OpenMP: Update documentation of metadirective implementation status.
[gcc.git] / gcc / lower-subreg.cc
blob6697afb872551643b24845c6fdca18bf90c1922e
1 /* Decompose multiword subregs.
2 Copyright (C) 2007-2025 Free Software Foundation, Inc.
3 Contributed by Richard Henderson <rth@redhat.com>
4 Ian Lance Taylor <iant@google.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "cfghooks.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "expmed.h"
33 #include "insn-config.h"
34 #include "emit-rtl.h"
35 #include "recog.h"
36 #include "cfgrtl.h"
37 #include "cfgbuild.h"
38 #include "dce.h"
39 #include "expr.h"
40 #include "explow.h"
41 #include "tree-pass.h"
42 #include "lower-subreg.h"
43 #include "rtl-iter.h"
44 #include "target.h"
47 /* Decompose multi-word pseudo-registers into individual
48 pseudo-registers when possible and profitable. This is possible
49 when all the uses of a multi-word register are via SUBREG, or are
50 copies of the register to another location. Breaking apart the
51 register permits more CSE and permits better register allocation.
52 This is profitable if the machine does not have move instructions
53 to do this.
55 This pass only splits moves with modes that are wider than
56 word_mode and ASHIFTs, LSHIFTRTs, ASHIFTRTs and ZERO_EXTENDs with
57 integer modes that are twice the width of word_mode. The latter
58 could be generalized if there was a need to do this, but the trend in
59 architectures is to not need this.
61 There are two useful preprocessor defines for use by maintainers:
63 #define LOG_COSTS 1
65 if you wish to see the actual cost estimates that are being used
66 for each mode wider than word mode and the cost estimates for zero
67 extension and the shifts. This can be useful when port maintainers
68 are tuning insn rtx costs.
70 #define FORCE_LOWERING 1
72 if you wish to test the pass with all the transformation forced on.
73 This can be useful for finding bugs in the transformations. */
75 #define LOG_COSTS 0
76 #define FORCE_LOWERING 0
78 /* Bit N in this bitmap is set if regno N is used in a context in
79 which we can decompose it. */
80 static bitmap decomposable_context;
82 /* Bit N in this bitmap is set if regno N is used in a context in
83 which it cannot be decomposed. */
84 static bitmap non_decomposable_context;
86 /* Bit N in this bitmap is set if regno N is used in a subreg
87 which changes the mode but not the size. This typically happens
88 when the register accessed as a floating-point value; we want to
89 avoid generating accesses to its subwords in integer modes. */
90 static bitmap subreg_context;
92 /* Bit N in the bitmap in element M of this array is set if there is a
93 copy from reg M to reg N. */
94 static vec<bitmap> reg_copy_graph;
96 struct target_lower_subreg default_target_lower_subreg;
97 #if SWITCHABLE_TARGET
98 struct target_lower_subreg *this_target_lower_subreg
99 = &default_target_lower_subreg;
100 #endif
102 #define twice_word_mode \
103 this_target_lower_subreg->x_twice_word_mode
104 #define choices \
105 this_target_lower_subreg->x_choices
107 /* Return true if MODE is a mode we know how to lower. When returning true,
108 store its byte size in *BYTES and its word size in *WORDS. */
110 static inline bool
111 interesting_mode_p (machine_mode mode, unsigned int *bytes,
112 unsigned int *words)
114 if (!GET_MODE_SIZE (mode).is_constant (bytes))
115 return false;
116 *words = CEIL (*bytes, UNITS_PER_WORD);
117 return true;
120 /* RTXes used while computing costs. */
121 struct cost_rtxes {
122 /* Source and target registers. */
123 rtx source;
124 rtx target;
126 /* A twice_word_mode ZERO_EXTEND of SOURCE. */
127 rtx zext;
129 /* A shift of SOURCE. */
130 rtx shift;
132 /* A SET of TARGET. */
133 rtx set;
136 /* Return the cost of a CODE shift in mode MODE by OP1 bits, using the
137 rtxes in RTXES. SPEED_P selects between the speed and size cost. */
139 static int
140 shift_cost (bool speed_p, struct cost_rtxes *rtxes, enum rtx_code code,
141 machine_mode mode, int op1)
143 PUT_CODE (rtxes->shift, code);
144 PUT_MODE (rtxes->shift, mode);
145 PUT_MODE (rtxes->source, mode);
146 XEXP (rtxes->shift, 1) = gen_int_shift_amount (mode, op1);
147 return set_src_cost (rtxes->shift, mode, speed_p);
150 /* For each X in the range [0, BITS_PER_WORD), set SPLITTING[X]
151 to true if it is profitable to split a double-word CODE shift
152 of X + BITS_PER_WORD bits. SPEED_P says whether we are testing
153 for speed or size profitability.
155 Use the rtxes in RTXES to calculate costs. WORD_MOVE_ZERO_COST is
156 the cost of moving zero into a word-mode register. WORD_MOVE_COST
157 is the cost of moving between word registers. */
159 static void
160 compute_splitting_shift (bool speed_p, struct cost_rtxes *rtxes,
161 bool *splitting, enum rtx_code code,
162 int word_move_zero_cost, int word_move_cost)
164 int wide_cost, narrow_cost, upper_cost, i;
166 for (i = 0; i < BITS_PER_WORD; i++)
168 wide_cost = shift_cost (speed_p, rtxes, code, twice_word_mode,
169 i + BITS_PER_WORD);
170 if (i == 0)
171 narrow_cost = word_move_cost;
172 else
173 narrow_cost = shift_cost (speed_p, rtxes, code, word_mode, i);
175 if (code != ASHIFTRT)
176 upper_cost = word_move_zero_cost;
177 else if (i == BITS_PER_WORD - 1)
178 upper_cost = word_move_cost;
179 else
180 upper_cost = shift_cost (speed_p, rtxes, code, word_mode,
181 BITS_PER_WORD - 1);
183 if (LOG_COSTS)
184 fprintf (stderr, "%s %s by %d: original cost %d, split cost %d + %d\n",
185 GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (code),
186 i + BITS_PER_WORD, wide_cost, narrow_cost, upper_cost);
188 if (FORCE_LOWERING || wide_cost >= narrow_cost + upper_cost)
189 splitting[i] = true;
193 /* Compute what we should do when optimizing for speed or size; SPEED_P
194 selects which. Use RTXES for computing costs. */
196 static void
197 compute_costs (bool speed_p, struct cost_rtxes *rtxes)
199 unsigned int i;
200 int word_move_zero_cost, word_move_cost;
202 PUT_MODE (rtxes->target, word_mode);
203 SET_SRC (rtxes->set) = CONST0_RTX (word_mode);
204 word_move_zero_cost = set_rtx_cost (rtxes->set, speed_p);
206 SET_SRC (rtxes->set) = rtxes->source;
207 word_move_cost = set_rtx_cost (rtxes->set, speed_p);
209 if (LOG_COSTS)
210 fprintf (stderr, "%s move: from zero cost %d, from reg cost %d\n",
211 GET_MODE_NAME (word_mode), word_move_zero_cost, word_move_cost);
213 for (i = 0; i < MAX_MACHINE_MODE; i++)
215 machine_mode mode = (machine_mode) i;
216 unsigned int size, factor;
217 if (interesting_mode_p (mode, &size, &factor) && factor > 1)
219 unsigned int mode_move_cost;
221 PUT_MODE (rtxes->target, mode);
222 PUT_MODE (rtxes->source, mode);
223 mode_move_cost = set_rtx_cost (rtxes->set, speed_p);
225 if (LOG_COSTS)
226 fprintf (stderr, "%s move: original cost %d, split cost %d * %d\n",
227 GET_MODE_NAME (mode), mode_move_cost,
228 word_move_cost, factor);
230 if (FORCE_LOWERING || mode_move_cost >= word_move_cost * factor)
232 choices[speed_p].move_modes_to_split[i] = true;
233 choices[speed_p].something_to_do = true;
238 /* For the moves and shifts, the only case that is checked is one
239 where the mode of the target is an integer mode twice the width
240 of the word_mode.
