1 /* Straight-line strength reduction.
2 Copyright (C) 2012-2025 Free Software Foundation, Inc.
3 Contributed by Bill Schmidt, IBM <wschmidt@linux.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* There are many algorithms for performing strength reduction on
22 loops. This is not one of them. IVOPTS handles strength reduction
23 of induction variables just fine. This pass is intended to pick
24 up the crumbs it leaves behind, by considering opportunities for
25 strength reduction along dominator paths.
27 Strength reduction addresses explicit multiplies, and certain
28 multiplies implicit in addressing expressions. It would also be
29 possible to apply strength reduction to divisions and modulos,
30 but such opportunities are relatively uncommon.
32 Strength reduction is also currently restricted to integer operations.
33 If desired, it could be extended to floating-point operations under
34 control of something like -funsafe-math-optimizations. */
38 #include "coretypes.h"
44 #include "tree-pass.h"
47 #include "gimple-pretty-print.h"
48 #include "fold-const.h"
49 #include "gimple-iterator.h"
50 #include "gimplify-me.h"
51 #include "stor-layout.h"
55 #include "tree-ssa-address.h"
56 #include "tree-affine.h"
59 #include "tree-ssa-dce.h"
61 /* Information about a strength reduction candidate. Each statement
62 in the candidate table represents an expression of one of the
63 following forms (the special case of CAND_REF will be described
66 (CAND_MULT) S1: X = (B + i) * S
67 (CAND_ADD) S1: X = B + (i * S)
69 Here X and B are SSA names, i is an integer constant, and S is
70 either an SSA name or a constant. We call B the "base," i the
71 "index", and S the "stride."
73 Any statement S0 that dominates S1 and is of the form:
75 (CAND_MULT) S0: Y = (B + i') * S
76 (CAND_ADD) S0: Y = B + (i' * S)
78 is called a "basis" for S1. In both cases, S1 may be replaced by
80 S1': X = Y + (i - i') * S,
82 where (i - i') * S is folded to the extent possible.
84 All gimple statements are visited in dominator order, and each
85 statement that may contribute to one of the forms of S1 above is
86 given at least one entry in the candidate table. Such statements
87 include addition, pointer addition, subtraction, multiplication,
88 negation, copies, and nontrivial type casts. If a statement may
89 represent more than one expression of the forms of S1 above,
90 multiple "interpretations" are stored in the table and chained
93 * An add of two SSA names may treat either operand as the base.
94 * A multiply of two SSA names, likewise.
95 * A copy or cast may be thought of as either a CAND_MULT with
96 i = 0 and S = 1, or as a CAND_ADD with i = 0 or S = 0.
98 Candidate records are allocated from an obstack. They are addressed
99 both from a hash table keyed on S1, and from a vector of candidate
100 pointers arranged in predominator order.
104 Currently we don't recognize:
109 as a strength reduction opportunity, even though this S1 would
110 also be replaceable by the S1' above. This can be added if it
111 comes up in practice.
113 Strength reduction in addressing
114 --------------------------------
115 There is another kind of candidate known as CAND_REF. A CAND_REF
116 describes a statement containing a memory reference having
117 complex addressing that might benefit from strength reduction.
118 Specifically, we are interested in references for which
119 get_inner_reference returns a base address, offset, and bitpos as
122 base: MEM_REF (T1, C1)
123 offset: MULT_EXPR (PLUS_EXPR (T2, C2), C3)
124 bitpos: C4 * BITS_PER_UNIT
126 Here T1 and T2 are arbitrary trees, and C1, C2, C3, C4 are
127 arbitrary integer constants. Note that C2 may be zero, in which
128 case the offset will be MULT_EXPR (T2, C3).
130 When this pattern is recognized, the original memory reference
131 can be replaced with:
133 MEM_REF (POINTER_PLUS_EXPR (T1, MULT_EXPR (T2, C3)),
136 which distributes the multiply to allow constant folding. When
137 two or more addressing expressions can be represented by MEM_REFs
138 of this form, differing only in the constants C1, C2, and C4,
139 making this substitution produces more efficient addressing during
140 the RTL phases. When there are not at least two expressions with
141 the same values of T1, T2, and C3, there is nothing to be gained
144 Strength reduction of CAND_REFs uses the same infrastructure as
145 that used by CAND_MULTs and CAND_ADDs. We record T1 in the base (B)
146 field, MULT_EXPR (T2, C3) in the stride (S) field, and
147 C1 + (C2 * C3) + C4 in the index (i) field. A basis for a CAND_REF
148 is thus another CAND_REF with the same B and S values. When at
149 least two CAND_REFs are chained together using the basis relation,
150 each of them is replaced as above, resulting in improved code
151 generation for addressing.
153 Conditional candidates
154 ======================
156 Conditional candidates are best illustrated with an example.
157 Consider the code sequence:
160 (2) a_0 = x_0 * 5; MULT (B: x_0; i: 0; S: 5)
162 (3) x_1 = x_0 + 1; ADD (B: x_0, i: 1; S: 1)
163 (4) x_2 = PHI <x_0, x_1>; PHI (B: x_0, i: 0, S: 1)
164 (5) x_3 = x_2 + 1; ADD (B: x_2, i: 1, S: 1)
165 (6) a_1 = x_3 * 5; MULT (B: x_2, i: 1; S: 5)
167 Here strength reduction is complicated by the uncertain value of x_2.
168 A legitimate transformation is:
177 (4) [x_2 = PHI <x_0, x_1>;]
178 (4a) t_2 = PHI <a_0, t_1>;
182 where the bracketed instructions may go dead.
184 To recognize this opportunity, we have to observe that statement (6)
185 has a "hidden basis" (2). The hidden basis is unlike a normal basis
186 in that the statement and the hidden basis have different base SSA
187 names (x_2 and x_0, respectively). The relationship is established
188 when a statement's base name (x_2) is defined by a phi statement (4),
189 each argument of which (x_0, x_1) has an identical "derived base name."
190 If the argument is defined by a candidate (as x_1 is by (3)) that is a
191 CAND_ADD having a stride of 1, the derived base name of the argument is
192 the base name of the candidate (x_0). Otherwise, the argument itself
193 is its derived base name (as is the case with argument x_0).
195 The hidden basis for statement (6) is the nearest dominating candidate
196 whose base name is the derived base name (x_0) of the feeding phi (4),
197 and whose stride is identical to that of the statement. We can then
198 create the new "phi basis" (4a) and feeding adds along incoming arcs (3a),
199 allowing the final replacement of (6) by the strength-reduced (6r).
201 To facilitate this, a new kind of candidate (CAND_PHI) is introduced.
202 A CAND_PHI is not a candidate for replacement, but is maintained in the
203 candidate table to ease discovery of hidden bases. Any phi statement
204 whose arguments share a common derived base name is entered into the
205 table with the derived base name, an (arbitrary) index of zero, and a
206 stride of 1. A statement with a hidden basis can then be detected by
207 simply looking up its feeding phi definition in the candidate table,
208 extracting the derived base name, and searching for a basis in the
209 usual manner after substituting the derived base name.
211 Note that the transformation is only valid when the original phi and
212 the statements that define the phi's arguments are all at the same
213 position in the loop hierarchy. */
216 /* Index into the candidate vector, offset by 1. VECs are zero-based,
217 while cand_idx's are one-based, with zero indicating null. */
218 typedef unsigned cand_idx
;
220 /* The kind of candidate. */
232 /* The candidate statement S1. */
235 /* The base expression B: often an SSA name, but not always. */
241 /* The index constant i. */
244 /* The type of the candidate. This is normally the type of base_expr,
245 but casts may have occurred when combining feeding instructions.
246 A candidate can only be a basis for candidates of the same final type.
247 (For CAND_REFs, this is the type to be used for operand 1 of the
248 replacement MEM_REF.) */
251 /* The type to be used to interpret the stride field when the stride
252 is not a constant. Normally the same as the type of the recorded
253 stride, but when the stride has been cast we need to maintain that
254 knowledge in order to make legal substitutions without losing
255 precision. When the stride is a constant, this will be sizetype. */
258 /* The kind of candidate (CAND_MULT, etc.). */
261 /* Index of this candidate in the candidate vector. */
264 /* Index of the next candidate record for the same statement.
265 A statement may be useful in more than one way (e.g., due to
266 commutativity). So we can have multiple "interpretations"
268 cand_idx next_interp
;
270 /* Index of the first candidate record in a chain for the same
272 cand_idx first_interp
;
274 /* Index of the basis statement S0, if any, in the candidate vector. */
277 /* First candidate for which this candidate is a basis, if one exists. */
280 /* Next candidate having the same basis as this one. */
283 /* If this is a conditional candidate, the CAND_PHI candidate
284 that defines the base SSA name B. */
287 /* Savings that can be expected from eliminating dead code if this
288 candidate is replaced. */
291 /* For PHI candidates, use a visited flag to keep from processing the
292 same PHI twice from multiple paths. */
295 /* We sometimes have to cache a phi basis with a phi candidate to
296 avoid processing it twice. Valid only if visited==1. */
300 typedef class slsr_cand_d slsr_cand
, *slsr_cand_t
;
301 typedef const class slsr_cand_d
*const_slsr_cand_t
;
303 /* Pointers to candidates are chained together as part of a mapping
304 from base expressions to the candidates that use them. */
308 /* Base expression for the chain of candidates: often, but not
309 always, an SSA name. */
312 /* Pointer to a candidate. */
316 struct cand_chain_d
*next
;
320 typedef struct cand_chain_d cand_chain
, *cand_chain_t
;
321 typedef const struct cand_chain_d
*const_cand_chain_t
;
323 /* Information about a unique "increment" associated with candidates
324 having an SSA name for a stride. An increment is the difference
325 between the index of the candidate and the index of its basis,
326 i.e., (i - i') as discussed in the module commentary.
328 When we are not going to generate address arithmetic we treat
329 increments that differ only in sign as the same, allowing sharing
330 of the cost of initializers. The absolute value of the increment
331 is stored in the incr_info. */
336 /* The increment that relates a candidate to its basis. */
339 /* How many times the increment occurs in the candidate tree. */
342 /* Cost of replacing candidates using this increment. Negative and
343 zero costs indicate replacement should be performed. */
346 /* If this increment is profitable but is not -1, 0, or 1, it requires
347 an initializer T_0 = stride * incr to be found or introduced in the
348 nearest common dominator of all candidates. This field holds T_0
349 for subsequent use. */
352 /* If the initializer was found to already exist, this is the block
353 where it was found. */
357 typedef class incr_info_d incr_info
, *incr_info_t
;
359 /* Candidates are maintained in a vector. If candidate X dominates
360 candidate Y, then X appears before Y in the vector; but the
361 converse does not necessarily hold. */
362 static vec
<slsr_cand_t
> cand_vec
;
376 enum phi_adjust_status
382 enum count_phis_status
388 /* Constrain how many PHI nodes we will visit for a conditional
389 candidate (depth and breadth). */
390 const int MAX_SPREAD
= 16;
392 /* Pointer map embodying a mapping from statements to candidates. */
393 static hash_map
<gimple
*, slsr_cand_t
> *stmt_cand_map
;
395 /* Obstack for candidates. */
396 static struct obstack cand_obstack
;
398 /* Obstack for candidate chains. */
399 static struct obstack chain_obstack
;
401 /* An array INCR_VEC of incr_infos is used during analysis of related
402 candidates having an SSA name for a stride. INCR_VEC_LEN describes
403 its current length. MAX_INCR_VEC_LEN is used to avoid costly
404 pathological cases. */
405 static incr_info_t incr_vec
;
406 static unsigned incr_vec_len
;
407 const int MAX_INCR_VEC_LEN
= 16;
409 /* For a chain of candidates with unknown stride, indicates whether or not
410 we must generate pointer arithmetic when replacing statements. */
411 static bool address_arithmetic_p
;
413 /* Forward function declarations. */
414 static slsr_cand_t
base_cand_from_table (tree
);
415 static tree
introduce_cast_before_cand (slsr_cand_t
, tree
, tree
);
416 static bool legal_cast_p_1 (tree
, tree
);
418 /* Produce a pointer to the IDX'th candidate in the candidate vector. */
421 lookup_cand (cand_idx idx
)
423 return cand_vec
[idx
];
426 /* Helper for hashing a candidate chain header. */
428 struct cand_chain_hasher
: nofree_ptr_hash
<cand_chain
>
430 static inline hashval_t
hash (const cand_chain
*);
431 static inline bool equal (const cand_chain
*, const cand_chain
*);
435 cand_chain_hasher::hash (const cand_chain
*p
)
437 tree base_expr
= p
->base_expr
;
438 return iterative_hash_expr (base_expr
, 0);
442 cand_chain_hasher::equal (const cand_chain
*chain1
, const cand_chain
*chain2
)
444 return operand_equal_p (chain1
->base_expr
, chain2
->base_expr
, 0);
447 /* Hash table embodying a mapping from base exprs to chains of candidates. */
448 static hash_table
<cand_chain_hasher
> *base_cand_map
;
450 /* Pointer map used by tree_to_aff_combination_expand. */
451 static hash_map
<tree
, name_expansion
*> *name_expansions
;
452 /* Pointer map embodying a mapping from bases to alternative bases. */
453 static hash_map
<tree
, tree
> *alt_base_map
;
455 /* Given BASE, use the tree affine combiniation facilities to
456 find the underlying tree expression for BASE, with any
457 immediate offset excluded.
459 N.B. we should eliminate this backtracking with better forward
460 analysis in a future release. */
463 get_alternative_base (tree base
)
465 tree
*result
= alt_base_map
->get (base
);
472 tree_to_aff_combination_expand (base
, TREE_TYPE (base
),
473 &aff
, &name_expansions
);
475 expr
= aff_combination_to_tree (&aff
);
477 bool existed
= alt_base_map
->put (base
, base
== expr
? NULL
: expr
);
478 gcc_assert (!existed
);
480 return expr
== base
? NULL
: expr
;
486 /* Look in the candidate table for a CAND_PHI that defines BASE and
487 return it if found; otherwise return NULL. */
490 find_phi_def (tree base
)
494 if (TREE_CODE (base
) != SSA_NAME
)
497 c
= base_cand_from_table (base
);
499 if (!c
|| c
->kind
!= CAND_PHI
500 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (c
->cand_stmt
)))
506 /* Determine whether all uses of NAME are directly or indirectly
507 used by STMT. That is, we want to know whether if STMT goes
508 dead, the definition of NAME also goes dead. */
510 uses_consumed_by_stmt (tree name
, gimple
*stmt
, unsigned recurse
= 0)
513 imm_use_iterator iter
;
516 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, name
)
518 if (use_stmt
== stmt
|| is_gimple_debug (use_stmt
))
521 if (!is_gimple_assign (use_stmt
)
522 || !gimple_get_lhs (use_stmt
)
523 || !is_gimple_reg (gimple_get_lhs (use_stmt
))
525 || !uses_consumed_by_stmt (gimple_get_lhs (use_stmt
), stmt
,
536 /* Helper routine for find_basis_for_candidate. May be called twice:
537 once for the candidate's base expr, and optionally again either for
538 the candidate's phi definition or for a CAND_REF's alternative base
542 find_basis_for_base_expr (slsr_cand_t c
, tree base_expr
)
544 cand_chain mapping_key
;
546 slsr_cand_t basis
= NULL
;
548 // Limit potential of N^2 behavior for long candidate chains.
