except that this must be an equality comparison. */
12280 else if ((GET_CODE (op0
) == NOT
&& GET_CODE (op1
) == NOT
)
12281 || (GET_CODE (op0
) == NEG
&& GET_CODE (op1
) == NEG
12282 && (code
== EQ
|| code
== NE
)))
12283 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0), code
= swap_condition (code
);
12289 /* If the first operand is a constant, swap the operands and adjust the
12290 comparison code appropriately, but don't do this if the second operand
12291 is already a constant integer. */
12292 if (swap_commutative_operands_p (op0
, op1
))
12294 std::swap (op0
, op1
);
12295 code
= swap_condition (code
);
12298 /* We now enter a loop during which we will try to simplify the comparison.
12299 For the most part, we only are concerned with comparisons with zero,
12300 but some things may really be comparisons with zero but not start
12301 out looking that way. */
12303 while (CONST_INT_P (op1
))
12305 machine_mode raw_mode
= GET_MODE (op0
);
12306 scalar_int_mode int_mode
;
12307 int equality_comparison_p
;
12308 int sign_bit_comparison_p
;
12309 int unsigned_comparison_p
;
12310 HOST_WIDE_INT const_op
;
12312 /* We only want to handle integral modes. This catches VOIDmode,
12313 CCmode, and the floating-point modes. An exception is that we
12314 can handle VOIDmode if OP0 is a COMPARE or a comparison
12317 if (GET_MODE_CLASS (raw_mode
) != MODE_INT
12318 && ! (raw_mode
== VOIDmode
12319 && (GET_CODE (op0
) == COMPARE
|| COMPARISON_P (op0
))))
12322 /* Try to simplify the compare to constant, possibly changing the
12323 comparison op, and/or changing op1 to zero. */
12324 code
= simplify_compare_const (code
, raw_mode
, &op0
, &op1
);
12325 const_op
= INTVAL (op1
);
12327 /* Compute some predicates to simplify code below. */
12329 equality_comparison_p
= (code
== EQ
|| code
== NE
);
12330 sign_bit_comparison_p
= ((code
== LT
|| code
== GE
) && const_op
== 0);
12331 unsigned_comparison_p
= (code
== LTU
|| code
== LEU
|| code
== GTU
12334 /* If this is a sign bit comparison and we can do arithmetic in
12335 MODE, say that we will only be needing the sign bit of OP0. */
12336 if (sign_bit_comparison_p
12337 && is_a
<scalar_int_mode
> (raw_mode
, &int_mode
)
12338 && HWI_COMPUTABLE_MODE_P (int_mode
))
12339 op0
= force_to_mode (op0
, int_mode
,
12341 << (GET_MODE_PRECISION (int_mode
) - 1), false);
12343 if (COMPARISON_P (op0
))
12345 /* We can't do anything if OP0 is a condition code value, rather
12346 than an actual data value. */
12348 || GET_MODE_CLASS (GET_MODE (XEXP (op0
, 0))) == MODE_CC
)
12351 /* Get the two operands being compared. */
12352 if (GET_CODE (XEXP (op0
, 0)) == COMPARE
)
12353 tem
= XEXP (XEXP (op0
, 0), 0), tem1
= XEXP (XEXP (op0
, 0), 1);
12355 tem
= XEXP (op0
, 0), tem1
= XEXP (op0
, 1);
12357 /* Check for the cases where we simply want the result of the
12358 earlier test or the opposite of that result. */
12359 if (code
== NE
|| code
== EQ
12360 || (val_signbit_known_set_p (raw_mode
, STORE_FLAG_VALUE
)
12361 && (code
== LT
|| code
== GE
)))
12363 enum rtx_code new_code
;
12364 if (code
== LT
|| code
== NE
)
12365 new_code
= GET_CODE (op0
);
12367 new_code
= reversed_comparison_code (op0
, NULL
);
12369 if (new_code
!= UNKNOWN
)
12380 if (raw_mode
== VOIDmode
)
12382 scalar_int_mode mode
= as_a
<scalar_int_mode
> (raw_mode
);
12384 /* Now try cases based on the opcode of OP0. If none of the cases
12385 does a "continue", we exit this loop immediately after the
12388 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
12389 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
12390 switch (GET_CODE (op0
))
12393 /* If we are extracting a single bit from a variable position in
12394 a constant that has only a single bit set and are comparing it
12395 with zero, we can convert this into an equality comparison
12396 between the position and the location of the single bit. */
12397 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12398 have already reduced the shift count modulo the word size. */
12399 if (!SHIFT_COUNT_TRUNCATED
12400 && CONST_INT_P (XEXP (op0
, 0))
12401 && XEXP (op0
, 1) == const1_rtx
12402 && equality_comparison_p
&& const_op
== 0
12403 && (i
= exact_log2 (UINTVAL (XEXP (op0
, 0)))) >= 0)
12405 if (BITS_BIG_ENDIAN
)
12406 i
= BITS_PER_WORD
- 1 - i
;
12408 op0
= XEXP (op0
, 2);
12412 /* Result is nonzero iff shift count is equal to I. */
12413 code
= reverse_condition (code
);
12420 tem
= expand_compound_operation (op0
);
12429 /* If testing for equality, we can take the NOT of the constant. */
12430 if (equality_comparison_p
12431 && (tem
= simplify_unary_operation (NOT
, mode
, op1
, mode
)) != 0)
12433 op0
= XEXP (op0
, 0);
12438 /* If just looking at the sign bit, reverse the sense of the
12440 if (sign_bit_comparison_p
)
12442 op0
= XEXP (op0
, 0);
12443 code
= (code
== GE
? LT
: GE
);
12449 /* If testing for equality, we can take the NEG of the constant. */
12450 if (equality_comparison_p
12451 && (tem
= simplify_unary_operation (NEG
, mode
, op1
, mode
)) != 0)
12453 op0
= XEXP (op0
, 0);
12458 /* The remaining cases only apply to comparisons with zero. */
12462 /* When X is ABS or is known positive,
12463 (neg X) is < 0 if and only if X != 0. */
12465 if (sign_bit_comparison_p
12466 && (GET_CODE (XEXP (op0
, 0)) == ABS
12467 || (mode_width
<= HOST_BITS_PER_WIDE_INT
12468 && (nonzero_bits (XEXP (op0
, 0), mode
)
12469 & (HOST_WIDE_INT_1U
<< (mode_width
- 1)))
12472 op0
= XEXP (op0
, 0);
12473 code
= (code
== LT
? NE
: EQ
);
12477 /* If we have NEG of something whose two high-order bits are the
12478 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12479 if (num_sign_bit_copies (op0
, mode
) >= 2)
12481 op0
= XEXP (op0
, 0);
12482 code
= swap_condition (code
);
12488 /* If we are testing equality and our count is a constant, we
12489 can perform the inverse operation on our RHS. */
12490 if (equality_comparison_p
&& CONST_INT_P (XEXP (op0
, 1))
12491 && (tem
= simplify_binary_operation (ROTATERT
, mode
,
12492 op1
, XEXP (op0
, 1))) != 0)
12494 op0
= XEXP (op0
, 0);
12499 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12500 a particular bit. Convert it to an AND of a constant of that
12501 bit. This will be converted into a ZERO_EXTRACT. */
12502 if (const_op
== 0 && sign_bit_comparison_p
12503 && CONST_INT_P (XEXP (op0
, 1))
12504 && mode_width
<= HOST_BITS_PER_WIDE_INT
12505 && UINTVAL (XEXP (op0
, 1)) < mode_width
)
12507 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
12510 - INTVAL (XEXP (op0
, 1)))));
12511 code
= (code
== LT
? NE
: EQ
);
12515 /* Fall through. */
12518 /* ABS is ignorable inside an equality comparison with zero. */
12519 if (const_op
== 0 && equality_comparison_p
)
12521 op0
= XEXP (op0
, 0);
12527 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12528 (compare FOO CONST) if CONST fits in FOO's mode and we
12529 are either testing inequality or have an unsigned
12530 comparison with ZERO_EXTEND or a signed comparison with
12531 SIGN_EXTEND. But don't do it if we don't have a compare
12532 insn of the given mode, since we'd have to revert it
12533 later on, and then we wouldn't know whether to sign- or
12535 if (is_int_mode (GET_MODE (XEXP (op0
, 0)), &mode
)
12536 && ! unsigned_comparison_p
12537 && HWI_COMPUTABLE_MODE_P (mode
)
12538 && trunc_int_for_mode (const_op
, mode
) == const_op
12539 && have_insn_for (COMPARE
, mode
))
12541 op0
= XEXP (op0
, 0);
12547 /* Check for the case where we are comparing A - C1 with C2, that is
12549 (subreg:MODE (plus (A) (-C1))) op (C2)
12551 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12552 comparison in the wider mode. One of the following two conditions
12553 must be true in order for this to be valid:
12555 1. The mode extension results in the same bit pattern being added
12556 on both sides and the comparison is equality or unsigned. As
12557 C2 has been truncated to fit in MODE, the pattern can only be
12560 2. The mode extension results in the sign bit being copied on
12563 The difficulty here is that we have predicates for A but not for
12564 (A - C1) so we need to check that C1 is within proper bounds so
12565 as to perturbate A as little as possible. */
12567 if (mode_width
<= HOST_BITS_PER_WIDE_INT
12568 && subreg_lowpart_p (op0
)
12569 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (op0
)),
12571 && GET_MODE_PRECISION (inner_mode
) > mode_width
12572 && GET_CODE (SUBREG_REG (op0
)) == PLUS
12573 && CONST_INT_P (XEXP (SUBREG_REG (op0
), 1)))
12575 rtx a
= XEXP (SUBREG_REG (op0
), 0);
12576 HOST_WIDE_INT c1
= -INTVAL (XEXP (SUBREG_REG (op0
), 1));
12579 && (unsigned HOST_WIDE_INT
) c1
12580 < HOST_WIDE_INT_1U
<< (mode_width
- 1)
12581 && (equality_comparison_p
|| unsigned_comparison_p
)
12582 /* (A - C1) zero-extends if it is positive and sign-extends
12583 if it is negative, C2 both zero- and sign-extends. */
12584 && (((nonzero_bits (a
, inner_mode
)
12585 & ~GET_MODE_MASK (mode
)) == 0
12587 /* (A - C1) sign-extends if it is positive and 1-extends
