1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987-2025 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
35 #include "diagnostic-core.h"
36 #include "rtx-vector-builder.h"
38 /* Include insn-config.h before expr.h so that HAVE_conditional_move
39 is properly defined. */
40 #include "stor-layout.h"
45 #include "optabs-tree.h"
47 #include "internal-fn.h"
48 #include "langhooks.h"
52 static void prepare_float_lib_cmp (rtx
, rtx
, enum rtx_code
, rtx
*,
54 static rtx
expand_unop_direct (machine_mode
, optab
, rtx
, rtx
, int);
55 static void emit_libcall_block_1 (rtx_insn
*, rtx
, rtx
, rtx
, bool);
57 static rtx
emit_conditional_move_1 (rtx
, rtx
, rtx
, rtx
, machine_mode
);
59 /* Debug facility for use in GDB. */
60 void debug_optab_libfuncs (void);
62 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
63 the result of operation CODE applied to OP0 (and OP1 if it is a binary
64 operation). OP0_MODE is OP0's mode.
66 If the last insn does not set TARGET, don't do anything, but return true.
68 If the last insn or a previous insn sets TARGET and TARGET is one of OP0
69 or OP1, don't add the REG_EQUAL note but return false. Our caller can then
70 try again, ensuring that TARGET is not one of the operands. */
73 add_equal_note (rtx_insn
*insns
, rtx target
, enum rtx_code code
, rtx op0
,
74 rtx op1
, machine_mode op0_mode
)
80 gcc_assert (insns
&& INSN_P (insns
) && NEXT_INSN (insns
));
82 if (GET_RTX_CLASS (code
) != RTX_COMM_ARITH
83 && GET_RTX_CLASS (code
) != RTX_BIN_ARITH
84 && GET_RTX_CLASS (code
) != RTX_COMM_COMPARE
85 && GET_RTX_CLASS (code
) != RTX_COMPARE
86 && GET_RTX_CLASS (code
) != RTX_UNARY
)
89 if (GET_CODE (target
) == ZERO_EXTRACT
)
92 for (last_insn
= insns
;
93 NEXT_INSN (last_insn
) != NULL_RTX
;
94 last_insn
= NEXT_INSN (last_insn
))
97 /* If TARGET is in OP0 or OP1, punt. We'd end up with a note referencing
98 a value changing in the insn, so the note would be invalid for CSE. */
99 if (reg_overlap_mentioned_p (target
, op0
)
100 || (op1
&& reg_overlap_mentioned_p (target
, op1
)))
103 && (rtx_equal_p (target
, op0
)
104 || (op1
&& rtx_equal_p (target
, op1
))))
106 /* For MEM target, with MEM = MEM op X, prefer no REG_EQUAL note
107 over expanding it as temp = MEM op X, MEM = temp. If the target
108 supports MEM = MEM op X instructions, it is sometimes too hard
109 to reconstruct that form later, especially if X is also a memory,
110 and due to multiple occurrences of addresses the address might
111 be forced into register unnecessarily.
112 Note that not emitting the REG_EQUIV note might inhibit
113 CSE in some cases. */
114 set
= single_set (last_insn
);
116 && GET_CODE (SET_SRC (set
)) == code
117 && MEM_P (SET_DEST (set
))
118 && (rtx_equal_p (SET_DEST (set
), XEXP (SET_SRC (set
), 0))
119 || (op1
&& rtx_equal_p (SET_DEST (set
),
120 XEXP (SET_SRC (set
), 1)))))
126 set
= set_for_reg_notes (last_insn
);
130 if (! rtx_equal_p (SET_DEST (set
), target
)
131 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
132 && (GET_CODE (SET_DEST (set
)) != STRICT_LOW_PART
133 || ! rtx_equal_p (XEXP (SET_DEST (set
), 0), target
)))
136 if (GET_RTX_CLASS (code
) == RTX_UNARY
)
146 if (op0_mode
!= VOIDmode
&& GET_MODE (target
) != op0_mode
)
148 note
= gen_rtx_fmt_e (code
, op0_mode
, copy_rtx (op0
));
149 if (GET_MODE_UNIT_SIZE (op0_mode
)
150 > GET_MODE_UNIT_SIZE (GET_MODE (target
)))
151 note
= simplify_gen_unary (TRUNCATE
, GET_MODE (target
),
154 note
= simplify_gen_unary (ZERO_EXTEND
, GET_MODE (target
),
160 note
= gen_rtx_fmt_e (code
, GET_MODE (target
), copy_rtx (op0
));
164 note
= gen_rtx_fmt_ee (code
, GET_MODE (target
), copy_rtx (op0
), copy_rtx (op1
));
166 set_unique_reg_note (last_insn
, REG_EQUAL
, note
);
171 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
172 for a widening operation would be. In most cases this would be OP0, but if
173 that's a constant it'll be VOIDmode, which isn't useful. */
176 widened_mode (machine_mode to_mode
, rtx op0
, rtx op1
)
178 machine_mode m0
= GET_MODE (op0
);
179 machine_mode m1
= GET_MODE (op1
);
182 if (m0
== VOIDmode
&& m1
== VOIDmode
)
184 else if (m0
== VOIDmode
|| GET_MODE_UNIT_SIZE (m0
) < GET_MODE_UNIT_SIZE (m1
))
189 if (GET_MODE_UNIT_SIZE (result
) > GET_MODE_UNIT_SIZE (to_mode
))
195 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
196 says whether OP is signed or unsigned. NO_EXTEND is true if we need
197 not actually do a sign-extend or zero-extend, but can leave the
198 higher-order bits of the result rtx undefined, for example, in the case
199 of logical operations, but not right shifts. */
202 widen_operand (rtx op
, machine_mode mode
, machine_mode oldmode
,
203 int unsignedp
, bool no_extend
)
206 scalar_int_mode int_mode
;
208 /* If we don't have to extend and this is a constant, return it. */
209 if (no_extend
&& GET_MODE (op
) == VOIDmode
)
212 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
213 extend since it will be more efficient to do so unless the signedness of
214 a promoted object differs from our extension. */
216 || !is_a
<scalar_int_mode
> (mode
, &int_mode
)
217 || (GET_CODE (op
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (op
)
218 && SUBREG_CHECK_PROMOTED_SIGN (op
, unsignedp
)))
219 return convert_modes (mode
, oldmode
, op
, unsignedp
);
221 /* If MODE is no wider than a single word, we return a lowpart or paradoxical
223 if (GET_MODE_SIZE (int_mode
) <= UNITS_PER_WORD
)
224 return gen_lowpart (int_mode
, force_reg (GET_MODE (op
), op
));
226 /* Otherwise, get an object of MODE, clobber it, and set the low-order
229 result
= gen_reg_rtx (int_mode
);
230 emit_clobber (result
);
231 emit_move_insn (gen_lowpart (GET_MODE (op
), result
), op
);
235 /* Expand vector widening operations.
237 There are two different classes of operations handled here:
238 1) Operations whose result is wider than all the arguments to the operation.
239 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
240 In this case OP0 and optionally OP1 would be initialized,
241 but WIDE_OP wouldn't (not relevant for this case).
242 2) Operations whose result is of the same size as the last argument to the
243 operation, but wider than all the other arguments to the operation.
244 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
245 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
247 E.g, when called to expand the following operations, this is how
248 the arguments will be initialized:
250 widening-sum 2 oprnd0 - oprnd1
251 widening-dot-product 3 oprnd0 oprnd1 oprnd2
252 widening-mult 2 oprnd0 oprnd1 -
253 type-promotion (vec-unpack) 1 oprnd0 - - */
256 expand_widen_pattern_expr (const_sepops ops
, rtx op0
, rtx op1
, rtx wide_op
,
257 rtx target
, int unsignedp
)
259 class expand_operand eops
[4];
260 tree oprnd0
, oprnd1
, oprnd2
;
261 machine_mode wmode
= VOIDmode
, tmode0
, tmode1
= VOIDmode
;
262 optab widen_pattern_optab
;
263 enum insn_code icode
;
264 int nops
= TREE_CODE_LENGTH (ops
->code
);
269 oprnd1
= nops
>= 2 ? ops
->op1
: NULL_TREE
;
270 oprnd2
= nops
>= 3 ? ops
->op2
: NULL_TREE
;
272 tmode0
= TYPE_MODE (TREE_TYPE (oprnd0
));
273 if (ops
->code
== VEC_UNPACK_FIX_TRUNC_HI_EXPR
274 || ops
->code
== VEC_UNPACK_FIX_TRUNC_LO_EXPR
)
275 /* The sign is from the result type rather than operand's type
278 = optab_for_tree_code (ops
->code
, ops
->type
, optab_default
);
279 else if ((ops
->code
== VEC_UNPACK_HI_EXPR
280 || ops
->code
== VEC_UNPACK_LO_EXPR
)
281 && VECTOR_BOOLEAN_TYPE_P (ops
->type
)
282 && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (oprnd0
))
283 && TYPE_MODE (ops
->type
) == TYPE_MODE (TREE_TYPE (oprnd0
))
284 && SCALAR_INT_MODE_P (TYPE_MODE (ops
->type
)))
286 /* For VEC_UNPACK_{LO,HI}_EXPR if the mode of op0 and result is
287 the same scalar mode for VECTOR_BOOLEAN_TYPE_P vectors, use
288 vec_unpacks_sbool_{lo,hi}_optab, so that we can pass in
289 the pattern number of elements in the wider vector. */
291 = (ops
->code
== VEC_UNPACK_HI_EXPR
292 ? vec_unpacks_sbool_hi_optab
: vec_unpacks_sbool_lo_optab
);
295 else if (ops
->code
== DOT_PROD_EXPR
)
297 enum optab_subtype subtype
= optab_default
;
298 signop sign1
= TYPE_SIGN (TREE_TYPE (oprnd0
));
299 signop sign2
= TYPE_SIGN (TREE_TYPE (oprnd1
));
302 else if (sign1
== SIGNED
&& sign2
== UNSIGNED
)
304 subtype
= optab_vector_mixed_sign
;
305 /* Same as optab_vector_mixed_sign but flip the operands. */
306 std::swap (op0
, op1
);
308 else if (sign1
== UNSIGNED
&& sign2
== SIGNED
)
309 subtype
= optab_vector_mixed_sign
;
314 = optab_for_tree_code (ops
->code
, TREE_TYPE (oprnd0
), subtype
);
318 = optab_for_tree_code (ops
->code
, TREE_TYPE (oprnd0
), optab_default
);
319 if (ops
->code
== WIDEN_MULT_PLUS_EXPR
320 || ops
->code
== WIDEN_MULT_MINUS_EXPR
321 || ops
->code
== DOT_PROD_EXPR
)
322 icode
= find_widening_optab_handler (widen_pattern_optab
,
323 TYPE_MODE (TREE_TYPE (ops
->op2
)),
326 icode
= optab_handler (widen_pattern_optab
, tmode0
);
327 gcc_assert (icode
!= CODE_FOR_nothing
);
330 tmode1
= TYPE_MODE (TREE_TYPE (oprnd1
));
334 op1
= GEN_INT (TYPE_VECTOR_SUBPARTS (TREE_TYPE (oprnd0
)).to_constant ());
338 /* The last operand is of a wider mode than the rest of the operands. */
343 gcc_assert (tmode1
== tmode0
);
345 wmode
= TYPE_MODE (TREE_TYPE (oprnd2
));
349 create_output_operand (&eops
[op
++], target
, TYPE_MODE (ops
->type
));
350 create_convert_operand_from (&eops
[op
++], op0
, tmode0
, unsignedp
);
352 create_convert_operand_from (&eops
[op
++], op1
, tmode1
, unsignedp
);
354 create_convert_operand_from (&eops
[op
++], wide_op
, wmode
, unsignedp
);
355 expand_insn (icode
, op
, eops
);
356 return eops
[0].value
;
359 /* Generate code to perform an operation specified by TERNARY_OPTAB
360 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
362 UNSIGNEDP is for the case where we have to widen the operands
363 to perform the operation. It says to use zero-extension.
365 If TARGET is nonzero, the value
366 is generated there, if it is convenient to do so.
367 In all cases an rtx is returned for the locus of the value;
368 this may or may not be TARGET. */
371 expand_ternary_op (machine_mode mode
, optab ternary_optab
, rtx op0
,
372 rtx op1
, rtx op2
, rtx target
, int unsignedp
)
374 class expand_operand ops
[4];
375 enum insn_code icode
= optab_handler (ternary_optab
, mode
);
377 gcc_assert (optab_handler (ternary_optab
, mode
) != CODE_FOR_nothing
);
379 create_output_operand (&ops
[0], target
, mode
);
380 create_convert_operand_from (&ops
[1], op0
, mode
, unsignedp
);
381 create_convert_operand_from (&ops
[2], op1
, mode
, unsignedp
);
382 create_convert_operand_from (&ops
[3], op2
, mode
, unsignedp
);
383 expand_insn (icode
, 4, ops
);
388 /* Like expand_binop, but return a constant rtx if the result can be
389 calculated at compile time. The arguments and return value are
390 otherwise the same as for expand_binop. */
393 simplify_expand_binop (machine_mode mode
, optab binoptab
,
394 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
395 enum optab_methods methods
)
397 if (CONSTANT_P (op0
) && CONSTANT_P (op1
))
399 rtx x
= simplify_binary_operation (optab_to_code (binoptab
),
405 return expand_binop (mode
, binoptab
, op0
, op1
, target
, unsignedp
, methods
);
408 /* Like simplify_expand_binop, but always put the result in TARGET.
409 Return true if the expansion succeeded. */
412 force_expand_binop (machine_mode mode
, optab binoptab
,
413 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
414 enum optab_methods methods
)
416 rtx x
= simplify_expand_binop (mode
, binoptab
, op0
, op1
,
417 target
, unsignedp
, methods
);
421 emit_move_insn (target
, x
);
425 /* Create a new vector value in VMODE with all elements set to OP. The
426 mode of OP must be the element mode of VMODE. If OP is a constant,
427 then the return value will be a constant. */
430 expand_vector_broadcast (machine_mode vmode
, rtx op
)
435 gcc_checking_assert (VECTOR_MODE_P (vmode
));
437 if (valid_for_const_vector_p (vmode
, op
))
438 return gen_const_vec_duplicate (vmode
, op
);
440 insn_code icode
= optab_handler (vec_duplicate_optab
, vmode
);
441 if (icode
!= CODE_FOR_nothing
)
443 class expand_operand ops
[2];
444 create_output_operand (&ops
[0], NULL_RTX
, vmode
);
445 create_input_operand (&ops
[1], op
, GET_MODE (op
));
446 expand_insn (icode
, 2, ops
);
450 if (!GET_MODE_NUNITS (vmode
).is_constant (&n
))
453 /* ??? If the target doesn't have a vec_init, then we have no easy way
454 of performing this operation. Most of this sort of generic support
455 is hidden away in the vector lowering support in gimple. */
456 icode
= convert_optab_handler (vec_init_optab
, vmode
,
457 GET_MODE_INNER (vmode
));
458 if (icode
== CODE_FOR_nothing
)
461 vec
= rtvec_alloc (n
);
462 for (int i
= 0; i
< n
; ++i
)
463 RTVEC_ELT (vec
, i
) = op
;
464 rtx ret
= gen_reg_rtx (vmode
);
465 emit_insn (GEN_FCN (icode
) (ret
, gen_rtx_PARALLEL (vmode
, vec
)));
470 /* This subroutine of expand_doubleword_shift handles the cases in which
471 the effective shift value is >= BITS_PER_WORD. The arguments and return
472 value are the same as for the parent routine, except that SUPERWORD_OP1
473 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
474 INTO_TARGET may be null if the caller has decided to calculate it. */
477 expand_superword_shift (optab binoptab
, rtx outof_input
, rtx superword_op1
,
478 rtx outof_target
, rtx into_target
,
479 int unsignedp
, enum optab_methods methods
)
481 if (into_target
!= 0)
482 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, superword_op1
,
483 into_target
, unsignedp
, methods
))
486 if (outof_target
!= 0)
488 /* For a signed right shift, we must fill OUTOF_TARGET with copies
489 of the sign bit, otherwise we must fill it with zeros. */
490 if (binoptab
!= ashr_optab
)
491 emit_move_insn (outof_target
, CONST0_RTX (word_mode
));
493 if (!force_expand_binop (word_mode
, binoptab
, outof_input
,
494 gen_int_shift_amount (word_mode
,
496 outof_target
, unsignedp
, methods
))
502 /* This subroutine of expand_doubleword_shift handles the cases in which
503 the effective shift value is < BITS_PER_WORD. The arguments and return
504 value are the same as for the parent routine. */
507 expand_subword_shift (scalar_int_mode op1_mode
, optab binoptab
,
508 rtx outof_input
, rtx into_input
, rtx op1
,
509 rtx outof_target
, rtx into_target
,
510 int unsignedp
, enum optab_methods methods
,
511 unsigned HOST_WIDE_INT shift_mask
)
513 optab reverse_unsigned_shift
, unsigned_shift
;
516 reverse_unsigned_shift
= (binoptab
== ashl_optab
? lshr_optab
: ashl_optab
);
517 unsigned_shift
= (binoptab
== ashl_optab
? ashl_optab
: lshr_optab
);
519 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
520 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
521 the opposite direction to BINOPTAB. */
522 if (CONSTANT_P (op1
) || shift_mask
>= BITS_PER_WORD
)
524 carries
= outof_input
;
525 tmp
= immed_wide_int_const (wi::shwi (BITS_PER_WORD
,
526 op1_mode
), op1_mode
);
527 tmp
= simplify_expand_binop (op1_mode
, sub_optab
, tmp
, op1
,
532 /* We must avoid shifting by BITS_PER_WORD bits since that is either
533 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
534 has unknown behavior. Do a single shift first, then shift by the
535 remainder. It's OK to use ~OP1 as the remainder if shift counts
536 are truncated to the mode size. */
537 carries
= simplify_expand_binop (word_mode
, reverse_unsigned_shift
,
538 outof_input
, const1_rtx
, 0,
540 if (carries
== const0_rtx
)
542 else if (shift_mask
== BITS_PER_WORD
- 1)
543 tmp
= expand_unop (op1_mode
, one_cmpl_optab
, op1
, 0, true);
546 tmp
= immed_wide_int_const (wi::shwi (BITS_PER_WORD
- 1,
547 op1_mode
), op1_mode
);
548 tmp
= simplify_expand_binop (op1_mode
, sub_optab
, tmp
, op1
,
552 if (tmp
== 0 || carries
== 0)
554 if (carries
!= const0_rtx
&& tmp
!= const0_rtx
)
555 carries
= simplify_expand_binop (word_mode
, reverse_unsigned_shift
,
556 carries
, tmp
, 0, unsignedp
, methods
);
560 if (into_input
!= const0_rtx
)
562 /* Shift INTO_INPUT logically by OP1. This is the last use of
563 INTO_INPUT so the result can go directly into INTO_TARGET if
565 tmp
= simplify_expand_binop (word_mode
, unsigned_shift
, into_input
,
566 op1
, into_target
, unsignedp
, methods
);
570 /* Now OR/PLUS in the bits carried over from OUTOF_INPUT. */
571 if (!force_expand_binop (word_mode
, add_optab
, tmp
, carries
,
572 into_target
, unsignedp
, methods
))
576 emit_move_insn (into_target
, carries
);
578 /* Use a standard word_mode shift for the out-of half. */
579 if (outof_target
!= 0)
580 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, op1
,
581 outof_target
, unsignedp
, methods
))
588 /* Try implementing expand_doubleword_shift using conditional moves.
589 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
590 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
591 are the shift counts to use in the former and latter case. All other
592 arguments are the same as the parent routine. */
595 expand_doubleword_shift_condmove (scalar_int_mode op1_mode
, optab binoptab
,
596 enum rtx_code cmp_code
, rtx cmp1
, rtx cmp2
,
597 rtx outof_input
, rtx into_input
,
598 rtx subword_op1
, rtx superword_op1
,
599 rtx outof_target
, rtx into_target
,
600 int unsignedp
, enum optab_methods methods
,
601 unsigned HOST_WIDE_INT shift_mask
)
603 rtx outof_superword
, into_superword
;
605 /* Put the superword version of the output into OUTOF_SUPERWORD and
607 outof_superword
= outof_target
!= 0 ? gen_reg_rtx (word_mode
) : 0;
608 if (outof_target
!= 0 && subword_op1
== superword_op1
)
610 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
611 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
612 into_superword
= outof_target
;
613 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
614 outof_superword
, 0, unsignedp
, methods
))
619 into_superword
= gen_reg_rtx (word_mode
);
620 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
621 outof_superword
, into_superword
,
626 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
627 if (!expand_subword_shift (op1_mode
, binoptab
,
628 outof_input
, into_input
, subword_op1
,
629 outof_target
, into_target
,
630 unsignedp
, methods
, shift_mask
))
633 /* Select between them. Do the INTO half first because INTO_SUPERWORD
634 might be the current value of OUTOF_TARGET. */
635 if (!emit_conditional_move (into_target
, { cmp_code
, cmp1
, cmp2
, op1_mode
},
636 into_target
, into_superword
, word_mode
, false))
639 if (outof_target
!= 0)
640 if (!emit_conditional_move (outof_target
,
641 { cmp_code
, cmp1
, cmp2
, op1_mode
},
642 outof_target
, outof_superword
,
649 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
650 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
651 input operand; the shift moves bits in the direction OUTOF_INPUT->
652 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
653 of the target. OP1 is the shift count and OP1_MODE is its mode.
654 If OP1 is constant, it will have been truncated as appropriate
655 and is known to be nonzero.
657 If SHIFT_MASK is zero, the result of word shifts is undefined when the
658 shift count is outside the range [0, BITS_PER_WORD). This routine must
659 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
661 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
662 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
663 fill with zeros or sign bits as appropriate.
665 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
666 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
667 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
668 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
671 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
672 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
673 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
674 function wants to calculate it itself.
676 Return true if the shift could be successfully synthesized. */
679 expand_doubleword_shift (scalar_int_mode op1_mode
, optab binoptab
,
680 rtx outof_input
, rtx into_input
, rtx op1
,
681 rtx outof_target
, rtx into_target
,
682 int unsignedp
, enum optab_methods methods
,
683 unsigned HOST_WIDE_INT shift_mask
)
685 rtx superword_op1
, tmp
, cmp1
, cmp2
;
686 enum rtx_code cmp_code
;
688 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
689 fill the result with sign or zero bits as appropriate. If so, the value
690 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
691 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
692 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
694 This isn't worthwhile for constant shifts since the optimizers will
695 cope better with in-range shift counts. */
696 if (shift_mask
>= BITS_PER_WORD
698 && !CONSTANT_P (op1
))
700 if (!expand_doubleword_shift (op1_mode
, binoptab
,
701 outof_input
, into_input
, op1
,
703 unsignedp
, methods
, shift_mask
))
705 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, op1
,
706 outof_target
, unsignedp
, methods
))
711 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
712 is true when the effective shift value is less than BITS_PER_WORD.
713 Set SUPERWORD_OP1 to the shift count that should be used to shift
714 OUTOF_INPUT into INTO_TARGET when the condition is false. */
715 tmp
= immed_wide_int_const (wi::shwi (BITS_PER_WORD
, op1_mode
), op1_mode
);
716 if (!CONSTANT_P (op1
) && shift_mask
== BITS_PER_WORD
- 1)
718 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
719 is a subword shift count. */
720 cmp1
= simplify_expand_binop (op1_mode
, and_optab
, op1
, tmp
,
722 cmp2
= CONST0_RTX (op1_mode
);
728 /* Set CMP1 to OP1 - BITS_PER_WORD. */
729 cmp1
= simplify_expand_binop (op1_mode
, sub_optab
, op1
, tmp
,
731 cmp2
= CONST0_RTX (op1_mode
);
733 superword_op1
= cmp1
;
738 /* If we can compute the condition at compile time, pick the
739 appropriate subroutine. */
740 tmp
= simplify_relational_operation (cmp_code
, SImode
, op1_mode
, cmp1
, cmp2
);
741 if (tmp
!= 0 && CONST_INT_P (tmp
))
743 if (tmp
== const0_rtx
)
744 return expand_superword_shift (binoptab
, outof_input
, superword_op1
,
745 outof_target
, into_target
,
748 return expand_subword_shift (op1_mode
, binoptab
,
749 outof_input
, into_input
, op1
,
750 outof_target
, into_target
,
751 unsignedp
, methods
, shift_mask
);
754 /* Try using conditional moves to generate straight-line code. */
755 if (HAVE_conditional_move
)
757 rtx_insn
*start
= get_last_insn ();
758 if (expand_doubleword_shift_condmove (op1_mode
, binoptab
,
759 cmp_code
, cmp1
, cmp2
,
760 outof_input
, into_input
,
762 outof_target
, into_target
,
763 unsignedp
, methods
, shift_mask
))
765 delete_insns_since (start
);
768 /* As a last resort, use branches to select the correct alternative. */
769 rtx_code_label
*subword_label
= gen_label_rtx ();
770 rtx_code_label
*done_label
= gen_label_rtx ();
773 do_compare_rtx_and_jump (cmp1
, cmp2
, cmp_code
, false, op1_mode
,
775 profile_probability::uninitialized ());
778 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
779 outof_target
, into_target
,
783 emit_jump_insn (targetm
.gen_jump (done_label
));
785 emit_label (subword_label
);
787 if (!expand_subword_shift (op1_mode
, binoptab
,
788 outof_input
, into_input
, op1
,
789 outof_target
, into_target
,
790 unsignedp
, methods
, shift_mask
))
793 emit_label (done_label
);
797 /* Subroutine of expand_binop. Perform a double word multiplication of
798 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
799 as the target's word_mode. This function return NULL_RTX if anything
800 goes wrong, in which case it may have already emitted instructions
801 which need to be deleted.
803 If we want to multiply two two-word values and have normal and widening
804 multiplies of single-word values, we can do this with three smaller
807 The multiplication proceeds as follows:
808 _______________________
809 [__op0_high_|__op0_low__]
810 _______________________
811 * [__op1_high_|__op1_low__]
812 _______________________________________________
813 _______________________
814 (1) [__op0_low__*__op1_low__]
815 _______________________
816 (2a) [__op0_low__*__op1_high_]
817 _______________________
818 (2b) [__op0_high_*__op1_low__]
819 _______________________
820 (3) [__op0_high_*__op1_high_]
823 This gives a 4-word result. Since we are only interested in the
824 lower 2 words, partial result (3) and the upper words of (2a) and
825 (2b) don't need to be calculated. Hence (2a) and (2b) can be
826 calculated using non-widening multiplication.
828 (1), however, needs to be calculated with an unsigned widening
829 multiplication. If this operation is not directly supported we
830 try using a signed widening multiplication and adjust the result.
831 This adjustment works as follows:
833 If both operands are positive then no adjustment is needed.
835 If the operands have different signs, for example op0_low < 0 and
836 op1_low >= 0, the instruction treats the most significant bit of
837 op0_low as a sign bit instead of a bit with significance
838 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
839 with 2**BITS_PER_WORD - op0_low, and two's complements the
840 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
843 Similarly, if both operands are negative, we need to add
844 (op0_low + op1_low) * 2**BITS_PER_WORD.
846 We use a trick to adjust quickly. We logically shift op0_low right
847 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
848 op0_high (op1_high) before it is used to calculate 2b (2a). If no
849 logical shift exists, we do an arithmetic right shift and subtract
853 expand_doubleword_mult (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
854 bool umulp
, enum optab_methods methods
)
856 int low
= (WORDS_BIG_ENDIAN
? 1 : 0);
857 int high
= (WORDS_BIG_ENDIAN
? 0 : 1);
858 rtx wordm1
= (umulp
? NULL_RTX
859 : gen_int_shift_amount (word_mode
, BITS_PER_WORD
- 1));
860 rtx product
, adjust
, product_high
, temp
;
862 rtx op0_high
= operand_subword_force (op0
, high
, mode
);
863 rtx op0_low
= operand_subword_force (op0
, low
, mode
);
864 rtx op1_high
= operand_subword_force (op1
, high
, mode
);
865 rtx op1_low
= operand_subword_force (op1
, low
, mode
);
867 /* If we're using an unsigned multiply to directly compute the product
868 of the low-order words of the operands and perform any required
869 adjustments of the operands, we begin by trying two more multiplications
870 and then computing the appropriate sum.
