OpenMP: Update documentation of metadirective implementation status.
[gcc.git] / gcc / lra-spills.cc
blobfc912c43ce6e1725668e1f13ad144b76e3e2d5d4
1 /* Change pseudos by memory.
2 Copyright (C) 2010-2025 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file contains code for a pass to change spilled pseudos into
23 memory.
25 The pass creates necessary stack slots and assigns spilled pseudos
26 to the stack slots in following way:
28 for all spilled pseudos P most frequently used first do
29 for all stack slots S do
30 if P doesn't conflict with pseudos assigned to S then
31 assign S to P and goto to the next pseudo process
32 end
33 end
34 create new stack slot S and assign P to S
35 end
37 The actual algorithm is bit more complicated because of different
38 pseudo sizes.
40 After that the code changes spilled pseudos (except ones created
41 from scratches) by corresponding stack slot memory in RTL.
43 If at least one stack slot was created, we need to run more passes
44 because we have new addresses which should be checked and because
45 the old address displacements might change and address constraints
46 (or insn memory constraints) might not be satisfied any more.
48 For some targets, the pass can spill some pseudos into hard
49 registers of different class (usually into vector registers)
50 instead of spilling them into memory if it is possible and
51 profitable. Spilling GENERAL_REGS pseudo into SSE registers for
52 Intel Corei7 is an example of such optimization. And this is
53 actually recommended by Intel optimization guide.
55 The file also contains code for final change of pseudos on hard
56 regs correspondingly assigned to them. */
58 #include "config.h"
59 #include "system.h"
60 #include "coretypes.h"
61 #include "backend.h"
62 #include "target.h"
63 #include "rtl.h"
64 #include "df.h"
65 #include "insn-config.h"
66 #include "regs.h"
67 #include "memmodel.h"
68 #include "ira.h"
69 #include "recog.h"
70 #include "output.h"
71 #include "cfgrtl.h"
72 #include "lra.h"
73 #include "lra-int.h"
76 /* Max regno at the start of the pass. */
77 static int regs_num;
79 /* Map spilled regno -> hard regno used instead of memory for
80 spilling. */
81 static rtx *spill_hard_reg;
83 /* The structure describes stack slot of a spilled pseudo. */
84 struct pseudo_slot
86 /* Number (0, 1, ...) of the stack slot to which given pseudo
87 belongs. */
88 int slot_num;
89 /* First or next slot with the same slot number. */
90 struct pseudo_slot *next, *first;
91 /* Memory representing the spilled pseudo. */
92 rtx mem;
95 /* The stack slots for each spilled pseudo. Indexed by regnos. */
96 static struct pseudo_slot *pseudo_slots;
98 /* The structure describes a register or a stack slot which can be
99 used for several spilled pseudos. */
100 class slot
102 public:
103 /* First pseudo with given stack slot. */
104 int regno;
105 /* Hard reg into which the slot pseudos are spilled. The value is
106 negative for pseudos spilled into memory. */
107 int hard_regno;
108 /* Maximum alignment required by all users of the slot. */
109 unsigned int align;
110 /* Maximum size required by all users of the slot. */
111 poly_int64 size;
112 /* Memory representing the all stack slot. It can be different from
113 memory representing a pseudo belonging to give stack slot because
114 pseudo can be placed in a part of the corresponding stack slot.