242 If it is not profitable to split a double word move then do not
243 even consider the shifts or the zero extension. */
244 if (choices[speed_p].move_modes_to_split[(int) twice_word_mode])
246 int zext_cost;
248 /* The only case here to check to see if moving the upper part with a
249 zero is cheaper than doing the zext itself. */
250 PUT_MODE (rtxes->source, word_mode);
251 zext_cost = set_src_cost (rtxes->zext, twice_word_mode, speed_p);
253 if (LOG_COSTS)
254 fprintf (stderr, "%s %s: original cost %d, split cost %d + %d\n",
255 GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (ZERO_EXTEND),
256 zext_cost, word_move_cost, word_move_zero_cost);
258 if (FORCE_LOWERING || zext_cost >= word_move_cost + word_move_zero_cost)
259 choices[speed_p].splitting_zext = true;
261 compute_splitting_shift (speed_p, rtxes,
262 choices[speed_p].splitting_ashift, ASHIFT,
263 word_move_zero_cost, word_move_cost);
264 compute_splitting_shift (speed_p, rtxes,
265 choices[speed_p].splitting_lshiftrt, LSHIFTRT,
266 word_move_zero_cost, word_move_cost);
267 compute_splitting_shift (speed_p, rtxes,
268 choices[speed_p].splitting_ashiftrt, ASHIFTRT,
269 word_move_zero_cost, word_move_cost);
273 /* Do one-per-target initialisation. This involves determining
274 which operations on the machine are profitable. If none are found,
275 then the pass just returns when called. */
277 void
278 init_lower_subreg (void)
280 struct cost_rtxes rtxes;
282 memset (this_target_lower_subreg, 0, sizeof (*this_target_lower_subreg));
284 twice_word_mode = GET_MODE_2XWIDER_MODE (word_mode).require ();
286 rtxes.target = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
287 rtxes.source = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
288 rtxes.set = gen_rtx_SET (rtxes.target, rtxes.source);
289 rtxes.zext = gen_rtx_ZERO_EXTEND (twice_word_mode, rtxes.source);
290 rtxes.shift = gen_rtx_ASHIFT (twice_word_mode, rtxes.source, const0_rtx);
292 if (LOG_COSTS)
293 fprintf (stderr, "\nSize costs\n==========\n\n");
294 compute_costs (false, &rtxes);
296 if (LOG_COSTS)
297 fprintf (stderr, "\nSpeed costs\n===========\n\n");
298 compute_costs (true, &rtxes);
301 static bool
302 simple_move_operand (rtx x)
304 if (GET_CODE (x) == SUBREG)
305 x = SUBREG_REG (x);
307 if (!OBJECT_P (x))
308 return false;
310 if (GET_CODE (x) == LABEL_REF
311 || GET_CODE (x) == SYMBOL_REF
312 || GET_CODE (x) == HIGH
313 || GET_CODE (x) == CONST)
314 return false;
316 if (MEM_P (x)
317 && (MEM_VOLATILE_P (x)
318 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x))))
319 return false;
321 return true;
324 /* If X is an operator that can be treated as a simple move that we
325 can split, then return the operand that is operated on. */
327 static rtx
328 operand_for_swap_move_operator (rtx x)
330 /* A word sized rotate of a register pair is equivalent to swapping
331 the registers in the register pair. */
332 if (GET_CODE (x) == ROTATE
333 && GET_MODE (x) == twice_word_mode
334 && simple_move_operand (XEXP (x, 0))
335 && CONST_INT_P (XEXP (x, 1))
336 && INTVAL (XEXP (x, 1)) == BITS_PER_WORD)
337 return XEXP (x, 0);
339 return NULL_RTX;
342 /* If INSN is a single set between two objects that we want to split,
343 return the single set. SPEED_P says whether we are optimizing
344 INSN for speed or size.
346 INSN should have been passed to recog and extract_insn before this
347 is called. */
349 static rtx
350 simple_move (rtx_insn *insn, bool speed_p)
352 rtx x, op;
353 rtx set;
354 machine_mode mode;
356 if (recog_data.n_operands != 2)
357 return NULL_RTX;
359 set = single_set (insn);
360 if (!set)
361 return NULL_RTX;
363 x = SET_DEST (set);
364 if (x != recog_data.operand[0] && x != recog_data.operand[1])
365 return NULL_RTX;
366 if (!simple_move_operand (x))
367 return NULL_RTX;
369 x = SET_SRC (set);
370 if ((op = operand_for_swap_move_operator (x)) != NULL_RTX)
371 x = op;
373 if (x != recog_data.operand[0] && x != recog_data.operand[1])
374 return NULL_RTX;
375 /* For the src we can handle ASM_OPERANDS, and it is beneficial for
376 things like x86 rdtsc which returns a DImode value. */
377 if (GET_CODE (x) != ASM_OPERANDS
378 && !simple_move_operand (x))
379 return NULL_RTX;
381 /* We try to decompose in integer modes, to avoid generating
382 inefficient code copying between integer and floating point
383 registers. That means that we can't decompose if this is a
384 non-integer mode for which there is no integer mode of the same
385 size. */
386 mode = GET_MODE (SET_DEST (set));
387 scalar_int_mode int_mode;
388 if (!SCALAR_INT_MODE_P (mode)
389 && (!int_mode_for_size (GET_MODE_BITSIZE (mode), 0).exists (&int_mode)
390 || !targetm.modes_tieable_p (mode, int_mode)))
391 return NULL_RTX;
393 /* Reject PARTIAL_INT modes. They are used for processor specific
394 purposes and it's probably best not to tamper with them. */
395 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
396 return NULL_RTX;
398 if (!choices[speed_p].move_modes_to_split[(int) mode])
399 return NULL_RTX;
401 return set;
404 /* If SET is a copy from one multi-word pseudo-register to another,
405 record that in reg_copy_graph. Return whether it is such a
406 copy. */
408 static bool
409 find_pseudo_copy (rtx set)
411 rtx dest = SET_DEST (set);
412 rtx src = SET_SRC (set);
413 rtx op;
414 unsigned int rd, rs;
415 bitmap b;
417 if ((op = operand_for_swap_move_operator (src)) != NULL_RTX)
418 src = op;
420 if (!REG_P (dest) || !REG_P (src))
421 return false;
423 rd = REGNO (dest);
424 rs = REGNO (src);
425 if (HARD_REGISTER_NUM_P (rd) || HARD_REGISTER_NUM_P (rs))
426 return false;
428 b = reg_copy_graph[rs];
429 if (b == NULL)
431 b = BITMAP_ALLOC (NULL);
432 reg_copy_graph[rs] = b;
435 bitmap_set_bit (b, rd);
437 return true;
440 /* Look through the registers in DECOMPOSABLE_CONTEXT. For each case
441 where they are copied to another register, add the register to
442 which they are copied to DECOMPOSABLE_CONTEXT. Use
443 NON_DECOMPOSABLE_CONTEXT to limit this--we don't bother to track
444 copies of registers which are in NON_DECOMPOSABLE_CONTEXT. */
446 static void
447 propagate_pseudo_copies (void)
449 auto_bitmap queue, propagate;
451 bitmap_copy (queue, decomposable_context);
454 bitmap_iterator iter;
455 unsigned int i;
457 bitmap_clear (propagate);
459 EXECUTE_IF_SET_IN_BITMAP (queue, 0, i, iter)
461 bitmap b = reg_copy_graph[i];
462 if (b)
463 bitmap_ior_and_compl_into (propagate, b, non_decomposable_context);
466 bitmap_and_compl (queue, propagate, decomposable_context);
467 bitmap_ior_into (decomposable_context, propagate);
469 while (!bitmap_empty_p (queue));
472 /* A pointer to one of these values is passed to
473 find_decomposable_subregs. */
475 enum classify_move_insn
477 /* Not a simple move from one location to another. */
478 NOT_SIMPLE_MOVE,
479 /* A simple move we want to decompose. */
480 DECOMPOSABLE_SIMPLE_MOVE,
481 /* Any other simple move. */
482 SIMPLE_MOVE
485 /* If we find a SUBREG in *LOC which we could use to decompose a
486 pseudo-register, set a bit in DECOMPOSABLE_CONTEXT. If we find an
487 unadorned register which is not a simple pseudo-register copy,
488 DATA will point at the type of move, and we set a bit in
489 DECOMPOSABLE_CONTEXT or NON_DECOMPOSABLE_CONTEXT as appropriate. */
491 static void
492 find_decomposable_subregs (rtx *loc, enum classify_move_insn *pcmi)
494 subrtx_var_iterator::array_type array;
495 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
497 rtx x = *iter;
498 if (GET_CODE (x) == SUBREG)
500 rtx inner = SUBREG_REG (x);
501 unsigned int regno, outer_size, inner_size, outer_words, inner_words;
503 if (!REG_P (inner))
504 continue;
506 regno = REGNO (inner);
507 if (HARD_REGISTER_NUM_P (regno))
509 iter.skip_subrtxes ();
510 continue;
513 if (!interesting_mode_p (GET_MODE (x), &outer_size, &outer_words)
514 || !interesting_mode_p (GET_MODE (inner), &inner_size,
515 &inner_words))
516 continue;
518 /* We only try to decompose single word subregs of multi-word
519 registers. When we find one, we return -1 to avoid iterating
520 over the inner register.
