2 Copyright (C) 2003-2025 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 typedef class _stmt_vec_info
*stmt_vec_info
;
25 typedef struct _slp_tree
*slp_tree
;
27 #include "tree-data-ref.h"
28 #include "tree-hash-traits.h"
30 #include "internal-fn.h"
31 #include "tree-ssa-operands.h"
32 #include "gimple-match.h"
34 /* Used for naming of new temporaries. */
42 /* Defines type of operation. */
49 /* Define type of available alignment support. */
50 enum dr_alignment_support
{
51 dr_unaligned_unsupported
,
52 dr_unaligned_supported
,
54 dr_explicit_realign_optimized
,
58 /* Define type of def-use cross-iteration cycle. */
60 vect_uninitialized_def
= 0,
61 vect_constant_def
= 1,
66 vect_double_reduction_def
,
68 vect_first_order_recurrence
,
73 /* Define operation type of linear/non-linear induction variable. */
74 enum vect_induction_op_type
{
82 /* Define type of reduction. */
83 enum vect_reduction_type
{
86 INTEGER_INDUC_COND_REDUCTION
,
89 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
92 for (int i = 0; i < VF; ++i)
93 res = cond[i] ? val[i] : res; */
94 EXTRACT_LAST_REDUCTION
,
96 /* Use a folding reduction within the loop to implement:
98 for (int i = 0; i < VF; ++i)
101 (with no reassocation). */
105 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
106 || ((D) == vect_double_reduction_def) \
107 || ((D) == vect_nested_cycle))
109 /* Structure to encapsulate information about a group of like
110 instructions to be presented to the target cost model. */
111 struct stmt_info_for_cost
{
113 enum vect_cost_for_stmt kind
;
114 enum vect_cost_model_location where
;
115 stmt_vec_info stmt_info
;
121 typedef vec
<stmt_info_for_cost
> stmt_vector_for_cost
;
123 /* Maps base addresses to an innermost_loop_behavior and the stmt it was
124 derived from that gives the maximum known alignment for that base. */
125 typedef hash_map
<tree_operand_hash
,
126 std::pair
<stmt_vec_info
, innermost_loop_behavior
*> >
129 /* Represents elements [START, START + LENGTH) of cyclical array OPS*
130 (i.e. OPS repeated to give at least START + LENGTH elements) */
131 struct vect_scalar_ops_slice
133 tree
op (unsigned int i
) const;
134 bool all_same_p () const;
141 /* Return element I of the slice. */
143 vect_scalar_ops_slice::op (unsigned int i
) const
145 return (*ops
)[(i
+ start
) % ops
->length ()];
148 /* Hash traits for vect_scalar_ops_slice. */
149 struct vect_scalar_ops_slice_hash
: typed_noop_remove
<vect_scalar_ops_slice
>
151 typedef vect_scalar_ops_slice value_type
;
152 typedef vect_scalar_ops_slice compare_type
;
154 static const bool empty_zero_p
= true;
156 static void mark_deleted (value_type
&s
) { s
.length
= ~0U; }
157 static void mark_empty (value_type
&s
) { s
.length
= 0; }
158 static bool is_deleted (const value_type
&s
) { return s
.length
== ~0U; }
159 static bool is_empty (const value_type
&s
) { return s
.length
== 0; }
160 static hashval_t
hash (const value_type
&);
161 static bool equal (const value_type
&, const compare_type
&);
164 /* Describes how we're going to vectorize an individual load or store,
165 or a group of loads or stores. */
166 enum vect_memory_access_type
{
167 /* An access to an invariant address. This is used only for loads. */
170 /* A simple contiguous access. */
173 /* A contiguous access that goes down in memory rather than up,
174 with no additional permutation. This is used only for stores
176 VMAT_CONTIGUOUS_DOWN
,
178 /* A simple contiguous access in which the elements need to be permuted
179 after loading or before storing. Only used for loop vectorization;
180 SLP uses separate permutes. */
181 VMAT_CONTIGUOUS_PERMUTE
,
183 /* A simple contiguous access in which the elements need to be reversed
184 after loading or before storing. */
185 VMAT_CONTIGUOUS_REVERSE
,
187 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
188 VMAT_LOAD_STORE_LANES
,
190 /* An access in which each scalar element is loaded or stored
194 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
195 SLP accesses. Each unrolled iteration uses a contiguous load