550 int max_iters
= param_max_slsr_candidate_scan
;
552 mapping_key
.base_expr
= base_expr
;
553 chain
= base_cand_map
->find (&mapping_key
);
555 for (; chain
&& iters
< max_iters
; chain
= chain
->next
, ++iters
)
557 slsr_cand_t one_basis
= chain
->cand
;
559 if (one_basis
->kind
!= c
->kind
560 || one_basis
->cand_stmt
== c
->cand_stmt
561 || !operand_equal_p (one_basis
->stride
, c
->stride
, 0)
562 || !types_compatible_p (one_basis
->cand_type
, c
->cand_type
)
563 || !types_compatible_p (one_basis
->stride_type
, c
->stride_type
)
564 || !dominated_by_p (CDI_DOMINATORS
,
565 gimple_bb (c
->cand_stmt
),
566 gimple_bb (one_basis
->cand_stmt
)))
569 tree lhs
= gimple_assign_lhs (one_basis
->cand_stmt
);
570 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
571 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs
))
574 if (!basis
|| basis
->cand_num
< one_basis
->cand_num
)
581 /* Use the base expr from candidate C to look for possible candidates
582 that can serve as a basis for C. Each potential basis must also
583 appear in a block that dominates the candidate statement and have
584 the same stride and type. If more than one possible basis exists,
585 the one with highest index in the vector is chosen; this will be
586 the most immediately dominating basis. */
589 find_basis_for_candidate (slsr_cand_t c
)
591 slsr_cand_t basis
= find_basis_for_base_expr (c
, c
->base_expr
);
593 /* If a candidate doesn't have a basis using its base expression,
594 it may have a basis hidden by one or more intervening phis. */
595 if (!basis
&& c
->def_phi
)
597 basic_block basis_bb
, phi_bb
;
598 slsr_cand_t phi_cand
= lookup_cand (c
->def_phi
);
599 basis
= find_basis_for_base_expr (c
, phi_cand
->base_expr
);
603 /* A hidden basis must dominate the phi-definition of the
604 candidate's base name. */
605 phi_bb
= gimple_bb (phi_cand
->cand_stmt
);
606 basis_bb
= gimple_bb (basis
->cand_stmt
);
608 if (phi_bb
== basis_bb
609 || !dominated_by_p (CDI_DOMINATORS
, phi_bb
, basis_bb
))
615 /* If we found a hidden basis, estimate additional dead-code
616 savings if the phi and its feeding statements can be removed. */
617 tree feeding_var
= gimple_phi_result (phi_cand
->cand_stmt
);
618 if (basis
&& uses_consumed_by_stmt (feeding_var
, c
->cand_stmt
))
619 c
->dead_savings
+= phi_cand
->dead_savings
;
623 if (flag_expensive_optimizations
&& !basis
&& c
->kind
== CAND_REF
)
625 tree alt_base_expr
= get_alternative_base (c
->base_expr
);
627 basis
= find_basis_for_base_expr (c
, alt_base_expr
);
632 c
->sibling
= basis
->dependent
;
633 basis
->dependent
= c
->cand_num
;
634 return basis
->cand_num
;
640 /* Record a mapping from BASE to C, indicating that C may potentially serve
641 as a basis using that base expression. BASE may be the same as
642 C->BASE_EXPR; alternatively BASE can be a different tree that share the
643 underlining expression of C->BASE_EXPR. */
646 record_potential_basis (slsr_cand_t c
, tree base
)
653 node
= (cand_chain_t
) obstack_alloc (&chain_obstack
, sizeof (cand_chain
));
654 node
->base_expr
= base
;
657 slot
= base_cand_map
->find_slot (node
, INSERT
);
661 cand_chain_t head
= (cand_chain_t
) (*slot
);
662 node
->next
= head
->next
;
669 /* Allocate storage for a new candidate and initialize its fields.
670 Attempt to find a basis for the candidate.
672 For CAND_REF, an alternative base may also be recorded and used
673 to find a basis. This helps cases where the expression hidden
674 behind BASE (which is usually an SSA_NAME) has immediate offset,
678 a2[i + 20][j] = 2; */
681 alloc_cand_and_find_basis (enum cand_kind kind
, gimple
*gs
, tree base
,
682 const offset_int
&index
, tree stride
, tree ctype
,
683 tree stype
, unsigned savings
)
685 slsr_cand_t c
= (slsr_cand_t
) obstack_alloc (&cand_obstack
,
691 c
->cand_type
= ctype
;
692 c
->stride_type
= stype
;
694 c
->cand_num
= cand_vec
.length ();
696 c
->first_interp
= c
->cand_num
;
699 c
->def_phi
= kind
== CAND_MULT
? find_phi_def (base
) : 0;
700 c
->dead_savings
= savings
;
702 c
->cached_basis
= NULL_TREE
;
704 cand_vec
.safe_push (c
);
706 if (kind
== CAND_PHI
)
709 c
->basis
= find_basis_for_candidate (c
);
711 record_potential_basis (c
, base
);
712 if (flag_expensive_optimizations
&& kind
== CAND_REF
)
714 tree alt_base
= get_alternative_base (base
);
716 record_potential_basis (c
, alt_base
);
722 /* Determine the target cost of statement GS when compiling according
726 stmt_cost (gimple
*gs
, bool speed
)
728 tree lhs
, rhs1
, rhs2
;
729 machine_mode lhs_mode
;
731 gcc_assert (is_gimple_assign (gs
));
732 lhs
= gimple_assign_lhs (gs
);
733 rhs1
= gimple_assign_rhs1 (gs
);
734 lhs_mode
= TYPE_MODE (TREE_TYPE (lhs
));
736 switch (gimple_assign_rhs_code (gs
))
739 rhs2
= gimple_assign_rhs2 (gs
);
741 if (tree_fits_shwi_p (rhs2
))
742 return mult_by_coeff_cost (tree_to_shwi (rhs2
), lhs_mode
, speed
);
744 gcc_assert (TREE_CODE (rhs1
) != INTEGER_CST
);
745 return mul_cost (speed
, lhs_mode
);
748 case POINTER_PLUS_EXPR
:
750 return add_cost (speed
, lhs_mode
);
753 return neg_cost (speed
, lhs_mode
);
756 return convert_cost (lhs_mode
, TYPE_MODE (TREE_TYPE (rhs1
)), speed
);
758 /* Note that we don't assign costs to copies that in most cases
770 /* Look up the defining statement for BASE_IN and return a pointer
771 to its candidate in the candidate table, if any; otherwise NULL.
772 Only CAND_ADD and CAND_MULT candidates are returned. */
775 base_cand_from_table (tree base_in
)
779 gimple
*def
= SSA_NAME_DEF_STMT (base_in
);
781 return (slsr_cand_t
) NULL
;
783 result
= stmt_cand_map
->get (def
);
785 if (result
&& (*result
)->kind
!= CAND_REF
)
788 return (slsr_cand_t
) NULL
;
791 /* Add an entry to the statement-to-candidate mapping. */
794 add_cand_for_stmt (gimple
*gs
, slsr_cand_t c
)
796 bool existed
= stmt_cand_map
->put (gs
, c
);
797 gcc_assert (!existed
);
800 /* Given PHI which contains a phi statement, determine whether it
801 satisfies all the requirements of a phi candidate. If so, create
802 a candidate. Note that a CAND_PHI never has a basis itself, but
803 is used to help find a basis for subsequent candidates. */
806 slsr_process_phi (gphi
*phi
, bool speed
)
809 tree arg0_base
= NULL_TREE
, base_type
;
811 class loop
*cand_loop
= gimple_bb (phi
)->loop_father
;
812 unsigned savings
= 0;
814 /* A CAND_PHI requires each of its arguments to have the same
815 derived base name. (See the module header commentary for a
816 definition of derived base names.) Furthermore, all feeding
817 definitions must be in the same position in the loop hierarchy
820 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
822 slsr_cand_t arg_cand
;
823 tree arg
= gimple_phi_arg_def (phi
, i
);
824 tree derived_base_name
= NULL_TREE
;
825 gimple
*arg_stmt
= NULL
;
826 basic_block arg_bb
= NULL
;
828 if (TREE_CODE (arg
) != SSA_NAME
)
831 arg_cand
= base_cand_from_table (arg
);
835 while (arg_cand
->kind
!= CAND_ADD
&& arg_cand
->kind
!= CAND_PHI
)
837 if (!arg_cand
->next_interp
)
840 arg_cand
= lookup_cand (arg_cand
->next_interp
);
843 if (!integer_onep (arg_cand
->stride
))
846 derived_base_name
= arg_cand
->base_expr
;
847 arg_stmt
= arg_cand
->cand_stmt
;
848 arg_bb
= gimple_bb (arg_stmt
);
850 /* Gather potential dead code savings if the phi statement
851 can be removed later on. */
852 if (uses_consumed_by_stmt (arg
, phi
))
854 if (gimple_code (arg_stmt
) == GIMPLE_PHI
)
855 savings
+= arg_cand
->dead_savings
;
857 savings
+= stmt_cost (arg_stmt
, speed
);
860 else if (SSA_NAME_IS_DEFAULT_DEF (arg
))
862 derived_base_name
= arg
;
863 arg_bb
= single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
866 if (!arg_bb
|| arg_bb
->loop_father
!= cand_loop
)
870 arg0_base
= derived_base_name
;
871 else if (!operand_equal_p (derived_base_name
, arg0_base
, 0))
875 /* Create the candidate. "alloc_cand_and_find_basis" is named
876 misleadingly for this case, as no basis will be sought for a
878 base_type
= TREE_TYPE (arg0_base
);
880 c
= alloc_cand_and_find_basis (CAND_PHI
, phi
, arg0_base
,
881 0, integer_one_node
, base_type
,
884 /* Add the candidate to the statement-candidate mapping. */
885 add_cand_for_stmt (phi
, c
);
888 /* Given PBASE which is a pointer to tree, look up the defining
889 statement for it and check whether the candidate is in the
892 X = B + (1 * S), S is integer constant
893 X = B + (i * S), S is integer one
895 If so, set PBASE to the candidate's base_expr and return double
897 Otherwise, just return double int zero. */
900 backtrace_base_for_ref (tree
*pbase
)
902 tree base_in
= *pbase
;
903 slsr_cand_t base_cand
;
905 STRIP_NOPS (base_in
);
907 /* Strip off widening conversion(s) to handle cases where
908 e.g. 'B' is widened from an 'int' in order to calculate
910 if (CONVERT_EXPR_P (base_in
)
911 && legal_cast_p_1 (TREE_TYPE (base_in
),
912 TREE_TYPE (TREE_OPERAND (base_in
, 0))))
913 base_in
= get_unwidened (base_in
, NULL_TREE
);
915 if (TREE_CODE (base_in
) != SSA_NAME
)
918 base_cand
= base_cand_from_table (base_in
);
920 while (base_cand
&& base_cand
->kind
!= CAND_PHI
)
922 if (base_cand
->kind
== CAND_ADD
923 && base_cand
->index
== 1
924 && TREE_CODE (base_cand
->stride
) == INTEGER_CST
)
926 /* X = B + (1 * S), S is integer constant. */
927 *pbase
= base_cand
->base_expr
;
928 return wi::to_offset (base_cand
->stride
);
930 else if (base_cand
->kind
== CAND_ADD
931 && TREE_CODE (base_cand
->stride
) == INTEGER_CST
932 && integer_onep (base_cand
->stride
))
934 /* X = B + (i * S), S is integer one. */
935 *pbase
= base_cand
->base_expr
;
936 return base_cand
->index
;
939 base_cand
= lookup_cand (base_cand
->next_interp
);
945 /* Look for the following pattern:
947 *PBASE: MEM_REF (T1, C1)
949 *POFFSET: MULT_EXPR (T2, C3) [C2 is zero]
951 MULT_EXPR (PLUS_EXPR (T2, C2), C3)
953 MULT_EXPR (MINUS_EXPR (T2, -C2), C3)
955 *PINDEX: C4 * BITS_PER_UNIT
957 If not present, leave the input values unchanged and return FALSE.
958 Otherwise, modify the input values as follows and return TRUE:
961 *POFFSET: MULT_EXPR (T2, C3)
962 *PINDEX: C1 + (C2 * C3) + C4
964 When T2 is recorded by a CAND_ADD in the form of (T2' + C5), it
965 will be further restructured to:
968 *POFFSET: MULT_EXPR (T2', C3)
969 *PINDEX: C1 + (C2 * C3) + C4 + (C5 * C3) */
972 restructure_reference (tree
*pbase
, tree
*poffset
, offset_int
*pindex
,
975 tree base
= *pbase
, offset
= *poffset
;
976 offset_int index
= *pindex
;
977 tree mult_op0
, t1
, t2
, type
;
978 offset_int c1
, c2
, c3
, c4
, c5
;
979 offset_int mem_offset
;
983 || TREE_CODE (base
) != MEM_REF
984 || !mem_ref_offset (base
).is_constant (&mem_offset
)
985 || TREE_CODE (offset
) != MULT_EXPR
986 || TREE_CODE (TREE_OPERAND (offset
, 1)) != INTEGER_CST
987 || wi::umod_floor (index
, BITS_PER_UNIT
) != 0)
990 t1
= TREE_OPERAND (base
, 0);
991 c1
= offset_int::from (mem_offset
, SIGNED
);
992 type
= TREE_TYPE (TREE_OPERAND (base
, 1));
994 mult_op0
= TREE_OPERAND (offset
, 0);
995 c3
= wi::to_offset (TREE_OPERAND (offset
, 1));
997 if (TREE_CODE (mult_op0
) == PLUS_EXPR
)
999 if (TREE_CODE (TREE_OPERAND (mult_op0
, 1)) == INTEGER_CST
)
1001 t2
= TREE_OPERAND (mult_op0
, 0);
1002 c2
= wi::to_offset (TREE_OPERAND (mult_op0
, 1));
1007 else if (TREE_CODE (mult_op0
) == MINUS_EXPR
)
1009 if (TREE_CODE (TREE_OPERAND (mult_op0
, 1)) == INTEGER_CST
)
1011 t2
= TREE_OPERAND (mult_op0
, 0);
1012 c2
= -wi::to_offset (TREE_OPERAND (mult_op0
, 1));
1023 c4
= index
>> LOG2_BITS_PER_UNIT
;
1024 c5
= backtrace_base_for_ref (&t2
);
1027 *poffset
= fold_build2 (MULT_EXPR
, sizetype
, fold_convert (sizetype
, t2
),
1028 wide_int_to_tree (sizetype
, c3
));
1029 *pindex
= c1
+ c2
* c3
+ c4
+ c5
* c3
;
1035 /* Given GS which contains a data reference, create a CAND_REF entry in
1036 the candidate table and attempt to find a basis. */
1039 slsr_process_ref (gimple
*gs
)
1041 tree ref_expr
, base
, offset
, type
;
1042 poly_int64 bitsize
, bitpos
;
1044 int unsignedp
, reversep
, volatilep
;
1047 if (gimple_vdef (gs
))
1048 ref_expr
= gimple_assign_lhs (gs
);
1050 ref_expr
= gimple_assign_rhs1 (gs
);
1052 if (!handled_component_p (ref_expr
)
1053 || TREE_CODE (ref_expr
) == BIT_FIELD_REF
1054 || (TREE_CODE (ref_expr
) == COMPONENT_REF
1055 && DECL_BIT_FIELD (TREE_OPERAND (ref_expr
, 1))))
1058 base
= get_inner_reference (ref_expr
, &bitsize
, &bitpos
, &offset
, &mode
,
1059 &unsignedp
, &reversep
, &volatilep
);
1060 HOST_WIDE_INT cbitpos
;
1061 if (reversep
|| !bitpos
.is_constant (&cbitpos
))
1063 offset_int index
= cbitpos
;
1065 if (!restructure_reference (&base
, &offset
, &index
, &type
))
1068 c
= alloc_cand_and_find_basis (CAND_REF
, gs
, base
, index
, offset
,
1071 /* Add the candidate to the statement-candidate mapping. */
1072 add_cand_for_stmt (gs
, c
);
1075 /* Create a candidate entry for a statement GS, where GS multiplies
1076 two SSA names BASE_IN and STRIDE_IN. Propagate any known information
1077 about the two SSA names into the new candidate. Return the new
1081 create_mul_ssa_cand (gimple
*gs
, tree base_in
, tree stride_in
, bool speed
)
1083 tree base
= NULL_TREE
, stride
= NULL_TREE
, ctype
= NULL_TREE
;
1084 tree stype
= NULL_TREE
;
1086 unsigned savings
= 0;
1088 slsr_cand_t base_cand
= base_cand_from_table (base_in
);
1090 /* Look at all interpretations of the base candidate, if necessary,
1091 to find information to propagate into this candidate. */
1092 while (base_cand
&& !base
&& base_cand
->kind
!= CAND_PHI
)
1095 if (base_cand
->kind