12588 if it is negative, C2 both sign- and 1-extends. */
12589 || (num_sign_bit_copies (a
, inner_mode
)
12590 > (unsigned int) (GET_MODE_PRECISION (inner_mode
)
12593 || ((unsigned HOST_WIDE_INT
) c1
12594 < HOST_WIDE_INT_1U
<< (mode_width
- 2)
12595 /* (A - C1) always sign-extends, like C2. */
12596 && num_sign_bit_copies (a
, inner_mode
)
12597 > (unsigned int) (GET_MODE_PRECISION (inner_mode
)
12598 - (mode_width
- 1))))
12600 op0
= SUBREG_REG (op0
);
12605 /* If the inner mode is narrower and we are extracting the low part,
12606 we can treat the SUBREG as if it were a ZERO_EXTEND ... */
12607 if (paradoxical_subreg_p (op0
))
12609 if (WORD_REGISTER_OPERATIONS
12610 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (op0
)),
12612 && GET_MODE_PRECISION (inner_mode
) < BITS_PER_WORD
12613 /* On WORD_REGISTER_OPERATIONS targets the bits
12614 beyond sub_mode aren't considered undefined,
12615 so optimize only if it is a MEM load when MEM loads
12616 zero extend, because then the upper bits are all zero. */
12617 && !(MEM_P (SUBREG_REG (op0
))
12618 && load_extend_op (inner_mode
) == ZERO_EXTEND
))
12620 /* FALLTHROUGH to case ZERO_EXTEND */
12622 else if (subreg_lowpart_p (op0
)
12623 && GET_MODE_CLASS (mode
) == MODE_INT
12624 && is_int_mode (GET_MODE (SUBREG_REG (op0
)), &inner_mode
)
12625 && (code
== NE
|| code
== EQ
)
12626 && GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
12627 && !paradoxical_subreg_p (op0
)
12628 && (nonzero_bits (SUBREG_REG (op0
), inner_mode
)
12629 & ~GET_MODE_MASK (mode
)) == 0)
12631 /* Remove outer subregs that don't do anything. */
12632 tem
= gen_lowpart (inner_mode
, op1
);
12634 if ((nonzero_bits (tem
, inner_mode
)
12635 & ~GET_MODE_MASK (mode
)) == 0)
12637 op0
= SUBREG_REG (op0
);
12649 if (is_int_mode (GET_MODE (XEXP (op0
, 0)), &mode
)
12650 && (unsigned_comparison_p
|| equality_comparison_p
)
12651 && HWI_COMPUTABLE_MODE_P (mode
)
12652 && (unsigned HOST_WIDE_INT
) const_op
<= GET_MODE_MASK (mode
)
12654 && have_insn_for (COMPARE
, mode
))
12656 op0
= XEXP (op0
, 0);
12662 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12663 this for equality comparisons due to pathological cases involving
12665 if (equality_comparison_p
12666 && (tem
= simplify_binary_operation (MINUS
, mode
,
12667 op1
, XEXP (op0
, 1))) != 0)
12669 op0
= XEXP (op0
, 0);
12674 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12675 if (const_op
== 0 && XEXP (op0
, 1) == constm1_rtx
12676 && GET_CODE (XEXP (op0
, 0)) == ABS
&& sign_bit_comparison_p
)
12678 op0
= XEXP (XEXP (op0
, 0), 0);
12679 code
= (code
== LT
? EQ
: NE
);
12685 /* We used to optimize signed comparisons against zero, but that
12686 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12687 arrive here as equality comparisons, or (GEU, LTU) are
12688 optimized away. No need to special-case them. */
12690 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12691 (eq B (minus A C)), whichever simplifies. We can only do
12692 this for equality comparisons due to pathological cases involving
12694 if (equality_comparison_p
12695 && (tem
= simplify_binary_operation (PLUS
, mode
,
12696 XEXP (op0
, 1), op1
)) != 0)
12698 op0
= XEXP (op0
, 0);
12703 if (equality_comparison_p
12704 && (tem
= simplify_binary_operation (MINUS
, mode
,
12705 XEXP (op0
, 0), op1
)) != 0)
12707 op0
= XEXP (op0
, 1);
12712 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12713 of bits in X minus 1, is one iff X > 0. */
12714 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == ASHIFTRT
12715 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
12716 && UINTVAL (XEXP (XEXP (op0
, 0), 1)) == mode_width
- 1
12717 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
12719 op0
= XEXP (op0
, 1);
12720 code
= (code
== GE
? LE
: GT
);
12726 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12727 if C is zero or B is a constant. */
12728 if (equality_comparison_p
12729 && (tem
= simplify_binary_operation (XOR
, mode
,
12730 XEXP (op0
, 1), op1
)) != 0)
12732 op0
= XEXP (op0
, 0);
12740 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12742 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == PLUS
12743 && XEXP (XEXP (op0
, 0), 1) == constm1_rtx
12744 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
12746 op0
= XEXP (op0
, 1);
12747 code
= (code
== GE
? GT
: LE
);
12753 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12754 will be converted to a ZERO_EXTRACT later. */
12755 if (const_op
== 0 && equality_comparison_p
12756 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
12757 && XEXP (XEXP (op0
, 0), 0) == const1_rtx
)
12759 op0
= gen_rtx_LSHIFTRT (mode
, XEXP (op0
, 1),
12760 XEXP (XEXP (op0
, 0), 1));
12761 op0
= simplify_and_const_int (NULL_RTX
, mode
, op0
, 1);
12765 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12766 zero and X is a comparison and C1 and C2 describe only bits set
12767 in STORE_FLAG_VALUE, we can compare with X. */
12768 if (const_op
== 0 && equality_comparison_p
12769 && mode_width
<= HOST_BITS_PER_WIDE_INT
12770 && CONST_INT_P (XEXP (op0
, 1))
12771 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
12772 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
12773 && INTVAL (XEXP (XEXP (op0
, 0), 1)) >= 0
12774 && INTVAL (XEXP (XEXP (op0
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
12776 mask
= ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
12777 << INTVAL (XEXP (XEXP (op0
, 0), 1)));
12778 if ((~STORE_FLAG_VALUE
& mask
) == 0
12779 && (COMPARISON_P (XEXP (XEXP (op0
, 0), 0))
12780 || ((tem
= get_last_value (XEXP (XEXP (op0
, 0), 0))) != 0
12781 && COMPARISON_P (tem
))))
12783 op0
= XEXP (XEXP (op0
, 0), 0);
12788 /* If we are doing an equality comparison of an AND of a bit equal
12789 to the sign bit, replace this with a LT or GE comparison of
12790 the underlying value. */
12791 if (equality_comparison_p
12793 && CONST_INT_P (XEXP (op0
, 1))
12794 && mode_width
<= HOST_BITS_PER_WIDE_INT
12795 && ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
12796 == HOST_WIDE_INT_1U
<< (mode_width
- 1)))
12798 op0
= XEXP (op0
, 0);
12799 code
= (code
== EQ
? GE
: LT
);
12803 /* If this AND operation is really a ZERO_EXTEND from a narrower
12804 mode, the constant fits within that mode, and this is either an
12805 equality or unsigned comparison, try to do this comparison in
12810 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12811 -> (ne:DI (reg:SI 4) (const_int 0))
12813 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12814 known to hold a value of the required mode the
12815 transformation is invalid. */
12816 if ((equality_comparison_p
|| unsigned_comparison_p
)
12817 && CONST_INT_P (XEXP (op0
, 1))
12818 && (i
= exact_log2 ((UINTVAL (XEXP (op0
, 1))
12819 & GET_MODE_MASK (mode
))
12821 && const_op
>> i
== 0
12822 && int_mode_for_size (i
, 1).exists (&tmode
))
12824 op0
= gen_lowpart_or_truncate (tmode
, XEXP (op0
, 0));
12828 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12829 fits in both M1 and M2 and the SUBREG is either paradoxical
12830 or represents the low part, permute the SUBREG and the AND
12832 if (GET_CODE (XEXP (op0
, 0)) == SUBREG
12833 && CONST_INT_P (XEXP (op0
, 1)))
12835 unsigned HOST_WIDE_INT c1
= INTVAL (XEXP (op0
, 1));
12836 /* Require an integral mode, to avoid creating something like
12838 if ((is_a
<scalar_int_mode
>
12839 (GET_MODE (SUBREG_REG (XEXP (op0
, 0))), &tmode
))
12840 /* It is unsafe to commute the AND into the SUBREG if the
12841 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12842 not defined. As originally written the upper bits
12843 have a defined value due to the AND operation.
12844 However, if we commute the AND inside the SUBREG then
12845 they no longer have defined values and the meaning of
12846 the code has been changed.
12847 Also C1 should not change value in the smaller mode,
12848 see PR67028 (a positive C1 can become negative in the
12849 smaller mode, so that the AND does no longer mask the
12851 && ((WORD_REGISTER_OPERATIONS
12852 && mode_width
> GET_MODE_PRECISION (tmode
)
12853 && mode_width
<= BITS_PER_WORD
12854 && trunc_int_for_mode (c1
, tmode
) == (HOST_WIDE_INT
) c1
)
12855 || (mode_width
<= GET_MODE_PRECISION (tmode
)
12856 && subreg_lowpart_p (XEXP (op0
, 0))))
12857 && mode_width
<= HOST_BITS_PER_WIDE_INT
12858 && HWI_COMPUTABLE_MODE_P (tmode
)
12859 && (c1
& ~mask
) == 0
12860 && (c1
& ~GET_MODE_MASK (tmode
)) == 0
12862 && c1
!= GET_MODE_MASK (tmode
))
12864 op0
= simplify_gen_binary (AND
, tmode
,
12865 SUBREG_REG (XEXP (op0
, 0)),
12866 gen_int_mode (c1
, tmode
));
12867 op0
= gen_lowpart (mode
, op0
);
12872 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12873 if (const_op
== 0 && equality_comparison_p
12874 && XEXP (op0
, 1) == const1_rtx
12875 && GET_CODE (XEXP (op0
, 0)) == NOT
)
12877 op0
= simplify_and_const_int (NULL_RTX
, mode
,
12878 XEXP (XEXP (op0
, 0), 0), 1);
12879 code
= (code
== NE
? EQ
: NE
);
12883 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12884 (eq (and (lshiftrt X) 1) 0).