872 We have checked above that the required addition is provided.
873 Full-word addition will normally always succeed, especially if
874 it is provided at all, so we don't worry about its failure. The
875 multiplication may well fail, however, so we do handle that. */
879 /* ??? This could be done with emit_store_flag where available. */
880 temp
= expand_binop (word_mode
, lshr_optab
, op0_low
, wordm1
,
881 NULL_RTX
, 1, methods
);
883 op0_high
= expand_binop (word_mode
, add_optab
, op0_high
, temp
,
884 NULL_RTX
, 0, OPTAB_DIRECT
);
887 temp
= expand_binop (word_mode
, ashr_optab
, op0_low
, wordm1
,
888 NULL_RTX
, 0, methods
);
891 op0_high
= expand_binop (word_mode
, sub_optab
, op0_high
, temp
,
892 NULL_RTX
, 0, OPTAB_DIRECT
);
899 adjust
= expand_binop (word_mode
, smul_optab
, op0_high
, op1_low
,
900 NULL_RTX
, 0, OPTAB_DIRECT
);
904 /* OP0_HIGH should now be dead. */
908 /* ??? This could be done with emit_store_flag where available. */
909 temp
= expand_binop (word_mode
, lshr_optab
, op1_low
, wordm1
,
910 NULL_RTX
, 1, methods
);
912 op1_high
= expand_binop (word_mode
, add_optab
, op1_high
, temp
,
913 NULL_RTX
, 0, OPTAB_DIRECT
);
916 temp
= expand_binop (word_mode
, ashr_optab
, op1_low
, wordm1
,
917 NULL_RTX
, 0, methods
);
920 op1_high
= expand_binop (word_mode
, sub_optab
, op1_high
, temp
,
921 NULL_RTX
, 0, OPTAB_DIRECT
);
928 temp
= expand_binop (word_mode
, smul_optab
, op1_high
, op0_low
,
929 NULL_RTX
, 0, OPTAB_DIRECT
);
933 /* OP1_HIGH should now be dead. */
935 adjust
= expand_binop (word_mode
, add_optab
, adjust
, temp
,
936 NULL_RTX
, 0, OPTAB_DIRECT
);
938 if (target
&& !REG_P (target
))
941 /* *_widen_optab needs to determine operand mode, make sure at least
942 one operand has non-VOID mode. */
943 if (GET_MODE (op0_low
) == VOIDmode
&& GET_MODE (op1_low
) == VOIDmode
)
944 op0_low
= force_reg (word_mode
, op0_low
);
947 product
= expand_binop (mode
, umul_widen_optab
, op0_low
, op1_low
,
948 target
, 1, OPTAB_DIRECT
);
950 product
= expand_binop (mode
, smul_widen_optab
, op0_low
, op1_low
,
951 target
, 1, OPTAB_DIRECT
);
956 product_high
= operand_subword (product
, high
, 1, mode
);
957 adjust
= expand_binop (word_mode
, add_optab
, product_high
, adjust
,
958 NULL_RTX
, 0, OPTAB_DIRECT
);
959 emit_move_insn (product_high
, adjust
);
963 /* Subroutine of expand_binop. Optimize unsigned double-word OP0 % OP1 for
964 constant OP1. If for some bit in [BITS_PER_WORD / 2, BITS_PER_WORD] range
965 (prefer higher bits) ((1w << bit) % OP1) == 1, then the modulo can be
966 computed in word-mode as ((OP0 & (bit - 1)) + ((OP0 >> bit) & (bit - 1))
967 + (OP0 >> (2 * bit))) % OP1. Whether we need to sum 2, 3 or 4 values
968 depends on the bit value, if 2, then carry from the addition needs to be
969 added too, i.e. like:
970 sum += __builtin_add_overflow (low, high, &sum)
972 Optimize signed double-word OP0 % OP1 similarly, just apply some correction
973 factor to the sum before doing unsigned remainder, in the form of
974 sum += (((signed) OP0 >> (2 * BITS_PER_WORD - 1)) & const);
975 then perform unsigned
976 remainder = sum % OP1;
978 remainder += ((signed) OP0 >> (2 * BITS_PER_WORD - 1)) & (1 - OP1); */
981 expand_doubleword_mod (machine_mode mode
, rtx op0
, rtx op1
, bool unsignedp
)
983 if (INTVAL (op1
) <= 1 || (INTVAL (op1
) & 1) == 0)
986 rtx_insn
*last
= get_last_insn ();
987 for (int bit
= BITS_PER_WORD
; bit
>= BITS_PER_WORD
/ 2; bit
--)
989 wide_int w
= wi::shifted_mask (bit
, 1, false, 2 * BITS_PER_WORD
);
990 if (wi::ne_p (wi::umod_trunc (w
, INTVAL (op1
)), 1))
992 rtx sum
= NULL_RTX
, mask
= NULL_RTX
;
993 if (bit
== BITS_PER_WORD
)
995 /* For signed modulo we need to add correction to the sum
996 and that might again overflow. */
999 if (optab_handler (uaddv4_optab
, word_mode
) == CODE_FOR_nothing
)
1001 tree wtype
= lang_hooks
.types
.type_for_mode (word_mode
, 1);
1002 if (wtype
== NULL_TREE
)
1004 tree ctype
= build_complex_type (wtype
);
1005 if (TYPE_MODE (ctype
) != GET_MODE_COMPLEX_MODE (word_mode
))
1007 machine_mode cmode
= TYPE_MODE (ctype
);
1008 rtx op00
= operand_subword_force (op0
, 0, mode
);
1009 rtx op01
= operand_subword_force (op0
, 1, mode
);
1010 rtx cres
= gen_rtx_CONCAT (cmode
, gen_reg_rtx (word_mode
),
1011 gen_reg_rtx (word_mode
));
1012 tree lhs
= make_tree (ctype
, cres
);
1013 tree arg0
= make_tree (wtype
, op00
);
1014 tree arg1
= make_tree (wtype
, op01
);
1015 expand_addsub_overflow (UNKNOWN_LOCATION
, PLUS_EXPR
, lhs
, arg0
,
1016 arg1
, true, true, true, false, NULL
);
1017 sum
= expand_simple_binop (word_mode
, PLUS
, XEXP (cres
, 0),
1018 XEXP (cres
, 1), NULL_RTX
, 1,
1020 if (sum
== NULL_RTX
)
1025 /* Code below uses GEN_INT, so we need the masks to be representable
1026 in HOST_WIDE_INTs. */
1027 if (bit
>= HOST_BITS_PER_WIDE_INT
)
1029 /* If op0 is e.g. -1 or -2 unsigned, then the 2 additions might
1030 overflow. Consider 64-bit -1ULL for word size 32, if we add
1031 0x7fffffffU + 0x7fffffffU + 3U, it wraps around to 1. */
1032 if (bit
== BITS_PER_WORD
- 1)
1035 int count
= (2 * BITS_PER_WORD
+ bit
- 1) / bit
;
1036 rtx sum_corr
= NULL_RTX
;
1040 /* For signed modulo, compute it as unsigned modulo of
1041 sum with a correction added to it if OP0 is negative,
1042 such that the result can be computed as unsigned
1043 remainder + ((OP1 >> (2 * BITS_PER_WORD - 1)) & (1 - OP1). */
1044 w
= wi::min_value (2 * BITS_PER_WORD
, SIGNED
);
1045 wide_int wmod1
= wi::umod_trunc (w
, INTVAL (op1
));
1046 wide_int wmod2
= wi::smod_trunc (w
, INTVAL (op1
));
1047 /* wmod2 == -wmod1. */
1048 wmod2
= wmod2
+ (INTVAL (op1
) - 1);
1049 if (wi::ne_p (wmod1
, wmod2
))
1051 wide_int wcorr
= wmod2
- wmod1
;
1053 wcorr
= wcorr
+ INTVAL (op1
);
1054 /* Now verify if the count sums can't overflow, and punt
1056 w
= wi::mask (bit
, false, 2 * BITS_PER_WORD
);
1057 w
= w
* (count
- 1);
1058 w
= w
+ wi::mask (2 * BITS_PER_WORD
- (count
- 1) * bit
,
1059 false, 2 * BITS_PER_WORD
);
1061 w
= wi::lrshift (w
, BITS_PER_WORD
);
1062 if (wi::ne_p (w
, 0))
1065 mask
= operand_subword_force (op0
, WORDS_BIG_ENDIAN
? 0 : 1,
1067 mask
= expand_simple_binop (word_mode
, ASHIFTRT
, mask
,
1068 GEN_INT (BITS_PER_WORD
- 1),
1069 NULL_RTX
, 0, OPTAB_DIRECT
);
1070 if (mask
== NULL_RTX
)
1072 sum_corr
= immed_wide_int_const (wcorr
, word_mode
);
1073 sum_corr
= expand_simple_binop (word_mode
, AND
, mask
,
1074 sum_corr
, NULL_RTX
, 1,
1076 if (sum_corr
== NULL_RTX
)
1081 for (int i
= 0; i
< count
; i
++)
1085 v
= expand_simple_binop (mode
, LSHIFTRT
, v
, GEN_INT (i
* bit
),
1086 NULL_RTX
, 1, OPTAB_DIRECT
);
1089 v
= force_lowpart_subreg (word_mode
, v
, mode
);
1093 v
= expand_simple_binop (word_mode
, AND
, v
,
1094 GEN_INT ((HOST_WIDE_INT_1U
<< bit
)
1099 if (sum
== NULL_RTX
)
1102 sum
= expand_simple_binop (word_mode
, PLUS
, sum
, v
, NULL_RTX
,
1104 if (sum
== NULL_RTX
)
1109 sum
= expand_simple_binop (word_mode
, PLUS
, sum
, sum_corr
,
1110 NULL_RTX
, 1, OPTAB_DIRECT
);
1111 if (sum
== NULL_RTX
)
1115 rtx remainder
= expand_divmod (1, TRUNC_MOD_EXPR
, word_mode
, sum
,
1116 gen_int_mode (INTVAL (op1
), word_mode
),
1117 NULL_RTX
, 1, OPTAB_DIRECT
);
1118 if (remainder
== NULL_RTX
)
1123 if (mask
== NULL_RTX
)
1125 mask
= operand_subword_force (op0
, WORDS_BIG_ENDIAN
? 0 : 1,
1127 mask
= expand_simple_binop (word_mode
, ASHIFTRT
, mask
,
1128 GEN_INT (BITS_PER_WORD
- 1),
1129 NULL_RTX
, 0, OPTAB_DIRECT
);
1130 if (mask
== NULL_RTX
)
1133 mask
= expand_simple_binop (word_mode
, AND
, mask
,
1134 gen_int_mode (1 - INTVAL (op1
),
1136 NULL_RTX
, 1, OPTAB_DIRECT
);
1137 if (mask
== NULL_RTX
)
1139 remainder
= expand_simple_binop (word_mode
, PLUS
, remainder
,
1140 mask
, NULL_RTX
, 1, OPTAB_DIRECT
);
1141 if (remainder
== NULL_RTX
)
1145 remainder
= convert_modes (mode
, word_mode
, remainder
, unsignedp
);
1146 /* Punt if we need any library calls. */
1148 last
= NEXT_INSN (last
);
1150 last
= get_insns ();
1151 for (; last
; last
= NEXT_INSN (last
))
1159 /* Similarly to the above function, but compute both quotient and remainder.
1160 Quotient can be computed from the remainder as:
1161 rem = op0 % op1; // Handled using expand_doubleword_mod
1162 quot = (op0 - rem) * inv; // inv is multiplicative inverse of op1 modulo
1163 // 2 * BITS_PER_WORD
1165 We can also handle cases where op1 is a multiple of power of two constant
1166 and constant handled by expand_doubleword_mod.
1167 op11 = 1 << __builtin_ctz (op1);
1169 rem1 = op0 % op12; // Handled using expand_doubleword_mod
1170 quot1 = (op0 - rem1) * inv; // inv is multiplicative inverse of op12 modulo
1171 // 2 * BITS_PER_WORD
1172 rem = (quot1 % op11) * op12 + rem1;
1173 quot = quot1 / op11; */
1176 expand_doubleword_divmod (machine_mode mode
, rtx op0
, rtx op1
, rtx
*rem
,
1181 /* Negative dividend should have been optimized into positive,
1182 similarly modulo by 1 and modulo by power of two is optimized
1184 if (INTVAL (op1
) <= 1 || pow2p_hwi (INTVAL (op1
)))
1187 rtx op11
= const1_rtx
;
1189 if ((INTVAL (op1
) & 1) == 0)
1191 int bit
= ctz_hwi (INTVAL (op1
));
1192 op11
= GEN_INT (HOST_WIDE_INT_1
<< bit
);
1193 op12
= GEN_INT (INTVAL (op1
) >> bit
);
1196 rtx rem1
= expand_doubleword_mod (mode
, op0
, op12
, unsignedp
);
1197 if (rem1
== NULL_RTX
)
1200 int prec
= 2 * BITS_PER_WORD
;
1201 wide_int a
= wide_int::from (INTVAL (op12
), prec
+ 1, UNSIGNED
);
1202 wide_int b
= wi::shifted_mask (prec
, 1, false, prec
+ 1);
1203 wide_int m
= wide_int::from (wi::mod_inv (a
, b
), prec
, UNSIGNED
);
1204 rtx inv
= immed_wide_int_const (m
, mode
);
1206 rtx_insn
*last
= get_last_insn ();
1207 rtx quot1
= expand_simple_binop (mode
, MINUS
, op0
, rem1
,
1208 NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
1209 if (quot1
== NULL_RTX
)
1212 quot1
= expand_simple_binop (mode
, MULT
, quot1
, inv
,
1213 NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
1214 if (quot1
== NULL_RTX
)
1217 if (op11
!= const1_rtx
)
1219 rtx rem2
= expand_divmod (1, TRUNC_MOD_EXPR
, mode
, quot1
, op11
,
1220 NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
1221 if (rem2
== NULL_RTX
)
1224 rem2
= expand_simple_binop (mode
, MULT
, rem2
, op12
, NULL_RTX
,
1225 unsignedp
, OPTAB_DIRECT
);
1226 if (rem2
== NULL_RTX
)
1229 rem2
= expand_simple_binop (mode
, PLUS
, rem2
, rem1
, NULL_RTX
,
1230 unsignedp
, OPTAB_DIRECT
);
1231 if (rem2
== NULL_RTX
)
1234 rtx quot2
= expand_divmod (0, TRUNC_DIV_EXPR
, mode
, quot1
, op11
,
1235 NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
1236 if (quot2
== NULL_RTX
)
1243 /* Punt if we need any library calls. */
1245 last
= NEXT_INSN (last
);
1247 last
= get_insns ();
1248 for (; last
; last
= NEXT_INSN (last
))
1256 /* Wrapper around expand_binop which takes an rtx code to specify
1257 the operation to perform, not an optab pointer. All other
1258 arguments are the same. */
1260 expand_simple_binop (machine_mode mode
, enum rtx_code code
, rtx op0
,
1261 rtx op1
, rtx target
, int unsignedp
,
1262 enum optab_methods methods
)
1264 optab binop
= code_to_optab (code
);
1267 return expand_binop (mode
, binop
, op0
, op1
, target
, unsignedp
, methods
);
1270 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
1271 binop. Order them according to commutative_operand_precedence and, if
1272 possible, try to put TARGET or a pseudo first. */
1274 swap_commutative_operands_with_target (rtx target
, rtx op0
, rtx op1
)
1276 int op0_prec
= commutative_operand_precedence (op0
);
1277 int op1_prec
= commutative_operand_precedence (op1
);
1279 if (op0_prec
< op1_prec
)
1282 if (op0_prec
> op1_prec
)
1285 /* With equal precedence, both orders are ok, but it is better if the
1286 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1287 if (target
== 0 || REG_P (target
))
1288 return (REG_P (op1
) && !REG_P (op0
)) || target
== op1
;
1290 return rtx_equal_p (op1
, target
);
1293 /* Return true if BINOPTAB implements a shift operation. */
1296 shift_optab_p (optab binoptab
)
1298 switch (optab_to_code (binoptab
))
1314 /* Return true if BINOPTAB implements a commutative binary operation. */
1317 commutative_optab_p (optab binoptab
)
1319 return (GET_RTX_CLASS (optab_to_code (binoptab
)) == RTX_COMM_ARITH
1320 || binoptab
== smul_widen_optab
1321 || binoptab
== umul_widen_optab
1322 || binoptab
== smul_highpart_optab
1323 || binoptab
== umul_highpart_optab
1324 || binoptab
== vec_widen_sadd_optab
1325 || binoptab
== vec_widen_uadd_optab
1326 || binoptab
== vec_widen_sadd_hi_optab
1327 || binoptab
== vec_widen_sadd_lo_optab
1328 || binoptab
== vec_widen_uadd_hi_optab
1329 || binoptab
== vec_widen_uadd_lo_optab
1330 || binoptab
== vec_widen_sadd_even_optab
1331 || binoptab
== vec_widen_sadd_odd_optab
1332 || binoptab
== vec_widen_uadd_even_optab
1333 || binoptab
== vec_widen_uadd_odd_optab
);
1336 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
1337 optimizing, and if the operand is a constant that costs more than
1338 1 instruction, force the constant into a register and return that
1339 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1342 avoid_expensive_constant (machine_mode mode
, optab binoptab
,
1343 int opn
, rtx x
, bool unsignedp
)
1345 bool speed
= optimize_insn_for_speed_p ();
1347 if (mode
!= VOIDmode
1350 && (rtx_cost (x
, mode
, optab_to_code (binoptab
), opn
, speed
)
1351 > set_src_cost (x
, mode
, speed
)))
1353 if (CONST_INT_P (x
))
1355 HOST_WIDE_INT intval
= trunc_int_for_mode (INTVAL (x
), mode
);
1356 if (intval
!= INTVAL (x
))
1357 x
= GEN_INT (intval
);
1360 x
= convert_modes (mode
, VOIDmode
, x
, unsignedp
);
1361 x
= force_reg (mode
, x
);
1366 /* Helper function for expand_binop: handle the case where there
1367 is an insn ICODE that directly implements the indicated operation.
1368 Returns null if this is not possible. */
1370 expand_binop_directly (enum insn_code icode
, machine_mode mode
, optab binoptab
,
1372 rtx target
, int unsignedp
, enum optab_methods methods
,
1375 machine_mode xmode0
= insn_data
[(int) icode
].operand
[1].mode
;
1376 machine_mode xmode1
= insn_data
[(int) icode
].operand
[2].mode
;
1377 machine_mode mode0
, mode1
, tmp_mode
;
1378 class expand_operand ops
[3];
1381 rtx xop0
= op0
, xop1
= op1
;
1382 bool canonicalize_op1
= false;
1384 /* If it is a commutative operator and the modes would match
1385 if we would swap the operands, we can save the conversions. */
1386 commutative_p
= commutative_optab_p (binoptab
);
1388 && GET_MODE (xop0
) != xmode0
&& GET_MODE (xop1
) != xmode1
1389 && GET_MODE (xop0
) == xmode1
&& GET_MODE (xop1
) == xmode0
)
1390 std::swap (xop0
, xop1
);
1392 /* If we are optimizing, force expensive constants into a register. */
1393 xop0
= avoid_expensive_constant (xmode0
, binoptab
, 0, xop0
, unsignedp
);
1394 if (!shift_optab_p (binoptab
))
1395 xop1
= avoid_expensive_constant (xmode1
, binoptab
, 1, xop1
, unsignedp
);
1397 /* Shifts and rotates often use a different mode for op1 from op0;
1398 for VOIDmode constants we don't know the mode, so force it
1399 to be canonicalized using convert_modes. */
1400 canonicalize_op1
= true;
1402 /* In case the insn wants input operands in modes different from
1403 those of the actual operands, convert the operands. It would
1404 seem that we don't need to convert CONST_INTs, but we do, so
1405 that they're properly zero-extended, sign-extended or truncated
1408 mode0
= GET_MODE (xop0
) != VOIDmode
? GET_MODE (xop0
) : mode
;
1409 if (xmode0
!= VOIDmode
&& xmode0
!= mode0
)
1411 xop0
= convert_modes (xmode0
, mode0
, xop0
, unsignedp
);
1415 mode1
= ((GET_MODE (xop1
) != VOIDmode
|| canonicalize_op1
)
1416 ? GET_MODE (xop1
) : mode
);
1417 if (xmode1
!= VOIDmode
&& xmode1
!= mode1
)
1419 xop1
= convert_modes (xmode1
, mode1
, xop1
, unsignedp
);
1423 /* If operation is commutative,
1424 try to make the first operand a register.
1425 Even better, try to make it the same as the target.
1426 Also try to make the last operand a constant. */
1428 && swap_commutative_operands_with_target (target
, xop0
, xop1
))
1429 std::swap (xop0
, xop1
);
1431 /* Now, if insn's predicates don't allow our operands, put them into
1434 if (binoptab
== vec_pack_trunc_optab
1435 || binoptab
== vec_pack_usat_optab
1436 || binoptab
== vec_pack_ssat_optab
1437 || binoptab
== vec_pack_ufix_trunc_optab
1438 || binoptab
== vec_pack_sfix_trunc_optab
1439 || binoptab
== vec_packu_float_optab
1440 || binoptab
== vec_packs_float_optab
)
1442 /* The mode of the result is different then the mode of the
1444 tmp_mode
= insn_data
[(int) icode
].operand
[0].mode
;
1445 if (VECTOR_MODE_P (mode
)
1446 && maybe_ne (GET_MODE_NUNITS (tmp_mode
), 2 * GET_MODE_NUNITS (mode
)))
1448 delete_insns_since (last
);
1455 create_output_operand (&ops
[0], target
, tmp_mode
);
1456 create_input_operand (&ops
[1], xop0
, mode0
);
1457 create_input_operand (&ops
[2], xop1
, mode1
);
1458 pat
= maybe_gen_insn (icode
, 3, ops
);
1461 /* If PAT is composed of more than one insn, try to add an appropriate
1462 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1463 operand, call expand_binop again, this time without a target. */
1464 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
1465 && ! add_equal_note (pat
, ops
[0].value
,
1466 optab_to_code (binoptab
),
1467 ops
[1].value
, ops
[2].value
, mode0
))
1469 delete_insns_since (last
);
1470 return expand_binop (mode
, binoptab
, op0
, op1
, NULL_RTX
,
1471 unsignedp
, methods
);
1475 return ops
[0].value
;
1477 delete_insns_since (last
);
1481 /* Generate code to perform an operation specified by BINOPTAB
1482 on operands OP0 and OP1, with result having machine-mode MODE.
1484 UNSIGNEDP is for the case where we have to widen the operands
1485 to perform the operation. It says to use zero-extension.
1487 If TARGET is nonzero, the value
1488 is generated there, if it is convenient to do so.
1489 In all cases an rtx is returned for the locus of the value;
1490 this may or may not be TARGET. */
1493 expand_binop (machine_mode mode
, optab binoptab
, rtx op0
, rtx op1
,
1494 rtx target
, int unsignedp
, enum optab_methods methods
)
1496 enum optab_methods next_methods
1497 = (methods
== OPTAB_LIB
|| methods
== OPTAB_LIB_WIDEN
1498 ? OPTAB_WIDEN
: methods
);
1499 enum mode_class mclass
;
1500 enum insn_code icode
;
1501 machine_mode wider_mode
;
1502 scalar_int_mode int_mode
;
1505 rtx_insn
*entry_last
= get_last_insn ();
1508 mclass
= GET_MODE_CLASS (mode
);
1510 /* If subtracting an integer constant, convert this into an addition of
1511 the negated constant. */
1513 if (binoptab
== sub_optab
&& CONST_INT_P (op1
))
1515 op1
= negate_rtx (mode
, op1
);
1516 binoptab
= add_optab
;
1518 /* For shifts, constant invalid op1 might be expanded from different
1519 mode than MODE. As those are invalid, force them to a register
1520 to avoid further problems during expansion. */
1521 else if (CONST_INT_P (op1
)
1522 && shift_optab_p (binoptab
)
1523 && UINTVAL (op1
) >= GET_MODE_BITSIZE (GET_MODE_INNER (mode
)))
1525 op1
= gen_int_mode (INTVAL (op1
), GET_MODE_INNER (mode
));
1526 op1
= force_reg (GET_MODE_INNER (mode
), op1
);
1529 /* Record where to delete back to if we backtrack. */
1530 last
= get_last_insn ();
1532 /* If we can do it with a three-operand insn, do so. */
1534 if (methods
!= OPTAB_MUST_WIDEN
)
1536 if (convert_optab_p (binoptab
))
1538 machine_mode from_mode
= widened_mode (mode
, op0
, op1
);
1539 icode
= find_widening_optab_handler (binoptab
, mode
, from_mode
);
1542 icode
= optab_handler (binoptab
, mode
);
1543 if (icode
!= CODE_FOR_nothing
)
1545 temp
= expand_binop_directly (icode
, mode
, binoptab
, op0
, op1
,
1546 target
, unsignedp
, methods
, last
);
1552 /* If we were trying to rotate, and that didn't work, try rotating
1553 the other direction before falling back to shifts and bitwise-or. */
1554 if (((binoptab
== rotl_optab
1555 && (icode
= optab_handler (rotr_optab
, mode
)) != CODE_FOR_nothing
)
1556 || (binoptab
== rotr_optab
1557 && (icode
= optab_handler (rotl_optab
, mode
)) != CODE_FOR_nothing
))
1558 && is_int_mode (mode
, &int_mode
))
1560 optab otheroptab
= (binoptab
== rotl_optab
? rotr_optab
: rotl_optab
);
1562 unsigned int bits
= GET_MODE_PRECISION (int_mode
);
1564 if (CONST_INT_P (op1
))
1565 newop1
= gen_int_shift_amount (int_mode
, bits
- INTVAL (op1
));
1566 else if (targetm
.shift_truncation_mask (int_mode
) == bits
- 1)
1567 newop1
= negate_rtx (GET_MODE (op1
), op1
);
1569 newop1
= expand_binop (GET_MODE (op1
), sub_optab
,
1570 gen_int_mode (bits
, GET_MODE (op1
)), op1
,
1571 NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
1573 temp
= expand_binop_directly (icode
, int_mode
, otheroptab
, op0
, newop1
,
1574 target
, unsignedp
, methods
, last
);
1579 /* If this is a multiply, see if we can do a widening operation that
1580 takes operands of this mode and makes a wider mode. */
1582 if (binoptab
== smul_optab
1583 && GET_MODE_2XWIDER_MODE (mode
).exists (&wider_mode
)
1584 && (convert_optab_handler ((unsignedp
1586 : smul_widen_optab
),
1587 wider_mode
, mode
) != CODE_FOR_nothing
))
1589 /* *_widen_optab needs to determine operand mode, make sure at least
1590 one operand has non-VOID mode. */
1591 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
1592 op0
= force_reg (mode
, op0
);
1593 temp
= expand_binop (wider_mode
,
1594 unsignedp
? umul_widen_optab
: smul_widen_optab
,
1595 op0
, op1
, NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
1599 if (GET_MODE_CLASS (mode
) == MODE_INT
1600 && TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (temp
)))
1601 return gen_lowpart (mode
, temp
);
1603 return convert_to_mode (mode
, temp
, unsignedp
);
1607 /* If this is a vector shift by a scalar, see if we can do a vector
1608 shift by a vector. If so, broadcast the scalar into a vector. */
1609 if (mclass
== MODE_VECTOR_INT
)
1611 optab otheroptab
= unknown_optab
;
1613 if (binoptab
== ashl_optab
)
1614 otheroptab
= vashl_optab
;
1615 else if (binoptab
== ashr_optab
)
1616 otheroptab
= vashr_optab
;
1617 else if (binoptab
== lshr_optab
)
1618 otheroptab
= vlshr_optab
;
1619 else if (binoptab
== rotl_optab
)
1620 otheroptab
= vrotl_optab
;
1621 else if (binoptab
== rotr_optab
)
1622 otheroptab
= vrotr_optab
;
1625 && (icode
= optab_handler (otheroptab
, mode
)) != CODE_FOR_nothing
)
1627 /* The scalar may have been extended to be too wide. Truncate
1628 it back to the proper size to fit in the broadcast vector. */
1629 scalar_mode inner_mode
= GET_MODE_INNER (mode
);
1630 if (!CONST_INT_P (op1
)
1631 && (GET_MODE_BITSIZE (as_a
<scalar_int_mode
> (GET_MODE (op1
)))
1632 > GET_MODE_BITSIZE (inner_mode
)))
1633 op1
= force_reg (inner_mode
,
1634 simplify_gen_unary (TRUNCATE
, inner_mode
, op1
,
1636 rtx vop1
= expand_vector_broadcast (mode
, op1
);
1639 temp
= expand_binop_directly (icode
, mode
, otheroptab
, op0
, vop1
,
1640 target
, unsignedp
, methods
, last
);
1647 /* Look for a wider mode of the same class for which we think we
1648 can open-code the operation. Check for a widening multiply at the
1649 wider mode as well. */
1651 if (CLASS_HAS_WIDER_MODES_P (mclass
)
1652 && methods
!= OPTAB_DIRECT
&& methods
!= OPTAB_LIB
)
1653 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
1655 machine_mode next_mode
;
1656 if (optab_handler (binoptab
, wider_mode
) != CODE_FOR_nothing
1657 || (binoptab
== smul_optab
1658 && GET_MODE_WIDER_MODE (wider_mode
).exists (&next_mode
)
1659 && (find_widening_optab_handler ((unsignedp
1661 : smul_widen_optab
),
1663 != CODE_FOR_nothing
)))
1665 rtx xop0
= op0
, xop1
= op1
;
1666 bool no_extend
= false;
1668 /* For certain integer operations, we need not actually extend
1669 the narrow operands, as long as we will truncate
1670 the results to the same narrowness. */
1672 if ((binoptab
== ior_optab
|| binoptab
== and_optab
1673 || binoptab
== xor_optab
1674 || binoptab
== add_optab
|| binoptab
== sub_optab
1675 || binoptab
== smul_optab
|| binoptab
== ashl_optab
)
1676 && mclass
== MODE_INT
)
1679 xop0
= avoid_expensive_constant (mode
, binoptab
, 0,
1681 if (binoptab
!= ashl_optab
)
1682 xop1
= avoid_expensive_constant (mode
, binoptab
, 1,
1686 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
, no_extend
);
1688 /* The second operand of a shift must always be extended. */
1689 xop1
= widen_operand (xop1
, wider_mode
, mode
, unsignedp
,
1690 no_extend
&& binoptab
!= ashl_optab
);
1692 temp
= expand_binop (wider_mode
, binoptab
, xop0
, xop1
, NULL_RTX
,
1693 unsignedp
, OPTAB_DIRECT
);
1696 if (mclass
!= MODE_INT
1697 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
1700 target
= gen_reg_rtx (mode
);
1701 convert_move (target
, temp
, 0);
1705 return gen_lowpart (mode
, temp
);
1708 delete_insns_since (last
);
1712 /* If operation is commutative,
1713 try to make the first operand a register.