115 The value is NULL for pseudos spilled into a hard reg. */
116 rtx mem;
117 /* Combined live ranges of all pseudos belonging to given slot. It
118 is used to figure out that a new spilled pseudo can use given
119 stack slot. */
120 lra_live_range_t live_ranges;
123 /* Array containing info about the stack slots. The array element is
124 indexed by the stack slot number in the range [0..slots_num). */
125 static class slot *slots;
126 /* The number of the stack slots currently existing. */
127 static int slots_num;
129 /* Set up memory of the spilled pseudo I. The function can allocate
130 the corresponding stack slot if it is not done yet. */
131 static void
132 assign_mem_slot (int i)
134 rtx x = NULL_RTX;
135 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
136 poly_int64 inherent_size = PSEUDO_REGNO_BYTES (i);
137 machine_mode wider_mode
138 = wider_subreg_mode (mode, lra_reg_info[i].biggest_mode);
139 poly_int64 total_size = GET_MODE_SIZE (wider_mode);
140 poly_int64 adjust = 0;
142 lra_assert (regno_reg_rtx[i] != NULL_RTX && REG_P (regno_reg_rtx[i])
143 && lra_reg_info[i].nrefs != 0 && reg_renumber[i] < 0);
145 unsigned int slot_num = pseudo_slots[i].slot_num;
146 x = slots[slot_num].mem;
147 if (!x)
149 x = assign_stack_local (BLKmode, slots[slot_num].size,
150 slots[slot_num].align);
151 slots[slot_num].mem = x;
154 /* On a big endian machine, the "address" of the slot is the address
155 of the low part that fits its inherent mode. */
156 adjust += subreg_size_lowpart_offset (inherent_size, total_size);
157 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
159 /* Set all of the memory attributes as appropriate for a spill. */
160 set_mem_attrs_for_spill (x);
161 pseudo_slots[i].mem = x;
164 /* Sort pseudos according their usage frequencies. */
165 static int
166 regno_freq_compare (const void *v1p, const void *v2p)
168 const int regno1 = *(const int *) v1p;
169 const int regno2 = *(const int *) v2p;
170 int diff;
172 if ((diff = lra_reg_info[regno2].freq - lra_reg_info[regno1].freq) != 0)
173 return diff;
174 return regno1 - regno2;
177 /* Sort pseudos according to their slots, putting the slots in the order
178 that they should be allocated.
180 First prefer to group slots with variable sizes together and slots
181 with constant sizes together, since that usually makes them easier
182 to address from a common anchor point. E.g. loads of polynomial-sized
183 registers tend to take polynomial offsets while loads of constant-sized
184 registers tend to take constant (non-polynomial) offsets.
186 Next, slots with lower numbers have the highest priority and should
187 get the smallest displacement from the stack or frame pointer
188 (whichever is being used).
190 The first allocated slot is always closest to the frame pointer,
191 so prefer lower slot numbers when frame_pointer_needed. If the stack
192 and frame grow in the same direction, then the first allocated slot is
193 always closest to the initial stack pointer and furthest away from the
194 final stack pointer, so allocate higher numbers first when using the
195 stack pointer in that case. The reverse is true if the stack and
196 frame grow in opposite directions. */
197 static int
198 pseudo_reg_slot_compare (const void *v1p, const void *v2p)
200 const int regno1 = *(const int *) v1p;
201 const int regno2 = *(const int *) v2p;
202 int diff, slot_num1, slot_num2;
204 slot_num1 = pseudo_slots[regno1].slot_num;
205 slot_num2 = pseudo_slots[regno2].slot_num;
206 diff = (int (slots[slot_num1].size.is_constant ())
207 - int (slots[slot_num2].size.is_constant ()));
208 if (diff != 0)
209 return diff;
210 if ((diff = slot_num1 - slot_num2) != 0)
211 return (frame_pointer_needed
212 || (!FRAME_GROWS_DOWNWARD) == STACK_GROWS_DOWNWARD ? diff : -diff);
213 poly_int64 total_size1 = GET_MODE_SIZE (lra_reg_info[regno1].biggest_mode);
214 poly_int64 total_size2 = GET_MODE_SIZE (lra_reg_info[regno2].biggest_mode);
215 if ((diff = compare_sizes_for_sort (total_size2, total_size1)) != 0)
216 return diff;
217 return regno1 - regno2;