196 or store for the whole group, but the groups from separate iterations
197 are combined in the same way as for VMAT_ELEMENTWISE. */
200 /* The access uses gather loads or scatter stores. */
204 /************************************************************************
206 ************************************************************************/
207 typedef vec
<std::pair
<unsigned, unsigned> > lane_permutation_t
;
208 typedef auto_vec
<std::pair
<unsigned, unsigned>, 16> auto_lane_permutation_t
;
209 typedef vec
<unsigned> load_permutation_t
;
210 typedef auto_vec
<unsigned, 16> auto_load_permutation_t
;
212 /* A computation tree of an SLP instance. Each node corresponds to a group of
213 stmts to be packed in a SIMD stmt. */
218 void push_vec_def (gimple
*def
);
219 void push_vec_def (tree def
) { vec_defs
.quick_push (def
); }
221 /* Nodes that contain def-stmts of this node statements operands. */
222 vec
<slp_tree
> children
;
224 /* A group of scalar stmts to be vectorized together. */
225 vec
<stmt_vec_info
> stmts
;
226 /* A group of scalar operands to be vectorized together. */
228 /* The representative that should be used for analysis and
230 stmt_vec_info representative
;
232 /* Load permutation relative to the stores, NULL if there is no
234 load_permutation_t load_permutation
;
235 /* Lane permutation of the operands scalar lanes encoded as pairs
236 of { operand number, lane number }. The number of elements
237 denotes the number of output lanes. */
238 lane_permutation_t lane_permutation
;
240 /* Selected SIMD clone's function info. First vector element
241 is SIMD clone's function decl, followed by a pair of trees (base + step)
242 for linear arguments (pair of NULLs for other arguments). */
243 vec
<tree
> simd_clone_info
;
246 /* Vectorized defs. */
248 /* Number of vector stmts that are created to replace the group of scalar
249 stmts. It is calculated during the transformation phase as the number of
250 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
251 divided by vector size. */
252 unsigned int vec_stmts_size
;
254 /* Reference count in the SLP graph. */
256 /* The maximum number of vector elements for the subtree rooted
258 poly_uint64 max_nunits
;
259 /* The DEF type of this node. */
260 enum vect_def_type def_type
;
261 /* The number of scalar lanes produced by this node. */
263 /* The operation of this node. */
265 /* Whether uses of this load or feeders of this store are suitable
266 for load/store-lanes. */
271 /* Classifies how the load or store is going to be implemented
272 for loop vectorization. */
273 vect_memory_access_type memory_access_type
;
275 /* If not NULL this is a cached failed SLP discovery attempt with
276 the lanes that failed during SLP discovery as 'false'. This is
277 a copy of the matches array. */
280 /* Allocate from slp_tree_pool. */
281 static void *operator new (size_t);
283 /* Return memory to slp_tree_pool. */
284 static void operator delete (void *, size_t);
286 /* Linked list of nodes to release when we free the slp_tree_pool. */
291 /* The enum describes the type of operations that an SLP instance
294 enum slp_instance_kind
{
296 slp_inst_kind_reduc_group
,
297 slp_inst_kind_reduc_chain
,
298 slp_inst_kind_bb_reduc
,
303 /* SLP instance is a sequence of stmts in a loop that can be packed into
305 typedef class _slp_instance
{
307 /* The root of SLP tree. */
310 /* For vector constructors, the constructor stmt that the SLP tree is built
311 from, NULL otherwise. */
312 vec
<stmt_vec_info
> root_stmts
;
314 /* For slp_inst_kind_bb_reduc the defs that were not vectorized, NULL
316 vec
<tree
> remain_defs
;
318 /* The group of nodes that contain loads of this SLP instance. */
321 /* The SLP node containing the reduction PHIs. */
324 /* Vector cost of this entry to the SLP graph. */
325 stmt_vector_for_cost cost_vec
;
327 /* If this instance is the main entry of a subgraph the set of
328 entries into the same subgraph, including itself. */
329 vec
<_slp_instance
*> subgraph_entries
;
331 /* The type of operation the SLP instance is performing. */