1714 Even better, try to make it the same as the target.
1715 Also try to make the last operand a constant. */
1716 if (commutative_optab_p (binoptab
)
1717 && swap_commutative_operands_with_target (target
, op0
, op1
))
1718 std::swap (op0
, op1
);
1720 /* These can be done a word at a time. */
1721 if ((binoptab
== and_optab
|| binoptab
== ior_optab
|| binoptab
== xor_optab
)
1722 && is_int_mode (mode
, &int_mode
)
1723 && GET_MODE_SIZE (int_mode
) > UNITS_PER_WORD
1724 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
)
1729 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1730 won't be accurate, so use a new target. */
1734 || reg_overlap_mentioned_p (target
, op0
)
1735 || reg_overlap_mentioned_p (target
, op1
)
1736 || !valid_multiword_target_p (target
))
1737 target
= gen_reg_rtx (int_mode
);
1741 /* Do the actual arithmetic. */
1742 machine_mode op0_mode
= GET_MODE (op0
);
1743 machine_mode op1_mode
= GET_MODE (op1
);
1744 if (op0_mode
== VOIDmode
)
1745 op0_mode
= int_mode
;
1746 if (op1_mode
== VOIDmode
)
1747 op1_mode
= int_mode
;
1748 for (i
= 0; i
< GET_MODE_BITSIZE (int_mode
) / BITS_PER_WORD
; i
++)
1750 rtx target_piece
= operand_subword (target
, i
, 1, int_mode
);
1751 rtx x
= expand_binop (word_mode
, binoptab
,
1752 operand_subword_force (op0
, i
, op0_mode
),
1753 operand_subword_force (op1
, i
, op1_mode
),
1754 target_piece
, unsignedp
, next_methods
);
1759 if (target_piece
!= x
)
1760 emit_move_insn (target_piece
, x
);
1763 insns
= get_insns ();
1766 if (i
== GET_MODE_BITSIZE (int_mode
) / BITS_PER_WORD
)
1773 /* Synthesize double word shifts from single word shifts. */
1774 if ((binoptab
== lshr_optab
|| binoptab
== ashl_optab
1775 || binoptab
== ashr_optab
)
1776 && is_int_mode (mode
, &int_mode
)
1777 && (CONST_INT_P (op1
) || optimize_insn_for_speed_p ())
1778 && GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
1779 && GET_MODE_PRECISION (int_mode
) == GET_MODE_BITSIZE (int_mode
)
1780 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
1781 && optab_handler (ashl_optab
, word_mode
) != CODE_FOR_nothing
1782 && optab_handler (lshr_optab
, word_mode
) != CODE_FOR_nothing
)
1784 unsigned HOST_WIDE_INT shift_mask
, double_shift_mask
;
1785 scalar_int_mode op1_mode
;
1787 double_shift_mask
= targetm
.shift_truncation_mask (int_mode
);
1788 shift_mask
= targetm
.shift_truncation_mask (word_mode
);
1789 op1_mode
= (GET_MODE (op1
) != VOIDmode
1790 ? as_a
<scalar_int_mode
> (GET_MODE (op1
))
1793 /* Apply the truncation to constant shifts. */
1794 if (double_shift_mask
> 0 && CONST_INT_P (op1
))
1795 op1
= gen_int_mode (INTVAL (op1
) & double_shift_mask
, op1_mode
);
1797 if (op1
== CONST0_RTX (op1_mode
))
1800 /* Make sure that this is a combination that expand_doubleword_shift
1801 can handle. See the comments there for details. */
1802 if (double_shift_mask
== 0
1803 || (shift_mask
== BITS_PER_WORD
- 1
1804 && double_shift_mask
== BITS_PER_WORD
* 2 - 1))
1807 rtx into_target
, outof_target
;
1808 rtx into_input
, outof_input
;
1809 int left_shift
, outof_word
;
1811 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1812 won't be accurate, so use a new target. */
1816 || reg_overlap_mentioned_p (target
, op0
)
1817 || reg_overlap_mentioned_p (target
, op1
)
1818 || !valid_multiword_target_p (target
))
1819 target
= gen_reg_rtx (int_mode
);
1823 /* OUTOF_* is the word we are shifting bits away from, and
1824 INTO_* is the word that we are shifting bits towards, thus
1825 they differ depending on the direction of the shift and
1826 WORDS_BIG_ENDIAN. */
1828 left_shift
= binoptab
== ashl_optab
;
1829 outof_word
= left_shift
^ ! WORDS_BIG_ENDIAN
;
1831 outof_target
= operand_subword (target
, outof_word
, 1, int_mode
);
1832 into_target
= operand_subword (target
, 1 - outof_word
, 1, int_mode
);
1834 outof_input
= operand_subword_force (op0
, outof_word
, int_mode
);
1835 into_input
= operand_subword_force (op0
, 1 - outof_word
, int_mode
);
1837 if (expand_doubleword_shift (op1_mode
, binoptab
,
1838 outof_input
, into_input
, op1
,
1839 outof_target
, into_target
,
1840 unsignedp
, next_methods
, shift_mask
))
1842 insns
= get_insns ();
1852 /* Synthesize double word rotates from single word shifts. */
1853 if ((binoptab
== rotl_optab
|| binoptab
== rotr_optab
)
1854 && is_int_mode (mode
, &int_mode
)
1855 && CONST_INT_P (op1
)
1856 && GET_MODE_PRECISION (int_mode
) == 2 * BITS_PER_WORD
1857 && optab_handler (ashl_optab
, word_mode
) != CODE_FOR_nothing
1858 && optab_handler (lshr_optab
, word_mode
) != CODE_FOR_nothing
)
1861 rtx into_target
, outof_target
;
1862 rtx into_input
, outof_input
;
1864 int shift_count
, left_shift
, outof_word
;
1866 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1867 won't be accurate, so use a new target. Do this also if target is not
1868 a REG, first because having a register instead may open optimization
1869 opportunities, and second because if target and op0 happen to be MEMs
1870 designating the same location, we would risk clobbering it too early
1871 in the code sequence we generate below. */
1876 || reg_overlap_mentioned_p (target
, op0
)
1877 || reg_overlap_mentioned_p (target
, op1
)
1878 || !valid_multiword_target_p (target
))
1879 target
= gen_reg_rtx (int_mode
);
1883 shift_count
= INTVAL (op1
);
1885 /* OUTOF_* is the word we are shifting bits away from, and
1886 INTO_* is the word that we are shifting bits towards, thus
1887 they differ depending on the direction of the shift and
1888 WORDS_BIG_ENDIAN. */
1890 left_shift
= (binoptab
== rotl_optab
);
1891 outof_word
= left_shift
^ ! WORDS_BIG_ENDIAN
;
1893 outof_target
= operand_subword (target
, outof_word
, 1, int_mode
);
1894 into_target
= operand_subword (target
, 1 - outof_word
, 1, int_mode
);
1896 outof_input
= operand_subword_force (op0
, outof_word
, int_mode
);
1897 into_input
= operand_subword_force (op0
, 1 - outof_word
, int_mode
);
1899 if (shift_count
== BITS_PER_WORD
)
1901 /* This is just a word swap. */
1902 emit_move_insn (outof_target
, into_input
);
1903 emit_move_insn (into_target
, outof_input
);
1908 rtx into_temp1
, into_temp2
, outof_temp1
, outof_temp2
;
1909 HOST_WIDE_INT first_shift_count
, second_shift_count
;
1910 optab reverse_unsigned_shift
, unsigned_shift
;
1912 reverse_unsigned_shift
= (left_shift
^ (shift_count
< BITS_PER_WORD
)
1913 ? lshr_optab
: ashl_optab
);
1915 unsigned_shift
= (left_shift
^ (shift_count
< BITS_PER_WORD
)
1916 ? ashl_optab
: lshr_optab
);
1918 if (shift_count
> BITS_PER_WORD
)
1920 first_shift_count
= shift_count
- BITS_PER_WORD
;
1921 second_shift_count
= 2 * BITS_PER_WORD
- shift_count
;
1925 first_shift_count
= BITS_PER_WORD
- shift_count
;
1926 second_shift_count
= shift_count
;
1928 rtx first_shift_count_rtx
1929 = gen_int_shift_amount (word_mode
, first_shift_count
);
1930 rtx second_shift_count_rtx
1931 = gen_int_shift_amount (word_mode
, second_shift_count
);
1933 into_temp1
= expand_binop (word_mode
, unsigned_shift
,
1934 outof_input
, first_shift_count_rtx
,
1935 NULL_RTX
, unsignedp
, next_methods
);
1936 into_temp2
= expand_binop (word_mode
, reverse_unsigned_shift
,
1937 into_input
, second_shift_count_rtx
,
1938 NULL_RTX
, unsignedp
, next_methods
);
1940 if (into_temp1
!= 0 && into_temp2
!= 0)
1941 inter
= expand_binop (word_mode
, add_optab
, into_temp1
, into_temp2
,
1942 into_target
, unsignedp
, next_methods
);
1946 if (inter
!= 0 && inter
!= into_target
)
1947 emit_move_insn (into_target
, inter
);
1949 outof_temp1
= expand_binop (word_mode
, unsigned_shift
,
1950 into_input
, first_shift_count_rtx
,
1951 NULL_RTX
, unsignedp
, next_methods
);
1952 outof_temp2
= expand_binop (word_mode
, reverse_unsigned_shift
,
1953 outof_input
, second_shift_count_rtx
,
1954 NULL_RTX
, unsignedp
, next_methods
);
1956 if (inter
!= 0 && outof_temp1
!= 0 && outof_temp2
!= 0)
1957 inter
= expand_binop (word_mode
, add_optab
,
1958 outof_temp1
, outof_temp2
,
1959 outof_target
, unsignedp
, next_methods
);
1961 if (inter
!= 0 && inter
!= outof_target
)
1962 emit_move_insn (outof_target
, inter
);
1965 insns
= get_insns ();
1975 /* These can be done a word at a time by propagating carries. */
1976 if ((binoptab
== add_optab
|| binoptab
== sub_optab
)
1977 && is_int_mode (mode
, &int_mode
)
1978 && GET_MODE_SIZE (int_mode
) >= 2 * UNITS_PER_WORD
1979 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
)
1982 optab otheroptab
= binoptab
== add_optab
? sub_optab
: add_optab
;
1983 const unsigned int nwords
= GET_MODE_BITSIZE (int_mode
) / BITS_PER_WORD
;
1984 rtx carry_in
= NULL_RTX
, carry_out
= NULL_RTX
;
1985 rtx xop0
, xop1
, xtarget
;
1987 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1988 value is one of those, use it. Otherwise, use 1 since it is the
1989 one easiest to get. */
1990 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1991 int normalizep
= STORE_FLAG_VALUE
;
1996 /* Prepare the operands. */
1997 xop0
= force_reg (int_mode
, op0
);
1998 xop1
= force_reg (int_mode
, op1
);
2000 xtarget
= gen_reg_rtx (int_mode
);
2002 if (target
== 0 || !REG_P (target
) || !valid_multiword_target_p (target
))
2005 /* Indicate for flow that the entire target reg is being set. */
2007 emit_clobber (xtarget
);
2009 /* Do the actual arithmetic. */
2010 for (i
= 0; i
< nwords
; i
++)
2012 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
2013 rtx target_piece
= operand_subword (xtarget
, index
, 1, int_mode
);
2014 rtx op0_piece
= operand_subword_force (xop0
, index
, int_mode
);
2015 rtx op1_piece
= operand_subword_force (xop1
, index
, int_mode
);
2018 /* Main add/subtract of the input operands. */
2019 x
= expand_binop (word_mode
, binoptab
,
2020 op0_piece
, op1_piece
,
2021 target_piece
, unsignedp
, next_methods
);
2027 /* Store carry from main add/subtract. */
2028 carry_out
= gen_reg_rtx (word_mode
);
2029 carry_out
= emit_store_flag_force (carry_out
,
2030 (binoptab
== add_optab
2033 word_mode
, 1, normalizep
);
2040 /* Add/subtract previous carry to main result. */
2041 newx
= expand_binop (word_mode
,
2042 normalizep
== 1 ? binoptab
: otheroptab
,
2044 NULL_RTX
, 1, next_methods
);
2048 /* Get out carry from adding/subtracting carry in. */
2049 rtx carry_tmp
= gen_reg_rtx (word_mode
);
2050 carry_tmp
= emit_store_flag_force (carry_tmp
,
2051 (binoptab
== add_optab
2054 word_mode
, 1, normalizep
);
2056 /* Logical-ior the two poss. carry together. */
2057 carry_out
= expand_binop (word_mode
, ior_optab
,
2058 carry_out
, carry_tmp
,
2059 carry_out
, 0, next_methods
);
2063 emit_move_insn (target_piece
, newx
);
2067 if (x
!= target_piece
)
2068 emit_move_insn (target_piece
, x
);
2071 carry_in
= carry_out
;
2074 if (i
== GET_MODE_BITSIZE (int_mode
) / (unsigned) BITS_PER_WORD
)
2076 if (optab_handler (mov_optab
, int_mode
) != CODE_FOR_nothing
2077 || ! rtx_equal_p (target
, xtarget
))
2079 rtx_insn
*temp
= emit_move_insn (target
, xtarget
);
2081 set_dst_reg_note (temp
, REG_EQUAL
,
2082 gen_rtx_fmt_ee (optab_to_code (binoptab
),
2083 int_mode
, copy_rtx (xop0
),
2094 delete_insns_since (last
);
2097 /* Attempt to synthesize double word multiplies using a sequence of word
2098 mode multiplications. We first attempt to generate a sequence using a
2099 more efficient unsigned widening multiply, and if that fails we then
2100 try using a signed widening multiply. */
2102 if (binoptab
== smul_optab
2103 && is_int_mode (mode
, &int_mode
)
2104 && GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
2105 && optab_handler (smul_optab
, word_mode
) != CODE_FOR_nothing
2106 && optab_handler (add_optab
, word_mode
) != CODE_FOR_nothing
)
2108 rtx product
= NULL_RTX
;
2109 if (convert_optab_handler (umul_widen_optab
, int_mode
, word_mode
)
2110 != CODE_FOR_nothing
)
2112 product
= expand_doubleword_mult (int_mode
, op0
, op1
, target
,
2115 delete_insns_since (last
);
2118 if (product
== NULL_RTX
2119 && (convert_optab_handler (smul_widen_optab
, int_mode
, word_mode
)
2120 != CODE_FOR_nothing
))
2122 product
= expand_doubleword_mult (int_mode
, op0
, op1
, target
,
2125 delete_insns_since (last
);
2128 if (product
!= NULL_RTX
)
2130 if (optab_handler (mov_optab
, int_mode
) != CODE_FOR_nothing
)
2132 rtx_insn
*move
= emit_move_insn (target
? target
: product
,
2134 set_dst_reg_note (move
,
2136 gen_rtx_fmt_ee (MULT
, int_mode
,
2139 target
? target
: product
);
2145 /* Attempt to synthetize double word modulo by constant divisor. */
2146 if ((binoptab
== umod_optab
2147 || binoptab
== smod_optab
2148 || binoptab
== udiv_optab
2149 || binoptab
== sdiv_optab
)
2151 && CONST_INT_P (op1
)
2152 && is_int_mode (mode
, &int_mode
)
2153 && GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
2154 && optab_handler ((binoptab
== umod_optab
|| binoptab
== udiv_optab
)
2155 ? udivmod_optab
: sdivmod_optab
,
2156 int_mode
) == CODE_FOR_nothing
2157 && optab_handler (and_optab
, word_mode
) != CODE_FOR_nothing
2158 && optab_handler (add_optab
, word_mode
) != CODE_FOR_nothing
2159 && optimize_insn_for_speed_p ())
2162 if ((binoptab
== umod_optab
|| binoptab
== smod_optab
)
2163 && (INTVAL (op1
) & 1) == 0)
2164 res
= expand_doubleword_mod (int_mode
, op0
, op1
,
2165 binoptab
== umod_optab
);
2168 rtx quot
= expand_doubleword_divmod (int_mode
, op0
, op1
, &res
,
2169 binoptab
== umod_optab
2170 || binoptab
== udiv_optab
);
2171 if (quot
== NULL_RTX
)
2173 else if (binoptab
== udiv_optab
|| binoptab
== sdiv_optab
)
2176 if (res
!= NULL_RTX
)
2178 if (optab_handler (mov_optab
, int_mode
) != CODE_FOR_nothing
)
2180 rtx_insn
*move
= emit_move_insn (target
? target
: res
,
2182 set_dst_reg_note (move
, REG_EQUAL
,
2183 gen_rtx_fmt_ee (optab_to_code (binoptab
),
2184 int_mode
, copy_rtx (op0
), op1
),
2185 target
? target
: res
);
2190 delete_insns_since (last
);
2193 /* It can't be open-coded in this mode.
2194 Use a library call if one is available and caller says that's ok. */
2196 libfunc
= optab_libfunc (binoptab
, mode
);
2198 && (methods
== OPTAB_LIB
|| methods
== OPTAB_LIB_WIDEN
))
2202 machine_mode op1_mode
= mode
;
2207 if (shift_optab_p (binoptab
))
2209 op1_mode
= targetm
.libgcc_shift_count_mode ();
2210 /* Specify unsigned here,
2211 since negative shift counts are meaningless. */
2212 op1x
= convert_to_mode (op1_mode
, op1
, 1);
2215 if (GET_MODE (op0
) != VOIDmode
2216 && GET_MODE (op0
) != mode
)
2217 op0
= convert_to_mode (mode
, op0
, unsignedp
);
2219 /* Pass 1 for NO_QUEUE so we don't lose any increments
2220 if the libcall is cse'd or moved. */
2221 value
= emit_library_call_value (libfunc
,
2222 NULL_RTX
, LCT_CONST
, mode
,
2223 op0
, mode
, op1x
, op1_mode
);
2225 insns
= get_insns ();
2228 bool trapv
= trapv_binoptab_p (binoptab
);
2229 target
= gen_reg_rtx (mode
);
2230 emit_libcall_block_1 (insns
, target
, value
,
2232 : gen_rtx_fmt_ee (optab_to_code (binoptab
),
2233 mode
, op0
, op1
), trapv
);
2238 delete_insns_since (last
);
2240 /* It can't be done in this mode. Can we do it in a wider mode? */
2242 if (! (methods
== OPTAB_WIDEN
|| methods
== OPTAB_LIB_WIDEN
2243 || methods
== OPTAB_MUST_WIDEN
))
2245 /* Caller says, don't even try. */
2246 delete_insns_since (entry_last
);
2250 /* Compute the value of METHODS to pass to recursive calls.
2251 Don't allow widening to be tried recursively. */
2253 methods
= (methods
== OPTAB_LIB_WIDEN
? OPTAB_LIB
: OPTAB_DIRECT
);
2255 /* Look for a wider mode of the same class for which it appears we can do
2258 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2260 /* This code doesn't make sense for conversion optabs, since we
2261 wouldn't then want to extend the operands to be the same size
2263 gcc_assert (!convert_optab_p (binoptab
));
2264 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
2266 if (optab_handler (binoptab
, wider_mode
)
2267 || (methods
== OPTAB_LIB
2268 && optab_libfunc (binoptab
, wider_mode
)))
2270 rtx xop0
= op0
, xop1
= op1
;
2271 bool no_extend
= false;
2273 /* For certain integer operations, we need not actually extend
2274 the narrow operands, as long as we will truncate
2275 the results to the same narrowness. */
2277 if ((binoptab
== ior_optab
|| binoptab
== and_optab
2278 || binoptab
== xor_optab
2279 || binoptab
== add_optab
|| binoptab
== sub_optab
2280 || binoptab
== smul_optab
|| binoptab
== ashl_optab
)
2281 && mclass
== MODE_INT
)
2284 xop0
= widen_operand (xop0
, wider_mode
, mode
,
2285 unsignedp
, no_extend
);
2287 /* The second operand of a shift must always be extended. */
2288 xop1
= widen_operand (xop1
, wider_mode
, mode
, unsignedp
,
2289 no_extend
&& binoptab
!= ashl_optab
);
2291 temp
= expand_binop (wider_mode
, binoptab
, xop0
, xop1
, NULL_RTX
,
2292 unsignedp
, methods
);
2295 if (mclass
!= MODE_INT
2296 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
2299 target
= gen_reg_rtx (mode
);
2300 convert_move (target
, temp
, 0);
2304 return gen_lowpart (mode
, temp
);
2307 delete_insns_since (last
);
2312 delete_insns_since (entry_last
);
2316 /* Expand a binary operator which has both signed and unsigned forms.
2317 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2320 If we widen unsigned operands, we may use a signed wider operation instead
2321 of an unsigned wider operation, since the result would be the same. */
2324 sign_expand_binop (machine_mode mode
, optab uoptab
, optab soptab
,
2325 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
2326 enum optab_methods methods
)
2329 optab direct_optab
= unsignedp
? uoptab
: soptab
;
2332 /* Do it without widening, if possible. */
2333 temp
= expand_binop (mode
, direct_optab
, op0
, op1
, target
,
2334 unsignedp
, OPTAB_DIRECT
);
2335 if (temp
|| methods
== OPTAB_DIRECT
)
2338 /* Try widening to a signed int. Disable any direct use of any
2339 signed insn in the current mode. */
2340 save_enable
= swap_optab_enable (soptab
, mode
, false);
2342 temp
= expand_binop (mode
, soptab
, op0
, op1
, target
,
2343 unsignedp
, OPTAB_WIDEN
);
2345 /* For unsigned operands, try widening to an unsigned int. */
2346 if (!temp
&& unsignedp
)
2347 temp
= expand_binop (mode
, uoptab
, op0
, op1
, target
,
2348 unsignedp
, OPTAB_WIDEN
);
2349 if (temp
|| methods
== OPTAB_WIDEN
)
2352 /* Use the right width libcall if that exists. */
2353 temp
= expand_binop (mode
, direct_optab
, op0
, op1
, target
,
2354 unsignedp
, OPTAB_LIB
);
2355 if (temp
|| methods
== OPTAB_LIB
)
2358 /* Must widen and use a libcall, use either signed or unsigned. */
2359 temp
= expand_binop (mode
, soptab
, op0
, op1
, target
,
2360 unsignedp
, methods
);
2361 if (!temp
&& unsignedp
)
2362 temp
= expand_binop (mode
, uoptab
, op0
, op1
, target
,
2363 unsignedp
, methods
);
2366 /* Undo the fiddling above. */
2368 swap_optab_enable (soptab
, mode
, true);
2372 /* Generate code to perform an operation specified by UNOPPTAB
2373 on operand OP0, with two results to TARG0 and TARG1.
2374 We assume that the order of the operands for the instruction
2375 is TARG0, TARG1, OP0.
2377 Either TARG0 or TARG1 may be zero, but what that means is that
2378 the result is not actually wanted. We will generate it into
2379 a dummy pseudo-reg and discard it. They may not both be zero.
2381 Returns true if this operation can be performed; false if not. */
2384 expand_twoval_unop (optab unoptab
, rtx op0
, rtx targ0
, rtx targ1
,
2387 machine_mode mode
= GET_MODE (targ0
? targ0
: targ1
);
2388 enum mode_class mclass
;
2389 machine_mode wider_mode
;
2390 rtx_insn
*entry_last
= get_last_insn ();
2393 mclass
= GET_MODE_CLASS (mode
);
2396 targ0
= gen_reg_rtx (mode
);
2398 targ1
= gen_reg_rtx (mode
);
2400 /* Record where to go back to if we fail. */
2401 last
= get_last_insn ();
2403 if (optab_handler (unoptab
, mode
) != CODE_FOR_nothing
)
2405 class expand_operand ops
[3];
2406 enum insn_code icode
= optab_handler (unoptab
, mode
);
2408 create_fixed_operand (&ops
[0], targ0
);
2409 create_fixed_operand (&ops
[1], targ1
);
2410 create_convert_operand_from (&ops
[2], op0
, mode
, unsignedp
);
2411 if (maybe_expand_insn (icode
, 3, ops
))
2415 /* It can't be done in this mode. Can we do it in a wider mode? */
2417 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2419 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
2421 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
)
2423 rtx t0
= gen_reg_rtx (wider_mode
);
2424 rtx t1
= gen_reg_rtx (wider_mode
);
2425 rtx cop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
2427 if (expand_twoval_unop (unoptab
, cop0
, t0
, t1
, unsignedp
))
2429 convert_move (targ0
, t0
, unsignedp
);
2430 convert_move (targ1
, t1
, unsignedp
);
2434 delete_insns_since (last
);
2439 delete_insns_since (entry_last
);
2443 /* Generate code to perform an operation specified by BINOPTAB
2444 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2445 We assume that the order of the operands for the instruction
2446 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2447 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2449 Either TARG0 or TARG1 may be zero, but what that means is that
2450 the result is not actually wanted. We will generate it into
2451 a dummy pseudo-reg and discard it. They may not both be zero.
2453 Returns true if this operation can be performed; false if not. */
2456 expand_twoval_binop (optab binoptab
, rtx op0
, rtx op1
, rtx targ0
, rtx targ1
,
2459 machine_mode mode
= GET_MODE (targ0
? targ0
: targ1
);
2460 enum mode_class mclass
;
2461 machine_mode wider_mode
;
2462 rtx_insn
*entry_last
= get_last_insn ();
2465 mclass
= GET_MODE_CLASS (mode
);
2468 targ0
= gen_reg_rtx (mode
);
2470 targ1
= gen_reg_rtx (mode
);
2472 /* Record where to go back to if we fail. */
2473 last
= get_last_insn ();
2475 if (optab_handler (binoptab
, mode
) != CODE_FOR_nothing
)
2477 class expand_operand ops
[4];
2478 enum insn_code icode
= optab_handler (binoptab
, mode
);
2479 machine_mode mode0
= insn_data
[icode
].operand
[1].mode
;
2480 machine_mode mode1
= insn_data
[icode
].operand
[2].mode
;
2481 rtx xop0
= op0
, xop1
= op1
;
2483 /* If we are optimizing, force expensive constants into a register. */
2484 xop0
= avoid_expensive_constant (mode0
, binoptab
, 0, xop0
, unsignedp
);
2485 xop1
= avoid_expensive_constant (mode1
, binoptab
, 1, xop1
, unsignedp
);
2487 create_fixed_operand (&ops
[0], targ0
);
2488 create_convert_operand_from (&ops
[1], xop0
, mode
, unsignedp
);
2489 create_convert_operand_from (&ops
[2], xop1
, mode
, unsignedp
);
2490 create_fixed_operand (&ops
[3], targ1
);
2491 if (maybe_expand_insn (icode
, 4, ops
))
2493 delete_insns_since (last
);
2496 /* It can't be done in this mode. Can we do it in a wider mode? */
2498 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2500 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
2502 if (optab_handler (binoptab
, wider_mode
) != CODE_FOR_nothing
)
2504 rtx t0
= gen_reg_rtx (wider_mode
);
2505 rtx t1
= gen_reg_rtx (wider_mode
);
2506 rtx cop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
2507 rtx cop1
= convert_modes (wider_mode
, mode
, op1
, unsignedp
);
2509 if (expand_twoval_binop (binoptab
, cop0
, cop1
,
2512 convert_move (targ0
, t0
, unsignedp
);
2513 convert_move (targ1
, t1
, unsignedp
);
2517 delete_insns_since (last
);
2522 delete_insns_since (entry_last
);
2526 /* Expand the two-valued library call indicated by BINOPTAB, but
2527 preserve only one of the values. If TARG0 is non-NULL, the first
2528 value is placed into TARG0; otherwise the second value is placed
2529 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2530 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2531 This routine assumes that the value returned by the library call is
2532 as if the return value was of an integral mode twice as wide as the
2533 mode of OP0. Returns 1 if the call was successful. */
2536 expand_twoval_binop_libfunc (optab binoptab
, rtx op0
, rtx op1
,
2537 rtx targ0
, rtx targ1
, enum rtx_code code
)
2540 machine_mode libval_mode
;
2545 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2546 gcc_assert (!targ0
!= !targ1
);
2548 mode
= GET_MODE (op0
);
2549 libfunc
= optab_libfunc (binoptab
, mode
);
2553 /* The value returned by the library function will have twice as
2554 many bits as the nominal MODE. */
2555 auto return_size
= 2 * GET_MODE_BITSIZE (mode
);
2556 if (!smallest_int_mode_for_size (return_size
).exists (&libval_mode
))
2560 libval
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
2564 /* Get the part of VAL containing the value that we want. */
2565 libval
= simplify_gen_subreg (mode
, libval
, libval_mode
,
2566 targ0
? 0 : GET_MODE_SIZE (mode
));
2567 insns
= get_insns ();
2569 /* Move the into the desired location. */
2570 emit_libcall_block (insns
, targ0
? targ0
: targ1
, libval
,
2571 gen_rtx_fmt_ee (code
, mode
, op0
, op1
));
2577 /* Wrapper around expand_unop which takes an rtx code to specify
2578 the operation to perform, not an optab pointer. All other
2579 arguments are the same. */
2581 expand_simple_unop (machine_mode mode
, enum rtx_code code
, rtx op0
,
2582 rtx target
, int unsignedp
)
2584 optab unop
= code_to_optab (code
);
2587 return expand_unop (mode
, unop
, op0
, target
, unsignedp
);
2593 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2595 A similar operation can be used for clrsb. UNOPTAB says which operation
2596 we are trying to expand. */
2598 widen_leading (scalar_int_mode mode
, rtx op0
, rtx target
, optab unoptab
)
2600 opt_scalar_int_mode wider_mode_iter
;
2601 FOR_EACH_WIDER_MODE (wider_mode_iter
, mode
)
2603 scalar_int_mode wider_mode
= wider_mode_iter
.require ();
2604 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
)
2609 last
= get_last_insn ();
2612 target
= gen_reg_rtx (mode
);
2613 xop0
= widen_operand (op0
, wider_mode
, mode
,
2614 unoptab
!= clrsb_optab
, false);
2615 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
2616 unoptab
!= clrsb_optab
);
2619 (wider_mode
, sub_optab
, temp
,
2620 gen_int_mode (GET_MODE_PRECISION (wider_mode
)
2621 - GET_MODE_PRECISION (mode
),
2623 target
, true, OPTAB_DIRECT
);
2625 delete_insns_since (last
);
2633 /* Attempt to emit (clrsb:mode op0) as
2634 (plus:mode (clz:mode (xor:mode op0 (ashr:mode op0 (const_int prec-1))))
2636 if CLZ_DEFINED_VALUE_AT_ZERO (mode, val) is 2 and val is prec,
2638 (clz:mode (ior:mode (xor:mode (ashl:mode op0 (const_int 1))
2639 (ashr:mode op0 (const_int prec-1)))
2644 expand_clrsb_using_clz (scalar_int_mode mode
, rtx op0
, rtx target
)
2646 if (optimize_insn_for_size_p ()
2647 || optab_handler (clz_optab
, mode
) == CODE_FOR_nothing
)
2651 HOST_WIDE_INT val
= 0;
2652 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, val
) != 2
2653 || val
!= GET_MODE_PRECISION (mode
))
2661 temp2
= expand_binop (mode
, ashl_optab
, op0
, const1_rtx
,
2662 NULL_RTX
, 0, OPTAB_DIRECT
);
2671 rtx temp
= expand_binop (mode
, ashr_optab
, op0
,
2672 GEN_INT (GET_MODE_PRECISION (mode
) - 1),
2673 NULL_RTX
, 0, OPTAB_DIRECT
);
2677 temp
= expand_binop (mode
, xor_optab
, temp2
, temp
, NULL_RTX
, 0,
2684 temp
= expand_binop (mode
, ior_optab
, temp
, const1_rtx
,
2685 NULL_RTX
, 0, OPTAB_DIRECT
);
2689 temp
= expand_unop_direct (mode
, clz_optab
, temp
, val
? NULL_RTX
: target
,
2695 temp
= expand_binop (mode
, add_optab
, temp
, constm1_rtx
,
2696 target
, 0, OPTAB_DIRECT
);
2701 rtx_insn
*seq
= get_insns ();
2704 add_equal_note (seq
, temp
, CLRSB
, op0
, NULL_RTX
, mode
);
2709 static rtx
expand_ffs (scalar_int_mode
, rtx
, rtx
);
2711 /* Try calculating clz, ctz or ffs of a double-word quantity as two clz, ctz or
2712 ffs operations on word-sized quantities, choosing which based on whether the
2713 high (for clz) or low (for ctz and ffs) word is nonzero. */
2715 expand_doubleword_clz_ctz_ffs (scalar_int_mode mode
, rtx op0
, rtx target
,
2718 rtx xop0
= force_reg (mode
, op0
);
2719 rtx subhi
= gen_highpart (word_mode
, xop0
);
2720 rtx sublo
= gen_lowpart (word_mode
, xop0
);
2721 rtx_code_label
*hi0_label
= gen_label_rtx ();
2722 rtx_code_label
*after_label
= gen_label_rtx ();
2727 /* If we were not given a target, use a word_mode register, not a
2728 'mode' register. The result will fit, and nobody is expecting
2729 anything bigger (the return type of __builtin_clz* is int). */
2731 target
= gen_reg_rtx (word_mode
);
2733 /* In any case, write to a word_mode scratch in both branches of the
2734 conditional, so we can ensure there is a single move insn setting
2735 'target' to tag a REG_EQUAL note on. */
2736 result
= gen_reg_rtx (word_mode
);
2738 if (unoptab
!= clz_optab
)
2739 std::swap (subhi
, sublo
);
2743 /* If the high word is not equal to zero,
2744 then clz of the full value is clz of the high word. */
2745 emit_cmp_and_jump_insns (subhi
, CONST0_RTX (word_mode
), EQ
, 0,
2746 word_mode
, true, hi0_label
);
2748 if (optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
2749 temp
= expand_unop_direct (word_mode
, unoptab
, subhi
, result
, true);
2752 gcc_assert (unoptab
== ffs_optab
);
2753 temp
= expand_ffs (word_mode
, subhi
, result
);
2759 convert_move (result
, temp
, true);
2761 emit_jump_insn (targetm
.gen_jump (after_label
));
2764 /* Else clz of the full value is clz of the low word plus the number
2765 of bits in the high word. Similarly for ctz/ffs of the high word,
2766 except that ffs should be 0 when both words are zero. */
2767 emit_label (hi0_label
);
2769 if (unoptab
== ffs_optab
)
2771 convert_move (result
, const0_rtx
, true);
2772 emit_cmp_and_jump_insns (sublo
, CONST0_RTX (word_mode
), EQ
, 0,
2773 word_mode
, true, after_label
);
2776 if (optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
2777 temp
= expand_unop_direct (word_mode
, unoptab
, sublo
, NULL_RTX
, true);
2780 gcc_assert (unoptab
== ffs_optab
);
2781 temp
= expand_unop_direct (word_mode
, ctz_optab
, sublo
, NULL_RTX
, true);
2788 temp
= expand_binop (word_mode
, add_optab
, temp
,
2789 gen_int_mode (GET_MODE_BITSIZE (word_mode
) + addend
,
2791 result
, true, OPTAB_DIRECT
);
2795 convert_move (result
, temp
, true);
2797 emit_label (after_label
);
2798 convert_move (target
, result
, true);
2803 add_equal_note (seq
, target
, optab_to_code (unoptab
), xop0
, NULL_RTX
, mode
);
2812 /* Try calculating popcount of a double-word quantity as two popcount's of
2813 word-sized quantities and summing up the results. */
2815 expand_doubleword_popcount (scalar_int_mode mode
, rtx op0
, rtx target
)
2822 t0
= expand_unop_direct (word_mode
, popcount_optab
,
2823 operand_subword_force (op0
, 0, mode
), NULL_RTX
,
2825 t1
= expand_unop_direct (word_mode
, popcount_optab
,
2826 operand_subword_force (op0
, 1, mode
), NULL_RTX
,
2834 /* If we were not given a target, use a word_mode register, not a
2835 'mode' register. The result will fit, and nobody is expecting
2836 anything bigger (the return type of __builtin_popcount* is int). */
2838 target
= gen_reg_rtx (word_mode
);
2840 t
= expand_binop (word_mode
, add_optab
, t0
, t1
, target
, 0, OPTAB_DIRECT
);
2845 add_equal_note (seq
, t
, POPCOUNT
, op0
, NULL_RTX
, mode
);
2853 (parity:narrow (low (x) ^ high (x))) */
2855 expand_doubleword_parity (scalar_int_mode mode
, rtx op0
, rtx target
)
2857 rtx t
= expand_binop (word_mode
, xor_optab
,
2858 operand_subword_force (op0
, 0, mode
),
2859 operand_subword_force (op0
, 1, mode
),
2860 NULL_RTX
, 0, OPTAB_DIRECT
);
2861 return expand_unop (word_mode
, parity_optab
, t
, target
, true);
2867 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2869 widen_bswap (scalar_int_mode mode
, rtx op0
, rtx target
)
2873 opt_scalar_int_mode wider_mode_iter
;
2875 FOR_EACH_WIDER_MODE (wider_mode_iter
, mode
)
2876 if (optab_handler (bswap_optab
, wider_mode_iter
.require ())
2877 != CODE_FOR_nothing
)
2880 if (!wider_mode_iter
.exists ())
2883 scalar_int_mode wider_mode
= wider_mode_iter
.require ();
2884 last
= get_last_insn ();
2886 x
= widen_operand (op0
, wider_mode
, mode
, true, true);
2887 x
= expand_unop (wider_mode
, bswap_optab
, x
, NULL_RTX
, true);
2889 gcc_assert (GET_MODE_PRECISION (wider_mode
) == GET_MODE_BITSIZE (wider_mode
)
2890 && GET_MODE_PRECISION (mode
) == GET_MODE_BITSIZE (mode
));
2892 x
= expand_shift (RSHIFT_EXPR
, wider_mode
, x
,
2893 GET_MODE_BITSIZE (wider_mode
)
2894 - GET_MODE_BITSIZE (mode
),
2900 target
= gen_reg_rtx (mode
);
2901 emit_move_insn (target
, gen_lowpart (mode
, x
));
2904 delete_insns_since (last
);
2909 /* Try calculating bswap as two bswaps of two word-sized operands. */
2912 expand_doubleword_bswap (machine_mode mode
, rtx op
, rtx target
)
2916 t1
= expand_unop (word_mode
, bswap_optab
,
2917 operand_subword_force (op
, 0, mode
), NULL_RTX
, true);
2918 t0
= expand_unop (word_mode
, bswap_optab
,
2919 operand_subword_force (op
, 1, mode
), NULL_RTX
, true);
2921 if (target
== 0 || !valid_multiword_target_p (target
))
2922 target
= gen_reg_rtx (mode
);
2924 emit_clobber (target
);
2925 emit_move_insn (operand_subword (target
, 0, 1, mode
), t0
);
2926 emit_move_insn (operand_subword (target
, 1, 1, mode
), t1
);
2931 /* Try calculating (parity x) as (and (popcount x) 1), where
2932 popcount can also be done in a wider mode. */
2934 expand_parity (scalar_int_mode mode
, rtx op0
, rtx target
)
2936 enum mode_class mclass
= GET_MODE_CLASS (mode
);
2937 opt_scalar_int_mode wider_mode_iter
;
2938 FOR_EACH_MODE_FROM (wider_mode_iter
, mode
)
2940 scalar_int_mode wider_mode
= wider_mode_iter
.require ();
2941 if (optab_handler (popcount_optab
, wider_mode
) != CODE_FOR_nothing
)
2946 last
= get_last_insn ();
2948 if (target
== 0 || GET_MODE (target
) != wider_mode
)
2949 target
= gen_reg_rtx (wider_mode
);
2951 xop0
= widen_operand (op0
, wider_mode
, mode
, true, false);
2952 temp
= expand_unop (wider_mode
, popcount_optab
, xop0
, NULL_RTX
,
2955 temp
= expand_binop (wider_mode
, and_optab
, temp
, const1_rtx
,
2956 target
, true, OPTAB_DIRECT
);
2960 if (mclass
!= MODE_INT
2961 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
2962 return convert_to_mode (mode
, temp
, 0);
2964 return gen_lowpart (mode
, temp
);
2967 delete_insns_since (last
);
2973 /* Try calculating ctz(x) as K - clz(x & -x) ,
2974 where K is GET_MODE_PRECISION(mode) - 1.
2976 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2977 don't have to worry about what the hardware does in that case. (If
2978 the clz instruction produces the usual value at 0, which is K, the
2979 result of this code sequence will be -1; expand_ffs, below, relies
2980 on this. It might be nice to have it be K instead, for consistency
2981 with the (very few) processors that provide a ctz with a defined
2982 value, but that would take one more instruction, and it would be
2983 less convenient for expand_ffs anyway. */
2986 expand_ctz (scalar_int_mode mode
, rtx op0
, rtx target
)
2991 if (optab_handler (clz_optab
, mode
) == CODE_FOR_nothing
)
2996 temp
= expand_unop_direct (mode
, neg_optab
, op0
, NULL_RTX
, true);
2998 temp
= expand_binop (mode
, and_optab
, op0
, temp
, NULL_RTX
,
2999 true, OPTAB_DIRECT
);
3001 temp
= expand_unop_direct (mode
, clz_optab
, temp
, NULL_RTX
, true);
3003 temp
= expand_binop (mode
, sub_optab
,
3004 gen_int_mode (GET_MODE_PRECISION (mode
) - 1, mode
),
3006 true, OPTAB_DIRECT
);
3016 add_equal_note (seq
, temp
, CTZ
, op0
, NULL_RTX
, mode
);
3022 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
3023 else with the sequence used by expand_clz.