220 /* Assign spill hard registers to N pseudos in PSEUDO_REGNOS which is
221 sorted in order of highest frequency first. Put the pseudos which
222 did not get a spill hard register at the beginning of array
223 PSEUDO_REGNOS. Return the number of such pseudos. */
224 static int
225 assign_spill_hard_regs (int *pseudo_regnos, int n)
227 int i, k, p, regno, res, spill_class_size, hard_regno, nr;
228 enum reg_class rclass, spill_class;
229 machine_mode mode;
230 lra_live_range_t r;
231 rtx_insn *insn;
232 rtx set;
233 basic_block bb;
234 HARD_REG_SET conflict_hard_regs;
235 bitmap setjump_crosses = regstat_get_setjmp_crosses ();
236 /* Hard registers which cannot be used for any purpose at given
237 program point because they are unallocatable or already allocated
238 for other pseudos. */
239 HARD_REG_SET *reserved_hard_regs;
241 if (! lra_reg_spill_p)
242 return n;
243 /* Set up reserved hard regs for every program point. */
244 reserved_hard_regs = XNEWVEC (HARD_REG_SET, lra_live_max_point);
245 for (p = 0; p < lra_live_max_point; p++)
246 reserved_hard_regs[p] = lra_no_alloc_regs;
247 for (i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
248 if (lra_reg_info[i].nrefs != 0
249 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
250 for (r = lra_reg_info[i].live_ranges; r != NULL; r = r->next)
251 for (p = r->start; p <= r->finish; p++)
252 add_to_hard_reg_set (&reserved_hard_regs[p],
253 lra_reg_info[i].biggest_mode, hard_regno);
254 auto_bitmap ok_insn_bitmap (&reg_obstack);
255 FOR_EACH_BB_FN (bb, cfun)
256 FOR_BB_INSNS (bb, insn)
257 if (DEBUG_INSN_P (insn)
258 || ((set = single_set (insn)) != NULL_RTX
259 && REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))))
260 bitmap_set_bit (ok_insn_bitmap, INSN_UID (insn));
261 for (res = i = 0; i < n; i++)
263 regno = pseudo_regnos[i];
264 rclass = lra_get_allocno_class (regno);
265 if (bitmap_bit_p (setjump_crosses, regno)
266 || (spill_class
267 = ((enum reg_class)
268 targetm.spill_class ((reg_class_t) rclass,
269 PSEUDO_REGNO_MODE (regno)))) == NO_REGS
270 || bitmap_intersect_compl_p (&lra_reg_info[regno].insn_bitmap,
271 ok_insn_bitmap))
273 pseudo_regnos[res++] = regno;
274 continue;
276 lra_assert (spill_class != NO_REGS);
277 conflict_hard_regs = lra_reg_info[regno].conflict_hard_regs;
278 for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
279 for (p = r->start; p <= r->finish; p++)
280 conflict_hard_regs |= reserved_hard_regs[p];
281 spill_class_size = ira_class_hard_regs_num[spill_class];
282 mode = lra_reg_info[regno].biggest_mode;
283 for (k = 0; k < spill_class_size; k++)
285 hard_regno = ira_class_hard_regs[spill_class][k];
286 if (TEST_HARD_REG_BIT (eliminable_regset, hard_regno)
287 || !targetm.hard_regno_mode_ok (hard_regno, mode))
288 continue;
289 if (! overlaps_hard_reg_set_p (conflict_hard_regs, mode, hard_regno))
290 break;
292 if (k >= spill_class_size)
294 /* There is no available regs -- assign memory later. */
295 pseudo_regnos[res++] = regno;
296 continue;
298 if (lra_dump_file != NULL)
299 fprintf (lra_dump_file, " Spill r%d into hr%d\n", regno, hard_regno);
300 add_to_hard_reg_set (&hard_regs_spilled_into,
301 lra_reg_info[regno].biggest_mode, hard_regno);
302 /* Update reserved_hard_regs. */
303 for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
304 for (p = r->start; p <= r->finish; p++)
305 add_to_hard_reg_set (&reserved_hard_regs[p],
306 lra_reg_info[regno].biggest_mode, hard_regno);
307 spill_hard_reg[regno]
308 = gen_raw_REG (PSEUDO_REGNO_MODE (regno), hard_regno);
309 for (nr = 0;
310 nr < hard_regno_nregs (hard_regno,
311 lra_reg_info[regno].biggest_mode);
312 nr++)
313 /* Just loop. */
314 df_set_regs_ever_live (hard_regno + nr, true);
316 free (reserved_hard_regs);
317 return res;
320 /* Add pseudo REGNO to slot SLOT_NUM. */
321 static void
322 add_pseudo_to_slot (int regno, int slot_num)
324 struct pseudo_slot *first;
326 /* Each pseudo has an inherent size which comes from its own mode,
327 and a total size which provides room for paradoxical subregs.