332 slp_instance_kind kind
;
334 dump_user_location_t
location () const;
338 /* Access Functions. */
339 #define SLP_INSTANCE_TREE(S) (S)->root
340 #define SLP_INSTANCE_LOADS(S) (S)->loads
341 #define SLP_INSTANCE_ROOT_STMTS(S) (S)->root_stmts
342 #define SLP_INSTANCE_REMAIN_DEFS(S) (S)->remain_defs
343 #define SLP_INSTANCE_KIND(S) (S)->kind
345 #define SLP_TREE_CHILDREN(S) (S)->children
346 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
347 #define SLP_TREE_SCALAR_OPS(S) (S)->ops
348 #define SLP_TREE_REF_COUNT(S) (S)->refcnt
349 #define SLP_TREE_VEC_DEFS(S) (S)->vec_defs
350 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
351 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
352 #define SLP_TREE_LANE_PERMUTATION(S) (S)->lane_permutation
353 #define SLP_TREE_SIMD_CLONE_INFO(S) (S)->simd_clone_info
354 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
355 #define SLP_TREE_VECTYPE(S) (S)->vectype
356 #define SLP_TREE_REPRESENTATIVE(S) (S)->representative
357 #define SLP_TREE_LANES(S) (S)->lanes
358 #define SLP_TREE_CODE(S) (S)->code
359 #define SLP_TREE_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
361 enum vect_partial_vector_style
{
362 vect_partial_vectors_none
,
363 vect_partial_vectors_while_ult
,
364 vect_partial_vectors_avx512
,
365 vect_partial_vectors_len
368 /* Key for map that records association between
369 scalar conditions and corresponding loop mask, and
370 is populated by vect_record_loop_mask. */
372 struct scalar_cond_masked_key
374 scalar_cond_masked_key (tree t
, unsigned ncopies_
)
377 get_cond_ops_from_tree (t
);
380 void get_cond_ops_from_tree (tree
);
390 struct default_hash_traits
<scalar_cond_masked_key
>
392 typedef scalar_cond_masked_key compare_type
;
393 typedef scalar_cond_masked_key value_type
;
395 static inline hashval_t
400 inchash::add_expr (v
.op0
, h
, 0);
401 inchash::add_expr (v
.op1
, h
, 0);
402 h
.add_int (v
.ncopies
);
403 h
.add_flag (v
.inverted_p
);
408 equal (value_type existing
, value_type candidate
)
410 return (existing
.ncopies
== candidate
.ncopies
411 && existing
.code
== candidate
.code
412 && existing
.inverted_p
== candidate
.inverted_p
413 && operand_equal_p (existing
.op0
, candidate
.op0
, 0)
414 && operand_equal_p (existing
.op1
, candidate
.op1
, 0));
417 static const bool empty_zero_p
= true;
420 mark_empty (value_type
&v
)
423 v
.inverted_p
= false;
427 is_empty (value_type v
)
429 return v
.ncopies
== 0;
432 static inline void mark_deleted (value_type
&) {}
434 static inline bool is_deleted (const value_type
&)
439 static inline void remove (value_type
&) {}
442 typedef hash_set
<scalar_cond_masked_key
> scalar_cond_masked_set_type
;
444 /* Key and map that records association between vector conditions and
445 corresponding loop mask, and is populated by prepare_vec_mask. */
447 typedef pair_hash
<tree_operand_hash
, tree_operand_hash
> tree_cond_mask_hash
;
448 typedef hash_set
<tree_cond_mask_hash
> vec_cond_masked_set_type
;
450 /* Describes two objects whose addresses must be unequal for the vectorized
452 typedef std::pair
<tree
, tree
> vec_object_pair
;
454 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
455 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
456 class vec_lower_bound
{
458 vec_lower_bound () {}
459 vec_lower_bound (tree e
, bool u
, poly_uint64 m
)
460 : expr (e
), unsigned_p (u
), min_value (m
) {}
464 poly_uint64 min_value
;
467 /* Vectorizer state shared between different analyses like vector sizes
468 of the same CFG region. */
469 class vec_info_shared
{
474 void save_datarefs();
475 void check_datarefs();
477 /* All data references. Freed by free_data_refs, so not an auto_vec. */
478 vec
<data_reference_p
> datarefs
;
479 vec
<data_reference
> datarefs_copy
;
481 /* The loop nest in which the data dependences are computed. */
482 auto_vec
<loop_p
> loop_nest
;
484 /* All data dependences. Freed by free_dependence_relations, so not
489 /* Vectorizer state common between loop and basic-block vectorization. */
492 typedef hash_set
<int_hash
<machine_mode
, E_VOIDmode