3025 The ffs builtin promises to return zero for a zero value and ctz/clz
3026 may have an undefined value in that case. If they do not give us a
3027 convenient value, we have to generate a test and branch. */
3029 expand_ffs (scalar_int_mode mode
, rtx op0
, rtx target
)
3031 HOST_WIDE_INT val
= 0;
3032 bool defined_at_zero
= false;
3036 if (optab_handler (ctz_optab
, mode
) != CODE_FOR_nothing
)
3040 temp
= expand_unop_direct (mode
, ctz_optab
, op0
, 0, true);
3044 defined_at_zero
= (CTZ_DEFINED_VALUE_AT_ZERO (mode
, val
) == 2);
3046 else if (optab_handler (clz_optab
, mode
) != CODE_FOR_nothing
)
3049 temp
= expand_ctz (mode
, op0
, 0);
3053 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, val
) == 2)
3055 defined_at_zero
= true;
3056 val
= (GET_MODE_PRECISION (mode
) - 1) - val
;
3062 if (defined_at_zero
&& val
== -1)
3063 /* No correction needed at zero. */;
3066 /* We don't try to do anything clever with the situation found
3067 on some processors (eg Alpha) where ctz(0:mode) ==
3068 bitsize(mode). If someone can think of a way to send N to -1
3069 and leave alone all values in the range 0..N-1 (where N is a
3070 power of two), cheaper than this test-and-branch, please add it.
3072 The test-and-branch is done after the operation itself, in case
3073 the operation sets condition codes that can be recycled for this.
3074 (This is true on i386, for instance.) */
3076 rtx_code_label
*nonzero_label
= gen_label_rtx ();
3077 emit_cmp_and_jump_insns (op0
, CONST0_RTX (mode
), NE
, 0,
3078 mode
, true, nonzero_label
);
3080 convert_move (temp
, GEN_INT (-1), false);
3081 emit_label (nonzero_label
);
3084 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
3085 to produce a value in the range 0..bitsize. */
3086 temp
= expand_binop (mode
, add_optab
, temp
, gen_int_mode (1, mode
),
3087 target
, false, OPTAB_DIRECT
);
3094 add_equal_note (seq
, temp
, FFS
, op0
, NULL_RTX
, mode
);
3103 /* Expand a floating point absolute value or negation operation via a
3104 logical operation on the sign bit. MODE is the mode of the operands
3105 and FMODE is the scalar inner mode. */
3108 expand_absneg_bit (rtx_code code
, machine_mode mode
,
3109 scalar_float_mode fmode
, rtx op0
, rtx target
)
3111 int bitpos
, word
, nwords
, i
;
3112 machine_mode new_mode
;
3113 scalar_int_mode imode
;
3117 auto op
= code
== NEG
? neg_optab
: abs_optab
;
3118 if (!get_absneg_bit_mode (op
, mode
, fmode
, &bitpos
).exists (&new_mode
))
3121 imode
= as_a
<scalar_int_mode
> (GET_MODE_INNER (new_mode
));
3122 if (VECTOR_MODE_P (mode
) || GET_MODE_SIZE (fmode
) <= UNITS_PER_WORD
)
3129 if (FLOAT_WORDS_BIG_ENDIAN
)
3130 word
= (GET_MODE_BITSIZE (fmode
) - bitpos
) / BITS_PER_WORD
;
3132 word
= bitpos
/ BITS_PER_WORD
;
3133 bitpos
= bitpos
% BITS_PER_WORD
;
3134 nwords
= (GET_MODE_BITSIZE (fmode
) + BITS_PER_WORD
- 1) / BITS_PER_WORD
;
3137 wide_int mask
= wi::set_bit_in_zero (bitpos
, GET_MODE_PRECISION (imode
));
3143 || reg_overlap_mentioned_p (target
, op0
)
3144 || (nwords
> 1 && !valid_multiword_target_p (target
)))
3145 target
= gen_reg_rtx (mode
);
3151 for (i
= 0; i
< nwords
; ++i
)
3153 rtx targ_piece
= operand_subword (target
, i
, 1, mode
);
3154 rtx op0_piece
= operand_subword_force (op0
, i
, mode
);
3158 temp
= expand_binop (imode
, code
== ABS
? and_optab
: xor_optab
,
3160 immed_wide_int_const (mask
, imode
),
3161 targ_piece
, 1, OPTAB_LIB_WIDEN
);
3162 if (temp
!= targ_piece
)
3163 emit_move_insn (targ_piece
, temp
);
3166 emit_move_insn (targ_piece
, op0_piece
);
3169 insns
= get_insns ();
3176 rtx mask_rtx
= immed_wide_int_const (mask
, imode
);
3177 if (VECTOR_MODE_P (new_mode
))
3178 mask_rtx
= gen_const_vec_duplicate (new_mode
, mask_rtx
);
3179 temp
= expand_binop (new_mode
, code
== ABS
? and_optab
: xor_optab
,
3180 gen_lowpart (new_mode
, op0
), mask_rtx
,
3181 gen_lowpart (new_mode
, target
), 1, OPTAB_LIB_WIDEN
);
3182 target
= force_lowpart_subreg (mode
, temp
, new_mode
);
3184 set_dst_reg_note (get_last_insn (), REG_EQUAL
,
3185 gen_rtx_fmt_e (code
, mode
, copy_rtx (op0
)),
3192 /* As expand_unop, but will fail rather than attempt the operation in a
3193 different mode or with a libcall. */
3195 expand_unop_direct (machine_mode mode
, optab unoptab
, rtx op0
, rtx target
,
3198 if (optab_handler (unoptab
, mode
) != CODE_FOR_nothing
)
3200 class expand_operand ops
[2];
3201 enum insn_code icode
= optab_handler (unoptab
, mode
);
3202 rtx_insn
*last
= get_last_insn ();
3205 create_output_operand (&ops
[0], target
, mode
);
3206 create_convert_operand_from (&ops
[1], op0
, mode
, unsignedp
);
3207 pat
= maybe_gen_insn (icode
, 2, ops
);
3210 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
3211 && ! add_equal_note (pat
, ops
[0].value
,
3212 optab_to_code (unoptab
),
3213 ops
[1].value
, NULL_RTX
, mode
))
3215 delete_insns_since (last
);
3216 return expand_unop (mode
, unoptab
, op0
, NULL_RTX
, unsignedp
);
3221 return ops
[0].value
;
3227 /* Generate code to perform an operation specified by UNOPTAB
3228 on operand OP0, with result having machine-mode MODE.
3230 UNSIGNEDP is for the case where we have to widen the operands
3231 to perform the operation. It says to use zero-extension.
3233 If TARGET is nonzero, the value
3234 is generated there, if it is convenient to do so.
3235 In all cases an rtx is returned for the locus of the value;
3236 this may or may not be TARGET. */
3239 expand_unop (machine_mode mode
, optab unoptab
, rtx op0
, rtx target
,
3242 enum mode_class mclass
= GET_MODE_CLASS (mode
);
3243 machine_mode wider_mode
;
3244 scalar_int_mode int_mode
;
3245 scalar_float_mode float_mode
;
3249 temp
= expand_unop_direct (mode
, unoptab
, op0
, target
, unsignedp
);
3253 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3255 /* Widening (or narrowing) clz needs special treatment. */
3256 if (unoptab
== clz_optab
)
3258 if (is_a
<scalar_int_mode
> (mode
, &int_mode
))
3260 temp
= widen_leading (int_mode
, op0
, target
, unoptab
);
3264 if (GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
3265 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
3267 temp
= expand_doubleword_clz_ctz_ffs (int_mode
, op0
, target
,
3277 if (unoptab
== clrsb_optab
)
3279 if (is_a
<scalar_int_mode
> (mode
, &int_mode
))
3281 temp
= widen_leading (int_mode
, op0
, target
, unoptab
);
3284 temp
= expand_clrsb_using_clz (int_mode
, op0
, target
);
3291 if (unoptab
== popcount_optab
3292 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
3293 && GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
3294 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
3295 && optimize_insn_for_speed_p ())
3297 temp
= expand_doubleword_popcount (int_mode
, op0
, target
);
3302 if (unoptab
== parity_optab
3303 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
3304 && GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
3305 && (optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
3306 || optab_handler (popcount_optab
, word_mode
) != CODE_FOR_nothing
)
3307 && optimize_insn_for_speed_p ())
3309 temp
= expand_doubleword_parity (int_mode
, op0
, target
);
3314 /* Widening (or narrowing) bswap needs special treatment. */
3315 if (unoptab
== bswap_optab
)
3317 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
3318 or ROTATERT. First try these directly; if this fails, then try the
3319 obvious pair of shifts with allowed widening, as this will probably
3320 be always more efficient than the other fallback methods. */
3326 if (optab_handler (rotl_optab
, mode
) != CODE_FOR_nothing
)
3328 temp
= expand_binop (mode
, rotl_optab
, op0
,
3329 gen_int_shift_amount (mode
, 8),
3330 target
, unsignedp
, OPTAB_DIRECT
);
3335 if (optab_handler (rotr_optab
, mode
) != CODE_FOR_nothing
)
3337 temp
= expand_binop (mode
, rotr_optab
, op0
,
3338 gen_int_shift_amount (mode
, 8),
3339 target
, unsignedp
, OPTAB_DIRECT
);
3344 last
= get_last_insn ();
3346 temp1
= expand_binop (mode
, ashl_optab
, op0
,
3347 gen_int_shift_amount (mode
, 8), NULL_RTX
,
3348 unsignedp
, OPTAB_WIDEN
);
3349 temp2
= expand_binop (mode
, lshr_optab
, op0
,
3350 gen_int_shift_amount (mode
, 8), NULL_RTX
,
3351 unsignedp
, OPTAB_WIDEN
);
3354 temp
= expand_binop (mode
, ior_optab
, temp1
, temp2
, target
,
3355 unsignedp
, OPTAB_WIDEN
);
3360 delete_insns_since (last
);
3363 if (is_a
<scalar_int_mode
> (mode
, &int_mode
))
3365 temp
= widen_bswap (int_mode
, op0
, target
);
3369 /* We do not provide a 128-bit bswap in libgcc so force the use of
3370 a double bswap for 64-bit targets. */
3371 if (GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
3372 && (UNITS_PER_WORD
== 8
3373 || optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
))
3375 temp
= expand_doubleword_bswap (mode
, op0
, target
);
3384 if (CLASS_HAS_WIDER_MODES_P (mclass
))
3385 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
3387 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
)
3390 rtx_insn
*last
= get_last_insn ();
3392 /* For certain operations, we need not actually extend
3393 the narrow operand, as long as we will truncate the
3394 results to the same narrowness. */
3396 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
,
3397 (unoptab
== neg_optab
3398 || unoptab
== one_cmpl_optab
)
3399 && mclass
== MODE_INT
);
3401 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
3406 if (mclass
!= MODE_INT
3407 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
3410 target
= gen_reg_rtx (mode
);
3411 convert_move (target
, temp
, 0);
3415 return gen_lowpart (mode
, temp
);
3418 delete_insns_since (last
);
3422 /* These can be done a word at a time. */
3423 if (unoptab
== one_cmpl_optab
3424 && is_int_mode (mode
, &int_mode
)
3425 && GET_MODE_SIZE (int_mode
) > UNITS_PER_WORD
3426 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
3433 || reg_overlap_mentioned_p (target
, op0
)
3434 || !valid_multiword_target_p (target
))
3435 target
= gen_reg_rtx (int_mode
);
3439 /* Do the actual arithmetic. */
3440 for (i
= 0; i
< GET_MODE_BITSIZE (int_mode
) / BITS_PER_WORD
; i
++)
3442 rtx target_piece
= operand_subword (target
, i
, 1, int_mode
);
3443 rtx x
= expand_unop (word_mode
, unoptab
,
3444 operand_subword_force (op0
, i
, int_mode
),
3445 target_piece
, unsignedp
);
3447 if (target_piece
!= x
)
3448 emit_move_insn (target_piece
, x
);
3451 insns
= get_insns ();
3458 /* Emit ~op0 as op0 ^ -1. */
3459 if (unoptab
== one_cmpl_optab
3460 && (SCALAR_INT_MODE_P (mode
) || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
)
3461 && optab_handler (xor_optab
, mode
) != CODE_FOR_nothing
)
3463 temp
= expand_binop (mode
, xor_optab
, op0
, CONSTM1_RTX (mode
),
3464 target
, unsignedp
, OPTAB_DIRECT
);
3469 if (optab_to_code (unoptab
) == NEG
)
3471 /* Try negating floating point values by flipping the sign bit. */
3472 if (is_a
<scalar_float_mode
> (GET_MODE_INNER (mode
), &float_mode
))
3474 temp
= expand_absneg_bit (NEG
, mode
, float_mode
, op0
, target
);
3479 /* If there is no negation pattern, and we have no negative zero,
3480 try subtracting from zero. */
3481 if (!HONOR_SIGNED_ZEROS (mode
))
3483 temp
= expand_binop (mode
, (unoptab
== negv_optab
3484 ? subv_optab
: sub_optab
),
3485 CONST0_RTX (mode
), op0
, target
,
3486 unsignedp
, OPTAB_DIRECT
);
3492 /* Try calculating parity (x) as popcount (x) % 2. */
3493 if (unoptab
== parity_optab
&& is_a
<scalar_int_mode
> (mode
, &int_mode
))
3495 temp
= expand_parity (int_mode
, op0
, target
);
3500 /* Try implementing ffs (x) in terms of clz (x). */
3501 if (unoptab
== ffs_optab
&& is_a
<scalar_int_mode
> (mode
, &int_mode
))
3503 temp
= expand_ffs (int_mode
, op0
, target
);
3508 /* Try implementing ctz (x) in terms of clz (x). */
3509 if (unoptab
== ctz_optab
&& is_a
<scalar_int_mode
> (mode
, &int_mode
))
3511 temp
= expand_ctz (int_mode
, op0
, target
);
3516 if ((unoptab
== ctz_optab
|| unoptab
== ffs_optab
)
3517 && optimize_insn_for_speed_p ()
3518 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
3519 && GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
3520 && (optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
3521 || optab_handler (ctz_optab
, word_mode
) != CODE_FOR_nothing
))
3523 temp
= expand_doubleword_clz_ctz_ffs (int_mode
, op0
, target
, unoptab
);
3529 /* Now try a library call in this mode. */
3530 libfunc
= optab_libfunc (unoptab
, mode
);
3536 machine_mode outmode
= mode
;
3538 /* All of these functions return small values. Thus we choose to
3539 have them return something that isn't a double-word. */
3540 if (unoptab
== ffs_optab
|| unoptab
== clz_optab
|| unoptab
== ctz_optab
3541 || unoptab
== clrsb_optab
|| unoptab
== popcount_optab
3542 || unoptab
== parity_optab
)
3544 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node
),
3545 optab_libfunc (unoptab
, mode
)));
3549 /* Pass 1 for NO_QUEUE so we don't lose any increments
3550 if the libcall is cse'd or moved. */
3551 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
, outmode
,
3553 insns
= get_insns ();
3556 target
= gen_reg_rtx (outmode
);
3557 bool trapv
= trapv_unoptab_p (unoptab
);
3559 eq_value
= NULL_RTX
;
3562 eq_value
= gen_rtx_fmt_e (optab_to_code (unoptab
), mode
, op0
);
3563 if (GET_MODE_UNIT_SIZE (outmode
) < GET_MODE_UNIT_SIZE (mode
))
3564 eq_value
= simplify_gen_unary (TRUNCATE
, outmode
, eq_value
, mode
);
3565 else if (GET_MODE_UNIT_SIZE (outmode
) > GET_MODE_UNIT_SIZE (mode
))
3566 eq_value
= simplify_gen_unary (ZERO_EXTEND
,
3567 outmode
, eq_value
, mode
);
3569 emit_libcall_block_1 (insns
, target
, value
, eq_value
, trapv
);
3574 /* It can't be done in this mode. Can we do it in a wider mode? */
3576 if (CLASS_HAS_WIDER_MODES_P (mclass
))
3578 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
3580 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
3581 || optab_libfunc (unoptab
, wider_mode
))
3584 rtx_insn
*last
= get_last_insn ();
3586 /* For certain operations, we need not actually extend
3587 the narrow operand, as long as we will truncate the
3588 results to the same narrowness. */
3589 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
,
3590 (unoptab
== neg_optab
3591 || unoptab
== one_cmpl_optab
3592 || unoptab
== bswap_optab
)
3593 && mclass
== MODE_INT
);
3595 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
3598 /* If we are generating clz using wider mode, adjust the
3599 result. Similarly for clrsb. */
3600 if ((unoptab
== clz_optab
|| unoptab
== clrsb_optab
)
3603 scalar_int_mode wider_int_mode
3604 = as_a
<scalar_int_mode
> (wider_mode
);
3605 int_mode
= as_a
<scalar_int_mode
> (mode
);
3607 (wider_mode
, sub_optab
, temp
,
3608 gen_int_mode (GET_MODE_PRECISION (wider_int_mode
)
3609 - GET_MODE_PRECISION (int_mode
),
3611 target
, true, OPTAB_DIRECT
);
3614 /* Likewise for bswap. */
3615 if (unoptab
== bswap_optab
&& temp
!= 0)
3617 scalar_int_mode wider_int_mode
3618 = as_a
<scalar_int_mode
> (wider_mode
);
3619 int_mode
= as_a
<scalar_int_mode
> (mode
);
3620 gcc_assert (GET_MODE_PRECISION (wider_int_mode
)
3621 == GET_MODE_BITSIZE (wider_int_mode
)
3622 && GET_MODE_PRECISION (int_mode
)
3623 == GET_MODE_BITSIZE (int_mode
));
3625 temp
= expand_shift (RSHIFT_EXPR
, wider_int_mode
, temp
,
3626 GET_MODE_BITSIZE (wider_int_mode
)
3627 - GET_MODE_BITSIZE (int_mode
),
3633 if (mclass
!= MODE_INT
)
3636 target
= gen_reg_rtx (mode
);
3637 convert_move (target
, temp
, 0);
3641 return gen_lowpart (mode
, temp
);
3644 delete_insns_since (last
);
3649 /* One final attempt at implementing negation via subtraction,
3650 this time allowing widening of the operand. */
3651 if (optab_to_code (unoptab
) == NEG
&& !HONOR_SIGNED_ZEROS (mode
))
3654 temp
= expand_binop (mode
,
3655 unoptab
== negv_optab
? subv_optab
: sub_optab
,
3656 CONST0_RTX (mode
), op0
,
3657 target
, unsignedp
, OPTAB_LIB_WIDEN
);
3665 /* Emit code to compute the absolute value of OP0, with result to
3666 TARGET if convenient. (TARGET may be 0.) The return value says
3667 where the result actually is to be found.
3669 MODE is the mode of the operand; the mode of the result is
3670 different but can be deduced from MODE.
3675 expand_abs_nojump (machine_mode mode
, rtx op0
, rtx target
,
3676 int result_unsignedp
)
3680 if (GET_MODE_CLASS (mode
) != MODE_INT
3682 result_unsignedp
= 1;
3684 /* First try to do it with a special abs instruction. */
3685 temp
= expand_unop (mode
, result_unsignedp
? abs_optab
: absv_optab
,
3690 /* For floating point modes, try clearing the sign bit. */
3691 scalar_float_mode float_mode
;
3692 if (is_a
<scalar_float_mode
> (GET_MODE_INNER (mode
), &float_mode
))
3694 temp
= expand_absneg_bit (ABS
, mode
, float_mode
, op0
, target
);
3699 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3700 if (optab_handler (smax_optab
, mode
) != CODE_FOR_nothing
3701 && !HONOR_SIGNED_ZEROS (mode
))
3703 rtx_insn
*last
= get_last_insn ();
3705 temp
= expand_unop (mode
, result_unsignedp
? neg_optab
: negv_optab
,
3708 temp
= expand_binop (mode
, smax_optab
, op0
, temp
, target
, 0,
3714 delete_insns_since (last
);
3717 /* If this machine has expensive jumps, we can do integer absolute
3718 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3719 where W is the width of MODE. */
3721 scalar_int_mode int_mode
;
3722 if (is_int_mode (mode
, &int_mode
)
3723 && BRANCH_COST (optimize_insn_for_speed_p (),
3726 rtx extended
= expand_shift (RSHIFT_EXPR
, int_mode
, op0
,
3727 GET_MODE_PRECISION (int_mode
) - 1,
3730 temp
= expand_binop (int_mode
, xor_optab
, extended
, op0
, target
, 0,
3733 temp
= expand_binop (int_mode
,
3734 result_unsignedp
? sub_optab
: subv_optab
,
3735 temp
, extended
, target
, 0, OPTAB_LIB_WIDEN
);
3745 expand_abs (machine_mode mode
, rtx op0
, rtx target
,
3746 int result_unsignedp
, int safe
)
3749 rtx_code_label
*op1
;
3751 if (GET_MODE_CLASS (mode
) != MODE_INT
3753 result_unsignedp
= 1;
3755 temp
= expand_abs_nojump (mode
, op0
, target
, result_unsignedp
);
3759 /* If that does not win, use conditional jump and negate. */
3761 /* It is safe to use the target if it is the same
3762 as the source if this is also a pseudo register */
3763 if (op0
== target
&& REG_P (op0
)
3764 && REGNO (op0
) >= FIRST_PSEUDO_REGISTER
)
3767 op1
= gen_label_rtx ();
3768 if (target
== 0 || ! safe
3769 || GET_MODE (target
) != mode
3770 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
3772 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
3773 target
= gen_reg_rtx (mode
);
3775 emit_move_insn (target
, op0
);
3778 do_compare_rtx_and_jump (target
, CONST0_RTX (mode
), GE
, 0, mode
,
3779 NULL_RTX
, NULL
, op1
,
3780 profile_probability::uninitialized ());
3782 op0
= expand_unop (mode
, result_unsignedp
? neg_optab
: negv_optab
,
3785 emit_move_insn (target
, op0
);
3791 /* Emit code to compute the one's complement absolute value of OP0
3792 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3793 (TARGET may be NULL_RTX.) The return value says where the result
3794 actually is to be found.
3796 MODE is the mode of the operand; the mode of the result is
3797 different but can be deduced from MODE. */
3800 expand_one_cmpl_abs_nojump (machine_mode mode
, rtx op0
, rtx target
)
3804 /* Not applicable for floating point modes. */
3805 if (FLOAT_MODE_P (mode
))
3808 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3809 if (optab_handler (smax_optab
, mode
) != CODE_FOR_nothing
)
3811 rtx_insn
*last
= get_last_insn ();
3813 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, NULL_RTX
, 0);
3815 temp
= expand_binop (mode
, smax_optab
, op0
, temp
, target
, 0,
3821 delete_insns_since (last
);
3824 /* If this machine has expensive jumps, we can do one's complement
3825 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3827 scalar_int_mode int_mode
;
3828 if (is_int_mode (mode
, &int_mode
)
3829 && BRANCH_COST (optimize_insn_for_speed_p (),
3832 rtx extended
= expand_shift (RSHIFT_EXPR
, int_mode
, op0
,
3833 GET_MODE_PRECISION (int_mode
) - 1,
3836 temp
= expand_binop (int_mode
, xor_optab
, extended
, op0
, target
, 0,
3846 /* A subroutine of expand_copysign, perform the copysign operation using the
3847 abs and neg primitives advertised to exist on the target. The assumption
3848 is that we have a split register file, and leaving op0 in fp registers,
3849 and not playing with subregs so much, will help the register allocator. */
3852 expand_copysign_absneg (scalar_float_mode mode
, rtx op0
, rtx op1
, rtx target
,
3853 int bitpos
, bool op0_is_abs
)
3855 scalar_int_mode imode
;
3856 enum insn_code icode
;
3858 rtx_code_label
*label
;
3863 /* Check if the back end provides an insn that handles signbit for the
3865 icode
= optab_handler (signbit_optab
, mode
);
3866 if (icode
!= CODE_FOR_nothing
)
3868 imode
= as_a
<scalar_int_mode
> (insn_data
[(int) icode
].operand
[0].mode
);
3869 sign
= gen_reg_rtx (imode
);
3870 emit_unop_insn (icode
, sign
, op1
, UNKNOWN
);
3874 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
3876 if (!int_mode_for_mode (mode
).exists (&imode
))
3878 op1
= gen_lowpart (imode
, op1
);
3885 if (FLOAT_WORDS_BIG_ENDIAN
)
3886 word
= (GET_MODE_BITSIZE (mode
) - bitpos
) / BITS_PER_WORD
;
3888 word
= bitpos
/ BITS_PER_WORD
;
3889 bitpos
= bitpos
% BITS_PER_WORD
;
3890 op1
= operand_subword_force (op1
, word
, mode
);
3893 wide_int mask
= wi::set_bit_in_zero (bitpos
, GET_MODE_PRECISION (imode
));
3894 sign
= expand_binop (imode
, and_optab
, op1
,
3895 immed_wide_int_const (mask
, imode
),
3896 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3901 op0
= expand_unop (mode
, abs_optab
, op0
, target
, 0);
3908 if (target
== NULL_RTX
)
3909 target
= copy_to_reg (op0
);
3911 emit_move_insn (target
, op0
);
3914 label
= gen_label_rtx ();
3915 emit_cmp_and_jump_insns (sign
, const0_rtx
, EQ
, NULL_RTX
, imode
, 1, label
);
3917 if (CONST_DOUBLE_AS_FLOAT_P (op0
))
3918 op0
= simplify_unary_operation (NEG
, mode
, op0
, mode
);
3920 op0
= expand_unop (mode
, neg_optab
, op0
, target
, 0);
3922 emit_move_insn (target
, op0
);
3930 /* A subroutine of expand_copysign, perform the entire copysign operation
3931 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3932 is true if op0 is known to have its sign bit clear. */
3935 expand_copysign_bit (scalar_float_mode mode
, rtx op0
, rtx op1
, rtx target
,
3936 int bitpos
, bool op0_is_abs
)
3938 scalar_int_mode imode
;
3939 int word
, nwords
, i
;
3943 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
3945 if (!int_mode_for_mode (mode
).exists (&imode
))
3954 if (FLOAT_WORDS_BIG_ENDIAN
)
3955 word
= (GET_MODE_BITSIZE (mode
) - bitpos
) / BITS_PER_WORD
;
3957 word
= bitpos
/ BITS_PER_WORD
;
3958 bitpos
= bitpos
% BITS_PER_WORD
;
3959 nwords
= (GET_MODE_BITSIZE (mode
) + BITS_PER_WORD
- 1) / BITS_PER_WORD
;
3962 wide_int mask
= wi::set_bit_in_zero (bitpos
, GET_MODE_PRECISION (imode
));
3967 || reg_overlap_mentioned_p (target
, op0
)
3968 || reg_overlap_mentioned_p (target
, op1
)
3969 || (nwords
> 1 && !valid_multiword_target_p (target
)))
3970 target
= gen_reg_rtx (mode
);
3976 for (i
= 0; i
< nwords
; ++i
)
3978 rtx targ_piece
= operand_subword (target
, i
, 1, mode
);
3979 rtx op0_piece
= operand_subword_force (op0
, i
, mode
);
3985 = expand_binop (imode
, and_optab
, op0_piece
,
3986 immed_wide_int_const (~mask
, imode
),
3987 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3988 op1
= expand_binop (imode
, and_optab
,
3989 operand_subword_force (op1
, i
, mode
),
3990 immed_wide_int_const (mask
, imode
),
3991 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3993 temp
= expand_binop (imode
, ior_optab
, op0_piece
, op1
,
3994 targ_piece
, 1, OPTAB_LIB_WIDEN
);
3995 if (temp
!= targ_piece
)
3996 emit_move_insn (targ_piece
, temp
);
3999 emit_move_insn (targ_piece
, op0_piece
);
4002 insns
= get_insns ();
4009 op1
= expand_binop (imode
, and_optab
, gen_lowpart (imode
, op1
),
4010 immed_wide_int_const (mask
, imode
),
4011 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4013 op0
= gen_lowpart (imode
, op0
);
4015 op0
= expand_binop (imode
, and_optab
, op0
,
4016 immed_wide_int_const (~mask
, imode
),
4017 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4019 temp
= expand_binop (imode
, ior_optab
, op0
, op1
,
4020 gen_lowpart (imode
, target
), 1, OPTAB_LIB_WIDEN
);
4021 target
= force_lowpart_subreg (mode
, temp
, imode
);
4027 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
4028 scalar floating point mode. Return NULL if we do not know how to
4029 expand the operation inline. */
4032 expand_copysign (rtx op0
, rtx op1
, rtx target
)
4034 scalar_float_mode mode
;
4035 const struct real_format
*fmt
;
4039 mode
= as_a
<scalar_float_mode
> (GET_MODE (op0
));
4040 gcc_assert (GET_MODE (op1
) == mode
);
4042 /* First try to do it with a special instruction. */
4043 temp
= expand_binop (mode
, copysign_optab
, op0
, op1
,
4044 target
, 0, OPTAB_DIRECT
);
4048 fmt
= REAL_MODE_FORMAT (mode
);
4049 if (fmt
== NULL
|| !fmt
->has_signed_zero
)
4053 if (CONST_DOUBLE_AS_FLOAT_P (op0
))
4055 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0
)))
4056 op0
= simplify_unary_operation (ABS
, mode
, op0
, mode
);
4060 if (fmt
->signbit_ro
>= 0
4061 && (CONST_DOUBLE_AS_FLOAT_P (op0
)
4062 || (optab_handler (neg_optab
, mode
) != CODE_FOR_nothing
4063 && optab_handler (abs_optab
, mode
) != CODE_FOR_nothing
)))
4065 temp
= expand_copysign_absneg (mode
, op0
, op1
, target
,
4066 fmt
->signbit_ro
, op0_is_abs
);
4071 if (fmt
->signbit_rw
< 0)
4073 return expand_copysign_bit (mode
, op0
, op1
, target
,
4074 fmt
->signbit_rw
, op0_is_abs
);
4077 /* Generate an instruction whose insn-code is INSN_CODE,
4078 with two operands: an output TARGET and an input OP0.
4079 TARGET *must* be nonzero, and the output is always stored there.
4080 CODE is an rtx code such that (CODE OP0) is an rtx that describes
4081 the value that is stored into TARGET.
4083 Return false if expansion failed. */
4086 maybe_emit_unop_insn (enum insn_code icode
, rtx target
, rtx op0
,
4089 class expand_operand ops
[2];
4092 create_output_operand (&ops
[0], target
, GET_MODE (target
));
4093 create_input_operand (&ops
[1], op0
, GET_MODE (op0
));
4094 pat
= maybe_gen_insn (icode
, 2, ops
);
4098 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
4100 add_equal_note (pat
, ops
[0].value
, code
, ops
[1].value
, NULL_RTX
,
4105 if (ops
[0].value
!= target
)
4106 emit_move_insn (target
, ops
[0].value
);
4109 /* Generate an instruction whose insn-code is INSN_CODE,
4110 with two operands: an output TARGET and an input OP0.
4111 TARGET *must* be nonzero, and the output is always stored there.
4112 CODE is an rtx code such that (CODE OP0) is an rtx that describes
4113 the value that is stored into TARGET. */
4116 emit_unop_insn (enum insn_code icode
, rtx target
, rtx op0
, enum rtx_code code
)
4118 bool ok
= maybe_emit_unop_insn (icode
, target
, op0
, code
);
4122 struct no_conflict_data
4125 rtx_insn
*first
, *insn
;
4129 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
4130 the currently examined clobber / store has to stay in the list of
4131 insns that constitute the actual libcall block. */
4133 no_conflict_move_test (rtx dest
, const_rtx set
, void *p0
)
4135 struct no_conflict_data
*p
= (struct no_conflict_data
*) p0
;
4137 /* If this inns directly contributes to setting the target, it must stay. */
4138 if (reg_overlap_mentioned_p (p
->target
, dest
))
4139 p
->must_stay
= true;
4140 /* If we haven't committed to keeping any other insns in the list yet,
4141 there is nothing more to check. */
4142 else if (p
->insn
== p
->first
)
4144 /* If this insn sets / clobbers a register that feeds one of the insns
4145 already in the list, this insn has to stay too. */
4146 else if (reg_overlap_mentioned_p (dest
, PATTERN (p
->first
))
4147 || (CALL_P (p
->first
) && (find_reg_fusage (p
->first
, USE
, dest
)))
4148 || reg_used_between_p (dest
, p
->first
, p
->insn
)
4149 /* Likewise if this insn depends on a register set by a previous
4150 insn in the list, or if it sets a result (presumably a hard
4151 register) that is set or clobbered by a previous insn.
4152 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
4153 SET_DEST perform the former check on the address, and the latter
4154 check on the MEM. */
4155 || (GET_CODE (set
) == SET
4156 && (modified_in_p (SET_SRC (set
), p
->first
)
4157 || modified_in_p (SET_DEST (set
), p
->first
)
4158 || modified_between_p (SET_SRC (set
), p
->first
, p
->insn
)
4159 || modified_between_p (SET_DEST (set
), p
->first
, p
->insn
))))
4160 p
->must_stay
= true;
4164 /* Emit code to make a call to a constant function or a library call.
4166 INSNS is a list containing all insns emitted in the call.
4167 These insns leave the result in RESULT. Our block is to copy RESULT
4168 to TARGET, which is logically equivalent to EQUIV.