328 We need to make sure the size and alignment of the slot are
329 sufficient for both. */
330 machine_mode mode = wider_subreg_mode (PSEUDO_REGNO_MODE (regno),
331 lra_reg_info[regno].biggest_mode);
332 unsigned int align = spill_slot_alignment (mode);
333 slots[slot_num].align = MAX (slots[slot_num].align, align);
334 slots[slot_num].size = upper_bound (slots[slot_num].size,
335 GET_MODE_SIZE (mode));
337 if (slots[slot_num].regno < 0)
339 /* It is the first pseudo in the slot. */
340 slots[slot_num].regno = regno;
341 pseudo_slots[regno].first = &pseudo_slots[regno];
342 pseudo_slots[regno].next = NULL;
344 else
346 first = pseudo_slots[regno].first = &pseudo_slots[slots[slot_num].regno];
347 pseudo_slots[regno].next = first->next;
348 first->next = &pseudo_slots[regno];
350 pseudo_slots[regno].mem = NULL_RTX;
351 pseudo_slots[regno].slot_num = slot_num;
352 slots[slot_num].live_ranges
353 = lra_merge_live_ranges (slots[slot_num].live_ranges,
354 lra_copy_live_range_list
355 (lra_reg_info[regno].live_ranges));
358 /* Assign stack slot numbers to pseudos in array PSEUDO_REGNOS of
359 length N. Sort pseudos in PSEUDO_REGNOS for subsequent assigning
360 memory stack slots. */
361 static void
362 assign_stack_slot_num_and_sort_pseudos (int *pseudo_regnos, int n)
364 int i, j, regno;
366 /* Assign stack slot numbers to spilled pseudos, use smaller numbers
367 for most frequently used pseudos. */
368 for (i = 0; i < n; i++)
370 regno = pseudo_regnos[i];
371 if (! flag_ira_share_spill_slots)
372 j = slots_num;
373 else
375 machine_mode mode
376 = wider_subreg_mode (PSEUDO_REGNO_MODE (regno),
377 lra_reg_info[regno].biggest_mode);
378 for (j = 0; j < slots_num; j++)
379 if (slots[j].hard_regno < 0
380 /* Although it's possible to share slots between modes
381 with constant and non-constant widths, we usually
382 get better spill code by keeping the constant and
383 non-constant areas separate. */
384 && (GET_MODE_SIZE (mode).is_constant ()
385 == slots[j].size.is_constant ())
386 && ! (lra_intersected_live_ranges_p
387 (slots[j].live_ranges,
388 lra_reg_info[regno].live_ranges)))
390 /* A slot without allocated memory can be shared. */
391 if (slots[j].mem == NULL_RTX)
392 break;
394 /* A slot with allocated memory can be shared only with equal
395 or smaller register with equal or smaller alignment. */
396 if (slots[j].align >= spill_slot_alignment (mode)
397 && known_ge (slots[j].size, GET_MODE_SIZE (mode)))
398 break;
401 if (j >= slots_num)
403 /* New slot. */
404 slots[j].live_ranges = NULL;
405 slots[j].size = 0;
406 slots[j].align = BITS_PER_UNIT;
407 slots[j].regno = slots[j].hard_regno = -1;
408 slots[j].mem = NULL_RTX;
409 slots_num++;
411 add_pseudo_to_slot (regno, j);
413 /* Sort regnos according to their slot numbers. */
414 qsort (pseudo_regnos, n, sizeof (int), pseudo_reg_slot_compare);
417 /* Recursively process LOC in INSN and change spilled pseudos to the
418 corresponding memory or spilled hard reg. Ignore spilled pseudos
419 created from the scratches. Return true if the pseudo nrefs equal
420 to 0 (don't change the pseudo in this case). Otherwise return false. */
421 static bool
422 remove_pseudos (rtx *loc, rtx_insn *insn)
424 int i;
425 rtx hard_reg;
426 const char *fmt;
427 enum rtx_code code;
428 bool res = false;
430 if (*loc == NULL_RTX)
431 return res;
432 code = GET_CODE (*loc);