, E_BLKmode
> > mode_set
;
493 enum vec_kind
{ bb
, loop
};
495 vec_info (vec_kind
, vec_info_shared
*);
498 stmt_vec_info
add_stmt (gimple
*);
499 stmt_vec_info
add_pattern_stmt (gimple
*, stmt_vec_info
);
500 stmt_vec_info
resync_stmt_addr (gimple
*);
501 stmt_vec_info
lookup_stmt (gimple
*);
502 stmt_vec_info
lookup_def (tree
);
503 stmt_vec_info
lookup_single_use (tree
);
504 class dr_vec_info
*lookup_dr (data_reference
*);
505 void move_dr (stmt_vec_info
, stmt_vec_info
);
506 void remove_stmt (stmt_vec_info
);
507 void replace_stmt (gimple_stmt_iterator
*, stmt_vec_info
, gimple
*);
508 void insert_on_entry (stmt_vec_info
, gimple
*);
509 void insert_seq_on_entry (stmt_vec_info
, gimple_seq
);
511 /* The type of vectorization. */
514 /* Shared vectorizer state. */
515 vec_info_shared
*shared
;
517 /* The mapping of GIMPLE UID to stmt_vec_info. */
518 vec
<stmt_vec_info
> stmt_vec_infos
;
519 /* Whether the above mapping is complete. */
520 bool stmt_vec_info_ro
;
522 /* Whether we've done a transform we think OK to not update virtual
524 bool any_known_not_updated_vssa
;
527 auto_vec
<slp_instance
> slp_instances
;
529 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
530 known alignment for that base. */
531 vec_base_alignments base_alignments
;
533 /* All interleaving chains of stores, represented by the first
534 stmt in the chain. */
535 auto_vec
<stmt_vec_info
> grouped_stores
;
537 /* The set of vector modes used in the vectorized region. */
538 mode_set used_vector_modes
;
540 /* The argument we should pass to related_vector_mode when looking up
541 the vector mode for a scalar mode, or VOIDmode if we haven't yet
542 made any decisions about which vector modes to use. */
543 machine_mode vector_mode
;
545 /* The basic blocks in the vectorization region. For _loop_vec_info,
546 the memory is internally managed, while for _bb_vec_info, it points
547 to element space of an external auto_vec<>. This inconsistency is
548 not a good class design pattern. TODO: improve it with an unified
549 auto_vec<> whose lifetime is confined to vec_info object. */
552 /* The count of the basic blocks in the vectorization region. */
555 /* Used to keep a sequence of def stmts of a pattern stmt that are loop
556 invariant if they exists.
557 The sequence is emitted in the loop preheader should the loop be vectorized
558 and are reset when undoing patterns. */
559 gimple_seq inv_pattern_def_seq
;
562 stmt_vec_info
new_stmt_vec_info (gimple
*stmt
);
563 void set_vinfo_for_stmt (gimple
*, stmt_vec_info
, bool = true);
564 void free_stmt_vec_infos ();
565 void free_stmt_vec_info (stmt_vec_info
);
568 class _loop_vec_info
;
574 is_a_helper
<_loop_vec_info
*>::test (vec_info
*i
)
576 return i
->kind
== vec_info::loop
;
582 is_a_helper
<_bb_vec_info
*>::test (vec_info
*i
)
584 return i
->kind
== vec_info::bb
;
587 /* In general, we can divide the vector statements in a vectorized loop
588 into related groups ("rgroups") and say that for each rgroup there is
589 some nS such that the rgroup operates on nS values from one scalar
590 iteration followed by nS values from the next. That is, if VF is the
591 vectorization factor of the loop, the rgroup operates on a sequence:
593 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
595 where (i,j) represents a scalar value with index j in a scalar
596 iteration with index i.
598 [ We use the term "rgroup" to emphasise that this grouping isn't
599 necessarily the same as the grouping of statements used elsewhere.
600 For example, if we implement a group of scalar loads using gather
601 loads, we'll use a separate gather load for each scalar load, and
602 thus each gather load will belong to its own rgroup. ]
604 In general this sequence will occupy nV vectors concatenated
605 together. If these vectors have nL lanes each, the total number
606 of scalar values N is given by:
608 N = nS * VF = nV * nL
610 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
611 are compile-time constants but VF and nL can be variable (if the target
612 supports variable-length vectors).