522 ??? This doesn't allow, e.g., DImode subregs of TImode values
523 on 32-bit targets. We would need to record the way the
524 pseudo-register was used, and only decompose if all the uses
525 were the same number and size of pieces. Hopefully this
526 doesn't happen much. */
528 if (outer_words == 1
529 && inner_words > 1
530 /* Don't allow to decompose floating point subregs of
531 multi-word pseudos if the floating point mode does
532 not have word size, because otherwise we'd generate
533 a subreg with that floating mode from a different
534 sized integral pseudo which is not allowed by
535 validate_subreg. */
536 && (!FLOAT_MODE_P (GET_MODE (x))
537 || outer_size == UNITS_PER_WORD))
539 bitmap_set_bit (decomposable_context, regno);
540 iter.skip_subrtxes ();
541 continue;
544 /* If this is a cast from one mode to another, where the modes
545 have the same size, and they are not tieable, then mark this
546 register as non-decomposable. If we decompose it we are
547 likely to mess up whatever the backend is trying to do. */
548 if (outer_words > 1
549 && outer_size == inner_size
550 && !targetm.modes_tieable_p (GET_MODE (x), GET_MODE (inner)))
552 bitmap_set_bit (non_decomposable_context, regno);
553 bitmap_set_bit (subreg_context, regno);
554 iter.skip_subrtxes ();
555 continue;
558 else if (REG_P (x))
560 unsigned int regno, size, words;
562 /* We will see an outer SUBREG before we see the inner REG, so
563 when we see a plain REG here it means a direct reference to
564 the register.
566 If this is not a simple copy from one location to another,
567 then we cannot decompose this register. If this is a simple
568 copy we want to decompose, and the mode is right,
569 then we mark the register as decomposable.
570 Otherwise we don't say anything about this register --
571 it could be decomposed, but whether that would be
572 profitable depends upon how it is used elsewhere.
574 We only set bits in the bitmap for multi-word
575 pseudo-registers, since those are the only ones we care about
576 and it keeps the size of the bitmaps down. */
578 regno = REGNO (x);
579 if (!HARD_REGISTER_NUM_P (regno)
580 && interesting_mode_p (GET_MODE (x), &size, &words)
581 && words > 1)
583 switch (*pcmi)
585 case NOT_SIMPLE_MOVE:
586 bitmap_set_bit (non_decomposable_context, regno);
587 break;
588 case DECOMPOSABLE_SIMPLE_MOVE:
589 if (targetm.modes_tieable_p (GET_MODE (x), word_mode))
590 bitmap_set_bit (decomposable_context, regno);
591 break;
592 case SIMPLE_MOVE:
593 break;
594 default:
595 gcc_unreachable ();
599 else if (MEM_P (x))
601 enum classify_move_insn cmi_mem = NOT_SIMPLE_MOVE;
603 /* Any registers used in a MEM do not participate in a
604 SIMPLE_MOVE or DECOMPOSABLE_SIMPLE_MOVE. Do our own recursion
605 here, and return -1 to block the parent's recursion. */
606 find_decomposable_subregs (&XEXP (x, 0), &cmi_mem);
607 iter.skip_subrtxes ();
612 /* Decompose REGNO into word-sized components. We smash the REG node
613 in place. This ensures that (1) something goes wrong quickly if we
614 fail to make some replacement, and (2) the debug information inside
615 the symbol table is automatically kept up to date. */
617 static void
618 decompose_register (unsigned int regno)
620 rtx reg;
621 unsigned int size, words, i;
622 rtvec v;
624 reg = regno_reg_rtx[regno];
626 regno_reg_rtx[regno] = NULL_RTX;
628 if (!interesting_mode_p (GET_MODE (reg), &size, &words))
629 gcc_unreachable ();
631 v = rtvec_alloc (words);
632 for (i = 0; i < words; ++i)
633 RTVEC_ELT (v, i) = gen_reg_rtx_offset (reg, word_mode, i * UNITS_PER_WORD);
635 PUT_CODE (reg, CONCATN);
636 XVEC (reg, 0) = v;
638 if (dump_file)
640 fprintf (dump_file, "; Splitting reg %u ->", regno);
641 for (i = 0; i < words; ++i)
642 fprintf (dump_file, " %u", REGNO (XVECEXP (reg, 0, i)));
643 fputc ('\n', dump_file);
647 /* Get a SUBREG of a CONCATN. */
649 static rtx
650 simplify_subreg_concatn (machine_mode outermode, rtx op, poly_uint64 orig_byte)
652 unsigned int outer_size, outer_words, inner_size, inner_words;
653 machine_mode innermode, partmode;
654 rtx part;
655 unsigned int final_offset;
656 unsigned int byte;
658 innermode = GET_MODE (op);
659 if (!interesting_mode_p (outermode, &outer_size, &outer_words)
660 || !interesting_mode_p (innermode, &inner_size, &inner_words))
661 gcc_unreachable ();
663 /* Must be constant if interesting_mode_p passes. */
664 byte = orig_byte.to_constant ();
665 gcc_assert (GET_CODE (op) == CONCATN);
666 gcc_assert (byte % outer_size == 0);
668 gcc_assert (byte < inner_size);
669 if (outer_size > inner_size)
670 return NULL_RTX;
672 inner_size /= XVECLEN (op, 0);
673 part = XVECEXP (op, 0, byte / inner_size);
674 partmode = GET_MODE (part);
676 final_offset = byte % inner_size;
677 if (final_offset + outer_size > inner_size)
678 return NULL_RTX;
680 /* VECTOR_CSTs in debug expressions are expanded into CONCATN instead of
681 regular CONST_VECTORs. They have vector or integer modes, depending
682 on the capabilities of the target. Cope with them. */
683 if (partmode == VOIDmode && VECTOR_MODE_P (innermode))
684 partmode = GET_MODE_INNER (innermode);
685 else if (partmode == VOIDmode)
686 partmode = mode_for_size (inner_size * BITS_PER_UNIT,
687 GET_MODE_CLASS (innermode), 0).require ();
689 return simplify_gen_subreg (outermode, part, partmode, final_offset);
692 /* Wrapper around simplify_gen_subreg which handles CONCATN. */
694 static rtx
695 simplify_gen_subreg_concatn (machine_mode outermode, rtx op,
696 machine_mode innermode, unsigned int byte)
698 rtx ret;
700 /* We have to handle generating a SUBREG of a SUBREG of a CONCATN.