4170 We first emit any insns that set a pseudo on the assumption that these are
4171 loading constants into registers; doing so allows them to be safely cse'ed
4172 between blocks. Then we emit all the other insns in the block, followed by
4173 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
4174 note with an operand of EQUIV. */
4177 emit_libcall_block_1 (rtx_insn
*insns
, rtx target
, rtx result
, rtx equiv
,
4178 bool equiv_may_trap
)
4180 rtx final_dest
= target
;
4181 rtx_insn
*next
, *last
, *insn
;
4183 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
4184 into a MEM later. Protect the libcall block from this change. */
4185 if (! REG_P (target
) || REG_USERVAR_P (target
))
4186 target
= gen_reg_rtx (GET_MODE (target
));
4188 /* If we're using non-call exceptions, a libcall corresponding to an
4189 operation that may trap may also trap. */
4190 /* ??? See the comment in front of make_reg_eh_region_note. */
4191 if (cfun
->can_throw_non_call_exceptions
4192 && (equiv_may_trap
|| may_trap_p (equiv
)))
4194 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
4197 rtx note
= find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
);
4200 int lp_nr
= INTVAL (XEXP (note
, 0));
4201 if (lp_nr
== 0 || lp_nr
== INT_MIN
)
4202 remove_note (insn
, note
);
4208 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
4209 reg note to indicate that this call cannot throw or execute a nonlocal
4210 goto (unless there is already a REG_EH_REGION note, in which case
4212 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
4214 make_reg_eh_region_note_nothrow_nononlocal (insn
);
4217 /* First emit all insns that set pseudos. Remove them from the list as
4218 we go. Avoid insns that set pseudos which were referenced in previous
4219 insns. These can be generated by move_by_pieces, for example,
4220 to update an address. Similarly, avoid insns that reference things
4221 set in previous insns. */
4223 for (insn
= insns
; insn
; insn
= next
)
4225 rtx set
= single_set (insn
);
4227 next
= NEXT_INSN (insn
);
4229 if (set
!= 0 && REG_P (SET_DEST (set
))
4230 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
4232 struct no_conflict_data data
;
4234 data
.target
= const0_rtx
;
4238 note_stores (insn
, no_conflict_move_test
, &data
);
4239 if (! data
.must_stay
)
4241 if (PREV_INSN (insn
))
4242 SET_NEXT_INSN (PREV_INSN (insn
)) = next
;
4247 SET_PREV_INSN (next
) = PREV_INSN (insn
);
4253 /* Some ports use a loop to copy large arguments onto the stack.
4254 Don't move anything outside such a loop. */
4259 /* Write the remaining insns followed by the final copy. */
4260 for (insn
= insns
; insn
; insn
= next
)
4262 next
= NEXT_INSN (insn
);
4267 last
= emit_move_insn (target
, result
);
4269 set_dst_reg_note (last
, REG_EQUAL
, copy_rtx (equiv
), target
);
4271 if (final_dest
!= target
)
4272 emit_move_insn (final_dest
, target
);
4276 emit_libcall_block (rtx_insn
*insns
, rtx target
, rtx result
, rtx equiv
)
4278 emit_libcall_block_1 (insns
, target
, result
, equiv
, false);
4281 /* True if we can perform a comparison of mode MODE straightforwardly.
4282 PURPOSE describes how this comparison will be used. CODE is the rtx
4283 comparison code we will be using.
4285 ??? Actually, CODE is slightly weaker than that. A target is still
4286 required to implement all of the normal bcc operations, but not
4287 required to implement all (or any) of the unordered bcc operations. */
4290 can_compare_p (enum rtx_code code
, machine_mode mode
,
4291 enum can_compare_purpose purpose
)
4294 test
= gen_rtx_fmt_ee (code
, mode
, const0_rtx
, const0_rtx
);
4297 enum insn_code icode
;
4299 if (purpose
== ccp_jump
4300 && (icode
= optab_handler (cbranch_optab
, mode
)) != CODE_FOR_nothing
4301 && insn_operand_matches (icode
, 0, test
))
4303 if (purpose
== ccp_store_flag
4304 && (icode
= optab_handler (cstore_optab
, mode
)) != CODE_FOR_nothing
4305 && insn_operand_matches (icode
, 1, test
))
4307 if (purpose
== ccp_cmov
4308 && optab_handler (cmov_optab
, mode
) != CODE_FOR_nothing
)
4311 mode
= GET_MODE_WIDER_MODE (mode
).else_void ();
4312 PUT_MODE (test
, mode
);
4314 while (mode
!= VOIDmode
);
4319 /* Return whether RTL code CODE corresponds to an unsigned optab. */
4322 unsigned_optab_p (enum rtx_code code
)
4324 return code
== LTU
|| code
== LEU
|| code
== GTU
|| code
== GEU
;
4327 /* Return whether the backend-emitted comparison for code CODE, comparing
4328 operands of mode VALUE_MODE and producing a result with MASK_MODE, matches
4329 operand OPNO of pattern ICODE. */
4332 insn_predicate_matches_p (enum insn_code icode
, unsigned int opno
,
4333 enum rtx_code code
, machine_mode mask_mode
,
4334 machine_mode value_mode
)
4336 rtx reg1
= alloca_raw_REG (value_mode
, LAST_VIRTUAL_REGISTER
+ 1);
4337 rtx reg2
= alloca_raw_REG (value_mode
, LAST_VIRTUAL_REGISTER
+ 2);
4338 rtx test
= alloca_rtx_fmt_ee (code
, mask_mode
, reg1
, reg2
);
4339 return insn_operand_matches (icode
, opno
, test
);
4342 /* Return whether the backend can emit a vector comparison (vec_cmp/vec_cmpu)
4343 for code CODE, comparing operands of mode VALUE_MODE and producing a result
4347 can_vec_cmp_compare_p (enum rtx_code code
, machine_mode value_mode
,
4348 machine_mode mask_mode
)
4350 enum insn_code icode
4351 = get_vec_cmp_icode (value_mode
, mask_mode
, unsigned_optab_p (code
));
4352 if (icode
== CODE_FOR_nothing
)
4355 return insn_predicate_matches_p (icode
, 1, code
, mask_mode
, value_mode
);
4358 /* Return whether the backend can emit vector set instructions for inserting
4359 element into vector at variable index position. */
4362 can_vec_set_var_idx_p (machine_mode vec_mode
)
4364 if (!VECTOR_MODE_P (vec_mode
))
4367 machine_mode inner_mode
= GET_MODE_INNER (vec_mode
);
4369 rtx reg1
= alloca_raw_REG (vec_mode
, LAST_VIRTUAL_REGISTER
+ 1);
4370 rtx reg2
= alloca_raw_REG (inner_mode
, LAST_VIRTUAL_REGISTER
+ 2);
4372 enum insn_code icode
= optab_handler (vec_set_optab
, vec_mode
);
4374 const struct insn_data_d
*data
= &insn_data
[icode
];
4375 machine_mode idx_mode
= data
->operand
[2].mode
;
4377 rtx reg3
= alloca_raw_REG (idx_mode
, LAST_VIRTUAL_REGISTER
+ 3);
4379 return icode
!= CODE_FOR_nothing
&& insn_operand_matches (icode
, 0, reg1
)
4380 && insn_operand_matches (icode
, 1, reg2
)
4381 && insn_operand_matches (icode
, 2, reg3
);
4384 /* Return whether the backend can emit a vec_extract instruction with
4385 a non-constant index. */
4387 can_vec_extract_var_idx_p (machine_mode vec_mode
, machine_mode extr_mode
)
4389 if (!VECTOR_MODE_P (vec_mode
))
4392 rtx reg1
= alloca_raw_REG (extr_mode
, LAST_VIRTUAL_REGISTER
+ 1);
4393 rtx reg2
= alloca_raw_REG (vec_mode
, LAST_VIRTUAL_REGISTER
+ 2);
4395 enum insn_code icode
= convert_optab_handler (vec_extract_optab
,
4396 vec_mode
, extr_mode
);
4398 const struct insn_data_d
*data
= &insn_data
[icode
];
4399 machine_mode idx_mode
= data
->operand
[2].mode
;
4401 rtx reg3
= alloca_raw_REG (idx_mode
, LAST_VIRTUAL_REGISTER
+ 3);
4403 return icode
!= CODE_FOR_nothing
&& insn_operand_matches (icode
, 0, reg1
)
4404 && insn_operand_matches (icode
, 1, reg2
)
4405 && insn_operand_matches (icode
, 2, reg3
);
4408 /* This function is called when we are going to emit a compare instruction that
4409 compares the values found in X and Y, using the rtl operator COMPARISON.
4411 If they have mode BLKmode, then SIZE specifies the size of both operands.
4413 UNSIGNEDP nonzero says that the operands are unsigned;
4414 this matters if they need to be widened (as given by METHODS).
4416 *PTEST is where the resulting comparison RTX is returned or NULL_RTX
4417 if we failed to produce one.
4419 *PMODE is the mode of the inputs (in case they are const_int).
4421 This function performs all the setup necessary so that the caller only has
4422 to emit a single comparison insn. This setup can involve doing a BLKmode
4423 comparison or emitting a library call to perform the comparison if no insn
4424 is available to handle it.
4425 The values which are passed in through pointers can be modified; the caller
4426 should perform the comparison on the modified values. Constant
4427 comparisons must have already been folded. */
4430 prepare_cmp_insn (rtx x
, rtx y
, enum rtx_code comparison
, rtx size
,
4431 int unsignedp
, enum optab_methods methods
,
4432 rtx
*ptest
, machine_mode
*pmode
)
4434 machine_mode mode
= *pmode
;
4436 machine_mode cmp_mode
;
4438 /* The other methods are not needed. */
4439 gcc_assert (methods
== OPTAB_DIRECT
|| methods
== OPTAB_WIDEN
4440 || methods
== OPTAB_LIB_WIDEN
);
4442 if (CONST_SCALAR_INT_P (y
))
4443 canonicalize_comparison (mode
, &comparison
, &y
);
4445 /* If we are optimizing, force expensive constants into a register. */
4446 if (CONSTANT_P (x
) && optimize
4447 && (rtx_cost (x
, mode
, COMPARE
, 0, optimize_insn_for_speed_p ())
4448 > COSTS_N_INSNS (1))
4449 && can_create_pseudo_p ())
4450 x
= force_reg (mode
, x
);
4452 if (CONSTANT_P (y
) && optimize
4453 && (rtx_cost (y
, mode
, COMPARE
, 1, optimize_insn_for_speed_p ())
4454 > COSTS_N_INSNS (1))
4455 && can_create_pseudo_p ())
4456 y
= force_reg (mode
, y
);
4458 /* Don't let both operands fail to indicate the mode. */
4459 if (GET_MODE (x
) == VOIDmode
&& GET_MODE (y
) == VOIDmode
)
4460 x
= force_reg (mode
, x
);
4461 if (mode
== VOIDmode
)
4462 mode
= GET_MODE (x
) != VOIDmode
? GET_MODE (x
) : GET_MODE (y
);
4464 /* Handle all BLKmode compares. */
4466 if (mode
== BLKmode
)
4468 machine_mode result_mode
;
4469 enum insn_code cmp_code
;
4472 = GEN_INT (MIN (MEM_ALIGN (x
), MEM_ALIGN (y
)) / BITS_PER_UNIT
);
4476 /* Try to use a memory block compare insn - either cmpstr
4477 or cmpmem will do. */
4478 opt_scalar_int_mode cmp_mode_iter
;
4479 FOR_EACH_MODE_IN_CLASS (cmp_mode_iter
, MODE_INT
)
4481 scalar_int_mode cmp_mode
= cmp_mode_iter
.require ();
4482 cmp_code
= direct_optab_handler (cmpmem_optab
, cmp_mode
);
4483 if (cmp_code
== CODE_FOR_nothing
)
4484 cmp_code
= direct_optab_handler (cmpstr_optab
, cmp_mode
);
4485 if (cmp_code
== CODE_FOR_nothing
)
4486 cmp_code
= direct_optab_handler (cmpstrn_optab
, cmp_mode
);
4487 if (cmp_code
== CODE_FOR_nothing
)
4490 /* Must make sure the size fits the insn's mode. */
4491 if (CONST_INT_P (size
)
4492 ? UINTVAL (size
) > GET_MODE_MASK (cmp_mode
)
4493 : (GET_MODE_BITSIZE (as_a
<scalar_int_mode
> (GET_MODE (size
)))
4494 > GET_MODE_BITSIZE (cmp_mode
)))
4497 result_mode
= insn_data
[cmp_code
].operand
[0].mode
;
4498 result
= gen_reg_rtx (result_mode
);
4499 size
= convert_to_mode (cmp_mode
, size
, 1);
4500 emit_insn (GEN_FCN (cmp_code
) (result
, x
, y
, size
, opalign
));
4502 *ptest
= gen_rtx_fmt_ee (comparison
, VOIDmode
, result
, const0_rtx
);
4503 *pmode
= result_mode
;
4507 if (methods
!= OPTAB_LIB
&& methods
!= OPTAB_LIB_WIDEN
)
4510 /* Otherwise call a library function. */
4511 result
= emit_block_comp_via_libcall (x
, y
, size
);
4515 mode
= TYPE_MODE (integer_type_node
);
4516 methods
= OPTAB_LIB_WIDEN
;
4520 /* Don't allow operands to the compare to trap, as that can put the
4521 compare and branch in different basic blocks. */
4522 if (cfun
->can_throw_non_call_exceptions
)
4524 if (!can_create_pseudo_p () && (may_trap_p (x
) || may_trap_p (y
)))
4527 x
= copy_to_reg (x
);
4529 y
= copy_to_reg (y
);
4532 if (GET_MODE_CLASS (mode
) == MODE_CC
)
4534 enum insn_code icode
= optab_handler (cbranch_optab
, CCmode
);
4535 test
= gen_rtx_fmt_ee (comparison
, VOIDmode
, x
, y
);
4536 if (icode
!= CODE_FOR_nothing
4537 && insn_operand_matches (icode
, 0, test
))
4546 test
= gen_rtx_fmt_ee (comparison
, VOIDmode
, x
, y
);
4547 FOR_EACH_WIDER_MODE_FROM (cmp_mode
, mode
)
4549 enum insn_code icode
;
4550 icode
= optab_handler (cbranch_optab
, cmp_mode
);
4551 if (icode
!= CODE_FOR_nothing
4552 && insn_operand_matches (icode
, 0, test
))
4554 rtx_insn
*last
= get_last_insn ();
4555 rtx op0
= prepare_operand (icode
, x
, 1, mode
, cmp_mode
, unsignedp
);
4556 rtx op1
= prepare_operand (icode
, y
, 2, mode
, cmp_mode
, unsignedp
);
4558 && insn_operand_matches (icode
, 1, op0
)
4559 && insn_operand_matches (icode
, 2, op1
))
4561 XEXP (test
, 0) = op0
;
4562 XEXP (test
, 1) = op1
;
4567 delete_insns_since (last
);
4570 if (methods
== OPTAB_DIRECT
)
4574 if (methods
!= OPTAB_LIB_WIDEN
)
4577 if (SCALAR_FLOAT_MODE_P (mode
))
4579 /* Small trick if UNORDERED isn't implemented by the hardware. */
4580 if (comparison
== UNORDERED
&& rtx_equal_p (x
, y
))
4582 prepare_cmp_insn (x
, y
, UNLT
, NULL_RTX
, unsignedp
, OPTAB_WIDEN
,
4588 prepare_float_lib_cmp (x
, y
, comparison
, ptest
, pmode
);
4593 machine_mode ret_mode
;
4595 /* Handle a libcall just for the mode we are using. */
4596 libfunc
= optab_libfunc (cmp_optab
, mode
);
4597 gcc_assert (libfunc
);
4599 /* If we want unsigned, and this mode has a distinct unsigned
4600 comparison routine, use that. */
4603 rtx ulibfunc
= optab_libfunc (ucmp_optab
, mode
);
4608 ret_mode
= targetm
.libgcc_cmp_return_mode ();
4609 result
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
4610 ret_mode
, x
, mode
, y
, mode
);
4612 /* There are two kinds of comparison routines. Biased routines
4613 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4614 of gcc expect that the comparison operation is equivalent
4615 to the modified comparison. For signed comparisons compare the
4616 result against 1 in the biased case, and zero in the unbiased
4617 case. For unsigned comparisons always compare against 1 after
4618 biasing the unbiased result by adding 1. This gives us a way to
4620 The comparisons in the fixed-point helper library are always
4625 if (!TARGET_LIB_INT_CMP_BIASED
&& !ALL_FIXED_POINT_MODE_P (mode
))
4628 x
= plus_constant (ret_mode
, result
, 1);
4634 prepare_cmp_insn (x
, y
, comparison
, NULL_RTX
, unsignedp
, methods
,
4644 /* Before emitting an insn with code ICODE, make sure that X, which is going
4645 to be used for operand OPNUM of the insn, is converted from mode MODE to
4646 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4647 that it is accepted by the operand predicate. Return the new value. */
4650 prepare_operand (enum insn_code icode
, rtx x
, int opnum
, machine_mode mode
,
4651 machine_mode wider_mode
, int unsignedp
)
4653 if (mode
!= wider_mode
)
4654 x
= convert_modes (wider_mode
, mode
, x
, unsignedp
);
4656 if (!insn_operand_matches (icode
, opnum
, x
))
4658 machine_mode op_mode
= insn_data
[(int) icode
].operand
[opnum
].mode
;
4659 if (reload_completed
)
4661 if (GET_MODE (x
) != op_mode
&& GET_MODE (x
) != VOIDmode
)
4663 x
= copy_to_mode_reg (op_mode
, x
);
4669 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4670 we can do the branch. */
4673 emit_cmp_and_jump_insn_1 (rtx test
, machine_mode mode
, rtx label
,
4674 direct_optab cmp_optab
, profile_probability prob
,
4677 machine_mode optab_mode
;
4678 enum mode_class mclass
;
4679 enum insn_code icode
;
4682 mclass
= GET_MODE_CLASS (mode
);
4683 optab_mode
= (mclass
== MODE_CC
) ? CCmode
: mode
;
4684 icode
= optab_handler (cmp_optab
, optab_mode
);
4686 gcc_assert (icode
!= CODE_FOR_nothing
);
4687 gcc_assert (test_branch
|| insn_operand_matches (icode
, 0, test
));
4689 insn
= emit_jump_insn (GEN_FCN (icode
) (XEXP (test
, 0),
4690 XEXP (test
, 1), label
));
4692 insn
= emit_jump_insn (GEN_FCN (icode
) (test
, XEXP (test
, 0),
4693 XEXP (test
, 1), label
));
4695 if (prob
.initialized_p ()
4696 && profile_status_for_fn (cfun
) != PROFILE_ABSENT
4699 && any_condjump_p (insn
)
4700 && !find_reg_note (insn
, REG_BR_PROB
, 0))
4701 add_reg_br_prob_note (insn
, prob
);
4704 /* PTEST points to a comparison that compares its first operand with zero.
4705 Check to see if it can be performed as a bit-test-and-branch instead.
4706 On success, return the instruction that performs the bit-test-and-branch
4707 and replace the second operand of *PTEST with the bit number to test.
4708 On failure, return CODE_FOR_nothing and leave *PTEST unchanged.
4710 Note that the comparison described by *PTEST should not be taken
4711 literally after a successful return. *PTEST is just a convenient
4712 place to store the two operands of the bit-and-test.
4714 VAL must contain the original tree expression for the first operand
4717 static enum insn_code
4718 validate_test_and_branch (tree val
, rtx
*ptest
, machine_mode
*pmode
, optab
*res
)
4720 if (!val
|| TREE_CODE (val
) != SSA_NAME
)
4721 return CODE_FOR_nothing
;
4723 machine_mode mode
= TYPE_MODE (TREE_TYPE (val
));
4727 if (GET_CODE (test
) == EQ
)
4728 optab
= tbranch_eq_optab
;
4729 else if (GET_CODE (test
) == NE
)
4730 optab
= tbranch_ne_optab
;
4732 return CODE_FOR_nothing
;
4736 /* If the target supports the testbit comparison directly, great. */
4737 auto icode
= direct_optab_handler (optab
, mode
);
4738 if (icode
== CODE_FOR_nothing
)
4741 if (tree_zero_one_valued_p (val
))
4743 auto pos
= BITS_BIG_ENDIAN
? GET_MODE_BITSIZE (mode
) - 1 : 0;
4744 XEXP (test
, 1) = gen_int_mode (pos
, mode
);
4750 wide_int wcst
= get_nonzero_bits (val
);
4752 return CODE_FOR_nothing
;
4756 if ((bitpos
= wi::exact_log2 (wcst
)) == -1)
4757 return CODE_FOR_nothing
;
4759 auto pos
= BITS_BIG_ENDIAN
? GET_MODE_BITSIZE (mode
) - 1 - bitpos
: bitpos
;
4760 XEXP (test
, 1) = gen_int_mode (pos
, mode
);
4766 /* Generate code to compare X with Y so that the condition codes are
4767 set and to jump to LABEL if the condition is true. If X is a
4768 constant and Y is not a constant, then the comparison is swapped to
4769 ensure that the comparison RTL has the canonical form.
4771 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4772 need to be widened. UNSIGNEDP is also used to select the proper
4773 branch condition code.
4775 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4777 MODE is the mode of the inputs (in case they are const_int).
4779 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4780 It will be potentially converted into an unsigned variant based on
4781 UNSIGNEDP to select a proper jump instruction.
4783 PROB is the probability of jumping to LABEL. If the comparison is against
4784 zero then VAL contains the expression from which the non-zero RTL is
4788 emit_cmp_and_jump_insns (rtx x
, rtx y
, enum rtx_code comparison
, rtx size
,
4789 machine_mode mode
, int unsignedp
, tree val
, rtx label
,
4790 profile_probability prob
)
4792 rtx op0
= x
, op1
= y
;
4795 /* Swap operands and condition to ensure canonical RTL. */
4796 if (swap_commutative_operands_p (x
, y
)
4797 && can_compare_p (swap_condition (comparison
), mode
, ccp_jump
))
4800 comparison
= swap_condition (comparison
);
4803 /* If OP0 is still a constant, then both X and Y must be constants
4804 or the opposite comparison is not supported. Force X into a register
4805 to create canonical RTL. */
4806 if (CONSTANT_P (op0
))
4807 op0
= force_reg (mode
, op0
);
4810 comparison
= unsigned_condition (comparison
);
4812 prepare_cmp_insn (op0
, op1
, comparison
, size
, unsignedp
, OPTAB_LIB_WIDEN
,
4815 /* Check if we're comparing a truth type with 0, and if so check if
4816 the target supports tbranch. */
4817 machine_mode tmode
= mode
;
4819 if (op1
== CONST0_RTX (GET_MODE (op1
))
4820 && validate_test_and_branch (val
, &test
, &tmode
,
4821 &optab
) != CODE_FOR_nothing
)
4823 emit_cmp_and_jump_insn_1 (test
, tmode
, label
, optab
, prob
, true);
4827 emit_cmp_and_jump_insn_1 (test
, mode
, label
, cbranch_optab
, prob
, false);
4830 /* Overloaded version of emit_cmp_and_jump_insns in which VAL is unknown. */
4833 emit_cmp_and_jump_insns (rtx x
, rtx y
, enum rtx_code comparison
, rtx size
,
4834 machine_mode mode
, int unsignedp
, rtx label
,
4835 profile_probability prob
)
4837 emit_cmp_and_jump_insns (x
, y
, comparison
, size
, mode
, unsignedp
, NULL
,
4842 /* Emit a library call comparison between floating point X and Y.
4843 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4846 prepare_float_lib_cmp (rtx x
, rtx y
, enum rtx_code comparison
,
4847 rtx
*ptest
, machine_mode
*pmode
)
4849 enum rtx_code swapped
= swap_condition (comparison
);
4850 enum rtx_code reversed
= reverse_condition_maybe_unordered (comparison
);
4851 machine_mode orig_mode
= GET_MODE (x
);
4853 rtx true_rtx
, false_rtx
;
4854 rtx value
, target
, equiv
;
4857 bool reversed_p
= false;
4858 scalar_int_mode cmp_mode
= targetm
.libgcc_cmp_return_mode ();
4860 FOR_EACH_WIDER_MODE_FROM (mode
, orig_mode
)
4862 if (code_to_optab (comparison
)
4863 && (libfunc
= optab_libfunc (code_to_optab (comparison
), mode
)))
4866 if (code_to_optab (swapped
)
4867 && (libfunc
= optab_libfunc (code_to_optab (swapped
), mode
)))
4870 comparison
= swapped
;
4874 if (code_to_optab (reversed
)
4875 && (libfunc
= optab_libfunc (code_to_optab (reversed
), mode
)))
4877 comparison
= reversed
;
4883 gcc_assert (mode
!= VOIDmode
);
4885 if (mode
!= orig_mode
)
4887 x
= convert_to_mode (mode
, x
, 0);
4888 y
= convert_to_mode (mode
, y
, 0);
4891 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4892 the RTL. The allows the RTL optimizers to delete the libcall if the
4893 condition can be determined at compile-time. */
4894 if (comparison
== UNORDERED
4895 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
))
4897 true_rtx
= const_true_rtx
;
4898 false_rtx
= const0_rtx
;
4905 true_rtx
= const0_rtx
;
4906 false_rtx
= const_true_rtx
;
4910 true_rtx
= const_true_rtx
;
4911 false_rtx
= const0_rtx
;
4915 true_rtx
= const1_rtx
;
4916 false_rtx
= const0_rtx
;
4920 true_rtx
= const0_rtx
;
4921 false_rtx
= constm1_rtx
;
4925 true_rtx
= constm1_rtx
;
4926 false_rtx
= const0_rtx
;
4930 true_rtx
= const0_rtx
;
4931 false_rtx
= const1_rtx
;
4939 if (comparison
== UNORDERED
)
4941 rtx temp
= simplify_gen_relational (NE
, cmp_mode
, mode
, x
, x
);
4942 equiv
= simplify_gen_relational (NE
, cmp_mode
, mode
, y
, y
);
4943 equiv
= simplify_gen_ternary (IF_THEN_ELSE
, cmp_mode
, cmp_mode
,
4944 temp
, const_true_rtx
, equiv
);
4948 equiv
= simplify_gen_relational (comparison
, cmp_mode
, mode
, x
, y
);
4949 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
))
4950 equiv
= simplify_gen_ternary (IF_THEN_ELSE
, cmp_mode
, cmp_mode
,
4951 equiv
, true_rtx
, false_rtx
);
4955 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
4956 cmp_mode
, x
, mode
, y
, mode
);
4957 insns
= get_insns ();
4960 target
= gen_reg_rtx (cmp_mode
);
4961 emit_libcall_block (insns
, target
, value
, equiv
);
4963 if (comparison
== UNORDERED
4964 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
)
4966 *ptest
= gen_rtx_fmt_ee (reversed_p
? EQ
: NE
, VOIDmode
, target
, false_rtx
);
4968 *ptest
= gen_rtx_fmt_ee (comparison
, VOIDmode
, target
, const0_rtx
);
4973 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4976 emit_indirect_jump (rtx loc
)
4978 if (!targetm
.have_indirect_jump ())
4979 sorry ("indirect jumps are not available on this target");
4982 class expand_operand ops
[1];
4983 create_address_operand (&ops
[0], loc
);
4984 expand_jump_insn (targetm
.code_for_indirect_jump
, 1, ops
);
4990 /* Emit a conditional move instruction if the machine supports one for that
4991 condition and machine mode.
4993 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4994 the mode to use should they be constants. If it is VOIDmode, they cannot
4997 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4998 should be stored there. MODE is the mode to use should they be constants.
4999 If it is VOIDmode, they cannot both be constants.
5001 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
5002 is not supported. */
5005 emit_conditional_move (rtx target
, struct rtx_comparison comp
,
5007 machine_mode mode
, int unsignedp
)
5011 enum insn_code icode
;
5012 enum rtx_code reversed
;
5014 /* If the two source operands are identical, that's just a move. */
5016 if (rtx_equal_p (op2
, op3
))
5019 target
= gen_reg_rtx (mode
);
5021 emit_move_insn (target
, op3
);
5025 /* If one operand is constant, make it the second one. Only do this
5026 if the other operand is not constant as well. */
5028 if (swap_commutative_operands_p (comp
.op0
, comp
.op1
))
5030 std::swap (comp
.op0
, comp
.op1
);
5031 comp
.code
= swap_condition (comp
.code
);
5034 /* get_condition will prefer to generate LT and GT even if the old
5035 comparison was against zero, so undo that canonicalization here since
5036 comparisons against zero are cheaper. */
5038 if (comp
.code
== LT
&& comp
.op1
== const1_rtx
)
5039 comp
.code
= LE
, comp
.op1
= const0_rtx
;
5040 else if (comp
.code
== GT
&& comp
.op1
== constm1_rtx
)
5041 comp
.code
= GE
, comp
.op1
= const0_rtx
;
5043 if (comp
.mode
== VOIDmode
)
5044 comp
.mode
= GET_MODE (comp
.op0
);
5046 enum rtx_code orig_code
= comp
.code
;
5047 bool swapped
= false;
5048 if (swap_commutative_operands_p (op2
, op3
)
5050 reversed_comparison_code_parts (comp
.code
, comp
.op0
, comp
.op1
, NULL
))
5053 std::swap (op2
, op3
);
5054 comp
.code
= reversed
;
5058 if (mode
== VOIDmode
)
5059 mode
= GET_MODE (op2
);
5061 icode
= direct_optab_handler (movcc_optab
, mode
);
5063 if (icode
== CODE_FOR_nothing
)
5067 target
= gen_reg_rtx (mode
);
5069 for (int pass
= 0; ; pass
++)
5071 comp
.code
= unsignedp
? unsigned_condition (comp
.code
) : comp
.code
;
5073 simplify_gen_relational (comp
.code
, VOIDmode
,
5074 comp
.mode
, comp
.op0
, comp
.op1
);
5076 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
5077 punt and let the caller figure out how best to deal with this
5079 if (COMPARISON_P (comparison
))
5081 saved_pending_stack_adjust save
;
5082 save_pending_stack_adjust (&save
);
5083 last
= get_last_insn ();
5084 do_pending_stack_adjust ();
5085 machine_mode cmpmode
= comp
.mode
;
5086 rtx orig_op0
= XEXP (comparison
, 0);
5087 rtx orig_op1
= XEXP (comparison
, 1);
5090 /* If we are optimizing, force expensive constants into a register
5091 but preserve an eventual equality with op2/op3. */
5092 if (CONSTANT_P (orig_op0
) && optimize
5094 && (rtx_cost (orig_op0
, mode
, COMPARE
, 0,
5095 optimize_insn_for_speed_p ())
5096 > COSTS_N_INSNS (1))
5097 && can_create_pseudo_p ())
5099 if (rtx_equal_p (orig_op0
, op2
))
5100 op2p
= XEXP (comparison
, 0) = force_reg (cmpmode
, orig_op0
);
5101 else if (rtx_equal_p (orig_op0
, op3
))
5102 op3p
= XEXP (comparison
, 0) = force_reg (cmpmode
, orig_op0
);
5104 if (CONSTANT_P (orig_op1
) && optimize
5106 && (rtx_cost (orig_op1
, mode
, COMPARE
, 0,
5107 optimize_insn_for_speed_p ())
5108 > COSTS_N_INSNS (1))
5109 && can_create_pseudo_p ())
5111 if (rtx_equal_p (orig_op1
, op2
))
5112 op2p
= XEXP (comparison
, 1) = force_reg (cmpmode
, orig_op1
);
5113 else if (rtx_equal_p (orig_op1
, op3
))
5114 op3p
= XEXP (comparison
, 1) = force_reg (cmpmode
, orig_op1
);
5116 prepare_cmp_insn (XEXP (comparison
, 0), XEXP (comparison
, 1),
5117 GET_CODE (comparison
), NULL_RTX
, unsignedp
,
5118 OPTAB_WIDEN
, &comparison
, &cmpmode
);
5121 rtx res
= emit_conditional_move_1 (target
, comparison
,
5123 if (res
!= NULL_RTX
)
5126 delete_insns_since (last
);
5127 restore_pending_stack_adjust (&save
);
5133 /* If the preferred op2/op3 order is not usable, retry with other
5134 operand order, perhaps it will expand successfully. */
5136 comp
.code
= orig_code
;
5137 else if ((reversed
=
5138 reversed_comparison_code_parts (orig_code
, comp
.op0
, comp
.op1
,
5141 comp
.code
= reversed
;
5144 std::swap (op2
, op3
);
5148 /* Helper function that, in addition to COMPARISON, also tries
5149 the reversed REV_COMPARISON with swapped OP2 and OP3. As opposed
5150 to when we pass the specific constituents of a comparison, no
5151 additional insns are emitted for it. It might still be necessary
5152 to emit more than one insn for the final conditional move, though. */
5155 emit_conditional_move (rtx target
, rtx comparison
, rtx rev_comparison
,
5156 rtx op2
, rtx op3
, machine_mode mode
)
5158 rtx res
= emit_conditional_move_1 (target
, comparison
, op2
, op3
, mode
);
5160 if (res
!= NULL_RTX
)
5163 return emit_conditional_move_1 (target
, rev_comparison
, op3
, op2
, mode
);
5166 /* Helper for emitting a conditional move. */
5169 emit_conditional_move_1 (rtx target
, rtx comparison
,
5170 rtx op2
, rtx op3
, machine_mode mode
)
5172 enum insn_code icode
;
5174 if (comparison
== NULL_RTX
|| !COMPARISON_P (comparison
))
5177 /* If the two source operands are identical, that's just a move.