== CAND_MULT
&& integer_onep (base_cand
->stride
))
1101 base
= base_cand
->base_expr
;
1102 index
= base_cand
->index
;
1104 ctype
= base_cand
->cand_type
;
1105 stype
= TREE_TYPE (stride_in
);
1106 if (has_single_use (base_in
))
1107 savings
= (base_cand
->dead_savings
1108 + stmt_cost (base_cand
->cand_stmt
, speed
));
1110 else if (base_cand
->kind
== CAND_ADD
1111 && TREE_CODE (base_cand
->stride
) == INTEGER_CST
)
1113 /* Y = B + (i' * S), S constant
1115 ============================
1116 X = B + ((i' * S) * Z) */
1117 base
= base_cand
->base_expr
;
1118 index
= base_cand
->index
* wi::to_offset (base_cand
->stride
);
1120 ctype
= base_cand
->cand_type
;
1121 stype
= TREE_TYPE (stride_in
);
1122 if (has_single_use (base_in
))
1123 savings
= (base_cand
->dead_savings
1124 + stmt_cost (base_cand
->cand_stmt
, speed
));
1127 base_cand
= lookup_cand (base_cand
->next_interp
);
1132 /* No interpretations had anything useful to propagate, so
1133 produce X = (Y + 0) * Z. */
1137 ctype
= TREE_TYPE (base_in
);
1138 stype
= TREE_TYPE (stride_in
);
1141 c
= alloc_cand_and_find_basis (CAND_MULT
, gs
, base
, index
, stride
,
1142 ctype
, stype
, savings
);
1146 /* Create a candidate entry for a statement GS, where GS multiplies
1147 SSA name BASE_IN by constant STRIDE_IN. Propagate any known
1148 information about BASE_IN into the new candidate. Return the new
1152 create_mul_imm_cand (gimple
*gs
, tree base_in
, tree stride_in
, bool speed
)
1154 tree base
= NULL_TREE
, stride
= NULL_TREE
, ctype
= NULL_TREE
;
1155 offset_int index
, temp
;
1156 unsigned savings
= 0;
1158 slsr_cand_t base_cand
= base_cand_from_table (base_in
);
1160 /* Look at all interpretations of the base candidate, if necessary,
1161 to find information to propagate into this candidate. */
1162 while (base_cand
&& !base
&& base_cand
->kind
!= CAND_PHI
)
1164 if (base_cand
->kind
== CAND_MULT
1165 && TREE_CODE (base_cand
->stride
) == INTEGER_CST
)
1167 /* Y = (B + i') * S, S constant
1169 ============================
1170 X = (B + i') * (S * c) */
1171 temp
= wi::to_offset (base_cand
->stride
) * wi::to_offset (stride_in
);
1172 if (wi::fits_to_tree_p (temp
, TREE_TYPE (stride_in
)))
1174 base
= base_cand
->base_expr
;
1175 index
= base_cand
->index
;
1176 stride
= wide_int_to_tree (TREE_TYPE (stride_in
), temp
);
1177 ctype
= base_cand
->cand_type
;
1178 if (has_single_use (base_in
))
1179 savings
= (base_cand
->dead_savings
1180 + stmt_cost (base_cand
->cand_stmt
, speed
));
1183 else if (base_cand
->kind
== CAND_ADD
&& integer_onep (base_cand
->stride
))
1187 ===========================
1189 base
= base_cand
->base_expr
;
1190 index
= base_cand
->index
;
1192 ctype
= base_cand
->cand_type
;
1193 if (has_single_use (base_in
))
1194 savings
= (base_cand
->dead_savings
1195 + stmt_cost (base_cand
->cand_stmt
, speed
));
1197 else if (base_cand
->kind
== CAND_ADD
1198 && base_cand
->index
== 1
1199 && TREE_CODE (base_cand
->stride
) == INTEGER_CST
)
1201 /* Y = B + (1 * S), S constant
1203 ===========================
1205 base
= base_cand
->base_expr
;
1206 index
= wi::to_offset (base_cand
->stride
);
1208 ctype
= base_cand
->cand_type
;
1209 if (has_single_use (base_in
))
1210 savings
= (base_cand
->dead_savings
1211 + stmt_cost (base_cand
->cand_stmt
, speed
));
1214 base_cand
= lookup_cand (base_cand
->next_interp
);
1219 /* No interpretations had anything useful to propagate, so
1220 produce X = (Y + 0) * c. */
1224 ctype
= TREE_TYPE (base_in
);
1227 c
= alloc_cand_and_find_basis (CAND_MULT
, gs
, base
, index
, stride
,
1228 ctype
, sizetype
, savings
);
1232 /* Given GS which is a multiply of scalar integers, make an appropriate
1233 entry in the candidate table. If this is a multiply of two SSA names,
1234 create two CAND_MULT interpretations and attempt to find a basis for
1235 each of them. Otherwise, create a single CAND_MULT and attempt to
1239 slsr_process_mul (gimple
*gs
, tree rhs1
, tree rhs2
, bool speed
)
1243 /* If this is a multiply of an SSA name with itself, it is highly
1244 unlikely that we will get a strength reduction opportunity, so
1245 don't record it as a candidate. This simplifies the logic for
1246 finding a basis, so if this is removed that must be considered. */
1250 if (TREE_CODE (rhs2
) == SSA_NAME
)
1252 /* Record an interpretation of this statement in the candidate table
1253 assuming RHS1 is the base expression and RHS2 is the stride. */
1254 c
= create_mul_ssa_cand (gs
, rhs1
, rhs2
, speed
);
1256 /* Add the first interpretation to the statement-candidate mapping. */
1257 add_cand_for_stmt (gs
, c
);
1259 /* Record another interpretation of this statement assuming RHS1
1260 is the stride and RHS2 is the base expression. */
1261 c2
= create_mul_ssa_cand (gs
, rhs2
, rhs1
, speed
);
1262 c
->next_interp
= c2
->cand_num
;
1263 c2
->first_interp
= c
->cand_num
;
1265 else if (TREE_CODE (rhs2
) == INTEGER_CST
&& !integer_zerop (rhs2
))
1267 /* Record an interpretation for the multiply-immediate. */
1268 c
= create_mul_imm_cand (gs
, rhs1
, rhs2
, speed
);
1270 /* Add the interpretation to the statement-candidate mapping. */
1271 add_cand_for_stmt (gs
, c
);
1275 /* Create a candidate entry for a statement GS, where GS adds two
1276 SSA names BASE_IN and ADDEND_IN if SUBTRACT_P is false, and
1277 subtracts ADDEND_IN from BASE_IN otherwise. Propagate any known
1278 information about the two SSA names into the new candidate.
1279 Return the new candidate. */
1282 create_add_ssa_cand (gimple
*gs
, tree base_in
, tree addend_in
,
1283 bool subtract_p
, bool speed
)
1285 tree base
= NULL_TREE
, stride
= NULL_TREE
, ctype
= NULL_TREE
;
1286 tree stype
= NULL_TREE
;
1288 unsigned savings
= 0;
1290 slsr_cand_t base_cand
= base_cand_from_table (base_in
);
1291 slsr_cand_t addend_cand
= base_cand_from_table (addend_in
);
1293 /* The most useful transformation is a multiply-immediate feeding
1294 an add or subtract. Look for that first. */
1295 while (addend_cand
&& !base
&& addend_cand
->kind
!= CAND_PHI
)
1297 if (addend_cand
->kind
== CAND_MULT
1298 && addend_cand
->index
== 0
1299 && TREE_CODE (addend_cand
->stride
) == INTEGER_CST
)
1301 /* Z = (B + 0) * S, S constant
1303 ===========================
1304 X = Y + ((+/-1 * S) * B) */
1306 index
= wi::to_offset (addend_cand
->stride
);
1309 stride
= addend_cand
->base_expr
;
1310 ctype
= TREE_TYPE (base_in
);
1311 stype
= addend_cand
->cand_type
;
1312 if (has_single_use (addend_in
))
1313 savings
= (addend_cand
->dead_savings
1314 + stmt_cost (addend_cand
->cand_stmt
, speed
));
1317 addend_cand
= lookup_cand (addend_cand
->next_interp
);
1320 while (base_cand
&& !base
&& base_cand
->kind
!= CAND_PHI
)
1322 if (base_cand
->kind
== CAND_ADD
1323 && (base_cand
->index
== 0
1324 || operand_equal_p (base_cand
->stride
,
1325 integer_zero_node
, 0)))
1327 /* Y = B + (i' * S), i' * S = 0
1329 ============================
1330 X = B + (+/-1 * Z) */
1331 base
= base_cand
->base_expr
;
1332 index
= subtract_p
? -1 : 1;
1334 ctype
= base_cand
->cand_type
;
1335 stype
= (TREE_CODE (addend_in
) == INTEGER_CST
? sizetype
1336 : TREE_TYPE (addend_in
));
1337 if (has_single_use (base_in
))
1338 savings
= (base_cand
->dead_savings
1339 + stmt_cost (base_cand
->cand_stmt
, speed
));
1341 else if (subtract_p
)
1343 slsr_cand_t subtrahend_cand
= base_cand_from_table (addend_in
);
1345 while (subtrahend_cand
&& !base
&& subtrahend_cand
->kind
!= CAND_PHI
)
1347 if (subtrahend_cand
->kind
== CAND_MULT
1348 && subtrahend_cand
->index
== 0
1349 && TREE_CODE (subtrahend_cand
->stride
) == INTEGER_CST
)
1351 /* Z = (B + 0) * S, S constant
1353 ===========================
1354 Value: X = Y + ((-1 * S) * B) */
1356 index
= wi::to_offset (subtrahend_cand
->stride
);
1358 stride
= subtrahend_cand
->base_expr
;
1359 ctype
= TREE_TYPE (base_in
);
1360 stype
= subtrahend_cand
->cand_type
;
1361 if (has_single_use (addend_in
))
1362 savings
= (subtrahend_cand
->dead_savings
1363 + stmt_cost (subtrahend_cand
->cand_stmt
, speed
));
1366 subtrahend_cand
= lookup_cand (subtrahend_cand
->next_interp
);
1370 base_cand
= lookup_cand (base_cand
->next_interp
);
1375 /* No interpretations had anything useful to propagate, so
1376 produce X = Y + (1 * Z). */
1378 index
= subtract_p
? -1 : 1;
1380 ctype
= TREE_TYPE (base_in
);
1381 stype
= (TREE_CODE (addend_in
) == INTEGER_CST
? sizetype
1382 : TREE_TYPE (addend_in
));
1385 c
= alloc_cand_and_find_basis (CAND_ADD
, gs
, base
, index
, stride
,
1386 ctype
, stype
, savings
);
1390 /* Create a candidate entry for a statement GS, where GS adds SSA
1391 name BASE_IN to constant INDEX_IN. Propagate any known information
1392 about BASE_IN into the new candidate. Return the new candidate. */
1395 create_add_imm_cand (gimple
*gs
, tree base_in
, const offset_int
&index_in
,
1398 enum cand_kind kind
= CAND_ADD
;
1399 tree base
= NULL_TREE
, stride
= NULL_TREE
, ctype
= NULL_TREE
;
1400 tree stype
= NULL_TREE
;
1401 offset_int index
, multiple
;
1402 unsigned savings
= 0;
1404 slsr_cand_t base_cand
= base_cand_from_table (base_in
);
1406 while (base_cand
&& !base
&& base_cand
->kind
!= CAND_PHI
)
1408 signop sign
= TYPE_SIGN (TREE_TYPE (base_cand
->stride
));
1410 if (TREE_CODE (base_cand
->stride
) == INTEGER_CST
1411 && wi::multiple_of_p (index_in
, wi::to_offset (base_cand
->stride
),
1414 /* Y = (B + i') * S, S constant, c = kS for some integer k
1416 ============================
1417 X = (B + (i'+ k)) * S
1419 Y = B + (i' * S), S constant, c = kS for some integer k
1421 ============================
1422 X = (B + (i'+ k)) * S */
1423 kind
= base_cand
->kind
;
1424 base
= base_cand
->base_expr
;
1425 index
= base_cand
->index
+ multiple
;
1426 stride
= base_cand
->stride
;
1427 ctype
= base_cand
->cand_type
;
1428 stype
= base_cand
->stride_type
;
1429 if (has_single_use (base_in
))
1430 savings
= (base_cand
->dead_savings
1431 + stmt_cost (base_cand
->cand_stmt
, speed
));
1434 base_cand
= lookup_cand (base_cand
->next_interp
);
1439 /* No interpretations had anything useful to propagate, so
1440 produce X = Y + (c * 1). */
1444 stride
= integer_one_node
;
1445 ctype
= TREE_TYPE (base_in
);
1449 c
= alloc_cand_and_find_basis (kind
, gs
, base
, index
, stride
,
1450 ctype
, stype
, savings
);
1454 /* Given GS which is an add or subtract of scalar integers or pointers,
1455 make at least one appropriate entry in the candidate table. */
1458 slsr_process_add (gimple
*gs
, tree rhs1
, tree rhs2
, bool speed
)
1460 bool subtract_p
= gimple_assign_rhs_code (gs
) == MINUS_EXPR
;
1461 slsr_cand_t c
= NULL
, c2
;
1463 if (TREE_CODE (rhs2
) == SSA_NAME
)
1465 /* First record an interpretation assuming RHS1 is the base expression
1466 and RHS2 is the stride. But it doesn't make sense for the
1467 stride to be a pointer, so don't record a candidate in that case. */
1468 if (!POINTER_TYPE_P (TREE_TYPE (rhs2
)))
1470 c
= create_add_ssa_cand (gs
, rhs1
, rhs2
, subtract_p
, speed
);
1472 /* Add the first interpretation to the statement-candidate
1474 add_cand_for_stmt (gs
, c
);
1477 /* If the two RHS operands are identical, or this is a subtract,
1479 if (operand_equal_p (rhs1
, rhs2
, 0) || subtract_p
)
1482 /* Otherwise, record another interpretation assuming RHS2 is the
1483 base expression and RHS1 is the stride, again provided that the
1484 stride is not a pointer. */
1485 if (!POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1487 c2
= create_add_ssa_cand (gs
, rhs2
, rhs1
, false, speed
);
1490 c
->next_interp
= c2
->cand_num
;
1491 c2
->first_interp
= c
->cand_num
;
1494 add_cand_for_stmt (gs
, c2
);
1497 else if (TREE_CODE (rhs2
) == INTEGER_CST
)
1499 /* Record an interpretation for the add-immediate. */
1500 offset_int index
= wi::to_offset (rhs2
);
1504 c
= create_add_imm_cand (gs
, rhs1
, index
, speed
);
1506 /* Add the interpretation to the statement-candidate mapping. */
1507 add_cand_for_stmt (gs
, c
);
1511 /* Given GS which is a negate of a scalar integer, make an appropriate
1512 entry in the candidate table. A negate is equivalent to a multiply
1516 slsr_process_neg (gimple
*gs
, tree rhs1
, bool speed
)
1518 /* Record a CAND_MULT interpretation for the multiply by -1. */
1519 slsr_cand_t c
= create_mul_imm_cand (gs
, rhs1
, integer_minus_one_node
, speed
);
1521 /* Add the interpretation to the statement-candidate mapping. */
1522 add_cand_for_stmt (gs
, c
);
1525 /* Help function for legal_cast_p, operating on two trees. Checks
1526 whether it's allowable to cast from RHS to LHS. See legal_cast_p
1527 for more details. */
1530 legal_cast_p_1 (tree lhs_type
, tree rhs_type
)
1532 unsigned lhs_size
, rhs_size
;
1533 bool lhs_wraps
, rhs_wraps
;
1535 lhs_size
= TYPE_PRECISION (lhs_type
);
1536 rhs_size
= TYPE_PRECISION (rhs_type
);
1537 lhs_wraps
= ANY_INTEGRAL_TYPE_P (lhs_type
) && TYPE_OVERFLOW_WRAPS (lhs_type
);
1538 rhs_wraps
= ANY_INTEGRAL_TYPE_P (rhs_type
) && TYPE_OVERFLOW_WRAPS (rhs_type
);
1540 if (lhs_size
< rhs_size
1541 || (rhs_wraps
&& !lhs_wraps
)
1542 || (rhs_wraps
&& lhs_wraps
&& rhs_size
!= lhs_size
))
1548 /* Return TRUE if GS is a statement that defines an SSA name from
1549 a conversion and is legal for us to combine with an add and multiply
1550 in the candidate table. For example, suppose we have:
1556 Without the type-cast, we would create a CAND_MULT for D with base B,
1557 index i, and stride S. We want to record this candidate only if it
1558 is equivalent to apply the type cast following the multiply:
1564 We will record the type with the candidate for D. This allows us
1565 to use a similar previous candidate as a basis. If we have earlier seen
1571 we can replace D with
1573 D = D' + (i - i') * S;
1575 But if moving the type-cast would change semantics, we mustn't do this.
1577 This is legitimate for casts from a non-wrapping integral type to
1578 any integral type of the same or larger size. It is not legitimate
1579 to convert a wrapping type to a non-wrapping type, or to a wrapping
1580 type of a different size. I.e., with a wrapping type, we must
1581 assume that the addition B + i could wrap, in which case performing
1582 the multiply before or after one of the "illegal" type casts will
1583 have different semantics. */
1586 legal_cast_p (gimple
*gs
, tree rhs
)
1588 if (!is_gimple_assign (gs
)
1589 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs
)))
1592 return legal_cast_p_1 (TREE_TYPE (gimple_assign_lhs (gs
)), TREE_TYPE (rhs
));
1595 /* Given GS which is a cast to a scalar integer type, determine whether
1596 the cast is legal for strength reduction. If so, make at least one
1597 appropriate entry in the candidate table. */
1600 slsr_process_cast (gimple
*gs
, tree rhs1
, bool speed
)
1603 slsr_cand_t base_cand
, c
= NULL
, c2
;
1604 unsigned savings
= 0;
1606 if (!legal_cast_p (gs
, rhs1
))
1609 lhs
= gimple_assign_lhs (gs
);
1610 base_cand
= base_cand_from_table (rhs1
);
1611 ctype
= TREE_TYPE (lhs
);
1613 if (base_cand
&& base_cand
->kind
!= CAND_PHI
)
1615 slsr_cand_t first_cand
= NULL
;
1619 /* Propagate all data from the base candidate except the type,
1620 which comes from the cast, and the base candidate's cast,
1621 which is no longer applicable. */
1622 if (has_single_use (rhs1
))
1623 savings
= (base_cand
->dead_savings
1624 + stmt_cost (base_cand
->cand_stmt
, speed
));
1626 c
= alloc_cand_and_find_basis (base_cand
->kind
, gs
,
1627 base_cand
->base_expr
,
1628 base_cand
->index
, base_cand
->stride
,
1629 ctype
, base_cand
->stride_type
,
1634 if (first_cand
!= c
)
1635 c
->first_interp
= first_cand
->cand_num
;
1637 base_cand
= lookup_cand (base_cand
->next_interp
);
1642 /* If nothing is known about the RHS, create fresh CAND_ADD and
1643 CAND_MULT interpretations:
1648 The first of these is somewhat arbitrary, but the choice of
1649 1 for the stride simplifies the logic for propagating casts
1651 c
= alloc_cand_and_find_basis (CAND_ADD
, gs
, rhs1
, 0,
1652 integer_one_node
, ctype
, sizetype
, 0);
1653 c2
= alloc_cand_and_find_basis (CAND_MULT
, gs
, rhs1
, 0,
1654 integer_one_node
, ctype
, sizetype
, 0);
1655 c
->next_interp
= c2
->cand_num
;
1656 c2
->first_interp
= c
->cand_num
;
1659 /* Add the first (or only) interpretation to the statement-candidate
1661 add_cand_for_stmt (gs
, c
);
1664 /* Given GS which is a copy of a scalar integer type, make at least one
1665 appropriate entry in the candidate table.
1667 This interface is included for completeness, but is unnecessary
1668 if this pass immediately follows a pass that performs copy
1669 propagation, such as DOM. */
1672 slsr_process_copy (gimple
*gs
, tree rhs1
, bool speed
)
1674 slsr_cand_t base_cand
, c
= NULL
, c2
;
1675 unsigned savings
= 0;
1677 base_cand
= base_cand_from_table (rhs1
);
1679 if (base_cand
&& base_cand
->kind
!= CAND_PHI
)
1681 slsr_cand_t first_cand
= NULL
;
1685 /* Propagate all data from the base candidate. */
1686 if (has_single_use (rhs1
))
1687 savings
= (base_cand
->dead_savings
1688 + stmt_cost (base_cand
->cand_stmt
, speed
));
1690 c
= alloc_cand_and_find_basis (base_cand
->kind
, gs
,
1691 base_cand
->base_expr
,
1692 base_cand
->index
, base_cand
->stride
,
1693 base_cand
->cand_type
,
1694 base_cand
->stride_type
, savings
);
1698 if (first_cand
!= c
)
1699 c
->first_interp
= first_cand
->cand_num
;
1701 base_cand
= lookup_cand (base_cand
->next_interp
);
1706 /* If nothing is known about the RHS, create fresh CAND_ADD and
1707 CAND_MULT interpretations:
1712 The first of these is somewhat arbitrary, but the choice of
1713 1 for the stride simplifies the logic for propagating casts
1715 c
= alloc_cand_and_find_basis (CAND_ADD
, gs
, rhs1
, 0,
1716 integer_one_node
, TREE_TYPE (rhs1
),
1718 c2
= alloc_cand_and_find_basis (CAND_MULT
, gs
, rhs1
, 0,
1719 integer_one_node
, TREE_TYPE (rhs1
),
1721 c
->next_interp
= c2
->cand_num
;
1722 c2
->first_interp
= c
->cand_num
;
1725 /* Add the first (or only) interpretation to the statement-candidate
1727 add_cand_for_stmt (gs
, c
);
1730 class find_candidates_dom_walker
: public dom_walker
1733 find_candidates_dom_walker (cdi_direction direction
)
1734 : dom_walker (direction
) {}
1735 edge
before_dom_children (basic_block
) final override
;
1738 /* Find strength-reduction candidates in block BB. */
1741 find_candidates_dom_walker::before_dom_children (basic_block bb
)
1743 bool speed
= optimize_bb_for_speed_p (bb
);
1745 for (gphi_iterator gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
);
1747 slsr_process_phi (gsi
.phi (), speed
);
1749 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);
1752 gimple
*gs
= gsi_stmt (gsi
);
1754 if (stmt_could_throw_p (cfun
, gs
))
1757 if (gimple_vuse (gs
) && gimple_assign_single_p (gs
))
1758 slsr_process_ref (gs
);
1760 else if (is_gimple_assign (gs
)
1761 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (gs
)))
1762 || POINTER_TYPE_P (TREE_TYPE (gimple_assign_lhs (gs
)))))
1764 tree rhs1
= NULL_TREE
, rhs2
= NULL_TREE
;
1766 switch (gimple_assign_rhs_code (gs
))
1770 rhs1
= gimple_assign_rhs1 (gs
);
1771 rhs2
= gimple_assign_rhs2 (gs
);
1772 /* Should never happen, but currently some buggy situations
1773 in earlier phases put constants in rhs1. */
1774 if (TREE_CODE (rhs1
) != SSA_NAME
)
1778 /* Possible future opportunity: rhs1 of a ptr+ can be
1780 case POINTER_PLUS_EXPR
:
1782 rhs2
= gimple_assign_rhs2 (gs
);
1788 rhs1
= gimple_assign_rhs1 (gs
);
1789 if (TREE_CODE (rhs1
) != SSA_NAME
)
1797 switch (gimple_assign_rhs_code (gs
))
1800 slsr_process_mul (gs
, rhs1
, rhs2
, speed
);
1804 case POINTER_PLUS_EXPR
:
1806 slsr_process_add (gs
, rhs1
, rhs2
, speed
);
1810 slsr_process_neg (gs
, rhs1
, speed
);
1814 slsr_process_cast (gs
, rhs1
, speed
);
1818 slsr_process_copy (gs
, rhs1
, speed
);
1829 /* Dump a candidate for debug. */
1832 dump_candidate (slsr_cand_t c
)
1834 fprintf (dump_file
, "%3d [%d] ", c
->cand_num
,
1835 gimple_bb (c
->cand_stmt
)->index
);
1836 print_gimple_stmt (dump_file
, c
->cand_stmt
, 0);
1840 fputs (" MULT : (", dump_file
);
1841 print_generic_expr (dump_file
, c
->base_expr
);
1842 fputs (" + ", dump_file
);
1843 print_decs (c
->index
, dump_file
);
1844 fputs (") * ", dump_file
);
1845 if (TREE_CODE (c
->stride
) != INTEGER_CST
1846 && c
->stride_type
!= TREE_TYPE (c
->stride
))
1848 fputs ("(", dump_file
);
1849 print_generic_expr (dump_file
, c
->stride_type
);
1850 fputs (")", dump_file
);
1852 print_generic_expr (dump_file
, c
->stride
);
1853 fputs (" : ", dump_file
);
1856 fputs (" ADD : ", dump_file
);
1857 print_generic_expr (dump_file
, c
->base_expr
);
1858 fputs (" + (", dump_file
);
1859 print_decs (c
->index
, dump_file
);
1860 fputs (" * ", dump_file
);
1861 if (TREE_CODE (c
->stride
) != INTEGER_CST
1862 && c
->stride_type
!= TREE_TYPE (c
->stride
))
1864 fputs ("(", dump_file
);
1865 print_generic_expr (dump_file
, c
->stride_type
);
1866 fputs (")", dump_file
);
1868 print_generic_expr (dump_file
, c
->stride
);
1869 fputs (") : ", dump_file
);
1872 fputs (" REF : ", dump_file
);
1873 print_generic_expr (dump_file
, c
->base_expr
);
1874 fputs (" + (", dump_file
);
1875 print_generic_expr (dump_file
, c
->stride
);
1876 fputs (") + ", dump_file
);
1877 print_decs (c
->index
, dump_file
);
1878 fputs (" : ", dump_file
);
1881 fputs (" PHI : ", dump_file
);
1882 print_generic_expr (dump_file
, c
->base_expr
);
1883 fputs (" + (unknown * ", dump_file
);
1884 print_generic_expr (dump_file
, c
->stride
);
1885 fputs (") : ", dump_file
);
1890 print_generic_expr (dump_file
, c
->cand_type
);
1891 fprintf (dump_file
, "\n basis: %d dependent: %d sibling: %d\n",
1892 c
->basis
, c
->dependent
, c
->sibling
);
1894 " next-interp: %d first-interp: %d dead-savings: %d\n",
1895 c
->next_interp
, c
->first_interp
, c
->dead_savings
);
1897 fprintf (dump_file
, " phi: %d\n", c
->def_phi
);
1898 fputs ("\n", dump_file
);
1901 /* Dump the candidate vector for debug. */
1904 dump_cand_vec (void)
1909 fprintf (dump_file
, "\nStrength reduction candidate vector:\n\n");
1911 FOR_EACH_VEC_ELT (cand_vec
, i
, c
)
1916 /* Callback used to dump the candidate chains hash table. */
1919 ssa_base_cand_dump_callback (cand_chain
**slot
, void *ignored ATTRIBUTE_UNUSED
)
1921 const_cand_chain_t chain
= *slot
;
1924 print_generic_expr (dump_file
, chain
->base_expr
);
1925 fprintf (dump_file
, " -> %d", chain
->cand
->cand_num
);
1927 for (p
= chain
->next
; p
; p
= p
->next
)
1928 fprintf (dump_file
, " -> %d", p
->cand
->cand_num
);
1930 fputs ("\n", dump_file
);
1934 /* Dump the candidate chains. */
1937 dump_cand_chains (void)
1939 fprintf (dump_file
, "\nStrength reduction candidate chains:\n\n");
1940 base_cand_map
->traverse_noresize
<void *, ssa_base_cand_dump_callback
>
1942 fputs ("\n", dump_file
);
1945 /* Dump the increment vector for debug. */
1948 dump_incr_vec (void)
1950 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1954 fprintf (dump_file
, "\nIncrement vector:\n\n");
1956 for (i
= 0; i
< incr_vec_len
; i
++)
1958 fprintf (dump_file
, "%3d increment: ", i
);
1959 print_decs (incr_vec
[i
].incr
, dump_file
);
1960 fprintf (dump_file
, "\n count: %d", incr_vec
[i
].count
);
1961 fprintf (dump_file
, "\n cost: %d", incr_vec
[i
].cost
);
1962 fputs ("\n initializer: ", dump_file
);
1963 print_generic_expr (dump_file
, incr_vec
[i
].initializer
);
1964 fputs ("\n\n", dump_file
);
1969 /* Replace *EXPR in candidate C with an equivalent strength-reduced
1973 replace_ref (tree
*expr
, slsr_cand_t c
)
1975 tree add_expr
, mem_ref
, acc_type
= TREE_TYPE (*expr
);
1976 unsigned HOST_WIDE_INT misalign
;
1979 /* Ensure the memory reference carries the minimum alignment
1980 requirement for the data type. See PR58041. */
1981 get_object_alignment_1 (*expr
, &align
, &misalign
);
1983 align
= least_bit_hwi (misalign
);
1984 if (align
< TYPE_ALIGN (acc_type
))
1985 acc_type
= build_aligned_type (acc_type
, align
);
1987 add_expr
= fold_build2 (POINTER_PLUS_EXPR
, c
->cand_type
,
1988 c
->base_expr
, c
->stride
);
1989 mem_ref
= fold_build2 (MEM_REF
, acc_type
, add_expr
,
1990 wide_int_to_tree (c
->cand_type
, c
->index
));
1992 /* Gimplify the base addressing expression for the new MEM_REF tree. */
1993 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
1994 TREE_OPERAND (mem_ref
, 0)
1995 = force_gimple_operand_gsi (&gsi
, TREE_OPERAND (mem_ref
, 0),
1996 /*simple_p=*/true, NULL
,
1997 /*before=*/true, GSI_SAME_STMT
);
1998 copy_ref_info (mem_ref
, *expr
);
2000 update_stmt (c
->cand_stmt
);
2003 /* Return true if CAND_REF candidate C is a valid memory reference. */
2006 valid_mem_ref_cand_p (slsr_cand_t c
)
2008 if (TREE_CODE (TREE_OPERAND (c
->stride
, 1)) != INTEGER_CST
)
2011 struct mem_address addr
2012 = { NULL_TREE
, c
->base_expr
, TREE_OPERAND (c
->stride
, 0),
2013 TREE_OPERAND (c
->stride
, 1), wide_int_to_tree (sizetype
, c
->index
) };
2016 valid_mem_ref_p (TYPE_MODE (c
->cand_type
), TYPE_ADDR_SPACE (c
->cand_type
),
2020 /* Replace CAND_REF candidate C, each sibling of candidate C, and each
2021 dependent of candidate C with an equivalent strength-reduced data
2025 replace_refs (slsr_cand_t c
)
2027 /* Replacing a chain of only 2 candidates which are valid memory references
2028 is generally counter-productive because you cannot recoup the additional
2029 calculation added in front of them. */
2032 && !lookup_cand (c
->dependent
)->dependent
2033 && valid_mem_ref_cand_p (c
)
2034 && valid_mem_ref_cand_p (lookup_cand (c
->dependent
)))
2037 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2039 fputs ("Replacing reference: ", dump_file
);
2040 print_gimple_stmt (dump_file
, c
->cand_stmt
, 0);
2043 if (gimple_vdef (c
->cand_stmt
))
2045 tree
*lhs
= gimple_assign_lhs_ptr (c
->cand_stmt
);
2046 replace_ref (lhs
, c
);
2050 tree
*rhs
= gimple_assign_rhs1_ptr (c
->cand_stmt
);
2051 replace_ref (rhs
, c
);
2054 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2056 fputs ("With: ", dump_file
);
2057 print_gimple_stmt (dump_file
, c
->cand_stmt
, 0);
2058 fputs ("\n", dump_file
);
2062 replace_refs (lookup_cand (c
->sibling
));
2065 replace_refs (lookup_cand (c
->dependent
));
2068 /* Return TRUE if candidate C is dependent upon a PHI. */
2071 phi_dependent_cand_p (slsr_cand_t c
)
2073 /* A candidate is not necessarily dependent upon a PHI just because
2074 it has a phi definition for its base name. It may have a basis
2075 that relies upon the same phi definition, in which case the PHI
2076 is irrelevant to this candidate. */
2079 && lookup_cand (c
->basis
)->def_phi
!= c
->def_phi
);
2082 /* Calculate the increment required for candidate C relative to
2086 cand_increment (slsr_cand_t c
)
2090 /* If the candidate doesn't have a basis, just return its own
2091 index. This is useful in record_increments to help us find
2092 an existing initializer. Also, if the candidate's basis is
2093 hidden by a phi, then its own index will be the increment
2094 from the newly introduced phi basis. */
2095 if (!c
->basis
|| phi_dependent_cand_p (c
))
2098 basis
= lookup_cand (c
->basis
);
2099 gcc_assert (operand_equal_p (c
->base_expr
, basis
->base_expr
, 0));
2100 return c
->index
- basis
->index
;
2103 /* Calculate the increment required for candidate C relative to
2104 its basis. If we aren't going to generate pointer arithmetic
2105 for this candidate, return the absolute value of that increment
2108 static inline offset_int
2109 cand_abs_increment (slsr_cand_t c
)
2111 offset_int increment
= cand_increment (c
);
2113 if (!address_arithmetic_p
&& wi::neg_p (increment
))
2114 increment
= -increment
;
2119 /* Return TRUE iff candidate C has already been replaced under
2120 another interpretation. */
2123 cand_already_replaced (slsr_cand_t c
)
2125 return (gimple_bb (c
->cand_stmt
) == 0);
2128 /* Common logic used by replace_unconditional_candidate and
2129 replace_conditional_candidate. */
2132 replace_mult_candidate (slsr_cand_t c
, tree basis_name
, offset_int bump
,
2133 auto_bitmap
&sdce_worklist
)
2135 tree target_type
= TREE_TYPE (gimple_assign_lhs (c
->cand_stmt
));
2136 enum tree_code cand_code
= gimple_assign_rhs_code (c
->cand_stmt
);
2138 /* It is not useful to replace casts, copies, negates, or adds of
2139 an SSA name and a constant. */
2140 if (cand_code
== SSA_NAME
2141 || CONVERT_EXPR_CODE_P (cand_code
)
2142 || cand_code
== PLUS_EXPR
2143 || cand_code
== POINTER_PLUS_EXPR
2144 || cand_code
== MINUS_EXPR
2145 || cand_code
== NEGATE_EXPR
)
2148 enum tree_code code
= PLUS_EXPR
;
2150 gimple
*stmt_to_print
= NULL
;
2152 if (wi::neg_p (bump
))
2158 /* It is possible that the resulting bump doesn't fit in target_type.