433 if (code == SUBREG && REG_P (SUBREG_REG (*loc)))
435 /* Try to remove memory subregs to simplify LRA job
436 and avoid LRA cycling in case of subreg memory reload. */
437 res = remove_pseudos (&SUBREG_REG (*loc), insn);
438 if (GET_CODE (SUBREG_REG (*loc)) == MEM)
440 alter_subreg (loc, false);
441 if (GET_CODE (*loc) == MEM)
443 lra_update_insn_recog_data (insn);
444 if (lra_dump_file != NULL)
445 fprintf (lra_dump_file,
446 "Memory subreg was simplified in insn #%u\n",
447 INSN_UID (insn));
450 return res;
452 else if (code == REG && (i = REGNO (*loc)) >= FIRST_PSEUDO_REGISTER
453 && lra_get_regno_hard_regno (i) < 0
454 /* We do not want to assign memory for former scratches because
455 it might result in an address reload for some targets. In
456 any case we transform such pseudos not getting hard registers
457 into scratches back. */
458 && ! ira_former_scratch_p (i))
460 if (lra_reg_info[i].nrefs == 0
461 && pseudo_slots[i].mem == NULL && spill_hard_reg[i] == NULL)
462 return true;
463 if ((hard_reg = spill_hard_reg[i]) != NULL_RTX)
464 *loc = copy_rtx (hard_reg);
465 else if (pseudo_slots[i].mem != NULL_RTX)
466 /* There might be no memory slot or hard reg for a pseudo when we spill
467 the frame pointer after elimination of frame pointer to stack
468 pointer became impossible. */
470 rtx x = lra_eliminate_regs_1 (insn, pseudo_slots[i].mem,
471 GET_MODE (pseudo_slots[i].mem),
472 false, false, 0, true);
473 *loc = x != pseudo_slots[i].mem ? x : copy_rtx (x);
475 return res;
478 fmt = GET_RTX_FORMAT (code);
479 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
481 if (fmt[i] == 'e')
482 res = remove_pseudos (&XEXP (*loc, i), insn) || res;
483 else if (fmt[i] == 'E')
485 int j;
487 for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
488 res = remove_pseudos (&XVECEXP (*loc, i, j), insn) || res;
491 return res;
494 /* Convert spilled pseudos into their stack slots or spill hard regs,
495 put insns to process on the constraint stack (that is all insns in
496 which pseudos were changed to memory or spill hard regs). */
497 static void
498 spill_pseudos (void)
500 basic_block bb;
501 rtx_insn *insn, *curr;
502 int i;
504 auto_bitmap spilled_pseudos (&reg_obstack);
505 auto_bitmap changed_insns (&reg_obstack);
506 for (i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
508 if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
509 && ! ira_former_scratch_p (i))
511 bitmap_set_bit (spilled_pseudos, i);
512 bitmap_ior_into (changed_insns, &lra_reg_info[i].insn_bitmap);
515 FOR_EACH_BB_FN (bb, cfun)
517 FOR_BB_INSNS_SAFE (bb, insn, curr)
519 bool removed_pseudo_p = false;
521 if (bitmap_bit_p (changed_insns, INSN_UID (insn)))
523 rtx *link_loc, link;
525 removed_pseudo_p = remove_pseudos (&PATTERN (insn), insn);
526 if (CALL_P (insn)
527 && remove_pseudos (&CALL_INSN_FUNCTION_USAGE (insn), insn))
528 removed_pseudo_p = true;
529 for (link_loc = &REG_NOTES (insn);
530 (link = *link_loc) != NULL_RTX;
531 link_loc = &XEXP (link, 1))
533 switch (REG_NOTE_KIND (link))
535 case REG_FRAME_RELATED_EXPR:
536 case REG_CFA_DEF_CFA:
537 case REG_CFA_ADJUST_CFA:
538 case REG_CFA_OFFSET:
539 case REG_CFA_REGISTER:
540 case REG_CFA_EXPRESSION:
541 case REG_CFA_RESTORE:
542 case REG_CFA_SET_VDRAP:
543 if (remove_pseudos (&XEXP (link, 0), insn))
544 removed_pseudo_p = true;
545 break;
546 default:
547 break;
550 if (GET_CODE (PATTERN (insn)) == CLOBBER)