701 If OP is a SUBREG of a CONCATN, then it must be a simple mode
702 change with the same size and offset 0, or it must extract a
703 part. We shouldn't see anything else here. */
704 if (GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == CONCATN)
706 rtx op2;
708 if (known_eq (GET_MODE_SIZE (GET_MODE (op)),
709 GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
710 && known_eq (SUBREG_BYTE (op), 0))
711 return simplify_gen_subreg_concatn (outermode, SUBREG_REG (op),
712 GET_MODE (SUBREG_REG (op)), byte);
714 op2 = simplify_subreg_concatn (GET_MODE (op), SUBREG_REG (op),
715 SUBREG_BYTE (op));
716 if (op2 == NULL_RTX)
718 /* We don't handle paradoxical subregs here. */
719 gcc_assert (!paradoxical_subreg_p (outermode, GET_MODE (op)));
720 gcc_assert (!paradoxical_subreg_p (op));
721 op2 = simplify_subreg_concatn (outermode, SUBREG_REG (op),
722 byte + SUBREG_BYTE (op));
723 gcc_assert (op2 != NULL_RTX);
724 return op2;
727 op = op2;
728 gcc_assert (op != NULL_RTX);
729 gcc_assert (innermode == GET_MODE (op));
732 if (GET_CODE (op) == CONCATN)
733 return simplify_subreg_concatn (outermode, op, byte);
735 ret = simplify_gen_subreg (outermode, op, innermode, byte);
737 /* If we see an insn like (set (reg:DI) (subreg:DI (reg:SI) 0)) then
738 resolve_simple_move will ask for the high part of the paradoxical
739 subreg, which does not have a value. Just return a zero. */
740 if (ret == NULL_RTX
741 && paradoxical_subreg_p (op))
742 return CONST0_RTX (outermode);
744 gcc_assert (ret != NULL_RTX);
745 return ret;
748 /* Return whether we should resolve X into the registers into which it
749 was decomposed. */
751 static bool
752 resolve_reg_p (rtx x)
754 return GET_CODE (x) == CONCATN;
757 /* Return whether X is a SUBREG of a register which we need to
758 resolve. */
760 static bool
761 resolve_subreg_p (rtx x)
763 if (GET_CODE (x) != SUBREG)
764 return false;
765 return resolve_reg_p (SUBREG_REG (x));
768 /* Look for SUBREGs in *LOC which need to be decomposed. */
770 static bool
771 resolve_subreg_use (rtx *loc, rtx insn)
773 subrtx_ptr_iterator::array_type array;
774 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
776 rtx *loc = *iter;
777 rtx x = *loc;
778 if (resolve_subreg_p (x))
780 x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x),
781 SUBREG_BYTE (x));
783 /* It is possible for a note to contain a reference which we can
784 decompose. In this case, return 1 to the caller to indicate
785 that the note must be removed. */
786 if (!x)
788 gcc_assert (!insn);
789 return true;
792 validate_change (insn, loc, x, 1);
793 iter.skip_subrtxes ();
795 else if (resolve_reg_p (x))
796 /* Return 1 to the caller to indicate that we found a direct
797 reference to a register which is being decomposed. This can
798 happen inside notes, multiword shift or zero-extend
799 instructions. */
800 return true;
803 return false;
806 /* Resolve any decomposed registers which appear in register notes on
807 INSN. */
809 static void
810 resolve_reg_notes (rtx_insn *insn)
812 rtx *pnote, note;
814 note = find_reg_equal_equiv_note (insn);
815 if (note)
817 int old_count = num_validated_changes ();
818 if (resolve_subreg_use (&XEXP (note, 0), NULL_RTX))
819 remove_note (insn, note);
820 else
821 if (old_count != num_validated_changes ())
822 df_notes_rescan (insn);
825 pnote = &REG_NOTES (insn);
826 while (*pnote != NULL_RTX)
828 bool del = false;
830 note = *pnote;
831 switch (REG_NOTE_KIND (note))
833 case REG_DEAD:
834 case REG_UNUSED:
835 if (resolve_reg_p (XEXP (note, 0)))
836 del = true;
837 break;
839 default:
840 break;
843 if (del)
844 *pnote = XEXP (note, 1);
845 else
846 pnote = &XEXP (note, 1);
850 /* Return whether X can be decomposed into subwords. */
852 static bool
853 can_decompose_p (rtx x)
855 if (REG_P (x))
857 unsigned int regno = REGNO (x);
859 if (HARD_REGISTER_NUM_P (regno))
861 unsigned int byte, num_bytes, num_words;
863 if (!interesting_mode_p (GET_MODE (x), &num_bytes, &num_words))
864 return false;
865 for (byte = 0; byte < num_bytes; byte += UNITS_PER_WORD)
866 if (simplify_subreg_regno (regno, GET_MODE (x), byte, word_mode) < 0)
867 return false;
868 return true;
870 else
871 return !bitmap_bit_p (subreg_context, regno);
874 return true;
877 /* OPND is a concatn operand this is used with a simple move operator.
878 Return a new rtx with the concatn's operands swapped. */
880 static rtx
881 resolve_operand_for_swap_move_operator (rtx opnd)
883 gcc_assert (GET_CODE (opnd) == CONCATN);
884 rtx concatn = copy_rtx (opnd);
885 rtx op0 = XVECEXP (concatn, 0, 0);
886 rtx op1 = XVECEXP (concatn, 0, 1);
887 XVECEXP (concatn, 0, 0) = op1;
888 XVECEXP (concatn, 0, 1) = op0;
889 return concatn;
892 /* Decompose the registers used in a simple move SET within INSN. If
893 we don't change anything, return INSN, otherwise return the start
894 of the sequence of moves. */
896 static rtx_insn *
897 resolve_simple_move (rtx set, rtx_insn *insn)
899 rtx src, dest, real_dest, src_op;
900 rtx_insn *insns;
901 machine_mode orig_mode, dest_mode;
902 unsigned int orig_size, words;
903 bool pushing;
905 src = SET_SRC (set);
906 dest = SET_DEST (set);
907 orig_mode = GET_MODE (dest);
909 if (!interesting_mode_p (orig_mode, &orig_size, &words))
910 gcc_unreachable ();
911 gcc_assert (words > 1);
913 start_sequence ();
915 /* We have to handle copying from a SUBREG of a decomposed reg where
916 the SUBREG is larger than word size. Rather than assume that we
917 can take a word_mode SUBREG of the destination, we copy to a new
918 register and then copy that to the destination. */
920 real_dest = NULL_RTX;
922 if ((src_op = operand_for_swap_move_operator (src)) != NULL_RTX)
924 if (resolve_reg_p (dest))
926 /* DEST is a CONCATN, so swap its operands and strip
927 SRC's operator. */
928 dest = resolve_operand_for_swap_move_operator (dest);
929 src = src_op;
930 if (resolve_reg_p (src))
932 gcc_assert (GET_CODE (src) == CONCATN);
933 if (reg_overlap_mentioned_p (XVECEXP (dest, 0, 0),
934 XVECEXP (src, 0, 1)))
936 /* If there is overlap between the first half of the
937 destination and what will be stored to the second one,
938 use a temporary pseudo. See PR114211. */