2159 Abandon the replacement in this case. This does not affect
2160 siblings or dependents of C. */
2161 if (bump
!= wi::ext (bump
, TYPE_PRECISION (target_type
),
2162 TYPE_SIGN (target_type
)))
2165 bump_tree
= wide_int_to_tree (target_type
, bump
);
2167 /* If the basis name and the candidate's LHS have incompatible types,
2168 introduce a cast. */
2169 if (!useless_type_conversion_p (target_type
, TREE_TYPE (basis_name
)))
2170 basis_name
= introduce_cast_before_cand (c
, target_type
, basis_name
);
2172 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2174 fputs ("Replacing: ", dump_file
);
2175 print_gimple_stmt (dump_file
, c
->cand_stmt
, 0);
2180 tree lhs
= gimple_assign_lhs (c
->cand_stmt
);
2181 gassign
*copy_stmt
= gimple_build_assign (lhs
, basis_name
);
2182 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
2183 slsr_cand_t cc
= lookup_cand (c
->first_interp
);
2184 gimple_set_location (copy_stmt
, gimple_location (c
->cand_stmt
));
2185 gsi_replace (&gsi
, copy_stmt
, false);
2188 cc
->cand_stmt
= copy_stmt
;
2189 cc
= lookup_cand (cc
->next_interp
);
2191 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2192 stmt_to_print
= copy_stmt
;
2197 if (cand_code
!= NEGATE_EXPR
) {
2198 rhs1
= gimple_assign_rhs1 (c
->cand_stmt
);
2199 rhs2
= gimple_assign_rhs2 (c
->cand_stmt
);
2200 /* Mark the 2 original rhs for maybe DCEing. */
2201 if (TREE_CODE (rhs1
) == SSA_NAME
)
2202 bitmap_set_bit (sdce_worklist
, SSA_NAME_VERSION (rhs1
));
2203 if (TREE_CODE (rhs2
) == SSA_NAME
)
2204 bitmap_set_bit (sdce_worklist
, SSA_NAME_VERSION (rhs2
));
2206 if (cand_code
!= NEGATE_EXPR
2207 && ((operand_equal_p (rhs1
, basis_name
, 0)
2208 && operand_equal_p (rhs2
, bump_tree
, 0))
2209 || (operand_equal_p (rhs1
, bump_tree
, 0)
2210 && operand_equal_p (rhs2
, basis_name
, 0))))
2212 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2214 fputs ("(duplicate, not actually replacing)", dump_file
);
2215 stmt_to_print
= c
->cand_stmt
;
2220 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
2221 slsr_cand_t cc
= lookup_cand (c
->first_interp
);
2222 gimple_assign_set_rhs_with_ops (&gsi
, code
, basis_name
, bump_tree
);
2223 update_stmt (gsi_stmt (gsi
));
2226 cc
->cand_stmt
= gsi_stmt (gsi
);
2227 cc
= lookup_cand (cc
->next_interp
);
2229 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2230 stmt_to_print
= gsi_stmt (gsi
);
2234 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2236 fputs ("With: ", dump_file
);
2237 print_gimple_stmt (dump_file
, stmt_to_print
, 0);
2238 fputs ("\n", dump_file
);
2242 /* Replace candidate C with an add or subtract. Note that we only
2243 operate on CAND_MULTs with known strides, so we will never generate
2244 a POINTER_PLUS_EXPR. Each candidate X = (B + i) * S is replaced by
2245 X = Y + ((i - i') * S), as described in the module commentary. The
2246 folded value ((i - i') * S) is referred to here as the "bump." */
2249 replace_unconditional_candidate (slsr_cand_t c
, auto_bitmap
&sdce_worklist
)
2253 if (cand_already_replaced (c
))
2256 basis
= lookup_cand (c
->basis
);
2257 offset_int bump
= cand_increment (c
) * wi::to_offset (c
->stride
);
2259 replace_mult_candidate (c
, gimple_assign_lhs (basis
->cand_stmt
), bump
,
2263 /* Return the index in the increment vector of the given INCREMENT,
2264 or -1 if not found. The latter can occur if more than
2265 MAX_INCR_VEC_LEN increments have been found. */
2268 incr_vec_index (const offset_int
&increment
)
2272 for (i
= 0; i
< incr_vec_len
&& increment
!= incr_vec
[i
].incr
; i
++)
2275 if (i
< incr_vec_len
)
2281 /* Create a new statement along edge E to add BASIS_NAME to the product
2282 of INCREMENT and the stride of candidate C. Create and return a new
2283 SSA name from *VAR to be used as the LHS of the new statement.
2284 KNOWN_STRIDE is true iff C's stride is a constant. */
2287 create_add_on_incoming_edge (slsr_cand_t c
, tree basis_name
,
2288 offset_int increment
, edge e
, location_t loc
,
2291 tree lhs
, basis_type
;
2292 gassign
*new_stmt
, *cast_stmt
= NULL
;
2294 /* If the add candidate along this incoming edge has the same
2295 index as C's hidden basis, the hidden basis represents this
2300 basis_type
= TREE_TYPE (basis_name
);
2301 lhs
= make_temp_ssa_name (basis_type
, NULL
, "slsr");
2303 /* Occasionally people convert integers to pointers without a
2304 cast, leading us into trouble if we aren't careful. */
2305 enum tree_code plus_code
2306 = POINTER_TYPE_P (basis_type
) ? POINTER_PLUS_EXPR
: PLUS_EXPR
;
2311 enum tree_code code
= plus_code
;
2312 offset_int bump
= increment
* wi::to_offset (c
->stride
);
2313 if (wi::neg_p (bump
) && !POINTER_TYPE_P (basis_type
))
2319 tree stride_type
= POINTER_TYPE_P (basis_type
) ? sizetype
: basis_type
;
2320 bump_tree
= wide_int_to_tree (stride_type
, bump
);
2321 new_stmt
= gimple_build_assign (lhs
, code
, basis_name
, bump_tree
);
2326 bool negate_incr
= !POINTER_TYPE_P (basis_type
) && wi::neg_p (increment
);
2327 i
= incr_vec_index (negate_incr
? -increment
: increment
);
2328 gcc_assert (i
>= 0);
2330 if (incr_vec
[i
].initializer
)
2332 enum tree_code code
= negate_incr
? MINUS_EXPR
: plus_code
;
2333 new_stmt
= gimple_build_assign (lhs
, code
, basis_name
,
2334 incr_vec
[i
].initializer
);
2339 if (!types_compatible_p (TREE_TYPE (c
->stride
), c
->stride_type
))
2341 tree cast_stride
= make_temp_ssa_name (c
->stride_type
, NULL
,
2343 cast_stmt
= gimple_build_assign (cast_stride
, NOP_EXPR
,
2345 stride
= cast_stride
;
2351 new_stmt
= gimple_build_assign (lhs
, plus_code
, basis_name
, stride
);
2352 else if (increment
== -1)
2353 new_stmt
= gimple_build_assign (lhs
, MINUS_EXPR
, basis_name
, stride
);
2361 gimple_set_location (cast_stmt
, loc
);
2362 gsi_insert_on_edge (e
, cast_stmt
);
2365 gimple_set_location (new_stmt
, loc
);
2366 gsi_insert_on_edge (e
, new_stmt
);
2368 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2372 fprintf (dump_file
, "Inserting cast on edge %d->%d: ",
2373 e
->src
->index
, e
->dest
->index
);
2374 print_gimple_stmt (dump_file
, cast_stmt
, 0);
2376 fprintf (dump_file
, "Inserting on edge %d->%d: ", e
->src
->index
,
2378 print_gimple_stmt (dump_file
, new_stmt
, 0);
2384 /* Clear the visited field for a tree of PHI candidates. */
2387 clear_visited (gphi
*phi
)
2390 slsr_cand_t phi_cand
= *stmt_cand_map
->get (phi
);
2392 if (phi_cand
->visited
)
2394 phi_cand
->visited
= 0;
2396 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2398 tree arg
= gimple_phi_arg_def (phi
, i
);
2399 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
2400 if (gimple_code (arg_def
) == GIMPLE_PHI
)
2401 clear_visited (as_a
<gphi
*> (arg_def
));
2406 /* Recursive helper function for create_phi_basis. */
2409 create_phi_basis_1 (slsr_cand_t c
, gimple
*from_phi
, tree basis_name
,
2410 location_t loc
, bool known_stride
)
2415 slsr_cand_t basis
= lookup_cand (c
->basis
);
2416 int nargs
= gimple_phi_num_args (from_phi
);
2417 basic_block phi_bb
= gimple_bb (from_phi
);
2418 slsr_cand_t phi_cand
= *stmt_cand_map
->get (from_phi
);
2419 auto_vec
<tree
> phi_args (nargs
);
2421 if (phi_cand
->visited
)
2422 return phi_cand
->cached_basis
;
2423 phi_cand
->visited
= 1;
2425 /* Process each argument of the existing phi that represents
2426 conditionally-executed add candidates. */
2427 for (i
= 0; i
< nargs
; i
++)
2429 edge e
= (*phi_bb
->preds
)[i
];
2430 tree arg
= gimple_phi_arg_def (from_phi
, i
);
2433 /* If the phi argument is the base name of the CAND_PHI, then
2434 this incoming arc should use the hidden basis. */
2435 if (operand_equal_p (arg
, phi_cand
->base_expr
, 0))
2436 if (basis
->index
== 0)
2437 feeding_def
= gimple_assign_lhs (basis
->cand_stmt
);
2440 offset_int incr
= -basis
->index
;
2441 feeding_def
= create_add_on_incoming_edge (c
, basis_name
, incr
,
2442 e
, loc
, known_stride
);
2446 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
2448 /* If there is another phi along this incoming edge, we must
2449 process it in the same fashion to ensure that all basis
2450 adjustments are made along its incoming edges. */
2451 if (gimple_code (arg_def
) == GIMPLE_PHI
)
2452 feeding_def
= create_phi_basis_1 (c
, arg_def
, basis_name
,
2456 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
2457 offset_int diff
= arg_cand
->index
- basis
->index
;
2458 feeding_def
= create_add_on_incoming_edge (c
, basis_name
, diff
,
2459 e
, loc
, known_stride
);
2463 /* Because of recursion, we need to save the arguments in a vector
2464 so we can create the PHI statement all at once. Otherwise the
2465 storage for the half-created PHI can be reclaimed. */
2466 phi_args
.safe_push (feeding_def
);
2469 /* Create the new phi basis. */
2470 name
= make_temp_ssa_name (TREE_TYPE (basis_name
), NULL
, "slsr");
2471 phi
= create_phi_node (name
, phi_bb
);
2472 SSA_NAME_DEF_STMT (name
) = phi
;
2474 FOR_EACH_VEC_ELT (phi_args
, i
, phi_arg
)
2476 edge e
= (*phi_bb
->preds
)[i
];
2477 add_phi_arg (phi
, phi_arg
, e
, loc
);
2482 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2484 fputs ("Introducing new phi basis: ", dump_file
);
2485 print_gimple_stmt (dump_file
, phi
, 0);
2488 phi_cand
->cached_basis
= name
;
2492 /* Given a candidate C with BASIS_NAME being the LHS of C's basis which
2493 is hidden by the phi node FROM_PHI, create a new phi node in the same
2494 block as FROM_PHI. The new phi is suitable for use as a basis by C,
2495 with its phi arguments representing conditional adjustments to the
2496 hidden basis along conditional incoming paths. Those adjustments are
2497 made by creating add statements (and sometimes recursively creating
2498 phis) along those incoming paths. LOC is the location to attach to
2499 the introduced statements. KNOWN_STRIDE is true iff C's stride is a
2503 create_phi_basis (slsr_cand_t c
, gimple
*from_phi
, tree basis_name
,
2504 location_t loc
, bool known_stride
)
2506 tree retval
= create_phi_basis_1 (c
, from_phi
, basis_name
, loc
,
2508 gcc_assert (retval
);
2509 clear_visited (as_a
<gphi
*> (from_phi
));
2513 /* Given a candidate C whose basis is hidden by at least one intervening
2514 phi, introduce a matching number of new phis to represent its basis
2515 adjusted by conditional increments along possible incoming paths. Then
2516 replace C as though it were an unconditional candidate, using the new
2520 replace_conditional_candidate (slsr_cand_t c
, auto_bitmap
&sdce_worklist
)
2523 tree basis_name
, name
;
2527 /* Look up the LHS SSA name from C's basis. This will be the
2528 RHS1 of the adds we will introduce to create new phi arguments. */
2529 basis
= lookup_cand (c
->basis
);
2530 basis_name
= gimple_assign_lhs (basis
->cand_stmt
);
2532 /* Create a new phi statement which will represent C's true basis
2533 after the transformation is complete. */
2534 loc
= gimple_location (c
->cand_stmt
);
2535 name
= create_phi_basis (c
, lookup_cand (c
->def_phi
)->cand_stmt
,
2536 basis_name
, loc
, KNOWN_STRIDE
);
2538 /* Replace C with an add of the new basis phi and a constant. */
2539 offset_int bump
= c
->index
* wi::to_offset (c
->stride
);
2541 replace_mult_candidate (c
, name
, bump
, sdce_worklist
);
2544 /* Recursive helper function for phi_add_costs. SPREAD is a measure of
2545 how many PHI nodes we have visited at this point in the tree walk. */
2548 phi_add_costs_1 (gimple
*phi
, slsr_cand_t c
, int one_add_cost
, int *spread
)
2552 slsr_cand_t phi_cand
= *stmt_cand_map
->get (phi
);
2554 if (phi_cand
->visited
)
2557 phi_cand
->visited
= 1;
2560 /* If we work our way back to a phi that isn't dominated by the hidden
2561 basis, this isn't a candidate for replacement. Indicate this by
2562 returning an unreasonably high cost. It's not easy to detect
2563 these situations when determining the basis, so we defer the
2564 decision until now. */
2565 basic_block phi_bb
= gimple_bb (phi
);
2566 slsr_cand_t basis
= lookup_cand (c
->basis
);
2567 basic_block basis_bb
= gimple_bb (basis
->cand_stmt
);
2569 if (phi_bb
== basis_bb
|| !dominated_by_p (CDI_DOMINATORS
, phi_bb
, basis_bb
))
2570 return COST_INFINITE
;
2572 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2574 tree arg
= gimple_phi_arg_def (phi
, i
);
2576 if (arg
!= phi_cand
->base_expr
)
2578 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
2580 if (gimple_code (arg_def
) == GIMPLE_PHI
)
2582 cost
+= phi_add_costs_1 (arg_def
, c
, one_add_cost
, spread
);
2584 if (cost
>= COST_INFINITE
|| *spread
> MAX_SPREAD
)
2585 return COST_INFINITE
;
2589 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
2591 if (arg_cand
->index
!= c
->index
)
2592 cost
+= one_add_cost
;
2600 /* Compute the expected costs of inserting basis adjustments for
2601 candidate C with phi-definition PHI. The cost of inserting
2602 one adjustment is given by ONE_ADD_COST. If PHI has arguments
2603 which are themselves phi results, recursively calculate costs
2604 for those phis as well. */
2607 phi_add_costs (gimple
*phi
, slsr_cand_t c
, int one_add_cost
)
2610 int retval
= phi_add_costs_1 (phi
, c
, one_add_cost
, &spread
);
2611 clear_visited (as_a
<gphi
*> (phi
));
2614 /* For candidate C, each sibling of candidate C, and each dependent of
2615 candidate C, determine whether the candidate is dependent upon a
2616 phi that hides its basis. If not, replace the candidate unconditionally.