614 In classical vectorization, each iteration of the vector loop would
615 handle exactly VF iterations of the original scalar loop. However,
616 in vector loops that are able to operate on partial vectors, a
617 particular iteration of the vector loop might handle fewer than VF
618 iterations of the scalar loop. The vector lanes that correspond to
619 iterations of the scalar loop are said to be "active" and the other
620 lanes are said to be "inactive".
622 In such vector loops, many rgroups need to be controlled to ensure
623 that they have no effect for the inactive lanes. Conceptually, each
624 such rgroup needs a sequence of booleans in the same order as above,
625 but with each (i,j) replaced by a boolean that indicates whether
626 iteration i is active. This sequence occupies nV vector controls
627 that again have nL lanes each. Thus the control sequence as a whole
628 consists of VF independent booleans that are each repeated nS times.
630 Taking mask-based approach as a partially-populated vectors example.
631 We make the simplifying assumption that if a sequence of nV masks is
632 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
633 VIEW_CONVERTing it. This holds for all current targets that support
634 fully-masked loops. For example, suppose the scalar loop is:
638 for (int i = 0; i < n; ++i)
640 f[i * 2 + 0] += 1.0f;
641 f[i * 2 + 1] += 2.0f;
645 and suppose that vectors have 256 bits. The vectorized f accesses
646 will belong to one rgroup and the vectorized d access to another:
648 f rgroup: nS = 2, nV = 1, nL = 8
649 d rgroup: nS = 1, nV = 1, nL = 4
652 [ In this simple example the rgroups do correspond to the normal
653 SLP grouping scheme. ]
655 If only the first three lanes are active, the masks we need are:
657 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
658 d rgroup: 1 | 1 | 1 | 0
660 Here we can use a mask calculated for f's rgroup for d's, but not
663 Thus for each value of nV, it is enough to provide nV masks, with the
664 mask being calculated based on the highest nL (or, equivalently, based
665 on the highest nS) required by any rgroup with that nV. We therefore
666 represent the entire collection of masks as a two-level table, with the
667 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
668 the second being indexed by the mask index 0 <= i < nV. */
670 /* The controls (like masks or lengths) needed by rgroups with nV vectors,
671 according to the description above. */
672 struct rgroup_controls
{
673 /* The largest nS for all rgroups that use these controls.
674 For vect_partial_vectors_avx512 this is the constant nscalars_per_iter
675 for all members of the group. */
676 unsigned int max_nscalars_per_iter
;
678 /* For the largest nS recorded above, the loop controls divide each scalar
679 into FACTOR equal-sized pieces. This is useful if we need to split
680 element-based accesses into byte-based accesses.
681 For vect_partial_vectors_avx512 this records nV instead. */
684 /* This is a vector type with MAX_NSCALARS_PER_ITER * VF / nV elements.
685 For mask-based controls, it is the type of the masks in CONTROLS.
686 For length-based controls, it can be any vector type that has the
687 specified number of elements; the type of the elements doesn't matter. */
690 /* When there is no uniformly used LOOP_VINFO_RGROUP_COMPARE_TYPE this
691 is the rgroup specific type used. */
694 /* A vector of nV controls, in iteration order. */
697 /* In case of len_load and len_store with a bias there is only one
698 rgroup. This holds the adjusted loop length for the this rgroup. */
699 tree bias_adjusted_ctrl
;
702 struct vec_loop_masks
704 bool is_empty () const { return mask_set
.is_empty (); }
706 /* Set to record vectype, nvector pairs. */
707 hash_set
<pair_hash
<nofree_ptr_hash
<tree_node
>,
708 int_hash
<unsigned, 0>>> mask_set
;
710 /* rgroup_controls used for the partial vector scheme. */
711 auto_vec
<rgroup_controls
> rgc_vec
;
714 typedef auto_vec
<rgroup_controls
> vec_loop_lens
;
716 typedef auto_vec
<std::pair
<data_reference
*, tree
> > drs_init_vec
;
718 /* Information about a reduction accumulator from the main loop that could
719 conceivably be reused as the input to a reduction in an epilogue loop. */
720 struct vect_reusable_accumulator
{
721 /* The final value of the accumulator, which forms the input to the
722 reduction operation. */
725 /* The stmt_vec_info that describes the reduction (i.e. the one for
726 which is_reduc_info is true). */
727 stmt_vec_info reduc_info
;