939 rtx tem = gen_reg_rtx (GET_MODE (XVECEXP (src, 0, 1)));
940 emit_move_insn (tem, XVECEXP (src, 0, 1));
941 src = copy_rtx (src);
942 XVECEXP (src, 0, 1) = tem;
946 else if (resolve_reg_p (src_op))
948 /* SRC is an operation on a CONCATN, so strip the operator and
949 swap the CONCATN's operands. */
950 src = resolve_operand_for_swap_move_operator (src_op);
954 if (GET_CODE (src) == SUBREG
955 && resolve_reg_p (SUBREG_REG (src))
956 && (maybe_ne (SUBREG_BYTE (src), 0)
957 || maybe_ne (orig_size, GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))))
959 real_dest = dest;
960 dest = gen_reg_rtx (orig_mode);
961 if (REG_P (real_dest))
962 REG_ATTRS (dest) = REG_ATTRS (real_dest);
965 /* Similarly if we are copying to a SUBREG of a decomposed reg where
966 the SUBREG is larger than word size. */
968 if (GET_CODE (dest) == SUBREG
969 && resolve_reg_p (SUBREG_REG (dest))
970 && (maybe_ne (SUBREG_BYTE (dest), 0)
971 || maybe_ne (orig_size,
972 GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))))
974 rtx reg, smove;
975 rtx_insn *minsn;
977 reg = gen_reg_rtx (orig_mode);
978 minsn = emit_move_insn (reg, src);
979 smove = single_set (minsn);
980 gcc_assert (smove != NULL_RTX);
981 resolve_simple_move (smove, minsn);
982 src = reg;
985 /* If we didn't have any big SUBREGS of decomposed registers, and
986 neither side of the move is a register we are decomposing, then
987 we don't have to do anything here. */
989 if (src == SET_SRC (set)
990 && dest == SET_DEST (set)
991 && !resolve_reg_p (src)
992 && !resolve_subreg_p (src)
993 && !resolve_reg_p (dest)
994 && !resolve_subreg_p (dest))
996 end_sequence ();
997 return insn;
1000 /* It's possible for the code to use a subreg of a decomposed
1001 register while forming an address. We need to handle that before
1002 passing the address to emit_move_insn. We pass NULL_RTX as the
1003 insn parameter to resolve_subreg_use because we cannot validate
1004 the insn yet. */
1005 if (MEM_P (src) || MEM_P (dest))
1007 int acg;
1009 if (MEM_P (src))
1010 resolve_subreg_use (&XEXP (src, 0), NULL_RTX);
1011 if (MEM_P (dest))
1012 resolve_subreg_use (&XEXP (dest, 0), NULL_RTX);
1013 acg = apply_change_group ();
1014 gcc_assert (acg);
1017 /* If SRC is a register which we can't decompose, or has side
1018 effects, we need to move via a temporary register. */
1020 if (!can_decompose_p (src)
1021 || side_effects_p (src)
1022 || GET_CODE (src) == ASM_OPERANDS)
1024 rtx reg;
1026 reg = gen_reg_rtx (orig_mode);
1028 if (AUTO_INC_DEC)
1030 rtx_insn *move = emit_move_insn (reg, src);
1031 if (MEM_P (src))
1033 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
1034 if (note)
1035 add_reg_note (move, REG_INC, XEXP (note, 0));
1038 else
1039 emit_move_insn (reg, src);
1041 src = reg;
1044 /* If DEST is a register which we can't decompose, or has side
1045 effects, we need to first move to a temporary register. We
1046 handle the common case of pushing an operand directly. We also
1047 go through a temporary register if it holds a floating point
1048 value. This gives us better code on systems which can't move
1049 data easily between integer and floating point registers. */
1051 dest_mode = orig_mode;
1052 pushing = push_operand (dest, dest_mode);
1053 if (!can_decompose_p (dest)
1054 || (side_effects_p (dest) && !pushing)
1055 || (!SCALAR_INT_MODE_P (dest_mode)
1056 && !resolve_reg_p (dest)
1057 && !resolve_subreg_p (dest)))
1059 if (real_dest == NULL_RTX)
1060 real_dest = dest;
1061 if (!SCALAR_INT_MODE_P (dest_mode))
1062 dest_mode = int_mode_for_mode (dest_mode).require ();
1063 dest = gen_reg_rtx (dest_mode);
1064 if (REG_P (real_dest))
1065 REG_ATTRS (dest) = REG_ATTRS (real_dest);
1068 if (pushing)
1070 unsigned int i, j, jinc;
1072 gcc_assert (orig_size % UNITS_PER_WORD == 0);
1073 gcc_assert (GET_CODE (XEXP (dest, 0)) != PRE_MODIFY);
1074 gcc_assert (GET_CODE (XEXP (dest, 0)) != POST_MODIFY);
1076 if (WORDS_BIG_ENDIAN == STACK_GROWS_DOWNWARD)
1078 j = 0;
1079 jinc = 1;
1081 else
1083 j = words - 1;
1084 jinc = -1;
1087 for (i = 0; i < words; ++i, j += jinc)
1089 rtx temp;
1091 temp = copy_rtx (XEXP (dest, 0));
1092 temp = adjust_automodify_address_nv (dest, word_mode, temp,
1093 j * UNITS_PER_WORD);
1094 emit_move_insn (temp,
1095 simplify_gen_subreg_concatn (word_mode, src,
1096 orig_mode,
1097 j * UNITS_PER_WORD));
1100 else
1102 unsigned int i;
1104 if (REG_P (dest) && !HARD_REGISTER_NUM_P (REGNO (dest)))
1105 emit_clobber (dest);
1107 for (i = 0; i < words; ++i)
1109 rtx t = simplify_gen_subreg_concatn (word_mode, dest,
1110 dest_mode,
1111 i * UNITS_PER_WORD);
1112 /* simplify_gen_subreg_concatn can return (const_int 0) for
1113 some sub-objects of paradoxical subregs. As a source operand,
1114 that's fine. As a destination it must be avoided. Those are
1115 supposed to be don't care bits, so we can just drop that store
1116 on the floor. */
1117 if (t != CONST0_RTX (word_mode))
1118 emit_move_insn (t,
1119 simplify_gen_subreg_concatn (word_mode, src,
1120 orig_mode,
1121 i * UNITS_PER_WORD));
1125 if (real_dest != NULL_RTX)
1127 rtx mdest, smove;
1128 rtx_insn *minsn;
1130 if (dest_mode == orig_mode)
1131 mdest = dest;
1132 else
1133 mdest = simplify_gen_subreg (orig_mode, dest, GET_MODE (dest), 0);
1134 minsn = emit_move_insn (real_dest, mdest);
1136 if (AUTO_INC_DEC && MEM_P (real_dest)
1137 && !(resolve_reg_p (real_dest) || resolve_subreg_p (real_dest)))
1139 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
1140 if (note)
1141 add_reg_note (minsn, REG_INC, XEXP (note, 0));
1144 smove = single_set (minsn);
1145 gcc_assert (smove != NULL_RTX);
1147 resolve_simple_move (smove, minsn);
1150 insns = get_insns ();
1151 end_sequence ();
1153 copy_reg_eh_region_note_forward (insn, insns, NULL_RTX);
1155 emit_insn_before (insns, insn);
1157 /* If we get here via self-recursion, then INSN is not yet in the insns
1158 chain and delete_insn will fail. We only want to remove INSN from the
1159 current sequence. See PR56738. */
1160 if (in_sequence_p ())
1161 remove_insn (insn);
1162 else
1163 delete_insn (insn);
1165 return insns;
1168 /* Change a CLOBBER of a decomposed register into a CLOBBER of the