2617 Otherwise, determine whether the cost of introducing compensation code
2618 for the candidate is offset by the gains from strength reduction. If
2619 so, replace the candidate and introduce the compensation code. */
2622 replace_uncond_cands_and_profitable_phis (slsr_cand_t c
,
2623 auto_bitmap
&sdce_worklist
)
2625 if (phi_dependent_cand_p (c
))
2627 /* A multiply candidate with a stride of 1 is just an artifice
2628 of a copy or cast; there is no value in replacing it. */
2629 if (c
->kind
== CAND_MULT
&& wi::to_offset (c
->stride
) != 1)
2631 /* A candidate dependent upon a phi will replace a multiply by
2632 a constant with an add, and will insert at most one add for
2633 each phi argument. Add these costs with the potential dead-code
2634 savings to determine profitability. */
2635 bool speed
= optimize_bb_for_speed_p (gimple_bb (c
->cand_stmt
));
2636 int mult_savings
= stmt_cost (c
->cand_stmt
, speed
);
2637 gimple
*phi
= lookup_cand (c
->def_phi
)->cand_stmt
;
2638 tree phi_result
= gimple_phi_result (phi
);
2639 int one_add_cost
= add_cost (speed
,
2640 TYPE_MODE (TREE_TYPE (phi_result
)));
2641 int add_costs
= one_add_cost
+ phi_add_costs (phi
, c
, one_add_cost
);
2642 int cost
= add_costs
- mult_savings
- c
->dead_savings
;
2644 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2646 fprintf (dump_file
, " Conditional candidate %d:\n", c
->cand_num
);
2647 fprintf (dump_file
, " add_costs = %d\n", add_costs
);
2648 fprintf (dump_file
, " mult_savings = %d\n", mult_savings
);
2649 fprintf (dump_file
, " dead_savings = %d\n", c
->dead_savings
);
2650 fprintf (dump_file
, " cost = %d\n", cost
);
2651 if (cost
<= COST_NEUTRAL
)
2652 fputs (" Replacing...\n", dump_file
);
2654 fputs (" Not replaced.\n", dump_file
);
2657 if (cost
<= COST_NEUTRAL
)
2658 replace_conditional_candidate (c
, sdce_worklist
);
2662 replace_unconditional_candidate (c
, sdce_worklist
);
2665 replace_uncond_cands_and_profitable_phis (lookup_cand (c
->sibling
),
2669 replace_uncond_cands_and_profitable_phis (lookup_cand (c
->dependent
),
2673 /* Count the number of candidates in the tree rooted at C that have
2674 not already been replaced under other interpretations. */
2677 count_candidates (slsr_cand_t c
)
2679 unsigned count
= cand_already_replaced (c
) ? 0 : 1;
2682 count
+= count_candidates (lookup_cand (c
->sibling
));
2685 count
+= count_candidates (lookup_cand (c
->dependent
));
2690 /* Increase the count of INCREMENT by one in the increment vector.
2691 INCREMENT is associated with candidate C. If INCREMENT is to be
2692 conditionally executed as part of a conditional candidate replacement,
2693 IS_PHI_ADJUST is true, otherwise false. If an initializer
2694 T_0 = stride * I is provided by a candidate that dominates all
2695 candidates with the same increment, also record T_0 for subsequent use. */
2698 record_increment (slsr_cand_t c
, offset_int increment
, bool is_phi_adjust
)
2703 /* Treat increments that differ only in sign as identical so as to
2704 share initializers, unless we are generating pointer arithmetic. */
2705 if (!address_arithmetic_p
&& wi::neg_p (increment
))
2706 increment
= -increment
;
2708 for (i
= 0; i
< incr_vec_len
; i
++)
2710 if (incr_vec
[i
].incr
== increment
)
2712 incr_vec
[i
].count
++;
2715 /* If we previously recorded an initializer that doesn't
2716 dominate this candidate, it's not going to be useful to
2718 if (incr_vec
[i
].initializer
2719 && !dominated_by_p (CDI_DOMINATORS
,
2720 gimple_bb (c
->cand_stmt
),
2721 incr_vec
[i
].init_bb
))
2723 incr_vec
[i
].initializer
= NULL_TREE
;
2724 incr_vec
[i
].init_bb
= NULL
;
2731 if (!found
&& incr_vec_len
< MAX_INCR_VEC_LEN
- 1)
2733 /* The first time we see an increment, create the entry for it.
2734 If this is the root candidate which doesn't have a basis, set
2735 the count to zero. We're only processing it so it can possibly
2736 provide an initializer for other candidates. */
2737 incr_vec
[incr_vec_len
].incr
= increment
;
2738 incr_vec
[incr_vec_len
].count
= c
->basis
|| is_phi_adjust
? 1 : 0;
2739 incr_vec
[incr_vec_len
].cost
= COST_INFINITE
;
2741 /* Optimistically record the first occurrence of this increment
2742 as providing an initializer (if it does); we will revise this
2743 opinion later if it doesn't dominate all other occurrences.
2744 Exception: increments of 0, 1 never need initializers;
2745 and phi adjustments don't ever provide initializers. */
2746 if (c
->kind
== CAND_ADD
2748 && c
->index
== increment
2749 && (increment
> 1 || increment
< 0)
2750 && (gimple_assign_rhs_code (c
->cand_stmt
) == PLUS_EXPR
2751 || gimple_assign_rhs_code (c
->cand_stmt
) == POINTER_PLUS_EXPR
))
2753 tree t0
= NULL_TREE
;
2754 tree rhs1
= gimple_assign_rhs1 (c
->cand_stmt
);
2755 tree rhs2
= gimple_assign_rhs2 (c
->cand_stmt
);
2756 if (operand_equal_p (rhs1
, c
->base_expr
, 0))
2758 else if (operand_equal_p (rhs2
, c
->base_expr
, 0))
2761 && SSA_NAME_DEF_STMT (t0
)
2762 && gimple_bb (SSA_NAME_DEF_STMT (t0
)))
2764 incr_vec
[incr_vec_len
].initializer
= t0
;
2765 incr_vec
[incr_vec_len
++].init_bb
2766 = gimple_bb (SSA_NAME_DEF_STMT (t0
));
2770 incr_vec
[incr_vec_len
].initializer
= NULL_TREE
;
2771 incr_vec
[incr_vec_len
++].init_bb
= NULL
;
2776 incr_vec
[incr_vec_len
].initializer
= NULL_TREE
;
2777 incr_vec
[incr_vec_len
++].init_bb
= NULL
;
2782 /* Recursive helper function for record_phi_increments. */
2785 record_phi_increments_1 (slsr_cand_t basis
, gimple
*phi
)
2788 slsr_cand_t phi_cand
= *stmt_cand_map
->get (phi
);
2790 if (phi_cand
->visited
)
2792 phi_cand
->visited
= 1;
2794 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2796 tree arg
= gimple_phi_arg_def (phi
, i
);
2797 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
2799 if (gimple_code (arg_def
) == GIMPLE_PHI
)
2800 record_phi_increments_1 (basis
, arg_def
);
2805 if (operand_equal_p (arg
, phi_cand
->base_expr
, 0))
2807 diff
= -basis
->index
;
2808 record_increment (phi_cand
, diff
, PHI_ADJUST
);
2812 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
2813 diff
= arg_cand
->index
- basis
->index
;
2814 record_increment (arg_cand
, diff
, PHI_ADJUST
);
2820 /* Given phi statement PHI that hides a candidate from its BASIS, find
2821 the increments along each incoming arc (recursively handling additional
2822 phis that may be present) and record them. These increments are the
2823 difference in index between the index-adjusting statements and the
2824 index of the basis. */
2827 record_phi_increments (slsr_cand_t basis
, gimple
*phi
)
2829 record_phi_increments_1 (basis
, phi
);
2830 clear_visited (as_a
<gphi
*> (phi
));
2833 /* Determine how many times each unique increment occurs in the set
2834 of candidates rooted at C's parent, recording the data in the
2835 increment vector. For each unique increment I, if an initializer
2836 T_0 = stride * I is provided by a candidate that dominates all
2837 candidates with the same increment, also record T_0 for subsequent
2841 record_increments (slsr_cand_t c
)
2843 if (!cand_already_replaced (c
))
2845 if (!phi_dependent_cand_p (c
))
2846 record_increment (c
, cand_increment (c
), NOT_PHI_ADJUST
);
2849 /* A candidate with a basis hidden by a phi will have one
2850 increment for its relationship to the index represented by
2851 the phi, and potentially additional increments along each
2852 incoming edge. For the root of the dependency tree (which
2853 has no basis), process just the initial index in case it has
2854 an initializer that can be used by subsequent candidates. */
2855 record_increment (c
, c
->index
, NOT_PHI_ADJUST
);
2858 record_phi_increments (lookup_cand (c
->basis
),
2859 lookup_cand (c
->def_phi
)->cand_stmt
);
2864 record_increments (lookup_cand (c
->sibling
));
2867 record_increments (lookup_cand (c
->dependent
));
2870 /* Recursive helper function for phi_incr_cost. */
2873 phi_incr_cost_1 (slsr_cand_t c
, const offset_int
&incr
, gimple
*phi
,
2878 slsr_cand_t basis
= lookup_cand (c
->basis
);
2879 slsr_cand_t phi_cand
= *stmt_cand_map
->get (phi
);
2881 if (phi_cand
->visited
)
2883 phi_cand
->visited
= 1;
2885 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2887 tree arg
= gimple_phi_arg_def (phi
, i
);
2888 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
2890 if (gimple_code (arg_def
) == GIMPLE_PHI
)
2892 int feeding_savings
= 0;
2893 tree feeding_var
= gimple_phi_result (arg_def
);
2894 cost
+= phi_incr_cost_1 (c
, incr
, arg_def
, &feeding_savings
);
2895 if (uses_consumed_by_stmt (feeding_var
, phi
))
2896 *savings
+= feeding_savings
;
2901 slsr_cand_t arg_cand
;
2903 /* When the PHI argument is just a pass-through to the base
2904 expression of the hidden basis, the difference is zero minus
2905 the index of the basis. There is no potential savings by
2906 eliminating a statement in this case. */
2907 if (operand_equal_p (arg
, phi_cand
->base_expr
, 0))
2909 arg_cand
= (slsr_cand_t
)NULL
;
2910 diff
= -basis
->index
;
2914 arg_cand
= base_cand_from_table (arg
);
2915 diff
= arg_cand
->index
- basis
->index
;
2920 tree basis_lhs
= gimple_assign_lhs (basis
->cand_stmt
);
2921 cost
+= add_cost (true, TYPE_MODE (TREE_TYPE (basis_lhs
)));
2924 tree lhs
= gimple_assign_lhs (arg_cand
->cand_stmt
);
2925 if (uses_consumed_by_stmt (lhs
, phi
))
2926 *savings
+= stmt_cost (arg_cand
->cand_stmt
, true);
2935 /* Add up and return the costs of introducing add statements that
2936 require the increment INCR on behalf of candidate C and phi
2937 statement PHI. Accumulate into *SAVINGS the potential savings
2938 from removing existing statements that feed PHI and have no other
2942 phi_incr_cost (slsr_cand_t c
, const offset_int
&incr
, gimple
*phi
,
2945 int retval
= phi_incr_cost_1 (c
, incr
, phi
, savings
);
2946 clear_visited (as_a
<gphi
*> (phi
));
2950 /* Return the first candidate in the tree rooted at C that has not
2951 already been replaced, favoring siblings over dependents. */
2954 unreplaced_cand_in_tree (slsr_cand_t c
)
2956 if (!cand_already_replaced (c
))
2961 slsr_cand_t sib
= unreplaced_cand_in_tree (lookup_cand (c
->sibling
));
2968 slsr_cand_t dep
= unreplaced_cand_in_tree (lookup_cand (c
->dependent
));
2976 /* Return TRUE if the candidates in the tree rooted at C should be
2977 optimized for speed, else FALSE. We estimate this based on the block
2978 containing the most dominant candidate in the tree that has not yet
2982 optimize_cands_for_speed_p (slsr_cand_t c
)
2984 slsr_cand_t c2
= unreplaced_cand_in_tree (c
);
2986 return optimize_bb_for_speed_p (gimple_bb (c2
->cand_stmt
));
2989 /* Add COST_IN to the lowest cost of any dependent path starting at
2990 candidate C or any of its siblings, counting only candidates along
2991 such paths with increment INCR. Assume that replacing a candidate
2992 reduces cost by REPL_SAVINGS. Also account for savings from any
2993 statements that would go dead. If COUNT_PHIS is true, include
2994 costs of introducing feeding statements for conditional candidates. */
2997 lowest_cost_path (int cost_in
, int repl_savings
, slsr_cand_t c
,
2998 const offset_int
&incr
, bool count_phis
)
3000 int local_cost
, sib_cost
, savings
= 0;
3001 offset_int cand_incr
= cand_abs_increment (c
);
3003 if (cand_already_replaced (c
))
3004 local_cost
= cost_in
;
3005 else if (incr
== cand_incr
)
3006 local_cost
= cost_in
- repl_savings
- c
->dead_savings
;
3008 local_cost
= cost_in
- c
->dead_savings
;
3011 && phi_dependent_cand_p (c
)
3012 && !cand_already_replaced (c
))
3014 gimple
*phi
= lookup_cand (c
->def_phi
)->cand_stmt
;
3015 local_cost
+= phi_incr_cost (c
, incr
, phi
, &savings
);
3017 if (uses_consumed_by_stmt (gimple_phi_result (phi
), c
->cand_stmt
))
3018 local_cost
-= savings
;
3022 local_cost
= lowest_cost_path (local_cost
, repl_savings
,
3023 lookup_cand (c
->dependent
), incr
,
3028 sib_cost
= lowest_cost_path (cost_in
, repl_savings
,
3029 lookup_cand (c
->sibling
), incr
,
3031 local_cost
= MIN (local_cost
, sib_cost
);
3037 /* Compute the total savings that would accrue from all replacements
3038 in the candidate tree rooted at C, counting only candidates with
3039 increment INCR. Assume that replacing a candidate reduces cost
3040 by REPL_SAVINGS. Also account for savings from statements that
3044 total_savings (int repl_savings
, slsr_cand_t c
, const offset_int
&incr
,
3048 offset_int cand_incr
= cand_abs_increment (c
);
3050 if (incr
== cand_incr
&& !cand_already_replaced (c
))
3051 savings
+= repl_savings
+ c
->dead_savings
;
3054 && phi_dependent_cand_p (c
)
3055 && !cand_already_replaced (c
))
3057 int phi_savings
= 0;
3058 gimple
*phi
= lookup_cand (c
->def_phi
)->cand_stmt
;
3059 savings
-= phi_incr_cost (c
, incr
, phi
, &phi_savings
);
3061 if (uses_consumed_by_stmt (gimple_phi_result (phi
), c
->cand_stmt
))
3062 savings
+= phi_savings
;
3066 savings
+= total_savings (repl_savings
, lookup_cand (c
->dependent
), incr
,
3070 savings
+= total_savings (repl_savings
, lookup_cand (c
->sibling
), incr
,
3076 /* Use target-specific costs to determine and record which increments
3077 in the current candidate tree are profitable to replace, assuming
3078 MODE and SPEED. FIRST_DEP is the first dependent of the root of
3081 One slight limitation here is that we don't account for the possible
3082 introduction of casts in some cases. See replace_one_candidate for
3083 the cases where these are introduced. This should probably be cleaned
3087 analyze_increments (slsr_cand_t first_dep
, machine_mode mode
, bool speed
)
3091 for (i
= 0; i
< incr_vec_len
; i
++)
3093 HOST_WIDE_INT incr
= incr_vec
[i
].incr
.to_shwi ();
3095 /* If somehow this increment is bigger than a HWI, we won't
3096 be optimizing candidates that use it. And if the increment
3097 has a count of zero, nothing will be done with it. */
3098 if (!wi::fits_shwi_p (incr_vec
[i
].incr
) || !incr_vec
[i
].count
)
3099 incr_vec
[i
].cost
= COST_INFINITE
;
3101 /* Increments of 0, 1, and -1 are always profitable to replace,
3102 because they always replace a multiply or add with an add or
3103 copy, and may cause one or more existing instructions to go
3104 dead. Exception: -1 can't be assumed to be profitable for
3105 pointer addition. */
3109 && !POINTER_TYPE_P (first_dep
->cand_type
)))
3110 incr_vec
[i
].cost
= COST_NEUTRAL
;
3112 /* If we need to add an initializer, give up if a cast from the
3113 candidate's type to its stride's type can lose precision.