12885 Also handle the case where (not X) is expressed using xor. */
12886 if (const_op
== 0 && equality_comparison_p
12887 && XEXP (op0
, 1) == const1_rtx
12888 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
)
12890 rtx shift_op
= XEXP (XEXP (op0
, 0), 0);
12891 rtx shift_count
= XEXP (XEXP (op0
, 0), 1);
12893 if (GET_CODE (shift_op
) == NOT
12894 || (GET_CODE (shift_op
) == XOR
12895 && CONST_INT_P (XEXP (shift_op
, 1))
12896 && CONST_INT_P (shift_count
)
12897 && HWI_COMPUTABLE_MODE_P (mode
)
12898 && (UINTVAL (XEXP (shift_op
, 1))
12899 == HOST_WIDE_INT_1U
12900 << INTVAL (shift_count
))))
12903 = gen_rtx_LSHIFTRT (mode
, XEXP (shift_op
, 0), shift_count
);
12904 op0
= simplify_and_const_int (NULL_RTX
, mode
, op0
, 1);
12905 code
= (code
== NE
? EQ
: NE
);
12912 /* If we have (compare (ashift FOO N) (const_int C)) and
12913 the high order N bits of FOO (N+1 if an inequality comparison)
12914 are known to be zero, we can do this by comparing FOO with C
12915 shifted right N bits so long as the low-order N bits of C are
12917 if (CONST_INT_P (XEXP (op0
, 1))
12918 && INTVAL (XEXP (op0
, 1)) >= 0
12919 && ((INTVAL (XEXP (op0
, 1)) + ! equality_comparison_p
)
12920 < HOST_BITS_PER_WIDE_INT
)
12921 && (((unsigned HOST_WIDE_INT
) const_op
12922 & ((HOST_WIDE_INT_1U
<< INTVAL (XEXP (op0
, 1)))
12924 && mode_width
<= HOST_BITS_PER_WIDE_INT
12925 && (nonzero_bits (XEXP (op0
, 0), mode
)
12926 & ~(mask
>> (INTVAL (XEXP (op0
, 1))
12927 + ! equality_comparison_p
))) == 0)
12929 /* We must perform a logical shift, not an arithmetic one,
12930 as we want the top N bits of C to be zero. */
12931 unsigned HOST_WIDE_INT temp
= const_op
& GET_MODE_MASK (mode
);
12933 temp
>>= INTVAL (XEXP (op0
, 1));
12934 op1
= gen_int_mode (temp
, mode
);
12935 op0
= XEXP (op0
, 0);
12939 /* If we are doing a sign bit comparison, it means we are testing
12940 a particular bit. Convert it to the appropriate AND. */
12941 if (sign_bit_comparison_p
&& CONST_INT_P (XEXP (op0
, 1))
12942 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
12944 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
12947 - INTVAL (XEXP (op0
, 1)))));
12948 code
= (code
== LT
? NE
: EQ
);
12952 /* If this an equality comparison with zero and we are shifting
12953 the low bit to the sign bit, we can convert this to an AND of the
12955 if (const_op
== 0 && equality_comparison_p
12956 && CONST_INT_P (XEXP (op0
, 1))
12957 && UINTVAL (XEXP (op0
, 1)) == mode_width
- 1)
12959 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0), 1);
12965 /* If this is an equality comparison with zero, we can do this
12966 as a logical shift, which might be much simpler. */
12967 if (equality_comparison_p
&& const_op
== 0
12968 && CONST_INT_P (XEXP (op0
, 1)))
12970 op0
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
,
12972 INTVAL (XEXP (op0
, 1)));
12976 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12977 do the comparison in a narrower mode. */
12978 if (! unsigned_comparison_p
12979 && CONST_INT_P (XEXP (op0
, 1))
12980 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
12981 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
12982 && (int_mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)), 1)
12984 && (((unsigned HOST_WIDE_INT
) const_op
12985 + (GET_MODE_MASK (tmode
) >> 1) + 1)
12986 <= GET_MODE_MASK (tmode
)))
12988 op0
= gen_lowpart (tmode
, XEXP (XEXP (op0
, 0), 0));
12992 /* Likewise if OP0 is a PLUS of a sign extension with a
12993 constant, which is usually represented with the PLUS
12994 between the shifts. */
12995 if (! unsigned_comparison_p
12996 && CONST_INT_P (XEXP (op0
, 1))
12997 && GET_CODE (XEXP (op0
, 0)) == PLUS
12998 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
12999 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == ASHIFT
13000 && XEXP (op0
, 1) == XEXP (XEXP (XEXP (op0
, 0), 0), 1)
13001 && (int_mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)), 1)
13003 && (((unsigned HOST_WIDE_INT
) const_op
13004 + (GET_MODE_MASK (tmode
) >> 1) + 1)
13005 <= GET_MODE_MASK (tmode
)))
13007 rtx inner
= XEXP (XEXP (XEXP (op0
, 0), 0), 0);
13008 rtx add_const
= XEXP (XEXP (op0
, 0), 1);
13009 rtx new_const
= simplify_gen_binary (ASHIFTRT
, mode
,
13010 add_const
, XEXP (op0
, 1));
13012 op0
= simplify_gen_binary (PLUS
, tmode
,
13013 gen_lowpart (tmode
, inner
),
13020 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
13021 the low order N bits of FOO are known to be zero, we can do this
13022 by comparing FOO with C shifted left N bits so long as no
13023 overflow occurs. Even if the low order N bits of FOO aren't known
13024 to be zero, if the comparison is >= or < we can use the same
13025 optimization and for > or <= by setting all the low
13026 order N bits in the comparison constant. */
13027 if (CONST_INT_P (XEXP (op0
, 1))
13028 && INTVAL (XEXP (op0
, 1)) > 0
13029 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
13030 && mode_width
<= HOST_BITS_PER_WIDE_INT
13031 && (((unsigned HOST_WIDE_INT
) const_op
13032 + (GET_CODE (op0
) != LSHIFTRT
13033 ? ((GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1)) >> 1)
13036 <= GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1))))
13038 unsigned HOST_WIDE_INT low_bits
13039 = (nonzero_bits (XEXP (op0
, 0), mode
)
13040 & ((HOST_WIDE_INT_1U
13041 << INTVAL (XEXP (op0
, 1))) - 1));
13042 if (low_bits
== 0 || !equality_comparison_p
)
13044 /* If the shift was logical, then we must make the condition
13046 if (GET_CODE (op0
) == LSHIFTRT
)
13047 code
= unsigned_condition (code
);
13049 const_op
= (unsigned HOST_WIDE_INT
) const_op
13050 << INTVAL (XEXP (op0
, 1));
13052 && (code
== GT
|| code
== GTU
13053 || code
== LE
|| code
== LEU
))
13055 |= ((HOST_WIDE_INT_1
<< INTVAL (XEXP (op0
, 1))) - 1);
13056 op1
= GEN_INT (const_op
);
13057 op0
= XEXP (op0
, 0);
13062 /* If we are using this shift to extract just the sign bit, we
13063 can replace this with an LT or GE comparison. */
13065 && (equality_comparison_p
|| sign_bit_comparison_p
)
13066 && CONST_INT_P (XEXP (op0
, 1))
13067 && UINTVAL (XEXP (op0
, 1)) == mode_width
- 1)
13069 op0
= XEXP (op0
, 0);
13070 code
= (code
== NE
|| code
== GT
? LT
: GE
);
13082 /* Now make any compound operations involved in this comparison. Then,
13083 check for an outmost SUBREG on OP0 that is not doing anything or is
13084 paradoxical. The latter transformation must only be performed when
13085 it is known that the "extra" bits will be the same in op0 and op1 or
13086 that they don't matter. There are three cases to consider:
13088 1. SUBREG_REG (op0) is a register. In this case the bits are don't
13089 care bits and we can assume they have any convenient value. So
13090 making the transformation is safe.
13092 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
13093 In this case the upper bits of op0 are undefined. We should not make
13094 the simplification in that case as we do not know the contents of
13097 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
13098 In that case we know those bits are zeros or ones. We must also be
13099 sure that they are the same as the upper bits of op1.
13101 We can never remove a SUBREG for a non-equality comparison because
13102 the sign bit is in a different place in the underlying object. */
13104 rtx_code op0_mco_code
= SET
;
13105 if (op1
== const0_rtx
)
13106 op0_mco_code
= code
== NE
|| code
== EQ
? EQ
: COMPARE
;
13108 op0
= make_compound_operation (op0
, op0_mco_code
);
13109 op1
= make_compound_operation (op1
, SET
);
13111 if (GET_CODE (op0
) == SUBREG
&& subreg_lowpart_p (op0
)
13112 && is_int_mode (GET_MODE (op0
), &mode
)
13113 && is_int_mode (GET_MODE (SUBREG_REG (op0
)), &inner_mode
)
13114 && (code
== NE
|| code
== EQ
))
13116 if (paradoxical_subreg_p (op0
))
13118 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
13120 if (REG_P (SUBREG_REG (op0
)))
13122 op0
= SUBREG_REG (op0
);
13123 op1
= gen_lowpart (inner_mode
, op1
);
13126 else if (GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
13127 && (nonzero_bits (SUBREG_REG (op0
), inner_mode
)
13128 & ~GET_MODE_MASK (mode
)) == 0)
13130 tem
= gen_lowpart (inner_mode
, op1
);
13132 if ((nonzero_bits (tem
, inner_mode
) & ~GET_MODE_MASK (mode
)) == 0)
13133 op0
= SUBREG_REG (op0
), op1
= tem
;
13137 /* We now do the opposite procedure: Some machines don't have compare
13138 insns in all modes. If OP0's mode is an integer mode smaller than a
13139 word and we can't do a compare in that mode, see if there is a larger
13140 mode for which we can do the compare. There are a number of cases in
13141 which we can use the wider mode. */
13143 if (is_int_mode (GET_MODE (op0
), &mode
)
13144 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
13145 && ! have_insn_for (COMPARE
, mode
))
13146 FOR_EACH_WIDER_MODE (tmode_iter
, mode
)
13148 tmode
= tmode_iter
.require ();
13149 if (!HWI_COMPUTABLE_MODE_P (tmode
))
13151 if (have_insn_for (COMPARE
, tmode
))
13155 /* If this is a test for negative, we can make an explicit
13156 test of the sign bit. Test this first so we can use
13157 a paradoxical subreg to extend OP0. */
13159 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
13160 && HWI_COMPUTABLE_MODE_P (mode
))
13162 unsigned HOST_WIDE_INT sign
13163 = HOST_WIDE_INT_1U
<< (GET_MODE_BITSIZE (mode
) - 1);
13164 op0
= simplify_gen_binary (AND
, tmode
,
13165 gen_lowpart (tmode
, op0
),
13166 gen_int_mode (sign
, tmode
));
13167 code
= (code
== LT
) ? NE
: EQ
;
13171 /* If the only nonzero bits in OP0 and OP1 are those in the
13172 narrower mode and this is an equality or unsigned comparison,
13173 we can use the wider mode. Similarly for sign-extended
13174 values, in which case it is true for all comparisons. */
13175 zero_extended
= ((code
== EQ
|| code
== NE
13176 || code
== GEU
|| code
== GTU
13177 || code
== LEU
|| code
== LTU
)
13178 && (nonzero_bits (op0
, tmode
)
13179 & ~GET_MODE_MASK (mode
)) == 0
13180 && ((CONST_INT_P (op1
)
13181 || (nonzero_bits (op1
, tmode
)
13182 & ~GET_MODE_MASK (mode
)) == 0)));
13185 || ((num_sign_bit_copies (op0
, tmode
)
13186 > (unsigned int) (GET_MODE_PRECISION (tmode
)
13187 - GET_MODE_PRECISION (mode
)))
13188 && (num_sign_bit_copies (op1
, tmode
)
13189 > (unsigned int) (GET_MODE_PRECISION (tmode
)
13190 - GET_MODE_PRECISION (mode
)))))
13192 /* If OP0 is an AND and we don't have an AND in MODE either,
13193 make a new AND in the proper mode. */
13194 if (GET_CODE (op0
) == AND
13195 && !have_insn_for (AND
, mode
))
13196 op0
= simplify_gen_binary (AND
, tmode
,
13197 gen_lowpart (tmode
,
13199 gen_lowpart (tmode
,
13205 op0
= simplify_gen_unary (ZERO_EXTEND
, tmode
,
13207 op1
= simplify_gen_unary (ZERO_EXTEND
, tmode
,
13212 op0
= simplify_gen_unary (SIGN_EXTEND
, tmode
,
13214 op1
= simplify_gen_unary (SIGN_EXTEND
, tmode
,
13223 /* We may have changed the comparison operands. Re-canonicalize. */
13224 if (swap_commutative_operands_p (op0
, op1
))
13226 std::swap (op0
, op1
);
13227 code
= swap_condition (code
);
13230 /* If this machine only supports a subset of valid comparisons, see if we
13231 can convert an unsupported one into a supported one. */
13232 target_canonicalize_comparison (&code
, &op0
, &op1
, 0);
13240 /* Utility function for record_value_for_reg. Count number of
13245 enum rtx_code code
= GET_CODE (x
);
13249 if (GET_RTX_CLASS (code
) == RTX_BIN_ARITH