730 /*-----------------------------------------------------------------*/
731 /* Info on vectorized loops. */
732 /*-----------------------------------------------------------------*/
733 typedef class _loop_vec_info
: public vec_info
{
735 _loop_vec_info (class loop
*, vec_info_shared
*);
738 /* The loop to which this info struct refers to. */
741 /* Number of latch executions. */
743 /* Number of iterations. */
745 /* Number of iterations of the original loop. */
746 tree num_iters_unchanged
;
747 /* Condition under which this loop is analyzed and versioned. */
748 tree num_iters_assumptions
;
750 /* The cost of the vector code. */
751 class vector_costs
*vector_costs
;
753 /* The cost of the scalar code. */
754 class vector_costs
*scalar_costs
;
756 /* Threshold of number of iterations below which vectorization will not be
757 performed. It is calculated from MIN_PROFITABLE_ITERS and
758 param_min_vect_loop_bound. */
761 /* When applying loop versioning, the vector form should only be used
762 if the number of scalar iterations is >= this value, on top of all
763 the other requirements. Ignored when loop versioning is not being
765 poly_uint64 versioning_threshold
;
767 /* Unrolling factor */
768 poly_uint64 vectorization_factor
;
770 /* If this loop is an epilogue loop whose main loop can be skipped,
771 MAIN_LOOP_EDGE is the edge from the main loop to this loop's
772 preheader. SKIP_MAIN_LOOP_EDGE is then the edge that skips the
773 main loop and goes straight to this loop's preheader.
775 Both fields are null otherwise. */
777 edge skip_main_loop_edge
;
779 /* If this loop is an epilogue loop that might be skipped after executing
780 the main loop, this edge is the one that skips the epilogue. */
781 edge skip_this_loop_edge
;
783 /* The vectorized form of a standard reduction replaces the original
784 scalar code's final result (a loop-closed SSA PHI) with the result
785 of a vector-to-scalar reduction operation. After vectorization,
786 this variable maps these vector-to-scalar results to information
787 about the reductions that generated them. */
788 hash_map
<tree
, vect_reusable_accumulator
> reusable_accumulators
;
790 /* The number of times that the target suggested we unroll the vector loop
791 in order to promote more ILP. This value will be used to re-analyze the
792 loop for vectorization and if successful the value will be folded into
793 vectorization_factor (and therefore exactly divides
794 vectorization_factor). */
795 unsigned int suggested_unroll_factor
;
797 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
798 if there is no particular limit. */
799 unsigned HOST_WIDE_INT max_vectorization_factor
;
801 /* The masks that a fully-masked loop should use to avoid operating
802 on inactive scalars. */
803 vec_loop_masks masks
;
805 /* The lengths that a loop with length should use to avoid operating
806 on inactive scalars. */
809 /* Set of scalar conditions that have loop mask applied. */
810 scalar_cond_masked_set_type scalar_cond_masked_set
;
812 /* Set of vector conditions that have loop mask applied. */
813 vec_cond_masked_set_type vec_cond_masked_set
;
815 /* If we are using a loop mask to align memory addresses, this variable
816 contains the number of vector elements that we should skip in the
817 first iteration of the vector loop (i.e. the number of leading
818 elements that should be false in the first mask). */
819 tree mask_skip_niters
;
821 /* The type that the loop control IV should be converted to before
822 testing which of the VF scalars are active and inactive.
823 Only meaningful if LOOP_VINFO_USING_PARTIAL_VECTORS_P. */
824 tree rgroup_compare_type
;
826 /* For #pragma omp simd if (x) loops the x expression. If constant 0,
827 the loop should not be vectorized, if constant non-zero, simd_if_cond
828 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
829 should be versioned on that condition, using scalar loop if the condition
830 is false and vectorized loop otherwise. */
833 /* The type that the vector loop control IV should have when
834 LOOP_VINFO_USING_PARTIAL_VECTORS_P is true. */
837 /* The style used for implementing partial vectors when
838 LOOP_VINFO_USING_PARTIAL_VECTORS_P is true. */
839 vect_partial_vector_style partial_vector_style
;
841 /* Unknown DRs according to which loop was peeled. */
842 class dr_vec_info
*unaligned_dr
;
844 /* peeling_for_alignment indicates whether peeling for alignment will take
845 place, and what the peeling factor should be:
846 peeling_for_alignment = X means:
847 If X=0: Peeling for alignment will not be applied.
848 If X>0: Peel first X iterations.
849 If X=-1: Generate a runtime test to calculate the number of iterations
850 to be peeled, using the dataref recorded in the field
852 int peeling_for_alignment
;
854 /* The mask used to check the alignment of pointers or arrays. */
857 /* Data Dependence Relations defining address ranges that are candidates
858 for a run-time aliasing check. */
859 auto_vec
<ddr_p
> may_alias_ddrs
;
861 /* Data Dependence Relations defining address ranges together with segment
862 lengths from which the run-time aliasing check is built. */
863 auto_vec
<dr_with_seg_len_pair_t
> comp_alias_ddrs
;
865 /* Check that the addresses of each pair of objects is unequal. */
866 auto_vec
<vec_object_pair
> check_unequal_addrs
;
868 /* List of values that are required to be nonzero. This is used to check
869 whether things like "x[i * n] += 1;" are safe and eventually gets added
870 to the checks for lower bounds below. */
871 auto_vec
<tree
> check_nonzero
;
873 /* List of values that need to be checked for a minimum value. */
874 auto_vec
<vec_lower_bound
> lower_bounds
;
876 /* Statements in the loop that have data references that are candidates for a
877 runtime (loop versioning) misalignment check. */
878 auto_vec
<stmt_vec_info
> may_misalign_stmts
;
880 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
881 auto_vec
<stmt_vec_info
> reductions
;
883 /* All reduction chains in the loop, represented by the first
884 stmt in the chain. */
885 auto_vec
<stmt_vec_info
> reduction_chains
;
887 /* Cost vector for a single scalar iteration. */
888 auto_vec
<stmt_info_for_cost
> scalar_cost_vec
;
890 /* Map of IV base/step expressions to inserted name in the preheader. */
891 hash_map
<tree_operand_hash
, tree
> *ivexpr_map
;
893 /* Map of OpenMP "omp simd array" scan variables to corresponding
894 rhs of the store of the initializer. */
895 hash_map
<tree
, tree
> *scan_map
;
897 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
898 applied to the loop, i.e., no unrolling is needed, this is 1. */
899 poly_uint64 slp_unrolling_factor
;
901 /* The factor used to over weight those statements in an inner loop
902 relative to the loop being vectorized. */
903 unsigned int inner_loop_cost_factor
;
905 /* Is the loop vectorizable? */
908 /* Records whether we still have the option of vectorizing this loop
909 using partially-populated vectors; in other words, whether it is
910 still possible for one iteration of the vector loop to handle
911 fewer than VF scalars. */
912 bool can_use_partial_vectors_p
;
914 /* Records whether we must use niter masking for correctness reasons. */
915 bool must_use_partial_vectors_p
;
917 /* True if we've decided to use partially-populated vectors, so that
918 the vector loop can handle fewer than VF scalars. */
919 bool using_partial_vectors_p
;
921 /* True if we've decided to use a decrementing loop control IV that counts
922 scalars. This can be done for any loop that:
924 (a) uses length "controls"; and
925 (b) can iterate more than once. */
926 bool using_decrementing_iv_p
;
928 /* True if we've decided to use output of select_vl to adjust IV of
929 both loop control and data reference pointer. This is only true
930 for single-rgroup control. */
931 bool using_select_vl_p
;
933 /* True if we've decided to use partially-populated vectors for the
935 bool epil_using_partial_vectors_p
;
937 /* The bias for len_load and len_store. For now, only 0 and -1 are
938 supported. -1 must be used when a backend does not support
939 len_load/len_store with a length of zero. */
940 signed char partial_load_store_bias
;
942 /* When we have grouped data accesses with gaps, we may introduce invalid
943 memory accesses. We peel the last iteration of the loop to prevent
945 bool peeling_for_gaps
;
947 /* When the number of iterations is not a multiple of the vector size
948 we need to peel off iterations at the end to form an epilogue loop. */
949 bool peeling_for_niter
;
951 /* When the loop has early breaks that we can vectorize we need to peel
952 the loop for the break finding loop. */
955 /* List of loop additional IV conditionals found in the loop. */
956 auto_vec
<gcond
*> conds
;
958 /* Main loop IV cond. */
961 /* True if there are no loop carried data dependencies in the loop.