1169 component registers. Return whether we changed something. */
1171 static bool
1172 resolve_clobber (rtx pat, rtx_insn *insn)
1174 rtx reg;
1175 machine_mode orig_mode;
1176 unsigned int orig_size, words, i;
1177 int ret;
1179 reg = XEXP (pat, 0);
1180 /* For clobbers we can look through paradoxical subregs which
1181 we do not handle in simplify_gen_subreg_concatn. */
1182 if (paradoxical_subreg_p (reg))
1183 reg = SUBREG_REG (reg);
1184 if (!resolve_reg_p (reg) && !resolve_subreg_p (reg))
1185 return false;
1187 orig_mode = GET_MODE (reg);
1188 if (!interesting_mode_p (orig_mode, &orig_size, &words))
1189 gcc_unreachable ();
1191 ret = validate_change (NULL_RTX, &XEXP (pat, 0),
1192 simplify_gen_subreg_concatn (word_mode, reg,
1193 orig_mode, 0),
1195 df_insn_rescan (insn);
1196 gcc_assert (ret != 0);
1198 for (i = words - 1; i > 0; --i)
1200 rtx x;
1202 x = simplify_gen_subreg_concatn (word_mode, reg, orig_mode,
1203 i * UNITS_PER_WORD);
1204 x = gen_rtx_CLOBBER (VOIDmode, x);
1205 emit_insn_after (x, insn);
1208 resolve_reg_notes (insn);
1210 return true;
1213 /* A USE of a decomposed register is no longer meaningful. Return
1214 whether we changed something. */
1216 static bool
1217 resolve_use (rtx pat, rtx_insn *insn)
1219 if (resolve_reg_p (XEXP (pat, 0)) || resolve_subreg_p (XEXP (pat, 0)))
1221 delete_insn (insn);
1222 return true;
1225 resolve_reg_notes (insn);
1227 return false;
1230 /* A VAR_LOCATION can be simplified. */
1232 static void
1233 resolve_debug (rtx_insn *insn)
1235 subrtx_ptr_iterator::array_type array;
1236 FOR_EACH_SUBRTX_PTR (iter, array, &PATTERN (insn), NONCONST)
1238 rtx *loc = *iter;
1239 rtx x = *loc;
1240 if (resolve_subreg_p (x))
1242 x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x),
1243 SUBREG_BYTE (x));
1245 if (x)
1246 *loc = x;
1247 else
1248 x = copy_rtx (*loc);
1250 if (resolve_reg_p (x))
1251 *loc = copy_rtx (x);
1254 df_insn_rescan (insn);
1256 resolve_reg_notes (insn);
1259 /* Check if INSN is a decomposable multiword-shift or zero-extend and
1260 set the decomposable_context bitmap accordingly. SPEED_P is true
1261 if we are optimizing INSN for speed rather than size. Return true
1262 if INSN is decomposable. */
1264 static bool
1265 find_decomposable_shift_zext (rtx_insn *insn, bool speed_p)
1267 rtx set;
1268 rtx op;
1269 rtx op_operand;
1271 set = single_set (insn);
1272 if (!set)
1273 return false;
1275 op = SET_SRC (set);
1276 if (GET_CODE (op) != ASHIFT
1277 && GET_CODE (op) != LSHIFTRT
1278 && GET_CODE (op) != ASHIFTRT
1279 && GET_CODE (op) != ZERO_EXTEND)
1280 return false;
1282 op_operand = XEXP (op, 0);
1283 if (!REG_P (SET_DEST (set)) || !REG_P (op_operand)
1284 || HARD_REGISTER_NUM_P (REGNO (SET_DEST (set)))
1285 || HARD_REGISTER_NUM_P (REGNO (op_operand))
1286 || GET_MODE (op) != twice_word_mode)
1287 return false;
1289 if (GET_CODE (op) == ZERO_EXTEND)
1291 if (GET_MODE (op_operand) != word_mode
1292 || !choices[speed_p].splitting_zext)
1293 return false;
1295 else /* left or right shift */
1297 bool *splitting = (GET_CODE (op) == ASHIFT
1298 ? choices[speed_p].splitting_ashift
1299 : GET_CODE (op) == ASHIFTRT
1300 ? choices[speed_p].splitting_ashiftrt
1301 : choices[speed_p].splitting_lshiftrt);
1302 if (!CONST_INT_P (XEXP (op, 1))
1303 || !IN_RANGE (INTVAL (XEXP (op, 1)), BITS_PER_WORD,
1304 2 * BITS_PER_WORD - 1)
1305 || !splitting[INTVAL (XEXP (op, 1)) - BITS_PER_WORD])
1306 return false;
1308 bitmap_set_bit (decomposable_context, REGNO (op_operand));
1311 bitmap_set_bit (decomposable_context, REGNO (SET_DEST (set)));
1313 return true;
1316 /* Decompose a more than word wide shift (in INSN) of a multiword
1317 pseudo or a multiword zero-extend of a wordmode pseudo into a move
1318 and 'set to zero' insn. SPEED_P says whether we are optimizing
1319 for speed or size, when checking if a ZERO_EXTEND is preferable.
1320 Return a pointer to the new insn when a replacement was done. */
1322 static rtx_insn *
1323 resolve_shift_zext (rtx_insn *insn, bool speed_p)
1325 rtx set;
1326 rtx op;
1327 rtx op_operand;
1328 rtx_insn *insns;
1329 rtx src_reg, dest_reg, dest_upper, upper_src = NULL_RTX;
1330 int src_reg_num, dest_reg_num, offset1, offset2, src_offset;
1331 scalar_int_mode inner_mode;
1333 set = single_set (insn);
1334 if (!set)
1335 return NULL;
1337 op = SET_SRC (set);
1338 if (GET_CODE (op) != ASHIFT
1339 && GET_CODE (op) != LSHIFTRT
1340 && GET_CODE (op) != ASHIFTRT
1341 && GET_CODE (op) != ZERO_EXTEND)
1342 return NULL;
1344 op_operand = XEXP (op, 0);
1345 if (!is_a <scalar_int_mode> (GET_MODE (op_operand), &inner_mode))
1346 return NULL;
1348 /* We can tear this operation apart only if the regs were already
1349 torn apart. */
1350 if (!resolve_reg_p (SET_DEST (set)) && !resolve_reg_p (op_operand))
1351 return NULL;
1353 /* src_reg_num is the number of the word mode register which we
1354 are operating on. For a left shift and a zero_extend on little
1355 endian machines this is register 0. */
1356 src_reg_num = (GET_CODE (op) == LSHIFTRT || GET_CODE (op) == ASHIFTRT)
1357 ? 1 : 0;
1359 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
1360 src_reg_num = 1 - src_reg_num;
1362 if (GET_CODE (op) == ZERO_EXTEND)
1363 dest_reg_num = WORDS_BIG_ENDIAN ? 1 : 0;
1364 else
1365 dest_reg_num = 1 - src_reg_num;
1367 offset1 = UNITS_PER_WORD * dest_reg_num;
1368 offset2 = UNITS_PER_WORD * (1 - dest_reg_num);
1369 src_offset = UNITS_PER_WORD * src_reg_num;
1371 start_sequence ();
1373 dest_reg = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
1374 GET_MODE (SET_DEST (set)),
1375 offset1);
1376 dest_upper = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
1377 GET_MODE (SET_DEST (set)),
1378 offset2);
1379 src_reg = simplify_gen_subreg_concatn (word_mode, op_operand,
1380 GET_MODE (op_operand),
1381 src_offset);
1382 if (GET_CODE (op) == ASHIFTRT
1383 && INTVAL (XEXP (op, 1)) != 2 * BITS_PER_WORD - 1)
1384 upper_src = expand_shift (RSHIFT_EXPR, word_mode, copy_rtx (src_reg),
1385 BITS_PER_WORD - 1, NULL_RTX, 0);
1387 if (GET_CODE (op) != ZERO_EXTEND)
1389 int shift_count = INTVAL (XEXP (op, 1));
1390 if (shift_count > BITS_PER_WORD)
1391 src_reg = expand_shift (GET_CODE (op) == ASHIFT ?