5178 As the comparison comes in non-canonicalized, we must make
5179 sure not to discard any possible side effects. If there are
5180 side effects, just let the target handle it. */
5181 if (!side_effects_p (comparison
) && rtx_equal_p (op2
, op3
))
5184 target
= gen_reg_rtx (mode
);
5186 emit_move_insn (target
, op3
);
5190 if (mode
== VOIDmode
)
5191 mode
= GET_MODE (op2
);
5193 icode
= direct_optab_handler (movcc_optab
, mode
);
5195 if (icode
== CODE_FOR_nothing
)
5199 target
= gen_reg_rtx (mode
);
5201 class expand_operand ops
[4];
5203 create_output_operand (&ops
[0], target
, mode
);
5204 create_fixed_operand (&ops
[1], comparison
);
5205 create_input_operand (&ops
[2], op2
, mode
);
5206 create_input_operand (&ops
[3], op3
, mode
);
5208 if (maybe_expand_insn (icode
, 4, ops
))
5210 if (ops
[0].value
!= target
)
5211 convert_move (target
, ops
[0].value
, false);
5219 /* Emit a conditional negate or bitwise complement using the
5220 negcc or notcc optabs if available. Return NULL_RTX if such operations
5221 are not available. Otherwise return the RTX holding the result.
5222 TARGET is the desired destination of the result. COMP is the comparison
5223 on which to negate. If COND is true move into TARGET the negation
5224 or bitwise complement of OP1. Otherwise move OP2 into TARGET.
5225 CODE is either NEG or NOT. MODE is the machine mode in which the
5226 operation is performed. */
5229 emit_conditional_neg_or_complement (rtx target
, rtx_code code
,
5230 machine_mode mode
, rtx cond
, rtx op1
,
5233 optab op
= unknown_optab
;
5236 else if (code
== NOT
)
5241 insn_code icode
= direct_optab_handler (op
, mode
);
5243 if (icode
== CODE_FOR_nothing
)
5247 target
= gen_reg_rtx (mode
);
5249 rtx_insn
*last
= get_last_insn ();
5250 class expand_operand ops
[4];
5252 create_output_operand (&ops
[0], target
, mode
);
5253 create_fixed_operand (&ops
[1], cond
);
5254 create_input_operand (&ops
[2], op1
, mode
);
5255 create_input_operand (&ops
[3], op2
, mode
);
5257 if (maybe_expand_insn (icode
, 4, ops
))
5259 if (ops
[0].value
!= target
)
5260 convert_move (target
, ops
[0].value
, false);
5264 delete_insns_since (last
);
5268 /* Emit a conditional addition instruction if the machine supports one for that
5269 condition and machine mode.
5271 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
5272 the mode to use should they be constants. If it is VOIDmode, they cannot
5275 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
5276 should be stored there. MODE is the mode to use should they be constants.
5277 If it is VOIDmode, they cannot both be constants.
5279 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
5280 is not supported. */
5283 emit_conditional_add (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5284 machine_mode cmode
, rtx op2
, rtx op3
,
5285 machine_mode mode
, int unsignedp
)
5289 enum insn_code icode
;
5291 /* If one operand is constant, make it the second one. Only do this
5292 if the other operand is not constant as well. */
5294 if (swap_commutative_operands_p (op0
, op1
))
5296 std::swap (op0
, op1
);
5297 code
= swap_condition (code
);
5300 /* get_condition will prefer to generate LT and GT even if the old
5301 comparison was against zero, so undo that canonicalization here since
5302 comparisons against zero are cheaper. */
5303 if (code
== LT
&& op1
== const1_rtx
)
5304 code
= LE
, op1
= const0_rtx
;
5305 else if (code
== GT
&& op1
== constm1_rtx
)
5306 code
= GE
, op1
= const0_rtx
;
5308 if (cmode
== VOIDmode
)
5309 cmode
= GET_MODE (op0
);
5311 if (mode
== VOIDmode
)
5312 mode
= GET_MODE (op2
);
5314 icode
= optab_handler (addcc_optab
, mode
);
5316 if (icode
== CODE_FOR_nothing
)
5320 target
= gen_reg_rtx (mode
);
5322 code
= unsignedp
? unsigned_condition (code
) : code
;
5323 comparison
= simplify_gen_relational (code
, VOIDmode
, cmode
, op0
, op1
);
5325 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
5326 return NULL and let the caller figure out how best to deal with this
5328 if (!COMPARISON_P (comparison
))
5331 do_pending_stack_adjust ();
5332 last
= get_last_insn ();
5333 prepare_cmp_insn (XEXP (comparison
, 0), XEXP (comparison
, 1),
5334 GET_CODE (comparison
), NULL_RTX
, unsignedp
, OPTAB_WIDEN
,
5335 &comparison
, &cmode
);
5338 class expand_operand ops
[4];
5340 create_output_operand (&ops
[0], target
, mode
);
5341 create_fixed_operand (&ops
[1], comparison
);
5342 create_input_operand (&ops
[2], op2
, mode
);
5343 create_input_operand (&ops
[3], op3
, mode
);
5344 if (maybe_expand_insn (icode
, 4, ops
))
5346 if (ops
[0].value
!= target
)
5347 convert_move (target
, ops
[0].value
, false);
5351 delete_insns_since (last
);
5355 /* These functions attempt to generate an insn body, rather than
5356 emitting the insn, but if the gen function already emits them, we
5357 make no attempt to turn them back into naked patterns. */
5359 /* Generate and return an insn body to add Y to X. */
5362 gen_add2_insn (rtx x
, rtx y
)
5364 enum insn_code icode
= optab_handler (add_optab
, GET_MODE (x
));
5366 gcc_assert (insn_operand_matches (icode
, 0, x
));
5367 gcc_assert (insn_operand_matches (icode
, 1, x
));
5368 gcc_assert (insn_operand_matches (icode
, 2, y
));
5370 return GEN_FCN (icode
) (x
, x
, y
);
5373 /* Generate and return an insn body to add r1 and c,
5374 storing the result in r0. */
5377 gen_add3_insn (rtx r0
, rtx r1
, rtx c
)
5379 enum insn_code icode
= optab_handler (add_optab
, GET_MODE (r0
));
5381 if (icode
== CODE_FOR_nothing
5382 || !insn_operand_matches (icode
, 0, r0
)
5383 || !insn_operand_matches (icode
, 1, r1
)
5384 || !insn_operand_matches (icode
, 2, c
))
5387 return GEN_FCN (icode
) (r0
, r1
, c
);
5391 have_add2_insn (rtx x
, rtx y
)
5393 enum insn_code icode
;
5395 gcc_assert (GET_MODE (x
) != VOIDmode
);
5397 icode
= optab_handler (add_optab
, GET_MODE (x
));
5399 if (icode
== CODE_FOR_nothing
)
5402 if (!insn_operand_matches (icode
, 0, x
)
5403 || !insn_operand_matches (icode
, 1, x
)
5404 || !insn_operand_matches (icode
, 2, y
))
5410 /* Generate and return an insn body to add Y to X. */
5413 gen_addptr3_insn (rtx x
, rtx y
, rtx z
)
5415 enum insn_code icode
= optab_handler (addptr3_optab
, GET_MODE (x
));
5417 gcc_assert (insn_operand_matches (icode
, 0, x
));
5418 gcc_assert (insn_operand_matches (icode
, 1, y
));
5419 gcc_assert (insn_operand_matches (icode
, 2, z
));
5421 return GEN_FCN (icode
) (x
, y
, z
);
5424 /* Return true if the target implements an addptr pattern and X, Y,
5425 and Z are valid for the pattern predicates. */
5428 have_addptr3_insn (rtx x
, rtx y
, rtx z
)
5430 enum insn_code icode
;
5432 gcc_assert (GET_MODE (x
) != VOIDmode
);
5434 icode
= optab_handler (addptr3_optab
, GET_MODE (x
));
5436 if (icode
== CODE_FOR_nothing
)
5439 if (!insn_operand_matches (icode
, 0, x
)
5440 || !insn_operand_matches (icode
, 1, y
)
5441 || !insn_operand_matches (icode
, 2, z
))
5447 /* Generate and return an insn body to subtract Y from X. */
5450 gen_sub2_insn (rtx x
, rtx y
)
5452 enum insn_code icode
= optab_handler (sub_optab
, GET_MODE (x
));
5454 gcc_assert (insn_operand_matches (icode
, 0, x
));
5455 gcc_assert (insn_operand_matches (icode
, 1, x
));
5456 gcc_assert (insn_operand_matches (icode
, 2, y
));
5458 return GEN_FCN (icode
) (x
, x
, y
);
5461 /* Generate and return an insn body to subtract r1 and c,
5462 storing the result in r0. */
5465 gen_sub3_insn (rtx r0
, rtx r1
, rtx c
)
5467 enum insn_code icode
= optab_handler (sub_optab
, GET_MODE (r0
));
5469 if (icode
== CODE_FOR_nothing
5470 || !insn_operand_matches (icode
, 0, r0
)
5471 || !insn_operand_matches (icode
, 1, r1
)
5472 || !insn_operand_matches (icode
, 2, c
))
5475 return GEN_FCN (icode
) (r0
, r1
, c
);
5479 have_sub2_insn (rtx x
, rtx y
)
5481 enum insn_code icode
;
5483 gcc_assert (GET_MODE (x
) != VOIDmode
);
5485 icode
= optab_handler (sub_optab
, GET_MODE (x
));
5487 if (icode
== CODE_FOR_nothing
)
5490 if (!insn_operand_matches (icode
, 0, x
)
5491 || !insn_operand_matches (icode
, 1, x
)
5492 || !insn_operand_matches (icode
, 2, y
))
5498 /* Generate the body of an insn to extend Y (with mode MFROM)
5499 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
5502 gen_extend_insn (rtx x
, rtx y
, machine_mode mto
,
5503 machine_mode mfrom
, int unsignedp
)
5505 enum insn_code icode
= can_extend_p (mto
, mfrom
, unsignedp
);
5506 return GEN_FCN (icode
) (x
, y
);
5509 /* Generate code to convert FROM to floating point
5510 and store in TO. FROM must be fixed point and not VOIDmode.
5511 UNSIGNEDP nonzero means regard FROM as unsigned.
5512 Normally this is done by correcting the final value
5513 if it is negative. */
5516 expand_float (rtx to
, rtx from
, int unsignedp
)
5518 enum insn_code icode
;
5520 scalar_mode from_mode
, to_mode
;
5521 machine_mode fmode
, imode
;
5522 bool can_do_signed
= false;
5524 /* Crash now, because we won't be able to decide which mode to use. */
5525 gcc_assert (GET_MODE (from
) != VOIDmode
);
5527 /* Look for an insn to do the conversion. Do it in the specified
5528 modes if possible; otherwise convert either input, output or both to
5529 wider mode. If the integer mode is wider than the mode of FROM,
5530 we can do the conversion signed even if the input is unsigned. */
5532 FOR_EACH_MODE_FROM (fmode
, GET_MODE (to
))
5533 FOR_EACH_MODE_FROM (imode
, GET_MODE (from
))
5535 int doing_unsigned
= unsignedp
;
5537 if (fmode
!= GET_MODE (to
)
5538 && (significand_size (fmode
)
5539 < GET_MODE_UNIT_PRECISION (GET_MODE (from
))))
5542 icode
= can_float_p (fmode
, imode
, unsignedp
);
5543 if (icode
== CODE_FOR_nothing
&& unsignedp
)
5545 enum insn_code scode
= can_float_p (fmode
, imode
, 0);
5546 if (scode
!= CODE_FOR_nothing
)
5547 can_do_signed
= true;
5548 if (imode
!= GET_MODE (from
))
5549 icode
= scode
, doing_unsigned
= 0;
5552 if (icode
!= CODE_FOR_nothing
)
5554 if (imode
!= GET_MODE (from
))
5555 from
= convert_to_mode (imode
, from
, unsignedp
);
5557 if (fmode
!= GET_MODE (to
))
5558 target
= gen_reg_rtx (fmode
);
5560 emit_unop_insn (icode
, target
, from
,
5561 doing_unsigned
? UNSIGNED_FLOAT
: FLOAT
);
5564 convert_move (to
, target
, 0);
5569 /* Unsigned integer, and no way to convert directly. Convert as signed,
5570 then unconditionally adjust the result. */
5573 && is_a
<scalar_mode
> (GET_MODE (to
), &to_mode
)
5574 && is_a
<scalar_mode
> (GET_MODE (from
), &from_mode
))
5576 opt_scalar_mode fmode_iter
;
5577 rtx_code_label
*label
= gen_label_rtx ();
5579 REAL_VALUE_TYPE offset
;
5581 /* Look for a usable floating mode FMODE wider than the source and at
5582 least as wide as the target. Using FMODE will avoid rounding woes
5583 with unsigned values greater than the signed maximum value. */
5585 FOR_EACH_MODE_FROM (fmode_iter
, to_mode
)
5587 scalar_mode fmode
= fmode_iter
.require ();
5588 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_BITSIZE (fmode
)
5589 && can_float_p (fmode
, from_mode
, 0) != CODE_FOR_nothing
)
5593 if (!fmode_iter
.exists (&fmode
))
5595 /* There is no such mode. Pretend the target is wide enough. */
5598 /* Avoid double-rounding when TO is narrower than FROM. */
5599 if ((significand_size (fmode
) + 1)
5600 < GET_MODE_PRECISION (from_mode
))
5603 rtx_code_label
*neglabel
= gen_label_rtx ();
5605 /* Don't use TARGET if it isn't a register, is a hard register,
5606 or is the wrong mode. */
5608 || REGNO (target
) < FIRST_PSEUDO_REGISTER
5609 || GET_MODE (target
) != fmode
)
5610 target
= gen_reg_rtx (fmode
);
5613 do_pending_stack_adjust ();
5615 /* Test whether the sign bit is set. */
5616 emit_cmp_and_jump_insns (from
, const0_rtx
, LT
, NULL_RTX
, imode
,
5619 /* The sign bit is not set. Convert as signed. */
5620 expand_float (target
, from
, 0);
5621 emit_jump_insn (targetm
.gen_jump (label
));
5624 /* The sign bit is set.
5625 Convert to a usable (positive signed) value by shifting right
5626 one bit, while remembering if a nonzero bit was shifted
5627 out; i.e., compute (from & 1) | (from >> 1). */
5629 emit_label (neglabel
);
5630 temp
= expand_binop (imode
, and_optab
, from
, const1_rtx
,
5631 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
5632 temp1
= expand_shift (RSHIFT_EXPR
, imode
, from
, 1, NULL_RTX
, 1);
5633 temp
= expand_binop (imode
, ior_optab
, temp
, temp1
, temp
, 1,
5635 expand_float (target
, temp
, 0);
5637 /* Multiply by 2 to undo the shift above. */
5638 temp
= expand_binop (fmode
, add_optab
, target
, target
,
5639 target
, 0, OPTAB_LIB_WIDEN
);
5641 emit_move_insn (target
, temp
);
5643 do_pending_stack_adjust ();
5649 /* If we are about to do some arithmetic to correct for an
5650 unsigned operand, do it in a pseudo-register. */
5652 if (to_mode
!= fmode
5653 || !REG_P (to
) || REGNO (to
) < FIRST_PSEUDO_REGISTER
)
5654 target
= gen_reg_rtx (fmode
);
5656 /* Convert as signed integer to floating. */
5657 expand_float (target
, from
, 0);
5659 /* If FROM is negative (and therefore TO is negative),
5660 correct its value by 2**bitwidth. */
5662 do_pending_stack_adjust ();
5663 emit_cmp_and_jump_insns (from
, const0_rtx
, GE
, NULL_RTX
, from_mode
,
5667 real_2expN (&offset
, GET_MODE_PRECISION (from_mode
), fmode
);
5668 temp
= expand_binop (fmode
, add_optab
, target
,
5669 const_double_from_real_value (offset
, fmode
),
5670 target
, 0, OPTAB_LIB_WIDEN
);
5672 emit_move_insn (target
, temp
);
5674 do_pending_stack_adjust ();
5679 /* No hardware instruction available; call a library routine. */
5684 convert_optab tab
= unsignedp
? ufloat_optab
: sfloat_optab
;
5686 if (is_narrower_int_mode (GET_MODE (from
), SImode
))
5687 from
= convert_to_mode (SImode
, from
, unsignedp
);
5689 libfunc
= convert_optab_libfunc (tab
, GET_MODE (to
), GET_MODE (from
));
5690 gcc_assert (libfunc
);
5694 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
5695 GET_MODE (to
), from
, GET_MODE (from
));
5696 insns
= get_insns ();
5699 emit_libcall_block (insns
, target
, value
,
5700 gen_rtx_fmt_e (unsignedp
? UNSIGNED_FLOAT
: FLOAT
,
5701 GET_MODE (to
), from
));
5706 /* Copy result to requested destination
5707 if we have been computing in a temp location. */
5711 if (GET_MODE (target
) == GET_MODE (to
))
5712 emit_move_insn (to
, target
);
5714 convert_move (to
, target
, 0);
5718 /* Generate code to convert FROM to fixed point and store in TO. FROM
5719 must be floating point. */
5722 expand_fix (rtx to
, rtx from
, int unsignedp
)
5724 enum insn_code icode
;
5726 machine_mode fmode
, imode
;
5727 opt_scalar_mode fmode_iter
;
5728 bool must_trunc
= false;
5730 /* We first try to find a pair of modes, one real and one integer, at
5731 least as wide as FROM and TO, respectively, in which we can open-code
5732 this conversion. If the integer mode is wider than the mode of TO,
5733 we can do the conversion either signed or unsigned. */
5735 FOR_EACH_MODE_FROM (fmode
, GET_MODE (from
))
5736 FOR_EACH_MODE_FROM (imode
, GET_MODE (to
))
5738 int doing_unsigned
= unsignedp
;
5740 icode
= can_fix_p (imode
, fmode
, unsignedp
, &must_trunc
);
5741 if (icode
== CODE_FOR_nothing
&& imode
!= GET_MODE (to
) && unsignedp
)
5742 icode
= can_fix_p (imode
, fmode
, 0, &must_trunc
), doing_unsigned
= 0;
5744 if (icode
!= CODE_FOR_nothing
)
5746 rtx_insn
*last
= get_last_insn ();
5748 if (fmode
!= GET_MODE (from
))
5750 if (REAL_MODE_FORMAT (GET_MODE (from
))
5751 == &arm_bfloat_half_format
5752 && REAL_MODE_FORMAT (fmode
) == &ieee_single_format
)
5753 /* The BF -> SF conversions can be just a shift, doesn't
5754 need to handle sNANs. */
5756 int save_flag_finite_math_only
= flag_finite_math_only
;
5757 flag_finite_math_only
= true;
5758 from1
= convert_to_mode (fmode
, from
, 0);
5759 flag_finite_math_only
= save_flag_finite_math_only
;
5762 from1
= convert_to_mode (fmode
, from
, 0);
5767 rtx temp
= gen_reg_rtx (GET_MODE (from1
));
5768 from1
= expand_unop (GET_MODE (from1
), ftrunc_optab
, from1
,
5772 if (imode
!= GET_MODE (to
))
5773 target
= gen_reg_rtx (imode
);
5775 if (maybe_emit_unop_insn (icode
, target
, from1
,
5776 doing_unsigned
? UNSIGNED_FIX
: FIX
))
5779 convert_move (to
, target
, unsignedp
);
5782 delete_insns_since (last
);
5786 /* For an unsigned conversion, there is one more way to do it.
5787 If we have a signed conversion, we generate code that compares
5788 the real value to the largest representable positive number. If if
5789 is smaller, the conversion is done normally. Otherwise, subtract
5790 one plus the highest signed number, convert, and add it back.
5792 We only need to check all real modes, since we know we didn't find
5793 anything with a wider integer mode.
5795 This code used to extend FP value into mode wider than the destination.
5796 This is needed for decimal float modes which cannot accurately
5797 represent one plus the highest signed number of the same size, but
5798 not for binary modes. Consider, for instance conversion from SFmode
5801 The hot path through the code is dealing with inputs smaller than 2^63
5802 and doing just the conversion, so there is no bits to lose.
5804 In the other path we know the value is positive in the range 2^63..2^64-1
5805 inclusive. (as for other input overflow happens and result is undefined)
5806 So we know that the most important bit set in mantissa corresponds to
5807 2^63. The subtraction of 2^63 should not generate any rounding as it
5808 simply clears out that bit. The rest is trivial. */
5810 scalar_int_mode to_mode
;
5812 && is_a
<scalar_int_mode
> (GET_MODE (to
), &to_mode
)
5813 && HWI_COMPUTABLE_MODE_P (to_mode
))
5814 FOR_EACH_MODE_FROM (fmode_iter
, as_a
<scalar_mode
> (GET_MODE (from
)))
5816 scalar_mode fmode
= fmode_iter
.require ();
5817 if (CODE_FOR_nothing
!= can_fix_p (to_mode
, fmode
,
5819 && (!DECIMAL_FLOAT_MODE_P (fmode
)
5820 || (GET_MODE_BITSIZE (fmode
) > GET_MODE_PRECISION (to_mode
))))
5823 REAL_VALUE_TYPE offset
;
5825 rtx_code_label
*lab1
, *lab2
;
5828 bitsize
= GET_MODE_PRECISION (to_mode
);
5829 real_2expN (&offset
, bitsize
- 1, fmode
);
5830 limit
= const_double_from_real_value (offset
, fmode
);
5831 lab1
= gen_label_rtx ();
5832 lab2
= gen_label_rtx ();
5834 if (fmode
!= GET_MODE (from
))
5836 if (REAL_MODE_FORMAT (GET_MODE (from
))
5837 == &arm_bfloat_half_format
5838 && REAL_MODE_FORMAT (fmode
) == &ieee_single_format
)
5839 /* The BF -> SF conversions can be just a shift, doesn't
5840 need to handle sNANs. */
5842 int save_flag_finite_math_only
= flag_finite_math_only
;
5843 flag_finite_math_only
= true;
5844 from
= convert_to_mode (fmode
, from
, 0);
5845 flag_finite_math_only
= save_flag_finite_math_only
;
5848 from
= convert_to_mode (fmode
, from
, 0);
5851 /* See if we need to do the subtraction. */
5852 do_pending_stack_adjust ();
5853 emit_cmp_and_jump_insns (from
, limit
, GE
, NULL_RTX
,
5854 GET_MODE (from
), 0, lab1
);
5856 /* If not, do the signed "fix" and branch around fixup code. */
5857 expand_fix (to
, from
, 0);
5858 emit_jump_insn (targetm
.gen_jump (lab2
));
5861 /* Otherwise, subtract 2**(N-1), convert to signed number,
5862 then add 2**(N-1). Do the addition using XOR since this
5863 will often generate better code. */
5865 target
= expand_binop (GET_MODE (from
), sub_optab
, from
, limit
,
5866 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
5867 expand_fix (to
, target
, 0);
5868 target
= expand_binop (to_mode
, xor_optab
, to
,
5870 (HOST_WIDE_INT_1
<< (bitsize
- 1),
5872 to
, 1, OPTAB_LIB_WIDEN
);
5875 emit_move_insn (to
, target
);
5879 if (optab_handler (mov_optab
, to_mode
) != CODE_FOR_nothing
)
5881 /* Make a place for a REG_NOTE and add it. */
5882 insn
= emit_move_insn (to
, to
);
5883 set_dst_reg_note (insn
, REG_EQUAL
,
5884 gen_rtx_fmt_e (UNSIGNED_FIX
, to_mode
,
5894 if (REAL_MODE_FORMAT (GET_MODE (from
)) == &arm_bfloat_half_format
5895 && REAL_MODE_FORMAT (SFmode
) == &ieee_single_format
)
5896 /* We don't have BF -> TI library functions, use BF -> SF -> TI
5897 instead but the BF -> SF conversion can be just a shift, doesn't
5898 need to handle sNANs. */
5900 int save_flag_finite_math_only
= flag_finite_math_only
;
5901 flag_finite_math_only
= true;
5902 from
= convert_to_mode (SFmode
, from
, 0);
5903 flag_finite_math_only
= save_flag_finite_math_only
;
5904 expand_fix (to
, from
, unsignedp
);
5909 /* We can't do it with an insn, so use a library call. But first ensure
5910 that the mode of TO is at least as wide as SImode, since those are the
5911 only library calls we know about. */
5913 if (is_narrower_int_mode (GET_MODE (to
), SImode
))
5915 target
= gen_reg_rtx (SImode
);
5917 expand_fix (target
, from
, unsignedp
);
5925 convert_optab tab
= unsignedp
? ufix_optab
: sfix_optab
;
5926 libfunc
= convert_optab_libfunc (tab
, GET_MODE (to
), GET_MODE (from
));
5927 gcc_assert (libfunc
);
5931 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
5932 GET_MODE (to
), from
, GET_MODE (from
));
5933 insns
= get_insns ();
5936 emit_libcall_block (insns
, target
, value
,
5937 gen_rtx_fmt_e (unsignedp
? UNSIGNED_FIX
: FIX
,
5938 GET_MODE (to
), from
));
5943 if (GET_MODE (to
) == GET_MODE (target
))
5944 emit_move_insn (to
, target
);
5946 convert_move (to
, target
, 0);
5951 /* Promote integer arguments for a libcall if necessary.
5952 emit_library_call_value cannot do the promotion because it does not
5953 know if it should do a signed or unsigned promotion. This is because
5954 there are no tree types defined for libcalls. */
5957 prepare_libcall_arg (rtx arg
, int uintp
)
5959 scalar_int_mode mode
;
5960 machine_mode arg_mode
;
5961 if (is_a
<scalar_int_mode
> (GET_MODE (arg
), &mode
))
5963 /* If we need to promote the integer function argument we need to do
5964 it here instead of inside emit_library_call_value because in
5965 emit_library_call_value we don't know if we should do a signed or
5966 unsigned promotion. */
5969 arg_mode
= promote_function_mode (NULL_TREE
, mode
,
5970 &unsigned_p
, NULL_TREE
, 0);
5971 if (arg_mode
!= mode
)
5972 return convert_to_mode (arg_mode
, arg
, uintp
);
5977 /* Generate code to convert FROM or TO a fixed-point.
5978 If UINTP is true, either TO or FROM is an unsigned integer.
5979 If SATP is true, we need to saturate the result. */
5982 expand_fixed_convert (rtx to
, rtx from
, int uintp
, int satp
)
5984 machine_mode to_mode
= GET_MODE (to
);
5985 machine_mode from_mode
= GET_MODE (from
);
5987 enum rtx_code this_code
;
5988 enum insn_code code
;
5993 if (to_mode
== from_mode
)
5995 emit_move_insn (to
, from
);
6001 tab
= satp
? satfractuns_optab
: fractuns_optab
;
6002 this_code
= satp
? UNSIGNED_SAT_FRACT
: UNSIGNED_FRACT_CONVERT
;
6006 tab
= satp
? satfract_optab
: fract_optab
;
6007 this_code
= satp
? SAT_FRACT
: FRACT_CONVERT
;
6009 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
6010 if (code
!= CODE_FOR_nothing
)
6012 emit_unop_insn (code
, to
, from
, this_code
);
6016 libfunc
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
6017 gcc_assert (libfunc
);
6019 from
= prepare_libcall_arg (from
, uintp
);
6020 from_mode
= GET_MODE (from
);
6023 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
, to_mode
,
6025 insns
= get_insns ();
6028 emit_libcall_block (insns
, to
, value
,
6029 gen_rtx_fmt_e (optab_to_code (tab
), to_mode
, from
));
6032 /* Generate code to convert FROM to fixed point and store in TO. FROM
6033 must be floating point, TO must be signed. Use the conversion optab
6034 TAB to do the conversion. */
6037 expand_sfix_optab (rtx to
, rtx from
, convert_optab tab
)
6039 enum insn_code icode
;
6041 machine_mode fmode
, imode
;
6043 /* We first try to find a pair of modes, one real and one integer, at
6044 least as wide as FROM and TO, respectively, in which we can open-code
6045 this conversion. If the integer mode is wider than the mode of TO,
6046 we can do the conversion either signed or unsigned. */
6048 FOR_EACH_MODE_FROM (fmode
, GET_MODE (from
))
6049 FOR_EACH_MODE_FROM (imode
, GET_MODE (to
))
6051 icode
= convert_optab_handler (tab
, imode
, fmode
,
6052 insn_optimization_type ());
6053 if (icode
!= CODE_FOR_nothing
)
6055 rtx_insn
*last
= get_last_insn ();
6056 if (fmode
!= GET_MODE (from
))
6057 from
= convert_to_mode (fmode
, from
, 0);
6059 if (imode
!= GET_MODE (to
))
6060 target
= gen_reg_rtx (imode
);
6062 if (!maybe_emit_unop_insn (icode
, target
, from
, UNKNOWN
))
6064 delete_insns_since (last
);
6068 convert_move (to
, target
, 0);
6076 /* Report whether we have an instruction to perform the operation
6077 specified by CODE on operands of mode MODE. */
6079 have_insn_for (enum rtx_code code
, machine_mode mode
)
6081 return (code_to_optab (code
)
6082 && (optab_handler (code_to_optab (code
), mode
)
6083 != CODE_FOR_nothing
));
6086 /* Print information about the current contents of the optabs on
6090 debug_optab_libfuncs (void)
6094 /* Dump the arithmetic optabs. */
6095 for (i
= FIRST_NORM_OPTAB
; i
<= LAST_NORMLIB_OPTAB
; ++i
)
6096 for (j
= 0; j
< NUM_MACHINE_MODES
; ++j
)
6098 rtx l
= optab_libfunc ((optab
) i
, (machine_mode
) j
);
6101 gcc_assert (GET_CODE (l
) == SYMBOL_REF
);
6102 fprintf (stderr
, "%s\t%s:\t%s\n",
6103 GET_RTX_NAME (optab_to_code ((optab
) i
)),
6109 /* Dump the conversion optabs. */
6110 for (i
= FIRST_CONV_OPTAB
; i
<= LAST_CONVLIB_OPTAB
; ++i
)
6111 for (j
= 0; j
< NUM_MACHINE_MODES
; ++j
)
6112 for (k
= 0; k
< NUM_MACHINE_MODES
; ++k
)
6114 rtx l
= convert_optab_libfunc ((optab
) i
, (machine_mode
) j
,
6118 gcc_assert (GET_CODE (l
) == SYMBOL_REF
);
6119 fprintf (stderr
, "%s\t%s\t%s:\t%s\n",
6120 GET_RTX_NAME (optab_to_code ((optab
) i
)),
6128 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
6129 CODE. Return 0 on failure. */
6132 gen_cond_trap (enum rtx_code code
, rtx op1
, rtx op2
, rtx tcode
)
6134 machine_mode mode
= GET_MODE (op1
);
6135 enum insn_code icode
;
6139 if (mode
== VOIDmode
)
6142 icode
= optab_handler (ctrap_optab
, mode
);
6143 if (icode
== CODE_FOR_nothing
)
6146 /* Some targets only accept a zero trap code. */
6147 if (!insn_operand_matches (icode
, 3, tcode
))
6150 do_pending_stack_adjust ();
6152 prepare_cmp_insn (op1
, op2
, code
, NULL_RTX
, false, OPTAB_DIRECT
,
6157 insn
= GEN_FCN (icode
) (trap_rtx
, XEXP (trap_rtx
, 0), XEXP (trap_rtx
, 1),
6160 /* If that failed, then give up. */
6168 insn
= get_insns ();
6173 /* Return rtx code for TCODE or UNKNOWN. Use UNSIGNEDP to select signed
6174 or unsigned operation code. */
6177 get_rtx_code_1 (enum tree_code tcode
, bool unsignedp
)
6189 code
= unsignedp
? LTU
: LT
;
6192 code
= unsignedp
? LEU
: LE
;
6195 code
= unsignedp
? GTU
: GT
;
6198 code
= unsignedp
? GEU
: GE
;
6201 case UNORDERED_EXPR
:
6241 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6242 or unsigned operation code. */
6245 get_rtx_code (enum tree_code tcode
, bool unsignedp
)
6247 enum rtx_code code
= get_rtx_code_1 (tcode
, unsignedp
);
6248 gcc_assert (code
!= UNKNOWN
);
6252 /* Return a comparison rtx of mode CMP_MODE for COND. Use UNSIGNEDP to
6253 select signed or unsigned operators. OPNO holds the index of the
6254 first comparison operand for insn ICODE. Do not generate the
6255 compare instruction itself. */
6258 vector_compare_rtx (machine_mode cmp_mode
, enum tree_code tcode
,
6259 tree t_op0
, tree t_op1
, bool unsignedp
,
6260 enum insn_code icode
, unsigned int opno
)
6262 class expand_operand ops
[2];
6263 rtx rtx_op0
, rtx_op1
;
6264 machine_mode m0
, m1
;
6265 enum rtx_code rcode
= get_rtx_code (tcode
, unsignedp
);
6267 gcc_assert (TREE_CODE_CLASS (tcode
) == tcc_comparison
);
6269 /* Expand operands. For vector types with scalar modes, e.g. where int64x1_t
6270 has mode DImode, this can produce a constant RTX of mode VOIDmode; in such
6271 cases, use the original mode. */
6272 rtx_op0
= expand_expr (t_op0
, NULL_RTX
, TYPE_MODE (TREE_TYPE (t_op0
)),
6274 m0
= GET_MODE (rtx_op0
);
6276 m0
= TYPE_MODE (TREE_TYPE (t_op0
));
6278 rtx_op1
= expand_expr (t_op1
, NULL_RTX
, TYPE_MODE (TREE_TYPE (t_op1
)),
6280 m1
= GET_MODE (rtx_op1
);
6282 m1
= TYPE_MODE (TREE_TYPE (t_op1
));
6284 create_input_operand (&ops
[0], rtx_op0
, m0
);
6285 create_input_operand (&ops
[1], rtx_op1
, m1
);
6286 if (!maybe_legitimize_operands (icode
, opno
, 2, ops
))
6288 return gen_rtx_fmt_ee (rcode
, cmp_mode
, ops
[0].value
, ops
[1].value
);
6291 /* Check if vec_perm mask SEL is a constant equivalent to a shift of
6292 the first vec_perm operand, assuming the second operand (for left shift
6293 first operand) is a constant vector of zeros. Return the shift distance
6294 in bits if so, or NULL_RTX if the vec_perm is not a shift. MODE is the
6295 mode of the value being shifted. SHIFT_OPTAB is vec_shr_optab for right
6296 shift or vec_shl_optab for left shift. */
6298 shift_amt_for_vec_perm_mask (machine_mode mode
, const vec_perm_indices
&sel
,
6301 unsigned int bitsize
= GET_MODE_UNIT_BITSIZE (mode
);
6302 poly_int64 first
= sel
[0];
6303 if (maybe_ge (sel
[0], GET_MODE_NUNITS (mode
)))
6306 if (shift_optab
== vec_shl_optab
)
6309 if (!GET_MODE_NUNITS (mode
).is_constant (&nelt
))
6311 unsigned firstidx
= 0;
6312 for (unsigned int i
= 0; i
< nelt
; i
++)
6314 if (known_eq (sel
[i
], nelt
))
6316 if (i
== 0 || firstidx
)
6321 ? maybe_ne (sel
[i
], nelt
+ i
- firstidx
)
6322 : maybe_ge (sel
[i
], nelt
))
6330 else if (!sel
.series_p (0, 1, first
, 1))
6333 if (!GET_MODE_NUNITS (mode
).is_constant (&nelt
))
6335 for (unsigned int i
= 1; i
< nelt
; i
++)
6337 poly_int64 expected
= i
+ first
;
6338 /* Indices into the second vector are all equivalent. */
6339 if (maybe_lt (sel
[i
], nelt
)
6340 ? maybe_ne (sel
[i
], expected
)
6341 : maybe_lt (expected
, nelt
))
6346 return gen_int_shift_amount (mode
, first
* bitsize
);
6349 /* A subroutine of expand_vec_perm_var for expanding one vec_perm insn. */
6352 expand_vec_perm_1 (enum insn_code icode
, rtx target
,
6353 rtx v0
, rtx v1
, rtx sel
)
6355 machine_mode tmode
= GET_MODE (target
);
6356 machine_mode smode
= GET_MODE (sel
);
6357 class expand_operand ops
[4];
6359 gcc_assert (GET_MODE_CLASS (smode
) == MODE_VECTOR_INT
6360 || related_int_vector_mode (tmode
).require () == smode
);
6361 create_output_operand (&ops
[0], target
, tmode
);
6362 create_input_operand (&ops
[3], sel
, smode
);
6364 /* Make an effort to preserve v0 == v1. The target expander is able to
6365 rely on this to determine if we're permuting a single input operand. */
6366 if (rtx_equal_p (v0
, v1
))
6368 if (!insn_operand_matches (icode
, 1, v0
))
6369 v0
= force_reg (tmode
, v0
);
6370 gcc_checking_assert (insn_operand_matches (icode
, 1, v0
));
6371 gcc_checking_assert (insn_operand_matches (icode
, 2, v0
));
6373 create_fixed_operand (&ops
[1], v0
);
6374 create_fixed_operand (&ops
[2], v0
);
6378 create_input_operand (&ops
[1], v0
, tmode
);
6379 create_input_operand (&ops
[2], v1
, tmode
);
6382 if (maybe_expand_insn (icode
, 4, ops
))
6383 return ops
[0].value
;
6387 /* Implement a permutation of vectors v0 and v1 using the permutation
6388 vector in SEL and return the result. Use TARGET to hold the result
6389 if nonnull and convenient.