3114 Note that this already takes into account that the stride may
3115 have been cast to a wider type, in which case this test won't
3121 _4 = x + _3; ADD: x + (10 * (int)_1) : int
3123 _6 = x + _5; ADD: x + (15 * (int)_1) : int
3125 Although the stride was a short int initially, the stride
3126 used in the analysis has been widened to an int, and such
3127 widening will be done in the initializer as well. */
3128 else if (!incr_vec
[i
].initializer
3129 && TREE_CODE (first_dep
->stride
) != INTEGER_CST
3130 && !legal_cast_p_1 (first_dep
->stride_type
,
3131 TREE_TYPE (gimple_assign_lhs
3132 (first_dep
->cand_stmt
))))
3133 incr_vec
[i
].cost
= COST_INFINITE
;
3135 /* If we need to add an initializer, make sure we don't introduce
3136 a multiply by a pointer type, which can happen in certain cast
3138 else if (!incr_vec
[i
].initializer
3139 && TREE_CODE (first_dep
->stride
) != INTEGER_CST
3140 && POINTER_TYPE_P (first_dep
->stride_type
))
3141 incr_vec
[i
].cost
= COST_INFINITE
;
3143 /* For any other increment, if this is a multiply candidate, we
3144 must introduce a temporary T and initialize it with
3145 T_0 = stride * increment. When optimizing for speed, walk the
3146 candidate tree to calculate the best cost reduction along any
3147 path; if it offsets the fixed cost of inserting the initializer,
3148 replacing the increment is profitable. When optimizing for
3149 size, instead calculate the total cost reduction from replacing
3150 all candidates with this increment. */
3151 else if (first_dep
->kind
== CAND_MULT
)
3153 int cost
= mult_by_coeff_cost (incr
, mode
, speed
);
3156 if (tree_fits_shwi_p (first_dep
->stride
))
3158 HOST_WIDE_INT hwi_stride
= tree_to_shwi (first_dep
->stride
);
3159 repl_savings
= mult_by_coeff_cost (hwi_stride
, mode
, speed
);
3162 repl_savings
= mul_cost (speed
, mode
);
3163 repl_savings
-= add_cost (speed
, mode
);
3166 cost
= lowest_cost_path (cost
, repl_savings
, first_dep
,
3167 incr_vec
[i
].incr
, COUNT_PHIS
);
3169 cost
-= total_savings (repl_savings
, first_dep
, incr_vec
[i
].incr
,
3172 incr_vec
[i
].cost
= cost
;
3175 /* If this is an add candidate, the initializer may already
3176 exist, so only calculate the cost of the initializer if it
3177 doesn't. We are replacing one add with another here, so the
3178 known replacement savings is zero. We will account for removal
3179 of dead instructions in lowest_cost_path or total_savings. */
3183 if (!incr_vec
[i
].initializer
)
3184 cost
= mult_by_coeff_cost (incr
, mode
, speed
);
3187 cost
= lowest_cost_path (cost
, 0, first_dep
, incr_vec
[i
].incr
,
3190 cost
-= total_savings (0, first_dep
, incr_vec
[i
].incr
,
3193 incr_vec
[i
].cost
= cost
;
3198 /* Return the nearest common dominator of BB1 and BB2. If the blocks
3199 are identical, return the earlier of C1 and C2 in *WHERE. Otherwise,
3200 if the NCD matches BB1, return C1 in *WHERE; if the NCD matches BB2,
3201 return C2 in *WHERE; and if the NCD matches neither, return NULL in
3202 *WHERE. Note: It is possible for one of C1 and C2 to be NULL. */
3205 ncd_for_two_cands (basic_block bb1
, basic_block bb2
,
3206 slsr_cand_t c1
, slsr_cand_t c2
, slsr_cand_t
*where
)
3222 ncd
= nearest_common_dominator (CDI_DOMINATORS
, bb1
, bb2
);
3224 /* If both candidates are in the same block, the earlier
3226 if (bb1
== ncd
&& bb2
== ncd
)
3228 if (!c1
|| (c2
&& c2
->cand_num
< c1
->cand_num
))
3234 /* Otherwise, if one of them produced a candidate in the
3235 dominator, that one wins. */
3236 else if (bb1
== ncd
)
3239 else if (bb2
== ncd
)
3242 /* If neither matches the dominator, neither wins. */
3249 /* Consider all candidates that feed PHI. Find the nearest common
3250 dominator of those candidates requiring the given increment INCR.
3251 Further find and return the nearest common dominator of this result
3252 with block NCD. If the returned block contains one or more of the
3253 candidates, return the earliest candidate in the block in *WHERE. */
3256 ncd_with_phi (slsr_cand_t c
, const offset_int
&incr
, gphi
*phi
,
3257 basic_block ncd
, slsr_cand_t
*where
)
3260 slsr_cand_t basis
= lookup_cand (c
->basis
);
3261 slsr_cand_t phi_cand
= *stmt_cand_map
->get (phi
);
3263 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
3265 tree arg
= gimple_phi_arg_def (phi
, i
);
3266 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
3268 if (gimple_code (arg_def
) == GIMPLE_PHI
)
3269 ncd
= ncd_with_phi (c
, incr
, as_a
<gphi
*> (arg_def
), ncd
, where
);
3274 if (operand_equal_p (arg
, phi_cand
->base_expr
, 0))
3275 diff
= -basis
->index
;
3278 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
3279 diff
= arg_cand
->index
- basis
->index
;
3282 basic_block pred
= gimple_phi_arg_edge (phi
, i
)->src
;
3284 if ((incr
== diff
) || (!address_arithmetic_p
&& incr
== -diff
))
3285 ncd
= ncd_for_two_cands (ncd
, pred
, *where
, NULL
, where
);
3292 /* Consider the candidate C together with any candidates that feed
3293 C's phi dependence (if any). Find and return the nearest common
3294 dominator of those candidates requiring the given increment INCR.
3295 If the returned block contains one or more of the candidates,
3296 return the earliest candidate in the block in *WHERE. */
3299 ncd_of_cand_and_phis (slsr_cand_t c
, const offset_int
&incr
, slsr_cand_t
*where
)
3301 basic_block ncd
= NULL
;
3303 if (cand_abs_increment (c
) == incr
)
3305 ncd
= gimple_bb (c
->cand_stmt
);
3309 if (phi_dependent_cand_p (c
))
3310 ncd
= ncd_with_phi (c
, incr
,
3311 as_a
<gphi
*> (lookup_cand (c
->def_phi
)->cand_stmt
),
3317 /* Consider all candidates in the tree rooted at C for which INCR
3318 represents the required increment of C relative to its basis.
3319 Find and return the basic block that most nearly dominates all
3320 such candidates. If the returned block contains one or more of
3321 the candidates, return the earliest candidate in the block in
3325 nearest_common_dominator_for_cands (slsr_cand_t c
, const offset_int
&incr
,
3328 basic_block sib_ncd
= NULL
, dep_ncd
= NULL
, this_ncd
= NULL
, ncd
;
3329 slsr_cand_t sib_where
= NULL
, dep_where
= NULL
, this_where
= NULL
, new_where
;
3331 /* First find the NCD of all siblings and dependents. */
3333 sib_ncd
= nearest_common_dominator_for_cands (lookup_cand (c
->sibling
),
3336 dep_ncd
= nearest_common_dominator_for_cands (lookup_cand (c
->dependent
),
3338 if (!sib_ncd
&& !dep_ncd
)
3343 else if (sib_ncd
&& !dep_ncd
)
3345 new_where
= sib_where
;
3348 else if (dep_ncd
&& !sib_ncd
)
3350 new_where
= dep_where
;
3354 ncd
= ncd_for_two_cands (sib_ncd
, dep_ncd
, sib_where
,
3355 dep_where
, &new_where
);
3357 /* If the candidate's increment doesn't match the one we're interested
3358 in (and nor do any increments for feeding defs of a phi-dependence),
3359 then the result depends only on siblings and dependents. */
3360 this_ncd
= ncd_of_cand_and_phis (c
, incr
, &this_where
);
3362 if (!this_ncd
|| cand_already_replaced (c
))
3368 /* Otherwise, compare this candidate with the result from all siblings
3370 ncd
= ncd_for_two_cands (ncd
, this_ncd
, new_where
, this_where
, where
);
3375 /* Return TRUE if the increment indexed by INDEX is profitable to replace. */
3378 profitable_increment_p (unsigned index
)
3380 return (incr_vec
[index
].cost
<= COST_NEUTRAL
);
3383 /* For each profitable increment in the increment vector not equal to
3384 0 or 1 (or -1, for non-pointer arithmetic), find the nearest common
3385 dominator of all statements in the candidate chain rooted at C
3386 that require that increment, and insert an initializer
3387 T_0 = stride * increment at that location. Record T_0 with the
3388 increment record. */
3391 insert_initializers (slsr_cand_t c
)
3395 for (i
= 0; i
< incr_vec_len
; i
++)
3398 slsr_cand_t where
= NULL
;
3400 gassign
*cast_stmt
= NULL
;
3401 tree new_name
, incr_tree
, init_stride
;
3402 offset_int incr
= incr_vec
[i
].incr
;
3404 if (!profitable_increment_p (i
)
3407 && (!POINTER_TYPE_P (lookup_cand (c
->basis
)->cand_type
)))
3411 /* We may have already identified an existing initializer that
3413 if (incr_vec
[i
].initializer
)
3415 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3417 fputs ("Using existing initializer: ", dump_file
);
3418 print_gimple_stmt (dump_file
,
3419 SSA_NAME_DEF_STMT (incr_vec
[i
].initializer
),
3425 /* Find the block that most closely dominates all candidates
3426 with this increment. If there is at least one candidate in
3427 that block, the earliest one will be returned in WHERE. */
3428 bb
= nearest_common_dominator_for_cands (c
, incr
, &where
);
3430 /* If the NCD is not dominated by the block containing the
3431 definition of the stride, we can't legally insert a
3432 single initializer. Mark the increment as unprofitable
3433 so we don't make any replacements. FIXME: Multiple
3434 initializers could be placed with more analysis. */
3435 gimple
*stride_def
= SSA_NAME_DEF_STMT (c
->stride
);
3436 basic_block stride_bb
= gimple_bb (stride_def
);
3438 if (stride_bb
&& !dominated_by_p (CDI_DOMINATORS
, bb
, stride_bb
))
3440 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3442 "Initializer #%d cannot be legally placed\n", i
);
3443 incr_vec
[i
].cost
= COST_INFINITE
;
3447 /* If the nominal stride has a different type than the recorded
3448 stride type, build a cast from the nominal stride to that type. */
3449 if (!types_compatible_p (TREE_TYPE (c
->stride
), c
->stride_type
))
3451 init_stride
= make_temp_ssa_name (c
->stride_type
, NULL
, "slsr");
3452 cast_stmt
= gimple_build_assign (init_stride
, NOP_EXPR
, c
->stride
);
3455 init_stride
= c
->stride
;
3457 /* Create a new SSA name to hold the initializer's value. */
3458 new_name
= make_temp_ssa_name (c
->stride_type
, NULL
, "slsr");
3459 incr_vec
[i
].initializer
= new_name
;
3461 /* Create the initializer and insert it in the latest possible
3462 dominating position. */
3463 incr_tree
= wide_int_to_tree (c
->stride_type
, incr
);
3464 init_stmt
= gimple_build_assign (new_name
, MULT_EXPR
,
3465 init_stride
, incr_tree
);
3468 gimple_stmt_iterator gsi
= gsi_for_stmt (where
->cand_stmt
);
3469 location_t loc
= gimple_location (where
->cand_stmt
);
3473 gsi_insert_before (&gsi
, cast_stmt
, GSI_SAME_STMT
);
3474 gimple_set_location (cast_stmt
, loc
);
3477 gsi_insert_before (&gsi
, init_stmt
, GSI_SAME_STMT
);
3478 gimple_set_location (init_stmt
, loc
);
3482 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
3483 gimple
*basis_stmt
= lookup_cand (c
->basis
)->cand_stmt
;
3484 location_t loc
= gimple_location (basis_stmt
);
3486 if (!gsi_end_p (gsi
) && stmt_ends_bb_p (gsi_stmt (gsi
)))
3490 gsi_insert_before (&gsi
, cast_stmt
, GSI_SAME_STMT
);
3491 gimple_set_location (cast_stmt
, loc
);
3493 gsi_insert_before (&gsi
, init_stmt
, GSI_SAME_STMT
);
3499 gsi_insert_after (&gsi
, cast_stmt
, GSI_NEW_STMT
);
3500 gimple_set_location (cast_stmt
, loc
);
3502 gsi_insert_after (&gsi
, init_stmt
, GSI_NEW_STMT
);
3505 gimple_set_location (init_stmt
, gimple_location (basis_stmt
));
3508 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3512 fputs ("Inserting stride cast: ", dump_file
);
3513 print_gimple_stmt (dump_file
, cast_stmt
, 0);
3515 fputs ("Inserting initializer: ", dump_file
);
3516 print_gimple_stmt (dump_file
, init_stmt
, 0);
3521 /* Recursive helper function for all_phi_incrs_profitable. */
3524 all_phi_incrs_profitable_1 (slsr_cand_t c
, gphi
*phi
, int *spread
)
3527 slsr_cand_t basis
= lookup_cand (c
->basis
);
3528 slsr_cand_t phi_cand
= *stmt_cand_map
->get (phi
);
3530 if (phi_cand
->visited
)
3533 phi_cand
->visited
= 1;
3536 /* If the basis doesn't dominate the PHI (including when the PHI is
3537 in the same block as the basis), we won't be able to create a PHI
3538 using the basis here. */
3539 basic_block basis_bb
= gimple_bb (basis
->cand_stmt
);
3540 basic_block phi_bb
= gimple_bb (phi
);
3542 if (phi_bb
== basis_bb
3543 || !dominated_by_p (CDI_DOMINATORS
, phi_bb
, basis_bb
))
3546 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
3548 /* If the PHI arg resides in a block not dominated by the basis,
3549 we won't be able to create a PHI using the basis here. */
3550 basic_block pred_bb
= gimple_phi_arg_edge (phi
, i
)->src
;
3552 if (!dominated_by_p (CDI_DOMINATORS
, pred_bb
, basis_bb
))
3555 tree arg
= gimple_phi_arg_def (phi
, i
);
3556 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
3558 if (gimple_code (arg_def
) == GIMPLE_PHI
)
3560 if (!all_phi_incrs_profitable_1 (c
, as_a
<gphi
*> (arg_def
), spread
)
3561 || *spread
> MAX_SPREAD
)
3567 offset_int increment
;
3569 if (operand_equal_p (arg
, phi_cand
->base_expr
, 0))
3570 increment
= -basis
->index
;
3573 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
3574 increment
= arg_cand
->index
- basis
->index
;
3577 if (!address_arithmetic_p
&& wi::neg_p (increment
))
3578 increment
= -increment
;
3580 j
= incr_vec_index (increment
);
3582 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3584 fprintf (dump_file
, " Conditional candidate %d, phi: ",
3586 print_gimple_stmt (dump_file
, phi
, 0);
3587 fputs (" increment: ", dump_file
);
3588 print_decs (increment
, dump_file
);
3591 "\n Not replaced; incr_vec overflow.\n");
3593 fprintf (dump_file
, "\n cost: %d\n", incr_vec
[j
].cost
);
3594 if (profitable_increment_p (j
))
3595 fputs (" Replacing...\n", dump_file
);
3597 fputs (" Not replaced.\n", dump_file
);
3601 if (j
< 0 || !profitable_increment_p (j
))
3609 /* Return TRUE iff all required increments for candidates feeding PHI
3610 are profitable (and legal!) to replace on behalf of candidate C. */
3613 all_phi_incrs_profitable (slsr_cand_t c
, gphi
*phi
)
3616 bool retval
= all_phi_incrs_profitable_1 (c
, phi
, &spread
);
3617 clear_visited (phi
);
3621 /* Create a NOP_EXPR that copies FROM_EXPR into a new SSA name of
3622 type TO_TYPE, and insert it in front of the statement represented
3623 by candidate C. Use *NEW_VAR to create the new SSA name. Return
3624 the new SSA name. */
3627 introduce_cast_before_cand (slsr_cand_t c
, tree to_type
, tree from_expr
)
3631 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
3633 cast_lhs
= make_temp_ssa_name (to_type
, NULL
, "slsr");
3634 cast_stmt
= gimple_build_assign (cast_lhs
, NOP_EXPR
, from_expr
);
3635 gimple_set_location (cast_stmt
, gimple_location (c
->cand_stmt
));
3636 gsi_insert_before (&gsi
, cast_stmt
, GSI_SAME_STMT
);
3638 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3640 fputs (" Inserting: ", dump_file
);
3641 print_gimple_stmt (dump_file
, cast_stmt
, 0);
3647 /* Replace the RHS of the statement represented by candidate C with
3648 NEW_CODE, NEW_RHS1, and NEW_RHS2, provided that to do so doesn't
3649 leave C unchanged or just interchange its operands. The original
3650 operation and operands are in OLD_CODE, OLD_RHS1, and OLD_RHS2.