551 /* This is a CLOBBER insn with pseudo spilled to memory.
552 Mark it for removing it later together with LRA temporary
553 CLOBBER insns. */
554 LRA_TEMP_CLOBBER_P (PATTERN (insn)) = 1;
555 if (lra_dump_file != NULL)
556 fprintf (lra_dump_file,
557 "Changing spilled pseudos to memory in insn #%u\n",
558 INSN_UID (insn));
559 lra_push_insn (insn);
560 if (lra_reg_spill_p || targetm.different_addr_displacement_p ())
561 lra_set_used_insn_alternative (insn, LRA_UNKNOWN_ALT);
563 else if (CALL_P (insn)
564 /* Presence of any pseudo in CALL_INSN_FUNCTION_USAGE
565 does not affect value of insn_bitmap of the
566 corresponding lra_reg_info. That is because we
567 don't need to reload pseudos in
568 CALL_INSN_FUNCTION_USAGEs. So if we process only
569 insns in the insn_bitmap of given pseudo here, we
570 can miss the pseudo in some
571 CALL_INSN_FUNCTION_USAGEs. */
572 && remove_pseudos (&CALL_INSN_FUNCTION_USAGE (insn), insn))
573 removed_pseudo_p = true;
574 if (removed_pseudo_p)
576 lra_assert (DEBUG_INSN_P (insn));
577 lra_invalidate_insn_data (insn);
578 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
579 if (lra_dump_file != NULL)
580 fprintf (lra_dump_file,
581 "Debug insn #%u is reset because it referenced "
582 "removed pseudo\n", INSN_UID (insn));
584 bitmap_and_compl_into (df_get_live_in (bb), spilled_pseudos);
585 bitmap_and_compl_into (df_get_live_out (bb), spilled_pseudos);
590 /* Return true if we need scratch reg assignments. */
591 bool
592 lra_need_for_scratch_reg_p (void)
594 int i; max_regno = max_reg_num ();
596 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
597 if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
598 && ira_former_scratch_p (i))
599 return true;
600 return false;
603 /* Return true if we need to change some pseudos into memory. */
604 bool
605 lra_need_for_spills_p (void)
607 int i;
609 max_regno = max_reg_num ();
610 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
611 if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
612 && ! ira_former_scratch_p (i))
613 return true;
614 return false;
617 /* Change spilled pseudos into memory or spill hard regs. Put changed
618 insns on the constraint stack (these insns will be considered on
619 the next constraint pass). The changed insns are all insns in
620 which pseudos were changed. */
621 void
622 lra_spill (void)
624 int i, n, n2, curr_regno;
625 int *pseudo_regnos;
627 regs_num = max_reg_num ();
628 spill_hard_reg = XNEWVEC (rtx, regs_num);
629 pseudo_regnos = XNEWVEC (int, regs_num);
630 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
631 if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
632 /* We do not want to assign memory for former scratches. */
633 && ! ira_former_scratch_p (i))
634 pseudo_regnos[n++] = i;
635 lra_assert (n > 0);
636 pseudo_slots = XNEWVEC (struct pseudo_slot, regs_num);
637 for (i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
639 spill_hard_reg[i] = NULL_RTX;
640 pseudo_slots[i].mem = NULL_RTX;
642 slots = XNEWVEC (class slot, regs_num);
643 /* Sort regnos according their usage frequencies. */
644 qsort (pseudo_regnos, n, sizeof (int), regno_freq_compare);
645 n = assign_spill_hard_regs (pseudo_regnos, n);
646 slots_num = 0;
647 assign_stack_slot_num_and_sort_pseudos (pseudo_regnos, n);
648 for (i = 0; i < n; i++)
649 if (pseudo_slots[pseudo_regnos[i]].mem == NULL_RTX)