13250 || GET_RTX_CLASS (code
) == RTX_COMM_ARITH
)
13252 rtx x0
= XEXP (x
, 0);
13253 rtx x1
= XEXP (x
, 1);
13256 return 1 + 2 * count_rtxs (x0
);
13258 if ((GET_RTX_CLASS (GET_CODE (x1
)) == RTX_BIN_ARITH
13259 || GET_RTX_CLASS (GET_CODE (x1
)) == RTX_COMM_ARITH
)
13260 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
13261 return 2 + 2 * count_rtxs (x0
)
13262 + count_rtxs (x
== XEXP (x1
, 0)
13263 ? XEXP (x1
, 1) : XEXP (x1
, 0));
13265 if ((GET_RTX_CLASS (GET_CODE (x0
)) == RTX_BIN_ARITH
13266 || GET_RTX_CLASS (GET_CODE (x0
)) == RTX_COMM_ARITH
)
13267 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
13268 return 2 + 2 * count_rtxs (x1
)
13269 + count_rtxs (x
== XEXP (x0
, 0)
13270 ? XEXP (x0
, 1) : XEXP (x0
, 0));
13273 fmt
= GET_RTX_FORMAT (code
);
13274 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
13276 ret
+= count_rtxs (XEXP (x
, i
));
13277 else if (fmt
[i
] == 'E')
13278 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13279 ret
+= count_rtxs (XVECEXP (x
, i
, j
));
13284 /* Utility function for following routine. Called when X is part of a value
13285 being stored into last_set_value. Sets last_set_table_tick
13286 for each register mentioned. Similar to mention_regs in cse.cc */
13289 update_table_tick (rtx x
)
13291 enum rtx_code code
= GET_CODE (x
);
13292 const char *fmt
= GET_RTX_FORMAT (code
);
13297 unsigned int regno
= REGNO (x
);
13298 unsigned int endregno
= END_REGNO (x
);
13301 for (r
= regno
; r
< endregno
; r
++)
13303 reg_stat_type
*rsp
= ®_stat
[r
];
13304 rsp
->last_set_table_tick
= label_tick
;
13310 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
13313 /* Check for identical subexpressions. If x contains
13314 identical subexpression we only have to traverse one of
13316 if (i
== 0 && ARITHMETIC_P (x
))
13318 /* Note that at this point x1 has already been
13320 rtx x0
= XEXP (x
, 0);
13321 rtx x1
= XEXP (x
, 1);
13323 /* If x0 and x1 are identical then there is no need to
13328 /* If x0 is identical to a subexpression of x1 then while
13329 processing x1, x0 has already been processed. Thus we
13330 are done with x. */
13331 if (ARITHMETIC_P (x1
)
13332 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
13335 /* If x1 is identical to a subexpression of x0 then we
13336 still have to process the rest of x0. */
13337 if (ARITHMETIC_P (x0
)
13338 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
13340 update_table_tick (XEXP (x0
, x1
== XEXP (x0
, 0) ? 1 : 0));
13345 update_table_tick (XEXP (x
, i
));
13347 else if (fmt
[i
] == 'E')
13348 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13349 update_table_tick (XVECEXP (x
, i
, j
));
13352 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13353 are saying that the register is clobbered and we no longer know its
13354 value. If INSN is zero, don't update reg_stat[].last_set; this is
13355 only permitted with VALUE also zero and is used to invalidate the
13359 record_value_for_reg (rtx reg
, rtx_insn
*insn
, rtx value
)
13361 unsigned int regno
= REGNO (reg
);
13362 unsigned int endregno
= END_REGNO (reg
);
13364 reg_stat_type
*rsp
;
13366 /* If VALUE contains REG and we have a previous value for REG, substitute
13367 the previous value. */
13368 if (value
&& insn
&& reg_overlap_mentioned_p (reg
, value
))
13372 /* Set things up so get_last_value is allowed to see anything set up to
13374 subst_low_luid
= DF_INSN_LUID (insn
);
13375 tem
= get_last_value (reg
);
13377 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13378 it isn't going to be useful and will take a lot of time to process,
13379 so just use the CLOBBER. */
13383 if (ARITHMETIC_P (tem
)
13384 && GET_CODE (XEXP (tem
, 0)) == CLOBBER
13385 && GET_CODE (XEXP (tem
, 1)) == CLOBBER
)
13386 tem
= XEXP (tem
, 0);
13387 else if (count_occurrences (value
, reg
, 1) >= 2)
13389 /* If there are two or more occurrences of REG in VALUE,
13390 prevent the value from growing too much. */
13391 if (count_rtxs (tem
) > param_max_last_value_rtl
)
13392 tem
= gen_rtx_CLOBBER (GET_MODE (tem
), const0_rtx
);
13395 value
= replace_rtx (copy_rtx (value
), reg
, tem
);
13399 /* For each register modified, show we don't know its value, that
13400 we don't know about its bitwise content, that its value has been
13401 updated, and that we don't know the location of the death of the
13403 for (i
= regno
; i
< endregno
; i
++)
13405 rsp
= ®_stat
[i
];
13408 rsp
->last_set
= insn
;
13410 rsp
->last_set_value
= 0;
13411 rsp
->last_set_mode
= VOIDmode
;
13412 rsp
->last_set_nonzero_bits
= 0;
13413 rsp
->last_set_sign_bit_copies
= 0;
13414 rsp
->last_death
= 0;
13415 rsp
->truncated_to_mode
= VOIDmode
;
13418 /* Mark registers that are being referenced in this value. */
13420 update_table_tick (value
);
13422 /* Now update the status of each register being set.
13423 If someone is using this register in this block, set this register
13424 to invalid since we will get confused between the two lives in this
13425 basic block. This makes using this register always invalid. In cse, we
13426 scan the table to invalidate all entries using this register, but this
13427 is too much work for us. */
13429 for (i
= regno
; i
< endregno
; i
++)
13431 rsp
= ®_stat
[i
];
13432 rsp
->last_set_label
= label_tick
;
13434 || (value
&& rsp
->last_set_table_tick
>= label_tick_ebb_start
))
13435 rsp
->last_set_invalid
= true;
13437 rsp
->last_set_invalid
= false;
13440 /* The value being assigned might refer to X (like in "x++;"). In that
13441 case, we must replace it with (clobber (const_int 0)) to prevent
13443 rsp
= ®_stat
[regno
];
13444 if (value
&& !get_last_value_validate (&value
, insn
, label_tick
, false))
13446 value
= copy_rtx (value
);
13447 if (!get_last_value_validate (&value
, insn
, label_tick
, true))
13451 /* For the main register being modified, update the value, the mode, the
13452 nonzero bits, and the number of sign bit copies. */
13454 rsp
->last_set_value
= value
;
13458 machine_mode mode
= GET_MODE (reg
);
13459 subst_low_luid
= DF_INSN_LUID (insn
);
13460 rsp
->last_set_mode
= mode
;
13461 if (GET_MODE_CLASS (mode
) == MODE_INT
13462 && HWI_COMPUTABLE_MODE_P (mode
))
13463 mode
= nonzero_bits_mode
;
13464 rsp
->last_set_nonzero_bits
= nonzero_bits (value
, mode
);
13465 rsp
->last_set_sign_bit_copies
13466 = num_sign_bit_copies (value
, GET_MODE (reg
));
13470 /* Called via note_stores from record_dead_and_set_regs to handle one
13471 SET or CLOBBER in an insn. DATA is the instruction in which the
13472 set is occurring. */
13475 record_dead_and_set_regs_1 (rtx dest
, const_rtx setter
, void *data
)
13477 rtx_insn
*record_dead_insn
= (rtx_insn
*) data
;
13479 if (GET_CODE (dest
) == SUBREG
)
13480 dest
= SUBREG_REG (dest
);
13482 if (!record_dead_insn
)
13485 record_value_for_reg (dest
, NULL
, NULL_RTX
);
13491 /* If we are setting the whole register, we know its value. */
13492 if (GET_CODE (setter
) == SET
&& dest
== SET_DEST (setter
))
13493 record_value_for_reg (dest
, record_dead_insn
, SET_SRC (setter
));
13494 /* We can handle a SUBREG if it's the low part, but we must be
13495 careful with paradoxical SUBREGs on RISC architectures because
13496 we cannot strip e.g. an extension around a load and record the
13497 naked load since the RTL middle-end considers that the upper bits
13498 are defined according to LOAD_EXTEND_OP. */
13499 else if (GET_CODE (setter
) == SET
13500 && GET_CODE (SET_DEST (setter
)) == SUBREG
13501 && SUBREG_REG (SET_DEST (setter
)) == dest
13502 && known_le (GET_MODE_PRECISION (GET_MODE (dest
)),
13504 && subreg_lowpart_p (SET_DEST (setter
)))
13506 if (WORD_REGISTER_OPERATIONS
13507 && word_register_operation_p (SET_SRC (setter
))
13508 && paradoxical_subreg_p (SET_DEST (setter
)))
13509 record_value_for_reg (dest
, record_dead_insn
, SET_SRC (setter
));
13510 else if (!partial_subreg_p (SET_DEST (setter
)))
13511 record_value_for_reg (dest
, record_dead_insn
,
13512 gen_lowpart (GET_MODE (dest
),
13513 SET_SRC (setter
)));
13516 record_value_for_reg (dest
, record_dead_insn
,
13517 gen_lowpart (GET_MODE (dest
),
13518 SET_SRC (setter
)));
13520 unsigned HOST_WIDE_INT mask
;
13521 reg_stat_type
*rsp
= ®_stat
[REGNO (dest
)];
13522 mask
= GET_MODE_MASK (GET_MODE (SET_DEST (setter
)));
13523 rsp
->last_set_nonzero_bits
|= ~mask
;
13524 rsp
->last_set_sign_bit_copies
= 1;
13527 /* Otherwise show that we don't know the value. */
13529 record_value_for_reg (dest
, record_dead_insn
, NULL_RTX
);
13531 else if (MEM_P (dest
)
13532 /* Ignore pushes, they clobber nothing. */
13533 && ! push_operand (dest
, GET_MODE (dest
)))
13534 mem_last_set
= DF_INSN_LUID (record_dead_insn
);
13537 /* Update the records of when each REG was most recently set or killed
13538 for the things done by INSN. This is the last thing done in processing
13539 INSN in the combiner loop.
13541 We update reg_stat[], in particular fields last_set, last_set_value,
13542 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13543 last_death, and also the similar information mem_last_set (which insn
13544 most recently modified memory) and last_call_luid (which insn was the
13545 most recent subroutine call). */
13548 record_dead_and_set_regs (rtx_insn
*insn
)
13553 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
13555 if (REG_NOTE_KIND (link
) == REG_DEAD
13556 && REG_P (XEXP (link
, 0)))
13558 unsigned int regno
= REGNO (XEXP (link
, 0));
13559 unsigned int endregno
= END_REGNO (XEXP (link
, 0));
13561 for (i
= regno
; i
< endregno
; i
++)
13563 reg_stat_type
*rsp
;
13565 rsp
= ®_stat
[i
];
13566 rsp
->last_death
= insn
;
13569 else if (REG_NOTE_KIND (link
) == REG_INC
)
13570 record_value_for_reg (XEXP (link
, 0), insn
, NULL_RTX
);
13575 HARD_REG_SET callee_clobbers
13576 = insn_callee_abi (insn
).full_and_partial_reg_clobbers ();
13577 hard_reg_set_iterator hrsi
;
13578 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers
, 0, i
, hrsi
)
13580 reg_stat_type
*rsp
;
13582 /* ??? We could try to preserve some information from the last
13583 set of register I if the call doesn't actually clobber
13584 (reg:last_set_mode I), which might be true for ABIs with
13585 partial clobbers. However, it would be difficult to
13586 update last_set_nonzero_bits and last_sign_bit_copies
13587 to account for the part of I that actually was clobbered.
13588 It wouldn't help much anyway, since we rarely see this
13589 situation before RA. */
13590 rsp
= ®_stat
[i
];
13591 rsp
->last_set_invalid
= true;
13592 rsp
->last_set
= insn
;
13593 rsp
->last_set_value
= 0;
13594 rsp
->last_set_mode
= VOIDmode
;
13595 rsp
->last_set_nonzero_bits
= 0;
13596 rsp
->last_set_sign_bit_copies
= 0;
13597 rsp
->last_death
= 0;
13598 rsp
->truncated_to_mode
= VOIDmode
;
13601 last_call_luid
= mem_last_set
= DF_INSN_LUID (insn
);
13603 /* We can't combine into a call pattern. Remember, though, that
13604 the return value register is set at this LUID. We could
13605 still replace a register with the return value from the
13606 wrong subroutine call! */
13607 note_stores (insn
, record_dead_and_set_regs_1
, NULL_RTX
);
13610 note_stores (insn
, record_dead_and_set_regs_1
, insn
);
13613 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13614 register present in the SUBREG, so for each such SUBREG go back and
13615 adjust nonzero and sign bit information of the registers that are
13616 known to have some zero/sign bits set.