3651 If the replacement was made and we are doing a details dump,
3652 return the revised statement, else NULL. */
3655 replace_rhs_if_not_dup (enum tree_code new_code
, tree new_rhs1
, tree new_rhs2
,
3656 enum tree_code old_code
, tree old_rhs1
, tree old_rhs2
,
3659 if (new_code
!= old_code
3660 || ((!operand_equal_p (new_rhs1
, old_rhs1
, 0)
3661 || !operand_equal_p (new_rhs2
, old_rhs2
, 0))
3662 && (!operand_equal_p (new_rhs1
, old_rhs2
, 0)
3663 || !operand_equal_p (new_rhs2
, old_rhs1
, 0))))
3665 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
3666 slsr_cand_t cc
= lookup_cand (c
->first_interp
);
3667 gimple_assign_set_rhs_with_ops (&gsi
, new_code
, new_rhs1
, new_rhs2
);
3668 update_stmt (gsi_stmt (gsi
));
3671 cc
->cand_stmt
= gsi_stmt (gsi
);
3672 cc
= lookup_cand (cc
->next_interp
);
3675 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3676 return gsi_stmt (gsi
);
3679 else if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3680 fputs (" (duplicate, not actually replacing)\n", dump_file
);
3685 /* Strength-reduce the statement represented by candidate C by replacing
3686 it with an equivalent addition or subtraction. I is the index into
3687 the increment vector identifying C's increment. NEW_VAR is used to
3688 create a new SSA name if a cast needs to be introduced. BASIS_NAME
3689 is the rhs1 to use in creating the add/subtract. */
3692 replace_one_candidate (slsr_cand_t c
, unsigned i
, tree basis_name
,
3693 auto_bitmap
&sdce_worklist
)
3695 gimple
*stmt_to_print
= NULL
;
3696 tree orig_rhs1
, orig_rhs2
;
3698 enum tree_code orig_code
, repl_code
;
3699 offset_int cand_incr
;
3701 orig_code
= gimple_assign_rhs_code (c
->cand_stmt
);
3702 orig_rhs1
= gimple_assign_rhs1 (c
->cand_stmt
);
3703 orig_rhs2
= gimple_assign_rhs2 (c
->cand_stmt
);
3704 cand_incr
= cand_increment (c
);
3706 /* If orig_rhs2 is NULL, we have already replaced this in situ with
3707 a copy statement under another interpretation. */
3711 /* Mark the 2 original rhs for maybe DCEing. */
3712 if (TREE_CODE (orig_rhs1
) == SSA_NAME
)
3713 bitmap_set_bit (sdce_worklist
, SSA_NAME_VERSION (orig_rhs1
));
3714 if (TREE_CODE (orig_rhs2
) == SSA_NAME
)
3715 bitmap_set_bit (sdce_worklist
, SSA_NAME_VERSION (orig_rhs2
));
3717 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3719 fputs ("Replacing: ", dump_file
);
3720 print_gimple_stmt (dump_file
, c
->cand_stmt
, 0);
3721 stmt_to_print
= c
->cand_stmt
;
3724 if (address_arithmetic_p
)
3725 repl_code
= POINTER_PLUS_EXPR
;
3727 repl_code
= PLUS_EXPR
;
3729 /* If the increment has an initializer T_0, replace the candidate
3730 statement with an add of the basis name and the initializer. */
3731 if (incr_vec
[i
].initializer
)
3733 tree init_type
= TREE_TYPE (incr_vec
[i
].initializer
);
3734 tree orig_type
= TREE_TYPE (orig_rhs2
);
3736 if (types_compatible_p (orig_type
, init_type
))
3737 rhs2
= incr_vec
[i
].initializer
;
3739 rhs2
= introduce_cast_before_cand (c
, orig_type
,
3740 incr_vec
[i
].initializer
);
3742 if (incr_vec
[i
].incr
!= cand_incr
)
3744 gcc_assert (repl_code
== PLUS_EXPR
);
3745 repl_code
= MINUS_EXPR
;
3748 stmt_to_print
= replace_rhs_if_not_dup (repl_code
, basis_name
, rhs2
,
3749 orig_code
, orig_rhs1
, orig_rhs2
,
3753 /* Otherwise, the increment is one of -1, 0, and 1. Replace
3754 with a subtract of the stride from the basis name, a copy
3755 from the basis name, or an add of the stride to the basis
3756 name, respectively. It may be necessary to introduce a
3757 cast (or reuse an existing cast). */
3758 else if (cand_incr
== 1)
3760 tree stride_type
= TREE_TYPE (c
->stride
);
3761 tree orig_type
= TREE_TYPE (orig_rhs2
);
3763 if (types_compatible_p (orig_type
, stride_type
))
3766 rhs2
= introduce_cast_before_cand (c
, orig_type
, c
->stride
);
3768 stmt_to_print
= replace_rhs_if_not_dup (repl_code
, basis_name
, rhs2
,
3769 orig_code
, orig_rhs1
, orig_rhs2
,
3773 else if (cand_incr
== -1)
3775 tree stride_type
= TREE_TYPE (c
->stride
);
3776 tree orig_type
= TREE_TYPE (orig_rhs2
);
3777 gcc_assert (repl_code
!= POINTER_PLUS_EXPR
);
3779 if (types_compatible_p (orig_type
, stride_type
))
3782 rhs2
= introduce_cast_before_cand (c
, orig_type
, c
->stride
);
3784 if (orig_code
!= MINUS_EXPR
3785 || !operand_equal_p (basis_name
, orig_rhs1
, 0)
3786 || !operand_equal_p (rhs2
, orig_rhs2
, 0))
3788 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
3789 slsr_cand_t cc
= lookup_cand (c
->first_interp
);
3790 gimple_assign_set_rhs_with_ops (&gsi
, MINUS_EXPR
, basis_name
, rhs2
);
3791 update_stmt (gsi_stmt (gsi
));
3794 cc
->cand_stmt
= gsi_stmt (gsi
);
3795 cc
= lookup_cand (cc
->next_interp
);
3798 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3799 stmt_to_print
= gsi_stmt (gsi
);
3801 else if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3802 fputs (" (duplicate, not actually replacing)\n", dump_file
);
3805 else if (cand_incr
== 0)
3807 tree lhs
= gimple_assign_lhs (c
->cand_stmt
);
3808 tree lhs_type
= TREE_TYPE (lhs
);
3809 tree basis_type
= TREE_TYPE (basis_name
);
3811 if (types_compatible_p (lhs_type
, basis_type
))
3813 gassign
*copy_stmt
= gimple_build_assign (lhs
, basis_name
);
3814 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
3815 slsr_cand_t cc
= lookup_cand (c
->first_interp
);
3816 gimple_set_location (copy_stmt
, gimple_location (c
->cand_stmt
));
3817 gsi_replace (&gsi
, copy_stmt
, false);
3820 cc
->cand_stmt
= copy_stmt
;
3821 cc
= lookup_cand (cc
->next_interp
);
3824 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3825 stmt_to_print
= copy_stmt
;
3829 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
3830 gassign
*cast_stmt
= gimple_build_assign (lhs
, NOP_EXPR
, basis_name
);
3831 slsr_cand_t cc
= lookup_cand (c
->first_interp
);
3832 gimple_set_location (cast_stmt
, gimple_location (c
->cand_stmt
));
3833 gsi_replace (&gsi
, cast_stmt
, false);
3836 cc
->cand_stmt
= cast_stmt
;
3837 cc
= lookup_cand (cc
->next_interp
);
3840 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3841 stmt_to_print
= cast_stmt
;
3847 if (dump_file
&& (dump_flags
& TDF_DETAILS
) && stmt_to_print
)
3849 fputs ("With: ", dump_file
);
3850 print_gimple_stmt (dump_file
, stmt_to_print
, 0);
3851 fputs ("\n", dump_file
);
3855 /* For each candidate in the tree rooted at C, replace it with
3856 an increment if such has been shown to be profitable. */
3859 replace_profitable_candidates (slsr_cand_t c
, auto_bitmap
&sdce_worklist
)
3861 if (!cand_already_replaced (c
))
3863 offset_int increment
= cand_abs_increment (c
);
3864 enum tree_code orig_code
= gimple_assign_rhs_code (c
->cand_stmt
);
3867 i
= incr_vec_index (increment
);
3869 /* Only process profitable increments. Nothing useful can be done
3870 to a cast or copy. */
3872 && profitable_increment_p (i
)
3873 && orig_code
!= SSA_NAME
3874 && !CONVERT_EXPR_CODE_P (orig_code
))
3876 if (phi_dependent_cand_p (c
))
3878 gphi
*phi
= as_a
<gphi
*> (lookup_cand (c
->def_phi
)->cand_stmt
);
3880 if (all_phi_incrs_profitable (c
, phi
))
3882 /* Look up the LHS SSA name from C's basis. This will be
3883 the RHS1 of the adds we will introduce to create new
3885 slsr_cand_t basis
= lookup_cand (c
->basis
);
3886 tree basis_name
= gimple_assign_lhs (basis
->cand_stmt
);
3888 /* Create a new phi statement that will represent C's true
3889 basis after the transformation is complete. */
3890 location_t loc
= gimple_location (c
->cand_stmt
);
3891 tree name
= create_phi_basis (c
, phi
, basis_name
,
3892 loc
, UNKNOWN_STRIDE
);
3894 /* Replace C with an add of the new basis phi and the
3896 replace_one_candidate (c
, i
, name
, sdce_worklist
);
3901 slsr_cand_t basis
= lookup_cand (c
->basis
);
3902 tree basis_name
= gimple_assign_lhs (basis
->cand_stmt
);
3903 replace_one_candidate (c
, i
, basis_name
, sdce_worklist
);
3909 replace_profitable_candidates (lookup_cand (c
->sibling
), sdce_worklist
);
3912 replace_profitable_candidates (lookup_cand (c
->dependent
), sdce_worklist
);
3915 /* Analyze costs of related candidates in the candidate vector,
3916 and make beneficial replacements. */
3919 analyze_candidates_and_replace (void)
3923 auto_bitmap simple_dce_worklist
;
3925 /* Each candidate that has a null basis and a non-null
3926 dependent is the root of a tree of related statements.
3927 Analyze each tree to determine a subset of those
3928 statements that can be replaced with maximum benefit.
3930 Note the first NULL element is skipped. */
3931 FOR_EACH_VEC_ELT_FROM (cand_vec
, i
, c
, 1)
3933 slsr_cand_t first_dep
;
3935 if (c
->basis
!= 0 || c
->dependent
== 0)
3938 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3939 fprintf (dump_file
, "\nProcessing dependency tree rooted at %d.\n",
3942 first_dep
= lookup_cand (c
->dependent
);
3944 /* If this is a chain of CAND_REFs, unconditionally replace
3945 each of them with a strength-reduced data reference. */
3946 if (c
->kind
== CAND_REF
)
3949 /* If the common stride of all related candidates is a known
3950 constant, each candidate without a phi-dependence can be
3951 profitably replaced. Each replaces a multiply by a single
3952 add, with the possibility that a feeding add also goes dead.
3953 A candidate with a phi-dependence is replaced only if the
3954 compensation code it requires is offset by the strength
3955 reduction savings. */
3956 else if (TREE_CODE (c
->stride
) == INTEGER_CST
)
3957 replace_uncond_cands_and_profitable_phis (first_dep
,
3958 simple_dce_worklist
);
3960 /* When the stride is an SSA name, it may still be profitable
3961 to replace some or all of the dependent candidates, depending
3962 on whether the introduced increments can be reused, or are
3963 less expensive to calculate than the replaced statements. */
3969 /* Determine whether we'll be generating pointer arithmetic
3970 when replacing candidates. */
3971 address_arithmetic_p
= (c
->kind
== CAND_ADD
3972 && POINTER_TYPE_P (c
->cand_type
));
3974 /* If all candidates have already been replaced under other
3975 interpretations, nothing remains to be done. */
3976 if (!count_candidates (c
))
3979 /* Construct an array of increments for this candidate chain. */
3980 incr_vec
= XNEWVEC (incr_info
, MAX_INCR_VEC_LEN
);
3982 record_increments (c
);
3984 /* Determine which increments are profitable to replace. */
3985 mode
= TYPE_MODE (TREE_TYPE (gimple_assign_lhs (c
->cand_stmt
)));
3986 speed
= optimize_cands_for_speed_p (c
);
3987 analyze_increments (first_dep
, mode
, speed
);
3989 /* Insert initializers of the form T_0 = stride * increment
3990 for use in profitable replacements. */
3991 insert_initializers (first_dep
);
3994 /* Perform the replacements. */
3995 replace_profitable_candidates (first_dep
, simple_dce_worklist
);
4000 /* For conditional candidates, we may have uncommitted insertions
4001 on edges to clean up. */
4002 gsi_commit_edge_inserts ();
4004 simple_dce_from_worklist (simple_dce_worklist
);
4009 const pass_data pass_data_strength_reduction
=
4011 GIMPLE_PASS
, /* type */
4013 OPTGROUP_NONE
, /* optinfo_flags */
4014 TV_GIMPLE_SLSR
, /* tv_id */
4015 ( PROP_cfg
| PROP_ssa
), /* properties_required */
4016 0, /* properties_provided */
4017 0, /* properties_destroyed */
4018 0, /* todo_flags_start */
4019 0, /* todo_flags_finish */
4022 class pass_strength_reduction
: public gimple_opt_pass
4025 pass_strength_reduction (gcc::context
*ctxt
)
4026 : gimple_opt_pass (pass_data_strength_reduction
, ctxt
)
4029 /* opt_pass methods: */
4030 bool gate (function
*) final override
{ return flag_tree_slsr
; }
4031 unsigned int execute (function
*) final override
;
4033 }; // class pass_strength_reduction
4036 pass_strength_reduction::execute (function
*fun
)
4038 /* Create the obstack where candidates will reside. */
4039 gcc_obstack_init (&cand_obstack
);
4041 /* Allocate the candidate vector and initialize the first NULL element. */
4042 cand_vec
.create (128);
4043 cand_vec
.safe_push (NULL
);
4045 /* Allocate the mapping from statements to candidate indices. */
4046 stmt_cand_map
= new hash_map
<gimple
*, slsr_cand_t
>;
4048 /* Create the obstack where candidate chains will reside. */
4049 gcc_obstack_init (&chain_obstack
);
4051 /* Allocate the mapping from base expressions to candidate chains. */
4052 base_cand_map
= new hash_table
<cand_chain_hasher
> (500);
4054 /* Allocate the mapping from bases to alternative bases. */
4055 alt_base_map
= new hash_map
<tree
, tree
>;
4057 /* Initialize the loop optimizer. We need to detect flow across
4058 back edges, and this gives us dominator information as well. */
4059 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
4061 /* Walk the CFG in predominator order looking for strength reduction
4063 find_candidates_dom_walker (CDI_DOMINATORS
)
4064 .walk (fun
->cfg
->x_entry_block_ptr
);
4066 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4069 dump_cand_chains ();
4072 delete alt_base_map
;
4073 free_affine_expand_cache (&name_expansions
);
4075 /* Analyze costs and make appropriate replacements. */
4076 analyze_candidates_and_replace ();
4078 loop_optimizer_finalize ();
4079 delete base_cand_map
;
4080 base_cand_map
= NULL
;
4081 obstack_free (&chain_obstack
, NULL
);
4082 delete stmt_cand_map
;
4083 cand_vec
.release ();
4084 obstack_free (&cand_obstack
, NULL
);
4092 make_pass_strength_reduction (gcc::context
*ctxt
)
4094 return new pass_strength_reduction (ctxt
);