650 assign_mem_slot (pseudo_regnos[i]);
651 if ((n2 = lra_update_fp2sp_elimination (pseudo_regnos)) > 0)
653 /* Assign stack slots to spilled pseudos assigned to fp. */
654 assign_stack_slot_num_and_sort_pseudos (pseudo_regnos, n2);
655 for (i = 0; i < n2; i++)
656 if (pseudo_slots[pseudo_regnos[i]].mem == NULL_RTX)
657 assign_mem_slot (pseudo_regnos[i]);
659 if (n + n2 > 0 && crtl->stack_alignment_needed)
660 /* If we have a stack frame, we must align it now. The stack size
661 may be a part of the offset computation for register
662 elimination. */
663 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
664 if (lra_dump_file != NULL)
666 for (i = 0; i < slots_num; i++)
668 fprintf (lra_dump_file, " Slot %d regnos (width = ", i);
669 print_dec (slots[i].size, lra_dump_file, SIGNED);
670 fprintf (lra_dump_file, "):");
671 for (curr_regno = slots[i].regno;;
672 curr_regno = pseudo_slots[curr_regno].next - pseudo_slots)
674 fprintf (lra_dump_file, " %d", curr_regno);
675 if (pseudo_slots[curr_regno].next == NULL)
676 break;
678 fprintf (lra_dump_file, "\n");
681 spill_pseudos ();
682 free (slots);
683 free (pseudo_slots);
684 free (pseudo_regnos);
685 free (spill_hard_reg);
688 /* Apply alter_subreg for subregs of regs in *LOC. Use FINAL_P for
689 alter_subreg calls. Return true if any subreg of reg is
690 processed. */
691 static bool
692 alter_subregs (rtx *loc, bool final_p)
694 int i;
695 rtx x = *loc;
696 bool res;
697 const char *fmt;
698 enum rtx_code code;
700 if (x == NULL_RTX)
701 return false;
702 code = GET_CODE (x);
703 if (code == SUBREG && REG_P (SUBREG_REG (x)))
705 lra_assert (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER);
706 alter_subreg (loc, final_p);
707 return true;
709 fmt = GET_RTX_FORMAT (code);
710 res = false;
711 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
713 if (fmt[i] == 'e')
715 if (alter_subregs (&XEXP (x, i), final_p))
716 res = true;
718 else if (fmt[i] == 'E')
720 int j;
722 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
723 if (alter_subregs (&XVECEXP (x, i, j), final_p))
724 res = true;
727 return res;
730 /* Final change of pseudos got hard registers into the corresponding
731 hard registers and removing temporary clobbers. */
732 void
733 lra_final_code_change (void)
735 int i, hard_regno;
736 basic_block bb;
737 rtx_insn *insn, *curr;
738 rtx set;
739 int max_regno = max_reg_num ();
741 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
742 if (lra_reg_info[i].nrefs != 0
743 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
744 SET_REGNO (regno_reg_rtx[i], hard_regno);
745 FOR_EACH_BB_FN (bb, cfun)
746 FOR_BB_INSNS_SAFE (bb, insn, curr)
747 if (INSN_P (insn))
749 rtx pat = PATTERN (insn);
751 if (GET_CODE (pat) == USE && XEXP (pat, 0) == const1_rtx)
753 /* Remove markers to eliminate critical edges for jump insn
754 output reloads (see code in ira.cc::ira). */
755 lra_invalidate_insn_data (insn);
756 delete_insn (insn);
757 continue;
759 if (GET_CODE (pat) == CLOBBER && LRA_TEMP_CLOBBER_P (pat))
761 /* Remove clobbers temporarily created in LRA. We don't
762 need them anymore and don't want to waste compiler
763 time processing them in a few subsequent passes. */
764 lra_invalidate_insn_data (insn);
765 delete_insn (insn);
766 continue;
769 /* IRA can generate move insns involving pseudos. It is
770 better remove them earlier to speed up compiler a bit.