13618 This is needed because when combine blows the SUBREGs away, the
13619 information on zero/sign bits is lost and further combines can be
13620 missed because of that. */
13623 record_promoted_value (rtx_insn
*insn
, rtx subreg
)
13625 struct insn_link
*links
;
13627 unsigned int regno
= REGNO (SUBREG_REG (subreg
));
13628 machine_mode mode
= GET_MODE (subreg
);
13630 if (!HWI_COMPUTABLE_MODE_P (mode
))
13633 for (links
= LOG_LINKS (insn
); links
;)
13635 reg_stat_type
*rsp
;
13637 insn
= links
->insn
;
13638 set
= single_set (insn
);
13640 if (! set
|| !REG_P (SET_DEST (set
))
13641 || REGNO (SET_DEST (set
)) != regno
13642 || GET_MODE (SET_DEST (set
)) != GET_MODE (SUBREG_REG (subreg
)))
13644 links
= links
->next
;
13648 rsp
= ®_stat
[regno
];
13649 if (rsp
->last_set
== insn
)
13651 if (SUBREG_PROMOTED_UNSIGNED_P (subreg
))
13652 rsp
->last_set_nonzero_bits
&= GET_MODE_MASK (mode
);
13655 if (REG_P (SET_SRC (set
)))
13657 regno
= REGNO (SET_SRC (set
));
13658 links
= LOG_LINKS (insn
);
13665 /* Check if X, a register, is known to contain a value already
13666 truncated to MODE. In this case we can use a subreg to refer to
13667 the truncated value even though in the generic case we would need
13668 an explicit truncation. */
13671 reg_truncated_to_mode (machine_mode mode
, const_rtx x
)
13673 reg_stat_type
*rsp
= ®_stat
[REGNO (x
)];
13674 machine_mode truncated
= rsp
->truncated_to_mode
;
13677 || rsp
->truncation_label
< label_tick_ebb_start
)
13679 if (!partial_subreg_p (mode
, truncated
))
13681 if (TRULY_NOOP_TRUNCATION_MODES_P (mode
, truncated
))
13686 /* If X is a hard reg or a subreg record the mode that the register is
13687 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13688 able to turn a truncate into a subreg using this information. Return true
13689 if traversing X is complete. */
13692 record_truncated_value (rtx x
)
13694 machine_mode truncated_mode
;
13695 reg_stat_type
*rsp
;
13697 if (GET_CODE (x
) == SUBREG
&& REG_P (SUBREG_REG (x
)))
13699 machine_mode original_mode
= GET_MODE (SUBREG_REG (x
));
13700 truncated_mode
= GET_MODE (x
);
13702 if (!partial_subreg_p (truncated_mode
, original_mode
))
13705 truncated_mode
= GET_MODE (x
);
13706 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode
, original_mode
))
13709 x
= SUBREG_REG (x
);
13711 /* ??? For hard-regs we now record everything. We might be able to
13712 optimize this using last_set_mode. */
13713 else if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
13714 truncated_mode
= GET_MODE (x
);
13718 rsp
= ®_stat
[REGNO (x
)];
13719 if (rsp
->truncated_to_mode
== 0
13720 || rsp
->truncation_label
< label_tick_ebb_start
13721 || partial_subreg_p (truncated_mode
, rsp
->truncated_to_mode
))
13723 rsp
->truncated_to_mode
= truncated_mode
;
13724 rsp
->truncation_label
= label_tick
;
13730 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13731 the modes they are used in. This can help truning TRUNCATEs into
13735 record_truncated_values (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
13737 subrtx_var_iterator::array_type array
;
13738 FOR_EACH_SUBRTX_VAR (iter
, array
, *loc
, NONCONST
)
13739 if (record_truncated_value (*iter
))
13740 iter
.skip_subrtxes ();
13743 /* Scan X for promoted SUBREGs. For each one found,
13744 note what it implies to the registers used in it. */
13747 check_promoted_subreg (rtx_insn
*insn
, rtx x
)
13749 if (GET_CODE (x
) == SUBREG
13750 && SUBREG_PROMOTED_VAR_P (x
)
13751 && REG_P (SUBREG_REG (x
)))
13752 record_promoted_value (insn
, x
);
13755 const char *format
= GET_RTX_FORMAT (GET_CODE (x
));
13758 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (x
)); i
++)
13762 check_promoted_subreg (insn
, XEXP (x
, i
));
13766 if (XVEC (x
, i
) != 0)
13767 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13768 check_promoted_subreg (insn
, XVECEXP (x
, i
, j
));
13774 /* Verify that all the registers and memory references mentioned in *LOC are
13775 still valid. *LOC was part of a value set in INSN when label_tick was
13776 equal to TICK. Return false if some are not. If REPLACE is true, replace
13777 the invalid references with (clobber (const_int 0)) and return true. This
13778 replacement is useful because we often can get useful information about
13779 the form of a value (e.g., if it was produced by a shift that always
13780 produces -1 or 0) even though we don't know exactly what registers it
13781 was produced from. */
13784 get_last_value_validate (rtx
*loc
, rtx_insn
*insn
, int tick
, bool replace
)
13787 const char *fmt
= GET_RTX_FORMAT (GET_CODE (x
));
13788 int len
= GET_RTX_LENGTH (GET_CODE (x
));
13793 unsigned int regno
= REGNO (x
);
13794 unsigned int endregno
= END_REGNO (x
);
13797 for (j
= regno
; j
< endregno
; j
++)
13799 reg_stat_type
*rsp
= ®_stat
[j
];
13800 if (rsp
->last_set_invalid
13801 /* If this is a pseudo-register that was only set once and not
13802 live at the beginning of the function, it is always valid. */
13803 || (! (regno
>= FIRST_PSEUDO_REGISTER
13804 && regno
< reg_n_sets_max
13805 && REG_N_SETS (regno
) == 1
13806 && (!REGNO_REG_SET_P
13807 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
13809 && rsp
->last_set_label
> tick
))
13812 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
13819 /* If this is a memory reference, make sure that there were no stores after
13820 it that might have clobbered the value. We don't have alias info, so we
13821 assume any store invalidates it. Moreover, we only have local UIDs, so
13822 we also assume that there were stores in the intervening basic blocks. */
13823 else if (MEM_P (x
) && !MEM_READONLY_P (x
)
13824 && (tick
!= label_tick
|| DF_INSN_LUID (insn
) <= mem_last_set
))
13827 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
13831 for (i
= 0; i
< len
; i
++)
13835 /* Check for identical subexpressions. If x contains
13836 identical subexpression we only have to traverse one of
13838 if (i
== 1 && ARITHMETIC_P (x
))
13840 /* Note that at this point x0 has already been checked
13841 and found valid. */
13842 rtx x0
= XEXP (x
, 0);
13843 rtx x1
= XEXP (x
, 1);
13845 /* If x0 and x1 are identical then x is also valid. */
13849 /* If x1 is identical to a subexpression of x0 then
13850 while checking x0, x1 has already been checked. Thus
13851 it is valid and so as x. */
13852 if (ARITHMETIC_P (x0
)
13853 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
13856 /* If x0 is identical to a subexpression of x1 then x is
13857 valid iff the rest of x1 is valid. */
13858 if (ARITHMETIC_P (x1
)
13859 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
13861 get_last_value_validate (&XEXP (x1
,
13862 x0
== XEXP (x1
, 0) ? 1 : 0),
13863 insn
, tick
, replace
);
13866 if (!get_last_value_validate (&XEXP (x
, i
), insn
, tick
, replace
))
13869 else if (fmt
[i
] == 'E')
13870 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13871 if (!get_last_value_validate (&XVECEXP (x
, i
, j
),
13872 insn
, tick
, replace
))
13876 /* If we haven't found a reason for it to be invalid, it is valid. */
13880 /* Get the last value assigned to X, if known. Some registers
13881 in the value may be replaced with (clobber (const_int 0)) if their value
13882 is known longer known reliably. */
13885 get_last_value (const_rtx x
)
13887 unsigned int regno
;
13889 reg_stat_type
*rsp
;
13891 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13892 then convert it to the desired mode. If this is a paradoxical SUBREG,
13893 we cannot predict what values the "extra" bits might have. */
13894 if (GET_CODE (x
) == SUBREG
13895 && subreg_lowpart_p (x
)
13896 && !paradoxical_subreg_p (x
)
13897 && (value
= get_last_value (SUBREG_REG (x
))) != 0)
13898 return gen_lowpart (GET_MODE (x
), value
);
13904 rsp
= ®_stat
[regno
];
13905 value
= rsp
->last_set_value
;
13907 /* If we don't have a value, or if it isn't for this basic block and
13908 it's either a hard register, set more than once, or it's a live
13909 at the beginning of the function, return 0.
13911 Because if it's not live at the beginning of the function then the reg
13912 is always set before being used (is never used without being set).
13913 And, if it's set only once, and it's always set before use, then all
13914 uses must have the same last value, even if it's not from this basic
13918 || (rsp
->last_set_label
< label_tick_ebb_start
13919 && (regno
< FIRST_PSEUDO_REGISTER
13920 || regno
>= reg_n_sets_max
13921 || REG_N_SETS (regno
) != 1
13923 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
), regno
))))
13926 /* If the value was set in a later insn than the ones we are processing,
13927 we can't use it even if the register was only set once. */
13928 if (rsp
->last_set_label
== label_tick
13929 && DF_INSN_LUID (rsp
->last_set
) >= subst_low_luid
)
13932 /* If fewer bits were set than what we are asked for now, we cannot use
13934 if (maybe_lt (GET_MODE_PRECISION (rsp
->last_set_mode
),
13935 GET_MODE_PRECISION (GET_MODE (x
))))
13938 /* If the value has all its registers valid, return it. */
13939 if (get_last_value_validate (&value
, rsp
->last_set
,
13940 rsp
->last_set_label
, false))
13943 /* Otherwise, make a copy and replace any invalid register with
13944 (clobber (const_int 0)). If that fails for some reason, return 0. */
13946 value
= copy_rtx (value
);
13947 if (get_last_value_validate (&value
, rsp
->last_set
,
13948 rsp
->last_set_label
, true))
13954 /* Define three variables used for communication between the following
13957 static unsigned int reg_dead_regno
, reg_dead_endregno
;
13958 static int reg_dead_flag
;
13961 /* Function called via note_stores from reg_dead_at_p.
13963 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13964 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13967 reg_dead_at_p_1 (rtx dest
, const_rtx x
, void *data ATTRIBUTE_UNUSED
)
13969 unsigned int regno
, endregno
;
13974 regno
= REGNO (dest
);
13975 endregno
= END_REGNO (dest
);
13976 if (reg_dead_endregno
> regno
&& reg_dead_regno
< endregno
)
13977 reg_dead_flag
= (GET_CODE (x
) == CLOBBER
) ? 1 : -1;
13980 /* Return true if REG is known to be dead at INSN.
13982 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13983 referencing REG, it is dead. If we hit a SET referencing REG, it is
13984 live. Otherwise, see if it is live or dead at the start of the basic
13985 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13986 must be assumed to be always live. */
13989 reg_dead_at_p (rtx reg
, rtx_insn
*insn
)
13994 /* Set variables for reg_dead_at_p_1. */
13995 reg_dead_regno
= REGNO (reg
);
13996 reg_dead_endregno
= END_REGNO (reg
);
13997 reg_dead_reg
= reg
;
14001 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
14002 we allow the machine description to decide whether use-and-clobber
14003 patterns are OK. */
14004 if (reg_dead_regno
< FIRST_PSEUDO_REGISTER
)
14006 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
14007 if (!fixed_regs
[i
] && TEST_HARD_REG_BIT (newpat_used_regs
, i
))
14011 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
14012 beginning of basic block. */
14013 block
= BLOCK_FOR_INSN (insn
);
14018 if (find_regno_note (insn
, REG_UNUSED
, reg_dead_regno
))
14021 note_stores (insn
, reg_dead_at_p_1
, NULL
);
14023 return reg_dead_flag
== 1 ? 1 : 0;
14025 if (find_regno_note (insn
, REG_DEAD
, reg_dead_regno
))
14029 if (insn
== BB_HEAD (block
))
14032 insn
= PREV_INSN (insn
);
14035 /* Look at live-in sets for the basic block that we were in. */
14036 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
14037 if (REGNO_REG_SET_P (df_get_live_in (block
), i
))
14043 /* Note hard registers in X that are used. */
14046 mark_used_regs_combine (rtx x
)
14048 RTX_CODE code
= GET_CODE (x
);
14049 unsigned int regno
;
14060 case ADDR_DIFF_VEC
:
14065 /* If we are clobbering a MEM, mark any hard registers inside the
14066 address as used. */
14067 if (MEM_P (XEXP (x
, 0)))
14068 mark_used_regs_combine (XEXP (XEXP (x
, 0), 0));
14073 /* A hard reg in a wide mode may really be multiple registers.