1392 LSHIFT_EXPR : RSHIFT_EXPR,
1393 word_mode, src_reg,
1394 shift_count - BITS_PER_WORD,
1395 dest_reg, GET_CODE (op) != ASHIFTRT);
1398 /* Consider using ZERO_EXTEND instead of setting DEST_UPPER to zero
1399 if this is considered reasonable. */
1400 if (GET_CODE (op) == LSHIFTRT
1401 && GET_MODE (op) == twice_word_mode
1402 && REG_P (SET_DEST (set))
1403 && !choices[speed_p].splitting_zext)
1405 rtx tmp = force_reg (word_mode, copy_rtx (src_reg));
1406 tmp = simplify_gen_unary (ZERO_EXTEND, twice_word_mode, tmp, word_mode);
1407 emit_move_insn (SET_DEST (set), tmp);
1409 else
1411 if (dest_reg != src_reg)
1412 emit_move_insn (dest_reg, src_reg);
1413 if (GET_CODE (op) != ASHIFTRT)
1414 emit_move_insn (dest_upper, CONST0_RTX (word_mode));
1415 else if (INTVAL (XEXP (op, 1)) == 2 * BITS_PER_WORD - 1)
1416 emit_move_insn (dest_upper, copy_rtx (src_reg));
1417 else
1418 emit_move_insn (dest_upper, upper_src);
1421 insns = get_insns ();
1423 end_sequence ();
1425 emit_insn_before (insns, insn);
1427 if (dump_file)
1429 rtx_insn *in;
1430 fprintf (dump_file, "; Replacing insn: %d with insns: ", INSN_UID (insn));
1431 for (in = insns; in != insn; in = NEXT_INSN (in))
1432 fprintf (dump_file, "%d ", INSN_UID (in));
1433 fprintf (dump_file, "\n");
1436 delete_insn (insn);
1437 return insns;
1440 /* Print to dump_file a description of what we're doing with shift code CODE.
1441 SPLITTING[X] is true if we are splitting shifts by X + BITS_PER_WORD. */
1443 static void
1444 dump_shift_choices (enum rtx_code code, bool *splitting)
1446 int i;
1447 const char *sep;
1449 fprintf (dump_file,
1450 " Splitting mode %s for %s lowering with shift amounts = ",
1451 GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (code));
1452 sep = "";
1453 for (i = 0; i < BITS_PER_WORD; i++)
1454 if (splitting[i])
1456 fprintf (dump_file, "%s%d", sep, i + BITS_PER_WORD);
1457 sep = ",";
1459 fprintf (dump_file, "\n");
1462 /* Print to dump_file a description of what we're doing when optimizing
1463 for speed or size; SPEED_P says which. DESCRIPTION is a description
1464 of the SPEED_P choice. */
1466 static void
1467 dump_choices (bool speed_p, const char *description)
1469 unsigned int size, factor, i;
1471 fprintf (dump_file, "Choices when optimizing for %s:\n", description);
1473 for (i = 0; i < MAX_MACHINE_MODE; i++)
1474 if (interesting_mode_p ((machine_mode) i, &size, &factor)
1475 && factor > 1)
1476 fprintf (dump_file, " %s mode %s for copy lowering.\n",
1477 choices[speed_p].move_modes_to_split[i]
1478 ? "Splitting"
1479 : "Skipping",
1480 GET_MODE_NAME ((machine_mode) i));
1482 fprintf (dump_file, " %s mode %s for zero_extend lowering.\n",
1483 choices[speed_p].splitting_zext ? "Splitting" : "Skipping",
1484 GET_MODE_NAME (twice_word_mode));
1486 dump_shift_choices (ASHIFT, choices[speed_p].splitting_ashift);
1487 dump_shift_choices (LSHIFTRT, choices[speed_p].splitting_lshiftrt);
1488 dump_shift_choices (ASHIFTRT, choices[speed_p].splitting_ashiftrt);
1489 fprintf (dump_file, "\n");
1492 /* Look for registers which are always accessed via word-sized SUBREGs
1493 or -if DECOMPOSE_COPIES is true- via copies. Decompose these
1494 registers into several word-sized pseudo-registers. */
1496 static void
1497 decompose_multiword_subregs (bool decompose_copies)
1499 unsigned int max;
1500 basic_block bb;
1501 bool speed_p;
1503 if (dump_file)
1505 dump_choices (false, "size");
1506 dump_choices (true, "speed");
1509 /* Check if this target even has any modes to consider lowering. */
1510 if (!choices[false].something_to_do && !choices[true].something_to_do)
1512 if (dump_file)
1513 fprintf (dump_file, "Nothing to do!\n");
1514 return;
1517 max = max_reg_num ();
1519 /* First see if there are any multi-word pseudo-registers. If there
1520 aren't, there is nothing we can do. This should speed up this
1521 pass in the normal case, since it should be faster than scanning
1522 all the insns. */
1524 unsigned int i;
1525 bool useful_modes_seen = false;
1527 for (i = FIRST_PSEUDO_REGISTER; i < max; ++i)
1528 if (regno_reg_rtx[i] != NULL)
1530 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
1531 if (choices[false].move_modes_to_split[(int) mode]
1532 || choices[true].move_modes_to_split[(int) mode])
1534 useful_modes_seen = true;
1535 break;
1539 if (!useful_modes_seen)
1541 if (dump_file)
1542 fprintf (dump_file, "Nothing to lower in this function.\n");
1543 return;
1547 if (df)
1549 df_set_flags (DF_DEFER_INSN_RESCAN);
1550 run_word_dce ();
1553 /* FIXME: It may be possible to change this code to look for each
1554 multi-word pseudo-register and to find each insn which sets or
1555 uses that register. That should be faster than scanning all the
1556 insns. */
1558 decomposable_context = BITMAP_ALLOC (NULL);
1559 non_decomposable_context = BITMAP_ALLOC (NULL);
1560 subreg_context = BITMAP_ALLOC (NULL);
1562 reg_copy_graph.create (max);
1563 reg_copy_graph.safe_grow_cleared (max, true);
1564 memset (reg_copy_graph.address (), 0, sizeof (bitmap) * max);
1566 speed_p = optimize_function_for_speed_p (cfun);
1567 FOR_EACH_BB_FN (bb, cfun)
1569 rtx_insn *insn;
1571 FOR_BB_INSNS (bb, insn)
1573 rtx set;
1574 enum classify_move_insn cmi;
1575 int i, n;
1577 if (!INSN_P (insn)
1578 || GET_CODE (PATTERN (insn)) == CLOBBER
1579 || GET_CODE (PATTERN (insn)) == USE)
1580 continue;
1582 recog_memoized (insn);
1584 if (find_decomposable_shift_zext (insn, speed_p))
1585 continue;
1587 extract_insn (insn);
1589 set = simple_move (insn, speed_p);
1591 if (!set)
1592 cmi = NOT_SIMPLE_MOVE;
1593 else
1595 /* We mark pseudo-to-pseudo copies as decomposable during the
1596 second pass only. The first pass is so early that there is
1597 good chance such moves will be optimized away completely by
1598 subsequent optimizations anyway.
1600 However, we call find_pseudo_copy even during the first pass
1601 so as to properly set up the reg_copy_graph. */
1602 if (find_pseudo_copy (set))
1603 cmi = decompose_copies? DECOMPOSABLE_SIMPLE_MOVE : SIMPLE_MOVE;
1604 else
1605 cmi = SIMPLE_MOVE;
1608 n = recog_data.n_operands;
1609 for (i = 0; i < n; ++i)
1611 find_decomposable_subregs (&recog_data.operand[i], &cmi);
1613 /* We handle ASM_OPERANDS as a special case to support
1614 things like x86 rdtsc which returns a DImode value.