6391 MODE is the mode of the vectors being permuted (V0 and V1). SEL_MODE
6392 is the TYPE_MODE associated with SEL, or BLKmode if SEL isn't known
6393 to have a particular mode. */
6396 expand_vec_perm_const (machine_mode mode
, rtx v0
, rtx v1
,
6397 const vec_perm_builder
&sel
, machine_mode sel_mode
,
6400 if (!target
|| !register_operand (target
, mode
))
6401 target
= gen_reg_rtx (mode
);
6403 /* Set QIMODE to a different vector mode with byte elements.
6404 If no such mode, or if MODE already has byte elements, use VOIDmode. */
6405 machine_mode qimode
;
6406 if (!qimode_for_vec_perm (mode
).exists (&qimode
))
6409 rtx_insn
*last
= get_last_insn ();
6411 bool single_arg_p
= rtx_equal_p (v0
, v1
);
6412 /* Always specify two input vectors here and leave the target to handle
6413 cases in which the inputs are equal. Not all backends can cope with
6414 the single-input representation when testing for a double-input
6415 target instruction. */
6416 vec_perm_indices
indices (sel
, 2, GET_MODE_NUNITS (mode
));
6418 /* See if this can be handled with a vec_shr or vec_shl. We only do this
6419 if the second (for vec_shr) or first (for vec_shl) vector is all
6421 insn_code shift_code
= CODE_FOR_nothing
;
6422 insn_code shift_code_qi
= CODE_FOR_nothing
;
6423 optab shift_optab
= unknown_optab
;
6425 if (v1
== CONST0_RTX (GET_MODE (v1
)))
6426 shift_optab
= vec_shr_optab
;
6427 else if (v0
== CONST0_RTX (GET_MODE (v0
)))
6429 shift_optab
= vec_shl_optab
;
6432 if (shift_optab
!= unknown_optab
)
6434 shift_code
= optab_handler (shift_optab
, mode
);
6435 shift_code_qi
= ((qimode
!= VOIDmode
&& qimode
!= mode
)
6436 ? optab_handler (shift_optab
, qimode
)
6437 : CODE_FOR_nothing
);
6439 if (shift_code
!= CODE_FOR_nothing
|| shift_code_qi
!= CODE_FOR_nothing
)
6441 rtx shift_amt
= shift_amt_for_vec_perm_mask (mode
, indices
, shift_optab
);
6444 class expand_operand ops
[3];
6445 if (shift_amt
== const0_rtx
)
6447 if (shift_code
!= CODE_FOR_nothing
)
6449 create_output_operand (&ops
[0], target
, mode
);
6450 create_input_operand (&ops
[1], v2
, mode
);
6451 create_convert_operand_from_type (&ops
[2], shift_amt
, sizetype
);
6452 if (maybe_expand_insn (shift_code
, 3, ops
))
6453 return ops
[0].value
;
6455 if (shift_code_qi
!= CODE_FOR_nothing
)
6457 rtx tmp
= gen_reg_rtx (qimode
);
6458 create_output_operand (&ops
[0], tmp
, qimode
);
6459 create_input_operand (&ops
[1], gen_lowpart (qimode
, v2
), qimode
);
6460 create_convert_operand_from_type (&ops
[2], shift_amt
, sizetype
);
6461 if (maybe_expand_insn (shift_code_qi
, 3, ops
))
6462 return gen_lowpart (mode
, ops
[0].value
);
6467 if (targetm
.vectorize
.vec_perm_const
!= NULL
)
6472 gcc_checking_assert (GET_MODE (v0
) == GET_MODE (v1
));
6473 machine_mode op_mode
= GET_MODE (v0
);
6474 if (targetm
.vectorize
.vec_perm_const (mode
, op_mode
, target
, v0
, v1
,
6479 /* Fall back to a constant byte-based permutation. */
6480 vec_perm_indices qimode_indices
;
6481 rtx target_qi
= NULL_RTX
, v0_qi
= NULL_RTX
, v1_qi
= NULL_RTX
;
6482 if (qimode
!= VOIDmode
)
6484 qimode_indices
.new_expanded_vector (indices
, GET_MODE_UNIT_SIZE (mode
));
6485 target_qi
= gen_reg_rtx (qimode
);
6486 v0_qi
= gen_lowpart (qimode
, v0
);
6487 v1_qi
= gen_lowpart (qimode
, v1
);
6488 if (targetm
.vectorize
.vec_perm_const
!= NULL
6489 && targetm
.vectorize
.vec_perm_const (qimode
, qimode
, target_qi
, v0_qi
,
6490 v1_qi
, qimode_indices
))
6491 return gen_lowpart (mode
, target_qi
);
6494 v0
= force_reg (mode
, v0
);
6497 v1
= force_reg (mode
, v1
);
6499 /* Otherwise expand as a fully variable permuation. */
6501 /* The optabs are only defined for selectors with the same width
6502 as the values being permuted. */
6503 machine_mode required_sel_mode
;
6504 if (!related_int_vector_mode (mode
).exists (&required_sel_mode
))
6506 delete_insns_since (last
);
6510 /* We know that it is semantically valid to treat SEL as having SEL_MODE.
6511 If that isn't the mode we want then we need to prove that using
6512 REQUIRED_SEL_MODE is OK. */
6513 if (sel_mode
!= required_sel_mode
)
6515 if (!selector_fits_mode_p (required_sel_mode
, indices
))
6517 delete_insns_since (last
);
6520 sel_mode
= required_sel_mode
;
6523 insn_code icode
= direct_optab_handler (vec_perm_optab
, mode
);
6524 if (icode
!= CODE_FOR_nothing
)
6526 rtx sel_rtx
= vec_perm_indices_to_rtx (sel_mode
, indices
);
6527 rtx tmp
= expand_vec_perm_1 (icode
, target
, v0
, v1
, sel_rtx
);
6532 if (qimode
!= VOIDmode
6533 && selector_fits_mode_p (qimode
, qimode_indices
))
6535 icode
= direct_optab_handler (vec_perm_optab
, qimode
);
6536 if (icode
!= CODE_FOR_nothing
)
6538 rtx sel_qi
= vec_perm_indices_to_rtx (qimode
, qimode_indices
);
6539 rtx tmp
= expand_vec_perm_1 (icode
, target_qi
, v0_qi
, v1_qi
, sel_qi
);
6541 return gen_lowpart (mode
, tmp
);
6545 delete_insns_since (last
);
6549 /* Implement a permutation of vectors v0 and v1 using the permutation
6550 vector in SEL and return the result. Use TARGET to hold the result
6551 if nonnull and convenient.
6553 MODE is the mode of the vectors being permuted (V0 and V1).
6554 SEL must have the integer equivalent of MODE and is known to be
6555 unsuitable for permutes with a constant permutation vector. */
6558 expand_vec_perm_var (machine_mode mode
, rtx v0
, rtx v1
, rtx sel
, rtx target
)
6560 enum insn_code icode
;
6564 u
= GET_MODE_UNIT_SIZE (mode
);
6566 if (!target
|| GET_MODE (target
) != mode
)
6567 target
= gen_reg_rtx (mode
);
6569 icode
= direct_optab_handler (vec_perm_optab
, mode
);
6570 if (icode
!= CODE_FOR_nothing
)
6572 tmp
= expand_vec_perm_1 (icode
, target
, v0
, v1
, sel
);
6577 /* As a special case to aid several targets, lower the element-based
6578 permutation to a byte-based permutation and try again. */
6579 machine_mode qimode
;
6580 if (!qimode_for_vec_perm (mode
).exists (&qimode
)
6581 || maybe_gt (GET_MODE_NUNITS (qimode
), GET_MODE_MASK (QImode
) + 1))
6583 icode
= direct_optab_handler (vec_perm_optab
, qimode
);
6584 if (icode
== CODE_FOR_nothing
)
6587 /* Multiply each element by its byte size. */
6588 machine_mode selmode
= GET_MODE (sel
);
6590 sel
= expand_simple_binop (selmode
, PLUS
, sel
, sel
,
6591 NULL
, 0, OPTAB_DIRECT
);
6593 sel
= expand_simple_binop (selmode
, ASHIFT
, sel
,
6594 gen_int_shift_amount (selmode
, exact_log2 (u
)),
6595 NULL
, 0, OPTAB_DIRECT
);
6596 gcc_assert (sel
!= NULL
);
6598 /* Broadcast the low byte each element into each of its bytes.
6599 The encoding has U interleaved stepped patterns, one for each
6600 byte of an element. */
6601 vec_perm_builder
const_sel (GET_MODE_SIZE (mode
), u
, 3);
6602 unsigned int low_byte_in_u
= BYTES_BIG_ENDIAN
? u
- 1 : 0;
6603 for (i
= 0; i
< 3; ++i
)
6604 for (unsigned int j
= 0; j
< u
; ++j
)
6605 const_sel
.quick_push (i
* u
+ low_byte_in_u
);
6606 sel
= gen_lowpart (qimode
, sel
);
6607 sel
= expand_vec_perm_const (qimode
, sel
, sel
, const_sel
, qimode
, NULL
);
6608 gcc_assert (sel
!= NULL
);
6610 /* Add the byte offset to each byte element. */
6611 /* Note that the definition of the indicies here is memory ordering,
6612 so there should be no difference between big and little endian. */
6613 rtx_vector_builder
byte_indices (qimode
, u
, 1);
6614 for (i
= 0; i
< u
; ++i
)
6615 byte_indices
.quick_push (GEN_INT (i
));
6616 tmp
= byte_indices
.build ();
6617 sel_qi
= expand_simple_binop (qimode
, PLUS
, sel
, tmp
,
6618 sel
, 0, OPTAB_DIRECT
);
6619 gcc_assert (sel_qi
!= NULL
);
6621 tmp
= mode
!= qimode
? gen_reg_rtx (qimode
) : target
;
6622 tmp
= expand_vec_perm_1 (icode
, tmp
, gen_lowpart (qimode
, v0
),
6623 gen_lowpart (qimode
, v1
), sel_qi
);
6625 tmp
= gen_lowpart (mode
, tmp
);
6629 /* Generate VEC_SERIES_EXPR <OP0, OP1>, returning a value of mode VMODE.
6630 Use TARGET for the result if nonnull and convenient. */
6633 expand_vec_series_expr (machine_mode vmode
, rtx op0
, rtx op1
, rtx target
)
6635 class expand_operand ops
[3];
6636 enum insn_code icode
;
6637 machine_mode emode
= GET_MODE_INNER (vmode
);
6639 icode
= direct_optab_handler (vec_series_optab
, vmode
);
6640 gcc_assert (icode
!= CODE_FOR_nothing
);
6642 create_output_operand (&ops
[0], target
, vmode
);
6643 create_input_operand (&ops
[1], op0
, emode
);
6644 create_input_operand (&ops
[2], op1
, emode
);
6646 expand_insn (icode
, 3, ops
);
6647 return ops
[0].value
;
6650 /* Generate insns for a vector comparison into a mask. */
6653 expand_vec_cmp_expr (tree type
, tree exp
, rtx target
)
6655 class expand_operand ops
[4];
6656 enum insn_code icode
;
6658 machine_mode mask_mode
= TYPE_MODE (type
);
6662 enum tree_code tcode
;
6664 op0a
= TREE_OPERAND (exp
, 0);
6665 op0b
= TREE_OPERAND (exp
, 1);
6666 tcode
= TREE_CODE (exp
);
6668 unsignedp
= TYPE_UNSIGNED (TREE_TYPE (op0a
));
6669 vmode
= TYPE_MODE (TREE_TYPE (op0a
));
6671 icode
= get_vec_cmp_icode (vmode
, mask_mode
, unsignedp
);
6672 if (icode
== CODE_FOR_nothing
)
6674 if (tcode
== EQ_EXPR
|| tcode
== NE_EXPR
)
6675 icode
= get_vec_cmp_eq_icode (vmode
, mask_mode
);
6676 if (icode
== CODE_FOR_nothing
)
6680 comparison
= vector_compare_rtx (mask_mode
, tcode
, op0a
, op0b
,
6681 unsignedp
, icode
, 2);
6682 create_output_operand (&ops
[0], target
, mask_mode
);
6683 create_fixed_operand (&ops
[1], comparison
);
6684 create_fixed_operand (&ops
[2], XEXP (comparison
, 0));
6685 create_fixed_operand (&ops
[3], XEXP (comparison
, 1));
6686 expand_insn (icode
, 4, ops
);
6687 return ops
[0].value
;
6690 /* Expand a highpart multiply. */
6693 expand_mult_highpart (machine_mode mode
, rtx op0
, rtx op1
,
6694 rtx target
, bool uns_p
)
6696 class expand_operand eops
[3];
6697 enum insn_code icode
;
6703 method
= can_mult_highpart_p (mode
, uns_p
);
6709 tab1
= uns_p
? umul_highpart_optab
: smul_highpart_optab
;
6710 return expand_binop (mode
, tab1
, op0
, op1
, target
, uns_p
,
6713 return expmed_mult_highpart_optab (as_a
<scalar_int_mode
> (mode
),
6714 op0
, op1
, target
, uns_p
, INT_MAX
);
6716 tab1
= uns_p
? vec_widen_umult_even_optab
: vec_widen_smult_even_optab
;
6717 tab2
= uns_p
? vec_widen_umult_odd_optab
: vec_widen_smult_odd_optab
;
6720 tab1
= uns_p
? vec_widen_umult_lo_optab
: vec_widen_smult_lo_optab
;
6721 tab2
= uns_p
? vec_widen_umult_hi_optab
: vec_widen_smult_hi_optab
;
6722 if (BYTES_BIG_ENDIAN
)
6723 std::swap (tab1
, tab2
);
6729 icode
= optab_handler (tab1
, mode
);
6730 wmode
= insn_data
[icode
].operand
[0].mode
;
6731 gcc_checking_assert (known_eq (2 * GET_MODE_NUNITS (wmode
),
6732 GET_MODE_NUNITS (mode
)));
6733 gcc_checking_assert (known_eq (GET_MODE_SIZE (wmode
), GET_MODE_SIZE (mode
)));
6735 create_output_operand (&eops
[0], gen_reg_rtx (wmode
), wmode
);
6736 create_input_operand (&eops
[1], op0
, mode
);
6737 create_input_operand (&eops
[2], op1
, mode
);
6738 expand_insn (icode
, 3, eops
);
6739 m1
= gen_lowpart (mode
, eops
[0].value
);
6741 create_output_operand (&eops
[0], gen_reg_rtx (wmode
), wmode
);
6742 create_input_operand (&eops
[1], op0
, mode
);
6743 create_input_operand (&eops
[2], op1
, mode
);
6744 expand_insn (optab_handler (tab2
, mode
), 3, eops
);
6745 m2
= gen_lowpart (mode
, eops
[0].value
);
6747 vec_perm_builder sel
;
6750 /* The encoding has 2 interleaved stepped patterns. */
6751 sel
.new_vector (GET_MODE_NUNITS (mode
), 2, 3);
6752 for (i
= 0; i
< 6; ++i
)
6753 sel
.quick_push (!BYTES_BIG_ENDIAN
+ (i
& ~1)
6754 + ((i
& 1) ? GET_MODE_NUNITS (mode
) : 0));
6758 /* The encoding has a single interleaved stepped pattern. */
6759 sel
.new_vector (GET_MODE_NUNITS (mode
), 1, 3);
6760 for (i
= 0; i
< 3; ++i
)
6761 sel
.quick_push (2 * i
+ (BYTES_BIG_ENDIAN
? 0 : 1));
6764 return expand_vec_perm_const (mode
, m1
, m2
, sel
, BLKmode
, target
);
6767 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
6771 find_cc_set (rtx x
, const_rtx pat
, void *data
)
6773 if (REG_P (x
) && GET_MODE_CLASS (GET_MODE (x
)) == MODE_CC
6774 && GET_CODE (pat
) == SET
)
6776 rtx
*p_cc_reg
= (rtx
*) data
;
6777 gcc_assert (!*p_cc_reg
);
6782 /* This is a helper function for the other atomic operations. This function
6783 emits a loop that contains SEQ that iterates until a compare-and-swap
6784 operation at the end succeeds. MEM is the memory to be modified. SEQ is
6785 a set of instructions that takes a value from OLD_REG as an input and
6786 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
6787 set to the current contents of MEM. After SEQ, a compare-and-swap will
6788 attempt to update MEM with NEW_REG. The function returns true when the
6789 loop was generated successfully. */
6792 expand_compare_and_swap_loop (rtx mem
, rtx old_reg
, rtx new_reg
, rtx seq
)
6794 machine_mode mode
= GET_MODE (mem
);
6795 rtx_code_label
*label
;
6796 rtx cmp_reg
, success
, oldval
;
6798 /* The loop we want to generate looks like
6804 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
6808 Note that we only do the plain load from memory once. Subsequent
6809 iterations use the value loaded by the compare-and-swap pattern. */
6811 label
= gen_label_rtx ();
6812 cmp_reg
= gen_reg_rtx (mode
);
6814 emit_move_insn (cmp_reg
, mem
);
6816 emit_move_insn (old_reg
, cmp_reg
);
6822 if (!expand_atomic_compare_and_swap (&success
, &oldval
, mem
, old_reg
,
6823 new_reg
, false, MEMMODEL_SYNC_SEQ_CST
,
6827 if (oldval
!= cmp_reg
)
6828 emit_move_insn (cmp_reg
, oldval
);
6830 /* Mark this jump predicted not taken. */
6831 emit_cmp_and_jump_insns (success
, const0_rtx
, EQ
, const0_rtx
,
6832 GET_MODE (success
), 1, label
,
6833 profile_probability::guessed_never ());
6838 /* This function tries to emit an atomic_exchange intruction. VAL is written
6839 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
6840 using TARGET if possible. */
6843 maybe_emit_atomic_exchange (rtx target
, rtx mem
, rtx val
, enum memmodel model
)
6845 machine_mode mode
= GET_MODE (mem
);
6846 enum insn_code icode
;
6848 /* If the target supports the exchange directly, great. */
6849 icode
= direct_optab_handler (atomic_exchange_optab
, mode
);
6850 if (icode
!= CODE_FOR_nothing
)
6852 class expand_operand ops
[4];
6854 create_output_operand (&ops
[0], target
, mode
);
6855 create_fixed_operand (&ops
[1], mem
);
6856 create_input_operand (&ops
[2], val
, mode
);
6857 create_integer_operand (&ops
[3], model
);
6858 if (maybe_expand_insn (icode
, 4, ops
))
6859 return ops
[0].value
;
6865 /* This function tries to implement an atomic exchange operation using
6866 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
6867 The previous contents of *MEM are returned, using TARGET if possible.
6868 Since this instructionn is an acquire barrier only, stronger memory
6869 models may require additional barriers to be emitted. */
6872 maybe_emit_sync_lock_test_and_set (rtx target
, rtx mem
, rtx val
,
6873 enum memmodel model
)
6875 machine_mode mode
= GET_MODE (mem
);
6876 enum insn_code icode
;
6877 rtx_insn
*last_insn
= get_last_insn ();
6879 icode
= optab_handler (sync_lock_test_and_set_optab
, mode
);
6881 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
6882 exists, and the memory model is stronger than acquire, add a release
6883 barrier before the instruction. */
6885 if (is_mm_seq_cst (model
) || is_mm_release (model
) || is_mm_acq_rel (model
))
6886 expand_mem_thread_fence (model
);
6888 if (icode
!= CODE_FOR_nothing
)
6890 class expand_operand ops
[3];
6891 create_output_operand (&ops
[0], target
, mode
);
6892 create_fixed_operand (&ops
[1], mem
);
6893 create_input_operand (&ops
[2], val
, mode
);
6894 if (maybe_expand_insn (icode
, 3, ops
))
6895 return ops
[0].value
;
6898 /* If an external test-and-set libcall is provided, use that instead of
6899 any external compare-and-swap that we might get from the compare-and-
6900 swap-loop expansion later. */
6901 if (!can_compare_and_swap_p (mode
, false))
6903 rtx libfunc
= optab_libfunc (sync_lock_test_and_set_optab
, mode
);
6904 if (libfunc
!= NULL
)
6908 addr
= convert_memory_address (ptr_mode
, XEXP (mem
, 0));
6909 return emit_library_call_value (libfunc
, NULL_RTX
, LCT_NORMAL
,
6910 mode
, addr
, ptr_mode
,
6915 /* If the test_and_set can't be emitted, eliminate any barrier that might
6916 have been emitted. */
6917 delete_insns_since (last_insn
);
6921 /* This function tries to implement an atomic exchange operation using a
6922 compare_and_swap loop. VAL is written to *MEM. The previous contents of
6923 *MEM are returned, using TARGET if possible. No memory model is required
6924 since a compare_and_swap loop is seq-cst. */
6927 maybe_emit_compare_and_swap_exchange_loop (rtx target
, rtx mem
, rtx val
)
6929 machine_mode mode
= GET_MODE (mem
);
6931 if (can_compare_and_swap_p (mode
, true))
6933 if (!target
|| !register_operand (target
, mode
))
6934 target
= gen_reg_rtx (mode
);
6935 if (expand_compare_and_swap_loop (mem
, target
, val
, NULL_RTX
))
6942 /* This function tries to implement an atomic test-and-set operation
6943 using the atomic_test_and_set instruction pattern. A boolean value
6944 is returned from the operation, using TARGET if possible. */
6947 maybe_emit_atomic_test_and_set (rtx target
, rtx mem
, enum memmodel model
)
6949 machine_mode pat_bool_mode
;
6950 class expand_operand ops
[3];
6952 if (!targetm
.have_atomic_test_and_set ())
6955 /* While we always get QImode from __atomic_test_and_set, we get
6956 other memory modes from __sync_lock_test_and_set. Note that we
6957 use no endian adjustment here. This matches the 4.6 behavior
6958 in the Sparc backend. */
6959 enum insn_code icode
= targetm
.code_for_atomic_test_and_set
;
6960 gcc_checking_assert (insn_data
[icode
].operand
[1].mode
== QImode
);
6961 if (GET_MODE (mem
) != QImode
)
6962 mem
= adjust_address_nv (mem
, QImode
, 0);
6964 pat_bool_mode
= insn_data
[icode
].operand
[0].mode
;
6965 create_output_operand (&ops
[0], target
, pat_bool_mode
);
6966 create_fixed_operand (&ops
[1], mem
);
6967 create_integer_operand (&ops
[2], model
);
6969 if (maybe_expand_insn (icode
, 3, ops
))
6970 return ops
[0].value
;
6974 /* This function expands the legacy _sync_lock test_and_set operation which is
6975 generally an atomic exchange. Some limited targets only allow the
6976 constant 1 to be stored. This is an ACQUIRE operation.
6978 TARGET is an optional place to stick the return value.
6979 MEM is where VAL is stored. */
6982 expand_sync_lock_test_and_set (rtx target
, rtx mem
, rtx val
)
6986 /* Try an atomic_exchange first. */
6987 ret
= maybe_emit_atomic_exchange (target
, mem
, val
, MEMMODEL_SYNC_ACQUIRE
);
6991 ret
= maybe_emit_sync_lock_test_and_set (target
, mem
, val
,
6992 MEMMODEL_SYNC_ACQUIRE
);
6996 ret
= maybe_emit_compare_and_swap_exchange_loop (target
, mem
, val
);
7000 /* If there are no other options, try atomic_test_and_set if the value
7001 being stored is 1. */
7002 if (val
== const1_rtx
)
7003 ret
= maybe_emit_atomic_test_and_set (target
, mem
, MEMMODEL_SYNC_ACQUIRE
);
7008 /* This function expands the atomic test_and_set operation:
7009 atomically store a boolean TRUE into MEM and return the previous value.
7011 MEMMODEL is the memory model variant to use.
7012 TARGET is an optional place to stick the return value. */
7015 expand_atomic_test_and_set (rtx target
, rtx mem
, enum memmodel model
)
7017 machine_mode mode
= GET_MODE (mem
);
7018 rtx ret
, trueval
, subtarget
;
7020 ret
= maybe_emit_atomic_test_and_set (target
, mem
, model
);
7024 /* Be binary compatible with non-default settings of trueval, and different
7025 cpu revisions. E.g. one revision may have atomic-test-and-set, but
7026 another only has atomic-exchange. */
7027 if (targetm
.atomic_test_and_set_trueval
== 1)
7029 trueval
= const1_rtx
;
7030 subtarget
= target
? target
: gen_reg_rtx (mode
);
7034 trueval
= gen_int_mode (targetm
.atomic_test_and_set_trueval
, mode
);
7035 subtarget
= gen_reg_rtx (mode
);
7038 /* Try the atomic-exchange optab... */
7039 ret
= maybe_emit_atomic_exchange (subtarget
, mem
, trueval
, model
);
7041 /* ... then an atomic-compare-and-swap loop ... */
7043 ret
= maybe_emit_compare_and_swap_exchange_loop (subtarget
, mem
, trueval
);
7045 /* ... before trying the vaguely defined legacy lock_test_and_set. */
7047 ret
= maybe_emit_sync_lock_test_and_set (subtarget
, mem
, trueval
, model
);
7049 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
7050 things with the value 1. Thus we try again without trueval. */
7051 if (!ret
&& targetm
.atomic_test_and_set_trueval
!= 1)
7053 ret
= maybe_emit_sync_lock_test_and_set (subtarget
, mem
, const1_rtx
, model
);
7057 /* Rectify the not-one trueval. */
7058 ret
= emit_store_flag_force (target
, NE
, ret
, const0_rtx
, mode
, 0, 1);
7066 /* This function expands the atomic exchange operation:
7067 atomically store VAL in MEM and return the previous value in MEM.
7069 MEMMODEL is the memory model variant to use.
7070 TARGET is an optional place to stick the return value. */
7073 expand_atomic_exchange (rtx target
, rtx mem
, rtx val
, enum memmodel model
)
7075 machine_mode mode
= GET_MODE (mem
);
7078 /* If loads are not atomic for the required size and we are not called to
7079 provide a __sync builtin, do not do anything so that we stay consistent
7080 with atomic loads of the same size. */
7081 if (!can_atomic_load_p (mode
) && !is_mm_sync (model
))
7084 ret
= maybe_emit_atomic_exchange (target
, mem
, val
, model
);
7086 /* Next try a compare-and-swap loop for the exchange. */
7088 ret
= maybe_emit_compare_and_swap_exchange_loop (target
, mem
, val
);
7093 /* This function expands the atomic compare exchange operation:
7095 *PTARGET_BOOL is an optional place to store the boolean success/failure.
7096 *PTARGET_OVAL is an optional place to store the old value from memory.
7097 Both target parameters may be NULL or const0_rtx to indicate that we do
7098 not care about that return value. Both target parameters are updated on
7099 success to the actual location of the corresponding result.
7101 MEMMODEL is the memory model variant to use.
7103 The return value of the function is true for success. */
7106 expand_atomic_compare_and_swap (rtx
*ptarget_bool
, rtx
*ptarget_oval
,
7107 rtx mem
, rtx expected
, rtx desired
,
7108 bool is_weak
, enum memmodel succ_model
,
7109 enum memmodel fail_model
)
7111 machine_mode mode
= GET_MODE (mem
);
7112 class expand_operand ops
[8];
7113 enum insn_code icode
;
7114 rtx target_oval
, target_bool
= NULL_RTX
;
7117 /* If loads are not atomic for the required size and we are not called to
7118 provide a __sync builtin, do not do anything so that we stay consistent
7119 with atomic loads of the same size. */
7120 if (!can_atomic_load_p (mode
) && !is_mm_sync (succ_model
))
7123 /* Load expected into a register for the compare and swap. */
7124 if (MEM_P (expected
))
7125 expected
= copy_to_reg (expected
);
7127 /* Make sure we always have some place to put the return oldval.