14074 If so, mark all of them just like the first. */
14075 if (regno
< FIRST_PSEUDO_REGISTER
)
14077 /* None of this applies to the stack, frame or arg pointers. */
14078 if (regno
== STACK_POINTER_REGNUM
14079 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
14080 && regno
== HARD_FRAME_POINTER_REGNUM
)
14081 || (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
14082 && regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
14083 || regno
== FRAME_POINTER_REGNUM
)
14086 add_to_hard_reg_set (&newpat_used_regs
, GET_MODE (x
), regno
);
14092 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
14094 rtx testreg
= SET_DEST (x
);
14096 while (GET_CODE (testreg
) == SUBREG
14097 || GET_CODE (testreg
) == ZERO_EXTRACT
14098 || GET_CODE (testreg
) == STRICT_LOW_PART
)
14099 testreg
= XEXP (testreg
, 0);
14101 if (MEM_P (testreg
))
14102 mark_used_regs_combine (XEXP (testreg
, 0));
14104 mark_used_regs_combine (SET_SRC (x
));
14112 /* Recursively scan the operands of this expression. */
14115 const char *fmt
= GET_RTX_FORMAT (code
);
14117 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
14120 mark_used_regs_combine (XEXP (x
, i
));
14121 else if (fmt
[i
] == 'E')
14125 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
14126 mark_used_regs_combine (XVECEXP (x
, i
, j
));
14132 /* Remove register number REGNO from the dead registers list of INSN.
14134 Return the note used to record the death, if there was one. */
14137 remove_death (unsigned int regno
, rtx_insn
*insn
)
14139 rtx note
= find_regno_note (insn
, REG_DEAD
, regno
);
14142 remove_note (insn
, note
);
14147 /* For each register (hardware or pseudo) used within expression X, if its
14148 death is in an instruction with luid between FROM_LUID (inclusive) and
14149 TO_INSN (exclusive), put a REG_DEAD note for that register in the
14150 list headed by PNOTES.
14152 That said, don't move registers killed by maybe_kill_insn.
14154 This is done when X is being merged by combination into TO_INSN. These
14155 notes will then be distributed as needed. */
14158 move_deaths (rtx x
, rtx maybe_kill_insn
, int from_luid
, rtx_insn
*to_insn
,
14163 enum rtx_code code
= GET_CODE (x
);
14167 unsigned int regno
= REGNO (x
);
14168 rtx_insn
*where_dead
= reg_stat
[regno
].last_death
;
14170 /* If we do not know where the register died, it may still die between
14171 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
14172 if (!where_dead
|| DF_INSN_LUID (where_dead
) >= DF_INSN_LUID (to_insn
))
14174 rtx_insn
*insn
= prev_real_nondebug_insn (to_insn
);
14176 && BLOCK_FOR_INSN (insn
) == BLOCK_FOR_INSN (to_insn
)
14177 && DF_INSN_LUID (insn
) >= from_luid
)
14179 if (dead_or_set_regno_p (insn
, regno
))
14181 if (find_regno_note (insn
, REG_DEAD
, regno
))
14186 insn
= prev_real_nondebug_insn (insn
);
14190 /* Don't move the register if it gets killed in between from and to. */
14191 if (maybe_kill_insn
&& reg_set_p (x
, maybe_kill_insn
)
14192 && ! reg_referenced_p (x
, maybe_kill_insn
))
14196 && BLOCK_FOR_INSN (where_dead
) == BLOCK_FOR_INSN (to_insn
)
14197 && DF_INSN_LUID (where_dead
) >= from_luid
14198 && DF_INSN_LUID (where_dead
) < DF_INSN_LUID (to_insn
))
14200 rtx note
= remove_death (regno
, where_dead
);
14202 /* It is possible for the call above to return 0. This can occur
14203 when last_death points to I2 or I1 that we combined with.
14204 In that case make a new note.
14206 We must also check for the case where X is a hard register
14207 and NOTE is a death note for a range of hard registers
14208 including X. In that case, we must put REG_DEAD notes for
14209 the remaining registers in place of NOTE. */
14211 if (note
!= 0 && regno
< FIRST_PSEUDO_REGISTER
14212 && partial_subreg_p (GET_MODE (x
), GET_MODE (XEXP (note
, 0))))
14214 unsigned int deadregno
= REGNO (XEXP (note
, 0));
14215 unsigned int deadend
= END_REGNO (XEXP (note
, 0));
14216 unsigned int ourend
= END_REGNO (x
);
14219 for (i
= deadregno
; i
< deadend
; i
++)
14220 if (i
< regno
|| i
>= ourend
)
14221 add_reg_note (where_dead
, REG_DEAD
, regno_reg_rtx
[i
]);
14224 /* If we didn't find any note, or if we found a REG_DEAD note that
14225 covers only part of the given reg, and we have a multi-reg hard
14226 register, then to be safe we must check for REG_DEAD notes
14227 for each register other than the first. They could have
14228 their own REG_DEAD notes lying around. */
14229 else if ((note
== 0
14231 && partial_subreg_p (GET_MODE (XEXP (note
, 0)),
14233 && regno
< FIRST_PSEUDO_REGISTER
14234 && REG_NREGS (x
) > 1)
14236 unsigned int ourend
= END_REGNO (x
);
14237 unsigned int i
, offset
;
14241 offset
= hard_regno_nregs (regno
, GET_MODE (XEXP (note
, 0)));
14245 for (i
= regno
+ offset
; i
< ourend
; i
++)
14246 move_deaths (regno_reg_rtx
[i
],
14247 maybe_kill_insn
, from_luid
, to_insn
, &oldnotes
);
14250 if (note
!= 0 && GET_MODE (XEXP (note
, 0)) == GET_MODE (x
))
14252 XEXP (note
, 1) = *pnotes
;
14256 *pnotes
= alloc_reg_note (REG_DEAD
, x
, *pnotes
);
14262 else if (GET_CODE (x
) == SET
)
14264 rtx dest
= SET_DEST (x
);
14266 move_deaths (SET_SRC (x
), maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
14268 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14269 that accesses one word of a multi-word item, some
14270 piece of everything register in the expression is used by
14271 this insn, so remove any old death. */
14272 /* ??? So why do we test for equality of the sizes? */
14274 if (GET_CODE (dest
) == ZERO_EXTRACT
14275 || GET_CODE (dest
) == STRICT_LOW_PART
14276 || (GET_CODE (dest
) == SUBREG
14277 && !read_modify_subreg_p (dest
)))
14279 move_deaths (dest
, maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
14283 /* If this is some other SUBREG, we know it replaces the entire
14284 value, so use that as the destination. */
14285 if (GET_CODE (dest
) == SUBREG
)
14286 dest
= SUBREG_REG (dest
);
14288 /* If this is a MEM, adjust deaths of anything used in the address.
14289 For a REG (the only other possibility), the entire value is
14290 being replaced so the old value is not used in this insn. */
14293 move_deaths (XEXP (dest
, 0), maybe_kill_insn
, from_luid
,
14298 else if (GET_CODE (x
) == CLOBBER
)
14301 len
= GET_RTX_LENGTH (code
);
14302 fmt
= GET_RTX_FORMAT (code
);
14304 for (i
= 0; i
< len
; i
++)
14309 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
14310 move_deaths (XVECEXP (x
, i
, j
), maybe_kill_insn
, from_luid
,
14313 else if (fmt
[i
] == 'e')
14314 move_deaths (XEXP (x
, i
), maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
14318 /* Return true if X is the target of a bit-field assignment in BODY, the
14319 pattern of an insn. X must be a REG. */
14322 reg_bitfield_target_p (rtx x
, rtx body
)
14326 if (GET_CODE (body
) == SET
)
14328 rtx dest
= SET_DEST (body
);
14330 unsigned int regno
, tregno
, endregno
, endtregno
;
14332 if (GET_CODE (dest
) == ZERO_EXTRACT
)
14333 target
= XEXP (dest
, 0);
14334 else if (GET_CODE (dest
) == STRICT_LOW_PART
)
14335 target
= SUBREG_REG (XEXP (dest
, 0));
14339 if (GET_CODE (target
) == SUBREG
)
14340 target
= SUBREG_REG (target
);
14342 if (!REG_P (target
))
14345 tregno
= REGNO (target
), regno
= REGNO (x
);
14346 if (tregno
>= FIRST_PSEUDO_REGISTER
|| regno
>= FIRST_PSEUDO_REGISTER
)
14347 return target
== x
;
14349 endtregno
= end_hard_regno (GET_MODE (target
), tregno
);
14350 endregno
= end_hard_regno (GET_MODE (x
), regno
);
14352 return endregno
> tregno
&& regno
< endtregno
;
14355 else if (GET_CODE (body
) == PARALLEL
)
14356 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
14357 if (reg_bitfield_target_p (x
, XVECEXP (body
, 0, i
)))
14363 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14364 as appropriate. I3 and I2 are the insns resulting from the combination
14365 insns including FROM (I2 may be zero).
14367 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14368 not need REG_DEAD notes because they are being substituted for. This
14369 saves searching in the most common cases.
14371 Each note in the list is either ignored or placed on some insns, depending
14372 on the type of note. */
14375 distribute_notes (rtx notes
, rtx_insn
*from_insn
, rtx_insn
*i3
, rtx_insn
*i2
,
14376 rtx elim_i2
, rtx elim_i1
, rtx elim_i0
)
14378 rtx note
, next_note
;
14380 rtx_insn
*tem_insn
;
14382 for (note
= notes
; note
; note
= next_note
)
14384 rtx_insn
*place
= 0, *place2
= 0;
14386 next_note
= XEXP (note
, 1);
14387 switch (REG_NOTE_KIND (note
))
14391 /* Doesn't matter much where we put this, as long as it's somewhere.
14392 It is preferable to keep these notes on branches, which is most
14393 likely to be i3. */
14397 case REG_NON_LOCAL_GOTO
:
14402 gcc_assert (i2
&& JUMP_P (i2
));
14407 case REG_EH_REGION
:
14409 /* The landing pad handling needs to be kept in sync with the
14410 prerequisite checking in try_combine. */
14411 int lp_nr
= INTVAL (XEXP (note
, 0));
14412 /* A REG_EH_REGION note transfering control can only ever come
14415 gcc_assert (from_insn
== i3
);
14416 /* We are making sure there is a single effective REG_EH_REGION
14417 note and it's valid to put it on i3. */
14418 if (!insn_could_throw_p (from_insn
)
14419 && !(lp_nr
== INT_MIN
&& can_nonlocal_goto (from_insn
)))
14420 /* Throw away stray notes on insns that can never throw or
14421 make a nonlocal goto. */
14429 gcc_assert (cfun
->can_throw_non_call_exceptions
);
14430 /* If i3 can still trap preserve the note, otherwise we've
14431 combined things such that we can now prove that the
14432 instructions can't trap. Drop the note in this case. */
14433 if (may_trap_p (i3
))
14440 case REG_ARGS_SIZE
:
14441 /* ??? How to distribute between i3-i1. Assume i3 contains the
14442 entire adjustment. Assert i3 contains at least some adjust. */
14443 if (!noop_move_p (i3
))
14445 poly_int64 old_size
, args_size
= get_args_size (note
);
14446 /* fixup_args_size_notes looks at REG_NORETURN note,
14447 so ensure the note is placed there first. */
14451 for (np
= &next_note
; *np
; np
= &XEXP (*np
, 1))
14452 if (REG_NOTE_KIND (*np
) == REG_NORETURN
)
14456 XEXP (n
, 1) = REG_NOTES (i3
);
14457 REG_NOTES (i3
) = n
;
14461 old_size
= fixup_args_size_notes (PREV_INSN (i3
), i3
, args_size
);
14462 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14463 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14464 gcc_assert (maybe_ne (old_size
, args_size
)
14466 && !ACCUMULATE_OUTGOING_ARGS
14467 && find_reg_note (i3
, REG_NORETURN
, NULL_RTX
)));
14474 case REG_CALL_DECL
:
14475 case REG_UNTYPED_CALL
:
14476 case REG_CALL_NOCF_CHECK
:
14477 /* These notes must remain with the call. It should not be
14478 possible for both I2 and I3 to be a call. */
14483 gcc_assert (i2
&& CALL_P (i2
));
14489 /* Any clobbers for i3 may still exist, and so we must process
14490 REG_UNUSED notes from that insn.
14492 Any clobbers from i2 or i1 can only exist if they were added by
14493 recog_for_combine. In that case, recog_for_combine created the
14494 necessary REG_UNUSED notes. Trying to keep any original
14495 REG_UNUSED notes from these insns can cause incorrect output
14496 if it is for the same register as the original i3 dest.