771 It is also better to do it here as they might not pass
772 final RTL check in LRA, (e.g. insn moving a control
773 register into itself). So remove an useless move insn
774 unless next insn is USE marking the return reg (we should
775 save this as some subsequent optimizations assume that
776 such original insns are saved). */
777 if (NONJUMP_INSN_P (insn) && GET_CODE (pat) == SET
778 && REG_P (SET_SRC (pat)) && REG_P (SET_DEST (pat))
779 && REGNO (SET_SRC (pat)) == REGNO (SET_DEST (pat))
780 && REGNO (SET_SRC (pat)) >= FIRST_PSEUDO_REGISTER)
782 lra_invalidate_insn_data (insn);
783 delete_insn (insn);
784 continue;
787 lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
788 struct lra_insn_reg *reg;
790 for (reg = id->regs; reg != NULL; reg = reg->next)
791 if (reg->regno >= FIRST_PSEUDO_REGISTER
792 && lra_reg_info [reg->regno].nrefs == 0)
793 break;
795 if (reg != NULL)
797 /* Pseudos still can be in debug insns in some very rare
798 and complicated cases, e.g. the pseudo was removed by
799 inheritance and the debug insn is not EBBs where the
800 inheritance happened. It is difficult and time
801 consuming to find what hard register corresponds the
802 pseudo -- so just remove the debug insn. Another
803 solution could be assigning hard reg/memory but it
804 would be a misleading info. It is better not to have
805 info than have it wrong. */
806 lra_assert (DEBUG_INSN_P (insn));
807 lra_invalidate_insn_data (insn);
808 delete_insn (insn);
809 continue;
812 struct lra_static_insn_data *static_id = id->insn_static_data;
813 bool insn_change_p = false;
815 for (i = id->insn_static_data->n_operands - 1; i >= 0; i--)
816 if ((DEBUG_INSN_P (insn) || ! static_id->operand[i].is_operator)
817 && alter_subregs (id->operand_loc[i], ! DEBUG_INSN_P (insn)))
819 lra_update_dup (id, i);
820 insn_change_p = true;
822 if ((GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
823 && alter_subregs (&XEXP (pat, 0), false))
824 insn_change_p = true;
825 if (insn_change_p)
826 lra_update_operator_dups (id);
828 if ((set = single_set (insn)) != NULL
829 && REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
830 && REGNO (SET_SRC (set)) == REGNO (SET_DEST (set)))
832 /* Remove an useless move insn. IRA can generate move
833 insns involving pseudos. It is better remove them
834 earlier to speed up compiler a bit. It is also
835 better to do it here as they might not pass final RTL
836 check in LRA, (e.g. insn moving a control register
837 into itself). */
838 lra_invalidate_insn_data (insn);
839 delete_insn (insn);