1615 We can decompose the output, which will certainly be
1616 operand 0, but not the inputs. */
1618 if (cmi == SIMPLE_MOVE
1619 && GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1621 gcc_assert (i == 0);
1622 cmi = NOT_SIMPLE_MOVE;
1628 bitmap_and_compl_into (decomposable_context, non_decomposable_context);
1629 if (!bitmap_empty_p (decomposable_context))
1631 unsigned int i;
1632 sbitmap_iterator sbi;
1633 bitmap_iterator iter;
1634 unsigned int regno;
1636 propagate_pseudo_copies ();
1638 auto_sbitmap sub_blocks (last_basic_block_for_fn (cfun));
1639 bitmap_clear (sub_blocks);
1641 EXECUTE_IF_SET_IN_BITMAP (decomposable_context, 0, regno, iter)
1642 decompose_register (regno);
1644 FOR_EACH_BB_FN (bb, cfun)
1646 rtx_insn *insn;
1648 FOR_BB_INSNS (bb, insn)
1650 rtx pat;
1652 if (!INSN_P (insn))
1653 continue;
1655 pat = PATTERN (insn);
1656 if (GET_CODE (pat) == CLOBBER)
1657 resolve_clobber (pat, insn);
1658 else if (GET_CODE (pat) == USE)
1659 resolve_use (pat, insn);
1660 else if (DEBUG_INSN_P (insn))
1661 resolve_debug (insn);
1662 else
1664 rtx set;
1665 int i;
1667 recog_memoized (insn);
1668 extract_insn (insn);
1670 set = simple_move (insn, speed_p);
1671 if (set)
1673 rtx_insn *orig_insn = insn;
1674 bool cfi = control_flow_insn_p (insn);
1676 /* We can end up splitting loads to multi-word pseudos
1677 into separate loads to machine word size pseudos.
1678 When this happens, we first had one load that can
1679 throw, and after resolve_simple_move we'll have a
1680 bunch of loads (at least two). All those loads may
1681 trap if we can have non-call exceptions, so they
1682 all will end the current basic block. We split the
1683 block after the outer loop over all insns, but we
1684 make sure here that we will be able to split the
1685 basic block and still produce the correct control
1686 flow graph for it. */
1687 gcc_assert (!cfi
1688 || (cfun->can_throw_non_call_exceptions
1689 && can_throw_internal (insn)));
1691 insn = resolve_simple_move (set, insn);
1692 if (insn != orig_insn)
1694 recog_memoized (insn);
1695 extract_insn (insn);
1697 if (cfi)
1698 bitmap_set_bit (sub_blocks, bb->index);
1701 else
1703 rtx_insn *decomposed_shift;
1705 decomposed_shift = resolve_shift_zext (insn, speed_p);
1706 if (decomposed_shift != NULL_RTX)
1708 insn = decomposed_shift;
1709 recog_memoized (insn);
1710 extract_insn (insn);
1714 for (i = recog_data.n_operands - 1; i >= 0; --i)
1715 resolve_subreg_use (recog_data.operand_loc[i], insn);
1717 resolve_reg_notes (insn);
1719 if (num_validated_changes () > 0)
1721 for (i = recog_data.n_dups - 1; i >= 0; --i)
1723 rtx *pl = recog_data.dup_loc[i];
1724 int dup_num = recog_data.dup_num[i];
1725 rtx *px = recog_data.operand_loc[dup_num];
1727 validate_unshare_change (insn, pl, *px, 1);
1730 i = apply_change_group ();
1731 gcc_assert (i);
1737 /* If we had insns to split that caused control flow insns in the middle
1738 of a basic block, split those blocks now. Note that we only handle
1739 the case where splitting a load has caused multiple possibly trapping
1740 loads to appear. */
1741 EXECUTE_IF_SET_IN_BITMAP (sub_blocks, 0, i, sbi)
1743 rtx_insn *insn, *end;
1744 edge fallthru;
1746 bb = BASIC_BLOCK_FOR_FN (cfun, i);
1747 insn = BB_HEAD (bb);
1748 end = BB_END (bb);
1750 while (insn != end)
1752 if (control_flow_insn_p (insn))
1754 /* Split the block after insn. There will be a fallthru
1755 edge, which is OK so we keep it. We have to create the
1756 exception edges ourselves. */
1757 fallthru = split_block (bb, insn);
1758 rtl_make_eh_edge (NULL, bb, BB_END (bb));
1759 bb = fallthru->dest;
1760 insn = BB_HEAD (bb);
1762 else
1763 insn = NEXT_INSN (insn);
1768 for (bitmap b : reg_copy_graph)
1769 if (b)
1770 BITMAP_FREE (b);
1772 reg_copy_graph.release ();
1774 BITMAP_FREE (decomposable_context);
1775 BITMAP_FREE (non_decomposable_context);
1776 BITMAP_FREE (subreg_context);
1779 /* Implement first lower subreg pass. */
1781 namespace {
1783 const pass_data pass_data_lower_subreg =
1785 RTL_PASS, /* type */
1786 "subreg1", /* name */
1787 OPTGROUP_NONE, /* optinfo_flags */
1788 TV_LOWER_SUBREG, /* tv_id */
1789 0, /* properties_required */
1790 0, /* properties_provided */
1791 0, /* properties_destroyed */
1792 0, /* todo_flags_start */
1793 0, /* todo_flags_finish */
1796 class pass_lower_subreg : public rtl_opt_pass
1798 public:
1799 pass_lower_subreg (gcc::context *ctxt)
1800 : rtl_opt_pass (pass_data_lower_subreg, ctxt)
1803 /* opt_pass methods: */
1804 bool gate (function *) final override { return flag_split_wide_types != 0; }
1805 unsigned int execute (function *) final override
1807 decompose_multiword_subregs (false);
1808 return 0;
1811 }; // class pass_lower_subreg
1813 } // anon namespace
1815 rtl_opt_pass *
1816 make_pass_lower_subreg (gcc::context *ctxt)
1818 return new pass_lower_subreg (ctxt);
1821 /* Implement second lower subreg pass. */
1823 namespace {
1825 const pass_data pass_data_lower_subreg2 =
1827 RTL_PASS, /* type */
1828 "subreg2", /* name */
1829 OPTGROUP_NONE, /* optinfo_flags */
1830 TV_LOWER_SUBREG, /* tv_id */
1831 0, /* properties_required */
1832 0, /* properties_provided */
1833 0, /* properties_destroyed */
1834 0, /* todo_flags_start */
1835 TODO_df_finish, /* todo_flags_finish */
1838 class pass_lower_subreg2 : public rtl_opt_pass
1840 public:
1841 pass_lower_subreg2 (gcc::context *ctxt)
1842 : rtl_opt_pass (pass_data_lower_subreg2, ctxt)
1845 /* opt_pass methods: */
1846 bool gate (function *) final override
1848 return flag_split_wide_types && flag_split_wide_types_early;
1850 unsigned int execute (function *) final override
1852 decompose_multiword_subregs (true);
1853 return 0;
1856 }; // class pass_lower_subreg2
1858 } // anon namespace
1860 rtl_opt_pass *
1861 make_pass_lower_subreg2 (gcc::context *ctxt)
1863 return new pass_lower_subreg2 (ctxt);
1866 /* Implement third lower subreg pass. */
1868 namespace {
1870 const pass_data pass_data_lower_subreg3 =
1872 RTL_PASS, /* type */
1873 "subreg3", /* name */
1874 OPTGROUP_NONE, /* optinfo_flags */
1875 TV_LOWER_SUBREG, /* tv_id */
1876 0, /* properties_required */
1877 0, /* properties_provided */
1878 0, /* properties_destroyed */
1879 0, /* todo_flags_start */
1880 TODO_df_finish, /* todo_flags_finish */
1883 class pass_lower_subreg3 : public rtl_opt_pass
1885 public:
1886 pass_lower_subreg3 (gcc::context *ctxt)
1887 : rtl_opt_pass (pass_data_lower_subreg3, ctxt)
1890 /* opt_pass methods: */
1891 bool gate (function *) final override { return flag_split_wide_types; }
1892 unsigned int execute (function *) final override
1894 decompose_multiword_subregs (true);
1895 return 0;
1898 }; // class pass_lower_subreg3
1900 } // anon namespace
1902 rtl_opt_pass *
1903 make_pass_lower_subreg3 (gcc::context *ctxt)
1905 return new pass_lower_subreg3 (ctxt);