14497 In that case, we will notice that the register is set in i3,
14498 and then add a REG_UNUSED note for the destination of i3, which
14499 is wrong. However, it is possible to have REG_UNUSED notes from
14500 i2 or i1 for register which were both used and clobbered, so
14501 we keep notes from i2 or i1 if they will turn into REG_DEAD
14504 /* If this register is set or clobbered between FROM_INSN and I3,
14505 we should not create a note for it. */
14506 if (reg_set_between_p (XEXP (note
, 0), from_insn
, i3
))
14509 /* If this register is set or clobbered in I3, put the note there
14510 unless there is one already. */
14511 if (reg_set_p (XEXP (note
, 0), PATTERN (i3
)))
14513 if (from_insn
!= i3
)
14516 if (! (REG_P (XEXP (note
, 0))
14517 ? find_regno_note (i3
, REG_UNUSED
, REGNO (XEXP (note
, 0)))
14518 : find_reg_note (i3
, REG_UNUSED
, XEXP (note
, 0))))
14521 /* Otherwise, if this register is used by I3, then this register
14522 now dies here, so we must put a REG_DEAD note here unless there
14524 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
))
14525 && ! (REG_P (XEXP (note
, 0))
14526 ? find_regno_note (i3
, REG_DEAD
,
14527 REGNO (XEXP (note
, 0)))
14528 : find_reg_note (i3
, REG_DEAD
, XEXP (note
, 0))))
14530 PUT_REG_NOTE_KIND (note
, REG_DEAD
);
14534 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14535 but we can't tell which at this point. We must reset any
14536 expectations we had about the value that was previously
14537 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14538 and, if appropriate, restore its previous value, but we
14539 don't have enough information for that at this point. */
14542 record_value_for_reg (XEXP (note
, 0), NULL
, NULL_RTX
);
14544 /* Otherwise, if this register is now referenced in i2
14545 then the register used to be modified in one of the
14546 original insns. If it was i3 (say, in an unused
14547 parallel), it's now completely gone, so the note can
14548 be discarded. But if it was modified in i2, i1 or i0
14549 and we still reference it in i2, then we're
14550 referencing the previous value, and since the
14551 register was modified and REG_UNUSED, we know that
14552 the previous value is now dead. So, if we only
14553 reference the register in i2, we change the note to
14554 REG_DEAD, to reflect the previous value. However, if
14555 we're also setting or clobbering the register as
14556 scratch, we know (because the register was not
14557 referenced in i3) that it's unused, just as it was
14558 unused before, and we place the note in i2. */
14559 if (from_insn
!= i3
&& i2
&& INSN_P (i2
)
14560 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
14562 if (!reg_set_p (XEXP (note
, 0), PATTERN (i2
)))
14563 PUT_REG_NOTE_KIND (note
, REG_DEAD
);
14564 if (! (REG_P (XEXP (note
, 0))
14565 ? find_regno_note (i2
, REG_NOTE_KIND (note
),
14566 REGNO (XEXP (note
, 0)))
14567 : find_reg_note (i2
, REG_NOTE_KIND (note
),
14578 /* These notes say something about results of an insn. We can
14579 only support them if they used to be on I3 in which case they
14580 remain on I3. Otherwise they are ignored.
14582 If the note refers to an expression that is not a constant, we
14583 must also ignore the note since we cannot tell whether the
14584 equivalence is still true. It might be possible to do
14585 slightly better than this (we only have a problem if I2DEST
14586 or I1DEST is present in the expression), but it doesn't
14587 seem worth the trouble. */
14589 if (from_insn
== i3
14590 && (XEXP (note
, 0) == 0 || CONSTANT_P (XEXP (note
, 0))))
14595 /* These notes say something about how a register is used. They must
14596 be present on any use of the register in I2 or I3. */
14597 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
)))
14600 if (i2
&& reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
)))
14609 case REG_LABEL_TARGET
:
14610 case REG_LABEL_OPERAND
:
14611 /* This can show up in several ways -- either directly in the
14612 pattern, or hidden off in the constant pool with (or without?)
14613 a REG_EQUAL note. */
14614 /* ??? Ignore the without-reg_equal-note problem for now. */
14615 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
))
14616 || ((tem_note
= find_reg_note (i3
, REG_EQUAL
, NULL_RTX
))
14617 && GET_CODE (XEXP (tem_note
, 0)) == LABEL_REF
14618 && label_ref_label (XEXP (tem_note
, 0)) == XEXP (note
, 0)))
14622 && (reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
))
14623 || ((tem_note
= find_reg_note (i2
, REG_EQUAL
, NULL_RTX
))
14624 && GET_CODE (XEXP (tem_note
, 0)) == LABEL_REF
14625 && label_ref_label (XEXP (tem_note
, 0)) == XEXP (note
, 0))))
14633 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14634 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14636 if (place
&& JUMP_P (place
)
14637 && REG_NOTE_KIND (note
) == REG_LABEL_TARGET
14638 && (JUMP_LABEL (place
) == NULL
14639 || JUMP_LABEL (place
) == XEXP (note
, 0)))
14641 rtx label
= JUMP_LABEL (place
);
14644 JUMP_LABEL (place
) = XEXP (note
, 0);
14645 else if (LABEL_P (label
))
14646 LABEL_NUSES (label
)--;
14649 if (place2
&& JUMP_P (place2
)
14650 && REG_NOTE_KIND (note
) == REG_LABEL_TARGET
14651 && (JUMP_LABEL (place2
) == NULL
14652 || JUMP_LABEL (place2
) == XEXP (note
, 0)))
14654 rtx label
= JUMP_LABEL (place2
);
14657 JUMP_LABEL (place2
) = XEXP (note
, 0);
14658 else if (LABEL_P (label
))
14659 LABEL_NUSES (label
)--;
14665 /* This note says something about the value of a register prior
14666 to the execution of an insn. It is too much trouble to see
14667 if the note is still correct in all situations. It is better
14668 to simply delete it. */
14672 /* If we replaced the right hand side of FROM_INSN with a
14673 REG_EQUAL note, the original use of the dying register
14674 will not have been combined into I3 and I2. In such cases,
14675 FROM_INSN is guaranteed to be the first of the combined
14676 instructions, so we simply need to search back before
14677 FROM_INSN for the previous use or set of this register,
14678 then alter the notes there appropriately.
14680 If the register is used as an input in I3, it dies there.
14681 Similarly for I2, if it is nonzero and adjacent to I3.
14683 If the register is not used as an input in either I3 or I2
14684 and it is not one of the registers we were supposed to eliminate,
14685 there are two possibilities. We might have a non-adjacent I2
14686 or we might have somehow eliminated an additional register
14687 from a computation. For example, we might have had A & B where
14688 we discover that B will always be zero. In this case we will
14689 eliminate the reference to A.
14691 In both cases, we must search to see if we can find a previous
14692 use of A and put the death note there. */
14695 && from_insn
== i2mod
14696 && !reg_overlap_mentioned_p (XEXP (note
, 0), i2mod_new_rhs
))
14697 tem_insn
= from_insn
;
14701 && CALL_P (from_insn
)
14702 && find_reg_fusage (from_insn
, USE
, XEXP (note
, 0)))
14704 else if (i2
&& reg_set_p (XEXP (note
, 0), PATTERN (i2
)))
14706 /* If the new I2 sets the same register that is marked
14707 dead in the note, we do not in general know where to
14708 put the note. One important case we _can_ handle is
14709 when the note comes from I3. */
14710 if (from_insn
== i3
)
14715 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
)))
14717 else if (i2
!= 0 && next_nonnote_nondebug_insn (i2
) == i3
14718 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
14720 else if ((rtx_equal_p (XEXP (note
, 0), elim_i2
)
14722 && reg_overlap_mentioned_p (XEXP (note
, 0),
14724 || rtx_equal_p (XEXP (note
, 0), elim_i1
)
14725 || rtx_equal_p (XEXP (note
, 0), elim_i0
))
14732 basic_block bb
= this_basic_block
;
14734 for (tem_insn
= PREV_INSN (tem_insn
); place
== 0; tem_insn
= PREV_INSN (tem_insn
))
14736 if (!NONDEBUG_INSN_P (tem_insn
))
14738 if (tem_insn
== BB_HEAD (bb
))
14743 /* If the register is being set at TEM_INSN, see if that is all
14744 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14745 into a REG_UNUSED note instead. Don't delete sets to
14746 global register vars. */
14747 if ((REGNO (XEXP (note
, 0)) >= FIRST_PSEUDO_REGISTER
14748 || !global_regs
[REGNO (XEXP (note
, 0))])
14749 && reg_set_p (XEXP (note
, 0), PATTERN (tem_insn
)))
14751 rtx set
= single_set (tem_insn
);
14752 rtx inner_dest
= 0;
14755 for (inner_dest
= SET_DEST (set
);
14756 (GET_CODE (inner_dest
) == STRICT_LOW_PART
14757 || GET_CODE (inner_dest
) == SUBREG
14758 || GET_CODE (inner_dest
) == ZERO_EXTRACT
);
14759 inner_dest
= XEXP (inner_dest
, 0))
14762 /* Verify that it was the set, and not a clobber that
14763 modified the register.
14765 If we cannot delete the setter due to side
14766 effects, mark the user with an UNUSED note instead
14769 if (set
!= 0 && ! side_effects_p (SET_SRC (set
))
14770 && rtx_equal_p (XEXP (note
, 0), inner_dest
))
14772 /* Move the notes and links of TEM_INSN elsewhere.