7128 Further, make sure that place is distinct from the input expected,
7129 just in case we need that path down below. */
7130 if (ptarget_oval
&& *ptarget_oval
== const0_rtx
)
7131 ptarget_oval
= NULL
;
7133 if (ptarget_oval
== NULL
7134 || (target_oval
= *ptarget_oval
) == NULL
7135 || reg_overlap_mentioned_p (expected
, target_oval
))
7136 target_oval
= gen_reg_rtx (mode
);
7138 icode
= direct_optab_handler (atomic_compare_and_swap_optab
, mode
);
7139 if (icode
!= CODE_FOR_nothing
)
7141 machine_mode bool_mode
= insn_data
[icode
].operand
[0].mode
;
7143 if (ptarget_bool
&& *ptarget_bool
== const0_rtx
)
7144 ptarget_bool
= NULL
;
7146 /* Make sure we always have a place for the bool operand. */
7147 if (ptarget_bool
== NULL
7148 || (target_bool
= *ptarget_bool
) == NULL
7149 || GET_MODE (target_bool
) != bool_mode
)
7150 target_bool
= gen_reg_rtx (bool_mode
);
7152 /* Emit the compare_and_swap. */
7153 create_output_operand (&ops
[0], target_bool
, bool_mode
);
7154 create_output_operand (&ops
[1], target_oval
, mode
);
7155 create_fixed_operand (&ops
[2], mem
);
7156 create_input_operand (&ops
[3], expected
, mode
);
7157 create_input_operand (&ops
[4], desired
, mode
);
7158 create_integer_operand (&ops
[5], is_weak
);
7159 create_integer_operand (&ops
[6], succ_model
);
7160 create_integer_operand (&ops
[7], fail_model
);
7161 if (maybe_expand_insn (icode
, 8, ops
))
7163 /* Return success/failure. */
7164 target_bool
= ops
[0].value
;
7165 target_oval
= ops
[1].value
;
7170 /* Otherwise fall back to the original __sync_val_compare_and_swap
7171 which is always seq-cst. */
7172 icode
= optab_handler (sync_compare_and_swap_optab
, mode
);
7173 if (icode
!= CODE_FOR_nothing
)
7177 create_output_operand (&ops
[0], target_oval
, mode
);
7178 create_fixed_operand (&ops
[1], mem
);
7179 create_input_operand (&ops
[2], expected
, mode
);
7180 create_input_operand (&ops
[3], desired
, mode
);
7181 if (!maybe_expand_insn (icode
, 4, ops
))
7184 target_oval
= ops
[0].value
;
7186 /* If the caller isn't interested in the boolean return value,
7187 skip the computation of it. */
7188 if (ptarget_bool
== NULL
)
7191 /* Otherwise, work out if the compare-and-swap succeeded. */
7193 if (have_insn_for (COMPARE
, CCmode
))
7194 note_stores (get_last_insn (), find_cc_set
, &cc_reg
);
7197 target_bool
= emit_store_flag_force (target_bool
, EQ
, cc_reg
,
7198 const0_rtx
, VOIDmode
, 0, 1);
7201 goto success_bool_from_val
;
7204 /* Also check for library support for __sync_val_compare_and_swap. */
7205 libfunc
= optab_libfunc (sync_compare_and_swap_optab
, mode
);
7206 if (libfunc
!= NULL
)
7208 rtx addr
= convert_memory_address (ptr_mode
, XEXP (mem
, 0));
7209 rtx target
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_NORMAL
,
7210 mode
, addr
, ptr_mode
,
7211 expected
, mode
, desired
, mode
);
7212 emit_move_insn (target_oval
, target
);
7214 /* Compute the boolean return value only if requested. */
7216 goto success_bool_from_val
;
7224 success_bool_from_val
:
7225 target_bool
= emit_store_flag_force (target_bool
, EQ
, target_oval
,
7226 expected
, VOIDmode
, 1, 1);
7228 /* Make sure that the oval output winds up where the caller asked. */
7230 *ptarget_oval
= target_oval
;
7232 *ptarget_bool
= target_bool
;
7236 /* Generate asm volatile("" : : : "memory") as the memory blockage. */
7239 expand_asm_memory_blockage (void)
7243 asm_op
= gen_rtx_ASM_OPERANDS (VOIDmode
, "", "", 0,
7244 rtvec_alloc (0), rtvec_alloc (0),
7245 rtvec_alloc (0), UNKNOWN_LOCATION
);
7246 MEM_VOLATILE_P (asm_op
) = 1;
7248 clob
= gen_rtx_SCRATCH (VOIDmode
);
7249 clob
= gen_rtx_MEM (BLKmode
, clob
);
7250 clob
= gen_rtx_CLOBBER (VOIDmode
, clob
);
7252 emit_insn (gen_rtx_PARALLEL (VOIDmode
, gen_rtvec (2, asm_op
, clob
)));
7255 /* Do not propagate memory accesses across this point. */
7258 expand_memory_blockage (void)
7260 if (targetm
.have_memory_blockage ())
7261 emit_insn (targetm
.gen_memory_blockage ());
7263 expand_asm_memory_blockage ();
7266 /* Generate asm volatile("" : : : "memory") as a memory blockage, at the
7267 same time clobbering the register set specified by REGS. */
7270 expand_asm_reg_clobber_mem_blockage (HARD_REG_SET regs
)
7272 rtx asm_op
, clob_mem
;
7274 unsigned int num_of_regs
= 0;
7275 for (unsigned int i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
7276 if (TEST_HARD_REG_BIT (regs
, i
))
7279 asm_op
= gen_rtx_ASM_OPERANDS (VOIDmode
, "", "", 0,
7280 rtvec_alloc (0), rtvec_alloc (0),
7281 rtvec_alloc (0), UNKNOWN_LOCATION
);
7282 MEM_VOLATILE_P (asm_op
) = 1;
7284 rtvec v
= rtvec_alloc (num_of_regs
+ 2);
7286 clob_mem
= gen_rtx_SCRATCH (VOIDmode
);
7287 clob_mem
= gen_rtx_MEM (BLKmode
, clob_mem
);
7288 clob_mem
= gen_rtx_CLOBBER (VOIDmode
, clob_mem
);
7290 RTVEC_ELT (v
, 0) = asm_op
;
7291 RTVEC_ELT (v
, 1) = clob_mem
;
7293 if (num_of_regs
> 0)
7296 for (unsigned int i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
7297 if (TEST_HARD_REG_BIT (regs
, i
))
7299 RTVEC_ELT (v
, j
) = gen_rtx_CLOBBER (VOIDmode
, regno_reg_rtx
[i
]);
7302 gcc_assert (j
== (num_of_regs
+ 2));
7305 emit_insn (gen_rtx_PARALLEL (VOIDmode
, v
));
7308 /* This routine will either emit the mem_thread_fence pattern or issue a
7309 sync_synchronize to generate a fence for memory model MEMMODEL. */
7312 expand_mem_thread_fence (enum memmodel model
)
7314 if (is_mm_relaxed (model
))
7316 if (targetm
.have_mem_thread_fence ())
7318 emit_insn (targetm
.gen_mem_thread_fence (GEN_INT (model
)));
7319 expand_memory_blockage ();
7321 else if (targetm
.have_memory_barrier ())
7322 emit_insn (targetm
.gen_memory_barrier ());
7323 else if (synchronize_libfunc
!= NULL_RTX
)
7324 emit_library_call (synchronize_libfunc
, LCT_NORMAL
, VOIDmode
);
7326 expand_memory_blockage ();
7329 /* Emit a signal fence with given memory model. */
7332 expand_mem_signal_fence (enum memmodel model
)
7334 /* No machine barrier is required to implement a signal fence, but
7335 a compiler memory barrier must be issued, except for relaxed MM. */
7336 if (!is_mm_relaxed (model
))
7337 expand_memory_blockage ();
7340 /* This function expands the atomic load operation:
7341 return the atomically loaded value in MEM.
7343 MEMMODEL is the memory model variant to use.
7344 TARGET is an option place to stick the return value. */
7347 expand_atomic_load (rtx target
, rtx mem
, enum memmodel model
)
7349 machine_mode mode
= GET_MODE (mem
);
7350 enum insn_code icode
;
7352 /* If the target supports the load directly, great. */
7353 icode
= direct_optab_handler (atomic_load_optab
, mode
);
7354 if (icode
!= CODE_FOR_nothing
)
7356 class expand_operand ops
[3];
7357 rtx_insn
*last
= get_last_insn ();
7358 if (is_mm_seq_cst (model
))
7359 expand_memory_blockage ();
7361 create_output_operand (&ops
[0], target
, mode
);
7362 create_fixed_operand (&ops
[1], mem
);
7363 create_integer_operand (&ops
[2], model
);
7364 if (maybe_expand_insn (icode
, 3, ops
))
7366 if (!is_mm_relaxed (model
))
7367 expand_memory_blockage ();
7368 return ops
[0].value
;
7370 delete_insns_since (last
);
7373 /* If the size of the object is greater than word size on this target,
7374 then we assume that a load will not be atomic. We could try to
7375 emulate a load with a compare-and-swap operation, but the store that
7376 doing this could result in would be incorrect if this is a volatile
7377 atomic load or targetting read-only-mapped memory. */
7378 if (maybe_gt (GET_MODE_PRECISION (mode
), BITS_PER_WORD
))
7379 /* If there is no atomic load, leave the library call. */
7382 /* Otherwise assume loads are atomic, and emit the proper barriers. */
7383 if (!target
|| target
== const0_rtx
)
7384 target
= gen_reg_rtx (mode
);
7386 /* For SEQ_CST, emit a barrier before the load. */
7387 if (is_mm_seq_cst (model
))
7388 expand_mem_thread_fence (model
);
7390 emit_move_insn (target
, mem
);
7392 /* Emit the appropriate barrier after the load. */
7393 expand_mem_thread_fence (model
);
7398 /* This function expands the atomic store operation:
7399 Atomically store VAL in MEM.
7400 MEMMODEL is the memory model variant to use.
7401 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
7402 function returns const0_rtx if a pattern was emitted. */
7405 expand_atomic_store (rtx mem
, rtx val
, enum memmodel model
, bool use_release
)
7407 machine_mode mode
= GET_MODE (mem
);
7408 enum insn_code icode
;
7409 class expand_operand ops
[3];
7411 /* If the target supports the store directly, great. */
7412 icode
= direct_optab_handler (atomic_store_optab
, mode
);
7413 if (icode
!= CODE_FOR_nothing
)
7415 rtx_insn
*last
= get_last_insn ();
7416 if (!is_mm_relaxed (model
))
7417 expand_memory_blockage ();
7418 create_fixed_operand (&ops
[0], mem
);
7419 create_input_operand (&ops
[1], val
, mode
);
7420 create_integer_operand (&ops
[2], model
);
7421 if (maybe_expand_insn (icode
, 3, ops
))
7423 if (is_mm_seq_cst (model
))
7424 expand_memory_blockage ();
7427 delete_insns_since (last
);
7430 /* If using __sync_lock_release is a viable alternative, try it.
7431 Note that this will not be set to true if we are expanding a generic
7432 __atomic_store_n. */
7435 icode
= direct_optab_handler (sync_lock_release_optab
, mode
);
7436 if (icode
!= CODE_FOR_nothing
)
7438 create_fixed_operand (&ops
[0], mem
);
7439 create_input_operand (&ops
[1], const0_rtx
, mode
);
7440 if (maybe_expand_insn (icode
, 2, ops
))
7442 /* lock_release is only a release barrier. */
7443 if (is_mm_seq_cst (model
))
7444 expand_mem_thread_fence (model
);
7450 /* If the size of the object is greater than word size on this target,
7451 a default store will not be atomic. */
7452 if (maybe_gt (GET_MODE_PRECISION (mode
), BITS_PER_WORD
))
7454 /* If loads are atomic or we are called to provide a __sync builtin,
7455 we can try a atomic_exchange and throw away the result. Otherwise,
7456 don't do anything so that we do not create an inconsistency between
7457 loads and stores. */
7458 if (can_atomic_load_p (mode
) || is_mm_sync (model
))
7460 rtx target
= maybe_emit_atomic_exchange (NULL_RTX
, mem
, val
, model
);
7462 target
= maybe_emit_compare_and_swap_exchange_loop (NULL_RTX
, mem
,
7470 /* Otherwise assume stores are atomic, and emit the proper barriers. */
7471 expand_mem_thread_fence (model
);
7473 emit_move_insn (mem
, val
);
7475 /* For SEQ_CST, also emit a barrier after the store. */
7476 if (is_mm_seq_cst (model
))
7477 expand_mem_thread_fence (model
);
7483 /* Structure containing the pointers and values required to process the
7484 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
7486 struct atomic_op_functions
7488 direct_optab mem_fetch_before
;
7489 direct_optab mem_fetch_after
;
7490 direct_optab mem_no_result
;
7493 direct_optab no_result
;
7494 enum rtx_code reverse_code
;
7498 /* Fill in structure pointed to by OP with the various optab entries for an
7499 operation of type CODE. */
7502 get_atomic_op_for_code (struct atomic_op_functions
*op
, enum rtx_code code
)
7504 gcc_assert (op
!= NULL
);
7506 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
7507 in the source code during compilation, and the optab entries are not
7508 computable until runtime. Fill in the values at runtime. */
7512 op
->mem_fetch_before
= atomic_fetch_add_optab
;
7513 op
->mem_fetch_after
= atomic_add_fetch_optab
;
7514 op
->mem_no_result
= atomic_add_optab
;
7515 op
->fetch_before
= sync_old_add_optab
;
7516 op
->fetch_after
= sync_new_add_optab
;
7517 op
->no_result
= sync_add_optab
;
7518 op
->reverse_code
= MINUS
;
7521 op
->mem_fetch_before
= atomic_fetch_sub_optab
;
7522 op
->mem_fetch_after
= atomic_sub_fetch_optab
;
7523 op
->mem_no_result
= atomic_sub_optab
;
7524 op
->fetch_before
= sync_old_sub_optab
;
7525 op
->fetch_after
= sync_new_sub_optab
;
7526 op
->no_result
= sync_sub_optab
;
7527 op
->reverse_code
= PLUS
;
7530 op
->mem_fetch_before
= atomic_fetch_xor_optab
;
7531 op
->mem_fetch_after
= atomic_xor_fetch_optab
;
7532 op
->mem_no_result
= atomic_xor_optab
;
7533 op
->fetch_before
= sync_old_xor_optab
;
7534 op
->fetch_after
= sync_new_xor_optab
;
7535 op
->no_result
= sync_xor_optab
;
7536 op
->reverse_code
= XOR
;
7539 op
->mem_fetch_before
= atomic_fetch_and_optab
;
7540 op
->mem_fetch_after
= atomic_and_fetch_optab
;
7541 op
->mem_no_result
= atomic_and_optab
;
7542 op
->fetch_before
= sync_old_and_optab
;
7543 op
->fetch_after
= sync_new_and_optab
;
7544 op
->no_result
= sync_and_optab
;
7545 op
->reverse_code
= UNKNOWN
;
7548 op
->mem_fetch_before
= atomic_fetch_or_optab
;
7549 op
->mem_fetch_after
= atomic_or_fetch_optab
;
7550 op
->mem_no_result
= atomic_or_optab
;
7551 op
->fetch_before
= sync_old_ior_optab
;
7552 op
->fetch_after
= sync_new_ior_optab
;
7553 op
->no_result
= sync_ior_optab
;
7554 op
->reverse_code
= UNKNOWN
;
7557 op
->mem_fetch_before
= atomic_fetch_nand_optab
;
7558 op
->mem_fetch_after
= atomic_nand_fetch_optab
;
7559 op
->mem_no_result
= atomic_nand_optab
;
7560 op
->fetch_before
= sync_old_nand_optab
;
7561 op
->fetch_after
= sync_new_nand_optab
;
7562 op
->no_result
= sync_nand_optab
;
7563 op
->reverse_code
= UNKNOWN
;
7570 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
7571 using memory order MODEL. If AFTER is true the operation needs to return
7572 the value of *MEM after the operation, otherwise the previous value.
7573 TARGET is an optional place to place the result. The result is unused if
7575 Return the result if there is a better sequence, otherwise NULL_RTX. */
7578 maybe_optimize_fetch_op (rtx target
, rtx mem
, rtx val
, enum rtx_code code
,
7579 enum memmodel model
, bool after
)
7581 /* If the value is prefetched, or not used, it may be possible to replace
7582 the sequence with a native exchange operation. */
7583 if (!after
|| target
== const0_rtx
)
7585 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
7586 if (code
== AND
&& val
== const0_rtx
)
7588 if (target
== const0_rtx
)
7589 target
= gen_reg_rtx (GET_MODE (mem
));
7590 return maybe_emit_atomic_exchange (target
, mem
, val
, model
);
7593 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
7594 if (code
== IOR
&& val
== constm1_rtx
)
7596 if (target
== const0_rtx
)
7597 target
= gen_reg_rtx (GET_MODE (mem
));
7598 return maybe_emit_atomic_exchange (target
, mem
, val
, model
);
7605 /* Try to emit an instruction for a specific operation varaition.
7606 OPTAB contains the OP functions.
7607 TARGET is an optional place to return the result. const0_rtx means unused.
7608 MEM is the memory location to operate on.
7609 VAL is the value to use in the operation.
7610 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
7611 MODEL is the memory model, if used.
7612 AFTER is true if the returned result is the value after the operation. */
7615 maybe_emit_op (const struct atomic_op_functions
*optab
, rtx target
, rtx mem
,
7616 rtx val
, bool use_memmodel
, enum memmodel model
, bool after
)
7618 machine_mode mode
= GET_MODE (mem
);
7619 class expand_operand ops
[4];
7620 enum insn_code icode
;
7624 /* Check to see if there is a result returned. */
7625 if (target
== const0_rtx
)
7629 icode
= direct_optab_handler (optab
->mem_no_result
, mode
);
7630 create_integer_operand (&ops
[2], model
);
7635 icode
= direct_optab_handler (optab
->no_result
, mode
);
7639 /* Otherwise, we need to generate a result. */
7644 icode
= direct_optab_handler (after
? optab
->mem_fetch_after
7645 : optab
->mem_fetch_before
, mode
);
7646 create_integer_operand (&ops
[3], model
);
7651 icode
= optab_handler (after
? optab
->fetch_after
7652 : optab
->fetch_before
, mode
);
7655 create_output_operand (&ops
[op_counter
++], target
, mode
);
7657 if (icode
== CODE_FOR_nothing
)
7660 create_fixed_operand (&ops
[op_counter
++], mem
);
7661 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7662 create_convert_operand_to (&ops
[op_counter
++], val
, mode
, true);
7664 if (maybe_expand_insn (icode
, num_ops
, ops
))
7665 return (target
== const0_rtx
? const0_rtx
: ops
[0].value
);
7671 /* This function expands an atomic fetch_OP or OP_fetch operation:
7672 TARGET is an option place to stick the return value. const0_rtx indicates
7673 the result is unused.
7674 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7675 CODE is the operation being performed (OP)
7676 MEMMODEL is the memory model variant to use.
7677 AFTER is true to return the result of the operation (OP_fetch).
7678 AFTER is false to return the value before the operation (fetch_OP).
7680 This function will *only* generate instructions if there is a direct
7681 optab. No compare and swap loops or libcalls will be generated. */
7684 expand_atomic_fetch_op_no_fallback (rtx target
, rtx mem
, rtx val
,
7685 enum rtx_code code
, enum memmodel model
,
7688 machine_mode mode
= GET_MODE (mem
);
7689 struct atomic_op_functions optab
;
7691 bool unused_result
= (target
== const0_rtx
);
7693 get_atomic_op_for_code (&optab
, code
);
7695 /* Check to see if there are any better instructions. */
7696 result
= maybe_optimize_fetch_op (target
, mem
, val
, code
, model
, after
);
7700 /* Check for the case where the result isn't used and try those patterns. */
7703 /* Try the memory model variant first. */
7704 result
= maybe_emit_op (&optab
, target
, mem
, val
, true, model
, true);
7708 /* Next try the old style withuot a memory model. */
7709 result
= maybe_emit_op (&optab
, target
, mem
, val
, false, model
, true);
7713 /* There is no no-result pattern, so try patterns with a result. */
7717 /* Try the __atomic version. */
7718 result
= maybe_emit_op (&optab
, target
, mem
, val
, true, model
, after
);
7722 /* Try the older __sync version. */
7723 result
= maybe_emit_op (&optab
, target
, mem
, val
, false, model
, after
);
7727 /* If the fetch value can be calculated from the other variation of fetch,
7728 try that operation. */
7729 if (after
|| unused_result
|| optab
.reverse_code
!= UNKNOWN
)
7731 /* Try the __atomic version, then the older __sync version. */
7732 result
= maybe_emit_op (&optab
, target
, mem
, val
, true, model
, !after
);
7734 result
= maybe_emit_op (&optab
, target
, mem
, val
, false, model
, !after
);
7738 /* If the result isn't used, no need to do compensation code. */
7742 /* Issue compensation code. Fetch_after == fetch_before OP val.
7743 Fetch_before == after REVERSE_OP val. */
7745 code
= optab
.reverse_code
;
7748 result
= expand_simple_binop (mode
, AND
, result
, val
, NULL_RTX
,
7749 true, OPTAB_LIB_WIDEN
);
7750 result
= expand_simple_unop (mode
, NOT
, result
, target
, true);
7753 result
= expand_simple_binop (mode
, code
, result
, val
, target
,
7754 true, OPTAB_LIB_WIDEN
);
7759 /* No direct opcode can be generated. */
7765 /* This function expands an atomic fetch_OP or OP_fetch operation:
7766 TARGET is an option place to stick the return value. const0_rtx indicates
7767 the result is unused.
7768 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7769 CODE is the operation being performed (OP)
7770 MEMMODEL is the memory model variant to use.
7771 AFTER is true to return the result of the operation (OP_fetch).
7772 AFTER is false to return the value before the operation (fetch_OP). */
7774 expand_atomic_fetch_op (rtx target
, rtx mem
, rtx val
, enum rtx_code code
,
7775 enum memmodel model
, bool after
)
7777 machine_mode mode
= GET_MODE (mem
);
7779 bool unused_result
= (target
== const0_rtx
);
7781 /* If loads are not atomic for the required size and we are not called to
7782 provide a __sync builtin, do not do anything so that we stay consistent
7783 with atomic loads of the same size. */
7784 if (!can_atomic_load_p (mode
) && !is_mm_sync (model
))
7787 result
= expand_atomic_fetch_op_no_fallback (target
, mem
, val
, code
, model
,
7793 /* Add/sub can be implemented by doing the reverse operation with -(val). */
7794 if (code
== PLUS
|| code
== MINUS
)
7797 enum rtx_code reverse
= (code
== PLUS
? MINUS
: PLUS
);
7800 tmp
= expand_simple_unop (mode
, NEG
, val
, NULL_RTX
, true);
7801 result
= expand_atomic_fetch_op_no_fallback (target
, mem
, tmp
, reverse
,
7805 /* PLUS worked so emit the insns and return. */
7812 /* PLUS did not work, so throw away the negation code and continue. */
7816 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
7817 if (!can_compare_and_swap_p (mode
, false))
7821 enum rtx_code orig_code
= code
;
7822 struct atomic_op_functions optab
;
7824 get_atomic_op_for_code (&optab
, code
);
7825 libfunc
= optab_libfunc (after
? optab
.fetch_after
7826 : optab
.fetch_before
, mode
);
7828 && (after
|| unused_result
|| optab
.reverse_code
!= UNKNOWN
))
7832 code
= optab
.reverse_code
;
7833 libfunc
= optab_libfunc (after
? optab
.fetch_before
7834 : optab
.fetch_after
, mode
);
7836 if (libfunc
!= NULL
)
7838 rtx addr
= convert_memory_address (ptr_mode
, XEXP (mem
, 0));
7839 result
= emit_library_call_value (libfunc
, NULL
, LCT_NORMAL
, mode
,
7840 addr
, ptr_mode
, val
, mode
);
7842 if (!unused_result
&& fixup
)
7843 result
= expand_simple_binop (mode
, code
, result
, val
, target
,
7844 true, OPTAB_LIB_WIDEN
);
7848 /* We need the original code for any further attempts. */
7852 /* If nothing else has succeeded, default to a compare and swap loop. */
7853 if (can_compare_and_swap_p (mode
, true))
7856 rtx t0
= gen_reg_rtx (mode
), t1
;
7860 /* If the result is used, get a register for it. */
7863 if (!target
|| !register_operand (target
, mode
))
7864 target
= gen_reg_rtx (mode
);
7865 /* If fetch_before, copy the value now. */
7867 emit_move_insn (target
, t0
);
7870 target
= const0_rtx
;
7875 t1
= expand_simple_binop (mode
, AND
, t1
, val
, NULL_RTX
,
7876 true, OPTAB_LIB_WIDEN
);
7877 t1
= expand_simple_unop (mode
, code
, t1
, NULL_RTX
, true);
7880 t1
= expand_simple_binop (mode
, code
, t1
, val
, NULL_RTX
, true,
7883 /* For after, copy the value now. */
7884 if (!unused_result
&& after
)
7885 emit_move_insn (target
, t1
);
7886 insn
= get_insns ();
7889 if (t1
!= NULL
&& expand_compare_and_swap_loop (mem
, t0
, t1
, insn
))
7896 /* Return true if OPERAND is suitable for operand number OPNO of
7897 instruction ICODE. */
7900 insn_operand_matches (enum insn_code icode
, unsigned int opno
, rtx operand
)
7902 return (!insn_data
[(int) icode
].operand
[opno
].predicate
7903 || (insn_data
[(int) icode
].operand
[opno
].predicate
7904 (operand
, insn_data
[(int) icode
].operand
[opno
].mode
)));
7907 /* TARGET is a target of a multiword operation that we are going to
7908 implement as a series of word-mode operations. Return true if
7909 TARGET is suitable for this purpose. */
7912 valid_multiword_target_p (rtx target
)
7917 mode
= GET_MODE (target
);
7918 if (!GET_MODE_SIZE (mode
).is_constant (&size
))
7920 for (i
= 0; i
< size
; i
+= UNITS_PER_WORD
)
7921 if (!validate_subreg (word_mode
, mode
, target
, i
))
7926 /* Make OP describe an input operand that has value INTVAL and that has
7927 no inherent mode. This function should only be used for operands that
7928 are always expand-time constants. The backend may request that INTVAL
7929 be copied into a different kind of rtx, but it must specify the mode
7930 of that rtx if so. */
7933 create_integer_operand (class expand_operand
*op
, poly_int64 intval
)
7935 create_expand_operand (op
, EXPAND_INTEGER
,
7936 gen_int_mode (intval
, MAX_MODE_INT
),
7937 VOIDmode
, false, intval
);
7940 /* Like maybe_legitimize_operand, but do not change the code of the
7941 current rtx value. */
7944 maybe_legitimize_operand_same_code (enum insn_code icode
, unsigned int opno
,
7945 class expand_operand
*op
)
7947 /* See if the operand matches in its current form. */
7948 if (insn_operand_matches (icode
, opno
, op
->value
))
7951 /* If the operand is a memory whose address has no side effects,
7952 try forcing the address into a non-virtual pseudo register.
7953 The check for side effects is important because copy_to_mode_reg
7954 cannot handle things like auto-modified addresses. */
7955 if (insn_data
[(int) icode
].operand
[opno
].allows_mem
&& MEM_P (op
->value
))
7960 addr
= XEXP (mem
, 0);
7961 if (!(REG_P (addr
) && REGNO (addr
) > LAST_VIRTUAL_REGISTER
)
7962 && !side_effects_p (addr
))
7967 last
= get_last_insn ();
7968 mode
= get_address_mode (mem
);
7969 mem
= replace_equiv_address (mem
, copy_to_mode_reg (mode
, addr
));
7970 if (insn_operand_matches (icode
, opno
, mem
))
7975 delete_insns_since (last
);
7982 /* Try to make OP match operand OPNO of instruction ICODE. Return true
7983 on success, storing the new operand value back in OP. */
7986 maybe_legitimize_operand (enum insn_code icode
, unsigned int opno
,
7987 class expand_operand
*op
)
7989 machine_mode mode
, imode
, tmode
;
7996 temporary_volatile_ok
v (true);
7997 return maybe_legitimize_operand_same_code (icode
, opno
, op
);
8001 gcc_assert (mode
!= VOIDmode
);
8003 && op
->value
!= const0_rtx
8004 && GET_MODE (op
->value
) == mode
8005 && maybe_legitimize_operand_same_code (icode
, opno
, op
))
8008 op
->value
= gen_reg_rtx (mode
);
8014 gcc_assert (mode
!= VOIDmode
);
8015 gcc_assert (GET_MODE (op
->value
) == VOIDmode
8016 || GET_MODE (op
->value
) == mode
);
8017 if (maybe_legitimize_operand_same_code (icode
, opno
, op
))
8020 op
->value
= copy_to_mode_reg (mode
, op
->value
);
8023 case EXPAND_CONVERT_TO
:
8024 gcc_assert (mode
!= VOIDmode
);
8025 op
->value
= convert_to_mode (mode
, op
->value
, op
->unsigned_p
);
8028 case EXPAND_CONVERT_FROM
:
8029 if (GET_MODE (op
->value
) != VOIDmode
)
8030 mode
= GET_MODE (op
->value
);
8032 /* The caller must tell us what mode this value has. */
8033 gcc_assert (mode
!= VOIDmode
);
8035 imode
= insn_data
[(int) icode
].operand
[opno
].mode
;
8036 tmode
= (VECTOR_MODE_P (imode
) && !VECTOR_MODE_P (mode
)
8037 ? GET_MODE_INNER (imode
) : imode
);
8038 if (tmode
!= VOIDmode
&& tmode
!= mode
)
8040 op
->value
= convert_modes (tmode
, mode
, op
->value
, op
->unsigned_p
);
8043 if (imode
!= VOIDmode
&& imode
!= mode
)
8045 gcc_assert (VECTOR_MODE_P (imode
) && !VECTOR_MODE_P (mode
));
8046 op
->value
= expand_vector_broadcast (imode
, op
->value
);
8051 case EXPAND_ADDRESS
:
8052 op
->value
= convert_memory_address (as_a
<scalar_int_mode
> (mode
),
8056 case EXPAND_INTEGER
:
8057 mode
= insn_data
[(int) icode
].operand
[opno
].mode
;
8058 if (mode
!= VOIDmode
8059 && known_eq (trunc_int_for_mode (op
->int_value
, mode
),
8062 op
->value
= gen_int_mode (op
->int_value
, mode
);
8067 case EXPAND_UNDEFINED_INPUT
:
8068 /* See if the predicate accepts a SCRATCH rtx, which in this context
8069 indicates an undefined value. Use an uninitialized register if not. */
8070 if (!insn_operand_matches (icode
, opno
, op
->value
))
8072 op
->value
= gen_reg_rtx (op
->mode
);
8077 return insn_operand_matches (icode
, opno
, op
->value
);
8080 /* Make OP describe an input operand that should have the same value
8081 as VALUE, after any mode conversion that the target might request.
8082 TYPE is the type of VALUE. */
8085 create_convert_operand_from_type (class expand_operand
*op
,
8086 rtx value
, tree type
)
8088 create_convert_operand_from (op
, value
, TYPE_MODE (type
),
8089 TYPE_UNSIGNED (type
));
8092 /* Return true if the requirements on operands OP1 and OP2 of instruction
8093 ICODE are similar enough for the result of legitimizing OP1 to be
8094 reusable for OP2. OPNO1 and OPNO2 are the operand numbers associated
8095 with OP1 and OP2 respectively. */
8098 can_reuse_operands_p (enum insn_code icode
,
8099 unsigned int opno1
, unsigned int opno2
,
8100 const class expand_operand
*op1
,
8101 const class expand_operand
*op2
)
8103 /* Check requirements that are common to all types. */
8104 if (op1
->type
!= op2
->type
8105 || op1
->mode
!= op2
->mode
8106 || (insn_data
[(int) icode
].operand
[opno1
].mode
8107 != insn_data
[(int) icode
].operand
[opno2
].mode
))
8110 /* Check the requirements for specific types. */
8114 case EXPAND_UNDEFINED_INPUT
:
8115 /* Outputs and undefined intputs must remain distinct. */
8120 case EXPAND_ADDRESS
:
8121 case EXPAND_INTEGER
:
8124 case EXPAND_CONVERT_TO
:
8125 case EXPAND_CONVERT_FROM
:
8126 return op1
->unsigned_p
== op2
->unsigned_p
;
8131 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
8132 of instruction ICODE. Return true on success, leaving the new operand
8133 values in the OPS themselves. Emit no code on failure. */
8136 maybe_legitimize_operands (enum insn_code icode
, unsigned int opno
,
8137 unsigned int nops
, class expand_operand
*ops
)
8139 rtx_insn
*last
= get_last_insn ();
8140 rtx
*orig_values
= XALLOCAVEC (rtx
, nops
);
8141 for (unsigned int i
= 0; i
< nops
; i
++)
8143 orig_values
[i
] = ops
[i
].value
;
8145 /* First try reusing the result of an earlier legitimization.
8146 This avoids duplicate rtl and ensures that tied operands
8149 This search is linear, but NOPS is bounded at compile time
8150 to a small number (current a single digit). */
8153 if (can_reuse_operands_p (icode
, opno
+ j
, opno
+ i
, &ops
[j
], &ops
[i
])
8154 && rtx_equal_p (orig_values
[j
], orig_values
[i
])
8156 && insn_operand_matches (icode
, opno
+ i
, ops
[j
].value
))
8158 ops
[i
].value
= copy_rtx (ops
[j
].value
);
8162 /* Otherwise try legitimizing the operand on its own. */
8163 if (j
== i
&& !maybe_legitimize_operand (icode
, opno
+ i
, &ops
[i
]))
8165 delete_insns_since (last
);
8172 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
8173 as its operands. Return the instruction pattern on success,
8174 and emit any necessary set-up code. Return null and emit no
8178 maybe_gen_insn (enum insn_code icode
, unsigned int nops
,
8179 class expand_operand
*ops
)
8181 gcc_assert (nops
== (unsigned int) insn_data
[(int) icode
].n_generator_args
);
8182 if (!maybe_legitimize_operands (icode
, 0, nops
, ops
))
8188 return GEN_FCN (icode
) ();
8190 return GEN_FCN (icode
) (ops
[0].value
);
8192 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
);
8194 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
);
8196 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
8199 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
8200 ops
[3].value
, ops
[4].value
);
8202 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
8203 ops
[3].value
, ops
[4].value
, ops
[5].value
);
8205 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
8206 ops
[3].value
, ops
[4].value
, ops
[5].value
,
8209 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
8210 ops
[3].value
, ops
[4].value
, ops
[5].value
,
8211 ops
[6].value
, ops
[7].value
);
8213 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
8214 ops
[3].value
, ops
[4].value
, ops
[5].value
,
8215 ops
[6].value
, ops
[7].value
, ops
[8].value
);
8217 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
8218 ops
[3].value
, ops
[4].value
, ops
[5].value
,
8219 ops
[6].value
, ops
[7].value
, ops
[8].value
,
8222 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
8223 ops
[3].value
, ops
[4].value
, ops
[5].value
,
8224 ops
[6].value
, ops
[7].value
, ops
[8].value
,
8225 ops
[9].value
, ops
[10].value
);
8230 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
8231 as its operands. Return true on success and emit no code on failure. */
8234 maybe_expand_insn (enum insn_code icode
, unsigned int nops
,
8235 class expand_operand
*ops
)
8237 rtx_insn
*pat
= maybe_gen_insn (icode
, nops
, ops
);
8246 /* Like maybe_expand_insn, but for jumps. */
8249 maybe_expand_jump_insn (enum insn_code icode
, unsigned int nops
,
8250 class expand_operand
*ops
)
8252 rtx_insn
*pat
= maybe_gen_insn (icode
, nops
, ops
);
8255 emit_jump_insn (pat
);
8261 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
8265 expand_insn (enum insn_code icode
, unsigned int nops
,
8266 class expand_operand
*ops
)
8268 if (!maybe_expand_insn (icode
, nops
, ops
))
8272 /* Like expand_insn, but for jumps. */
8275 expand_jump_insn (enum insn_code icode
, unsigned int nops
,
8276 class expand_operand
*ops
)
8278 if (!maybe_expand_jump_insn (icode
, nops
, ops
))