14773 This might delete other dead insns recursively.
14774 First set the pattern to something that won't use
14776 rtx old_notes
= REG_NOTES (tem_insn
);
14778 PATTERN (tem_insn
) = pc_rtx
;
14779 REG_NOTES (tem_insn
) = NULL
;
14781 distribute_notes (old_notes
, tem_insn
, tem_insn
, NULL
,
14782 NULL_RTX
, NULL_RTX
, NULL_RTX
);
14783 distribute_links (LOG_LINKS (tem_insn
));
14785 unsigned int regno
= REGNO (XEXP (note
, 0));
14786 reg_stat_type
*rsp
= ®_stat
[regno
];
14787 if (rsp
->last_set
== tem_insn
)
14788 record_value_for_reg (XEXP (note
, 0), NULL
, NULL_RTX
);
14790 SET_INSN_DELETED (tem_insn
);
14791 if (tem_insn
== i2
)
14796 PUT_REG_NOTE_KIND (note
, REG_UNUSED
);
14798 /* If there isn't already a REG_UNUSED note, put one
14799 here. Do not place a REG_DEAD note, even if
14800 the register is also used here; that would not
14801 match the algorithm used in lifetime analysis
14802 and can cause the consistency check in the
14803 scheduler to fail. */
14804 if (! find_regno_note (tem_insn
, REG_UNUSED
,
14805 REGNO (XEXP (note
, 0))))
14810 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (tem_insn
))
14811 || (CALL_P (tem_insn
)
14812 && find_reg_fusage (tem_insn
, USE
, XEXP (note
, 0))))
14816 /* If we are doing a 3->2 combination, and we have a
14817 register which formerly died in i3 and was not used
14818 by i2, which now no longer dies in i3 and is used in
14819 i2 but does not die in i2, and place is between i2
14820 and i3, then we may need to move a link from place to
14822 if (i2
&& DF_INSN_LUID (place
) > DF_INSN_LUID (i2
)
14824 && DF_INSN_LUID (from_insn
) > DF_INSN_LUID (i2
)
14825 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
14827 struct insn_link
*links
= LOG_LINKS (place
);
14828 LOG_LINKS (place
) = NULL
;
14829 distribute_links (links
);
14834 if (tem_insn
== BB_HEAD (bb
))
14840 /* If the register is set or already dead at PLACE, we needn't do
14841 anything with this note if it is still a REG_DEAD note.
14842 We check here if it is set at all, not if is it totally replaced,
14843 which is what `dead_or_set_p' checks, so also check for it being
14846 if (place
&& REG_NOTE_KIND (note
) == REG_DEAD
)
14848 unsigned int regno
= REGNO (XEXP (note
, 0));
14849 reg_stat_type
*rsp
= ®_stat
[regno
];
14851 if (dead_or_set_p (place
, XEXP (note
, 0))
14852 || reg_bitfield_target_p (XEXP (note
, 0), PATTERN (place
)))
14854 /* Unless the register previously died in PLACE, clear
14855 last_death. [I no longer understand why this is
14857 if (rsp
->last_death
!= place
)
14858 rsp
->last_death
= 0;
14862 rsp
->last_death
= place
;
14864 /* If this is a death note for a hard reg that is occupying
14865 multiple registers, ensure that we are still using all
14866 parts of the object. If we find a piece of the object
14867 that is unused, we must arrange for an appropriate REG_DEAD
14868 note to be added for it. However, we can't just emit a USE
14869 and tag the note to it, since the register might actually
14870 be dead; so we recourse, and the recursive call then finds
14871 the previous insn that used this register. */
14873 if (place
&& REG_NREGS (XEXP (note
, 0)) > 1)
14875 unsigned int endregno
= END_REGNO (XEXP (note
, 0));
14876 bool all_used
= true;
14879 for (i
= regno
; i
< endregno
; i
++)
14880 if ((! refers_to_regno_p (i
, PATTERN (place
))
14881 && ! find_regno_fusage (place
, USE
, i
))
14882 || dead_or_set_regno_p (place
, i
))
14890 /* Put only REG_DEAD notes for pieces that are
14891 not already dead or set. */
14893 for (i
= regno
; i
< endregno
;
14894 i
+= hard_regno_nregs (i
, reg_raw_mode
[i
]))
14896 rtx piece
= regno_reg_rtx
[i
];
14897 basic_block bb
= this_basic_block
;
14899 if (! dead_or_set_p (place
, piece
)
14900 && ! reg_bitfield_target_p (piece
,
14903 rtx new_note
= alloc_reg_note (REG_DEAD
, piece
,
14906 distribute_notes (new_note
, place
, place
,
14907 NULL
, NULL_RTX
, NULL_RTX
,
14910 else if (! refers_to_regno_p (i
, PATTERN (place
))
14911 && ! find_regno_fusage (place
, USE
, i
))
14912 for (tem_insn
= PREV_INSN (place
); ;
14913 tem_insn
= PREV_INSN (tem_insn
))
14915 if (!NONDEBUG_INSN_P (tem_insn
))
14917 if (tem_insn
== BB_HEAD (bb
))
14921 if (dead_or_set_p (tem_insn
, piece
)
14922 || reg_bitfield_target_p (piece
,
14923 PATTERN (tem_insn
)))
14925 add_reg_note (tem_insn
, REG_UNUSED
, piece
);
14938 /* Any other notes should not be present at this point in the
14940 gcc_unreachable ();
14945 XEXP (note
, 1) = REG_NOTES (place
);
14946 REG_NOTES (place
) = note
;
14948 /* Set added_notes_insn to the earliest insn we added a note to. */
14949 if (added_notes_insn
== 0
14950 || DF_INSN_LUID (added_notes_insn
) > DF_INSN_LUID (place
))
14951 added_notes_insn
= place
;
14956 add_shallow_copy_of_reg_note (place2
, note
);
14958 /* Set added_notes_insn to the earliest insn we added a note to. */
14959 if (added_notes_insn
== 0
14960 || DF_INSN_LUID (added_notes_insn
) > DF_INSN_LUID (place2
))
14961 added_notes_insn
= place2
;
14966 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14967 I3, I2, and I1 to new locations. This is also called to add a link
14968 pointing at I3 when I3's destination is changed. */
14971 distribute_links (struct insn_link
*links
)
14973 struct insn_link
*link
, *next_link
;
14975 for (link
= links
; link
; link
= next_link
)
14977 rtx_insn
*place
= 0;
14981 next_link
= link
->next
;
14983 /* If the insn that this link points to is a NOTE, ignore it. */
14984 if (NOTE_P (link
->insn
))
14988 rtx pat
= PATTERN (link
->insn
);
14989 if (GET_CODE (pat
) == SET
)
14991 else if (GET_CODE (pat
) == PARALLEL
)
14994 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
14996 set
= XVECEXP (pat
, 0, i
);
14997 if (GET_CODE (set
) != SET
)
15000 reg
= SET_DEST (set
);
15001 while (GET_CODE (reg
) == ZERO_EXTRACT
15002 || GET_CODE (reg
) == STRICT_LOW_PART
15003 || GET_CODE (reg
) == SUBREG
)
15004 reg
= XEXP (reg
, 0);
15009 if (REGNO (reg
) == link
->regno
)
15012 if (i
== XVECLEN (pat
, 0))
15018 reg
= SET_DEST (set
);
15020 while (GET_CODE (reg
) == ZERO_EXTRACT
15021 || GET_CODE (reg
) == STRICT_LOW_PART
15022 || GET_CODE (reg
) == SUBREG
)
15023 reg
= XEXP (reg
, 0);
15028 /* A LOG_LINK is defined as being placed on the first insn that uses
15029 a register and points to the insn that sets the register. Start
15030 searching at the next insn after the target of the link and stop
15031 when we reach a set of the register or the end of the basic block.
15033 Note that this correctly handles the link that used to point from
15034 I3 to I2. Also note that not much searching is typically done here
15035 since most links don't point very far away. */
15037 for (insn
= NEXT_INSN (link
->insn
);
15038 (insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
15039 || BB_HEAD (this_basic_block
->next_bb
) != insn
));
15040 insn
= NEXT_INSN (insn
))
15041 if (DEBUG_INSN_P (insn
))
15043 else if (INSN_P (insn
) && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
15045 if (reg_referenced_p (reg
, PATTERN (insn
)))
15049 else if (CALL_P (insn
)
15050 && find_reg_fusage (insn
, USE
, reg
))
15055 else if (INSN_P (insn
) && reg_set_p (reg
, insn
))
15058 /* If we found a place to put the link, place it there unless there
15059 is already a link to the same insn as LINK at that point. */
15063 struct insn_link
*link2
;
15065 FOR_EACH_LOG_LINK (link2
, place
)
15066 if (link2
->insn
== link
->insn
&& link2
->regno
== link
->regno
)
15071 link
->next
= LOG_LINKS (place
);
15072 LOG_LINKS (place
) = link
;
15074 /* Set added_links_insn to the earliest insn we added a
15076 if (added_links_insn
== 0
15077 || DF_INSN_LUID (added_links_insn
) > DF_INSN_LUID (place
))
15078 added_links_insn
= place
;
15084 /* Check for any register or memory mentioned in EQUIV that is not
15085 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
15086 of EXPR where some registers may have been replaced by constants. */
15089 unmentioned_reg_p (rtx equiv
, rtx expr
)
15091 subrtx_iterator::array_type array
;
15092 FOR_EACH_SUBRTX (iter
, array
, equiv
, NONCONST
)
15094 const_rtx x
= *iter
;
15095 if ((REG_P (x
) || MEM_P (x
))
15096 && !reg_mentioned_p (x
, expr
))
15102 /* Make pseudo-to-pseudo copies after every hard-reg-to-pseudo-copy, because
15103 the reg-to-reg copy can usefully combine with later instructions, but we
15104 do not want to combine the hard reg into later instructions, for that
15105 restricts register allocation. */
15107 make_more_copies (void)
15111 FOR_EACH_BB_FN (bb
, cfun
)
15115 FOR_BB_INSNS (bb
, insn
)
15117 if (!NONDEBUG_INSN_P (insn
))
15120 rtx set
= single_set (insn
);
15124 rtx dest
= SET_DEST (set
);
15125 if (!(REG_P (dest
) && !HARD_REGISTER_P (dest
)))
15128 rtx src
= SET_SRC (set
);
15129 if (!(REG_P (src
) && HARD_REGISTER_P (src
)))
15131 if (TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (src
)))
15134 rtx new_reg
= gen_reg_rtx (GET_MODE (dest
));
15136 /* The "original" pseudo copies have important attributes
15137 attached, like pointerness. We want that for these copies
15138 too, for use by insn recognition and later passes. */
15139 set_reg_attrs_from_value (new_reg
, dest
);
15141 rtx_insn
*new_insn
= gen_move_insn (new_reg
, src
);
15142 SET_SRC (set
) = new_reg
;
15143 emit_insn_before (new_insn
, insn
);
15144 df_insn_rescan (insn
);
15149 /* Try combining insns through substitution. */
15151 rest_of_handle_combine (void)
15153 make_more_copies ();
15155 df_set_flags (DF_LR_RUN_DCE
+ DF_DEFER_INSN_RESCAN
);
15156 df_note_add_problem ();
15159 regstat_init_n_sets_and_refs ();
15160 reg_n_sets_max
= max_reg_num ();
15162 bool rebuild_jump_labels_after_combine
15163 = combine_instructions (get_insns (), max_reg_num ());
15165 /* Combining insns may have turned an indirect jump into a
15166 direct jump. Rebuild the JUMP_LABEL fields of jumping
15168 if (rebuild_jump_labels_after_combine
)
15170 if (dom_info_available_p (CDI_DOMINATORS
))
15171 free_dominance_info (CDI_DOMINATORS
);
15172 timevar_push (TV_JUMP
);
15173 rebuild_jump_labels (get_insns ());
15175 timevar_pop (TV_JUMP
);
15178 regstat_free_n_sets_and_refs ();
15183 const pass_data pass_data_combine
=
15185 RTL_PASS
, /* type */
15186 "combine", /* name */
15187 OPTGROUP_NONE
, /* optinfo_flags */
15188 TV_COMBINE
, /* tv_id */
15189 PROP_cfglayout
, /* properties_required */
15190 0, /* properties_provided */
15191 0, /* properties_destroyed */
15192 0, /* todo_flags_start */
15193 TODO_df_finish
, /* todo_flags_finish */
15196 class pass_combine
: public rtl_opt_pass
15199 pass_combine (gcc::context
*ctxt
)
15200 : rtl_opt_pass (pass_data_combine
, ctxt
)
15203 /* opt_pass methods: */
15204 bool gate (function
*) final override
{ return (optimize
> 0); }
15205 unsigned int execute (function
*) final override
15207 rest_of_handle_combine ();
15211 }; // class pass_combine
15213 } // anon namespace
15216 make_pass_combine (gcc::context
*ctxt
)
15218 return new pass_combine (ctxt
);