962 If loop->safelen <= 1, then this is always true, either the loop
963 didn't have any loop carried data dependencies, or the loop is being
964 vectorized guarded with some runtime alias checks, or couldn't
965 be vectorized at all, but then this field shouldn't be used.
966 For loop->safelen >= 2, the user has asserted that there are no
967 backward dependencies, but there still could be loop carried forward
968 dependencies in such loops. This flag will be false if normal
969 vectorizer data dependency analysis would fail or require versioning
970 for alias, but because of loop->safelen >= 2 it has been vectorized
971 even without versioning for alias. E.g. in:
973 for (int i = 0; i < m; i++)
975 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
976 DTRT even for k > 0 && k < m, but without safelen we would not
977 vectorize this, so this field would be false. */
978 bool no_data_dependencies
;
980 /* Mark loops having masked stores. */
983 /* Queued scaling factor for the scalar loop. */
984 profile_probability scalar_loop_scaling
;
986 /* If if-conversion versioned this loop before conversion, this is the
987 loop version without if-conversion. */
988 class loop
*scalar_loop
;
990 /* For loops being epilogues of already vectorized loops
991 this points to the main vectorized loop. Otherwise NULL. */
992 _loop_vec_info
*main_loop_info
;
994 /* For loops being epilogues of already vectorized loops
995 this points to the preceeding vectorized (possibly epilogue) loop.
997 _loop_vec_info
*orig_loop_info
;
999 /* Used to store loop_vec_infos of the epilogue of this loop during
1001 _loop_vec_info
*epilogue_vinfo
;
1003 /* If this is an epilogue loop the DR advancement applied. */
1004 tree drs_advanced_by
;
1006 /* The controlling loop IV for the current loop when vectorizing. This IV
1007 controls the natural exits of the loop. */
1008 edge vec_loop_iv_exit
;
1010 /* The controlling loop IV for the epilogue loop when vectorizing. This IV
1011 controls the natural exits of the loop. */
1012 edge vec_epilogue_loop_iv_exit
;
1014 /* The controlling loop IV for the scalar loop being vectorized. This IV
1015 controls the natural exits of the loop. */
1016 edge scalar_loop_iv_exit
;
1018 /* Used to store the list of stores needing to be moved if doing early
1019 break vectorization as they would violate the scalar loop semantics if
1020 vectorized in their current location. These are stored in order that they
1021 need to be moved. */
1022 auto_vec
<gimple
*> early_break_stores
;
1024 /* The final basic block where to move statements to. In the case of
1025 multiple exits this could be pretty far away. */
1026 basic_block early_break_dest_bb
;
1028 /* Statements whose VUSES need updating if early break vectorization is to
1030 auto_vec
<gimple
*> early_break_vuses
;
1032 /* Record statements that are needed to be live for early break vectorization
1033 but may not have an LC PHI node materialized yet in the exits. */
1034 auto_vec
<stmt_vec_info
> early_break_live_ivs
;
1037 /* Access Functions. */
1038 #define LOOP_VINFO_LOOP(L) (L)->loop
1039 #define LOOP_VINFO_IV_EXIT(L) (L)->vec_loop_iv_exit
1040 #define LOOP_VINFO_EPILOGUE_IV_EXIT(L) (L)->vec_epilogue_loop_iv_exit
1041 #define LOOP_VINFO_SCALAR_IV_EXIT(L) (L)->scalar_loop_iv_exit
1042 #define LOOP_VINFO_BBS(L) (L)->bbs
1043 #define LOOP_VINFO_NBBS(L) (L)->nbbs
1044 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
1045 #define LOOP_VINFO_NITERS(L) (L)->num_iters
1046 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
1047 prologue peeling retain total unchanged scalar loop iterations for
1049 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
1050 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
1051 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
1052 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
1053 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
1054 #define LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P(L) (L)->can_use_partial_vectors_p
1055 #define LOOP_VINFO_MUST_USE_PARTIAL_VECTORS_P(L) (L)->must_use_partial_vectors_p
1056 #define LOOP_VINFO_USING_PARTIAL_VECTORS_P(L) (L)->using_partial_vectors_p
1057 #define LOOP_VINFO_USING_DECREMENTING_IV_P(L) (L)->using_decrementing_iv_p
1058 #define LOOP_VINFO_USING_SELECT_VL_P(L) (L)->using_select_vl_p
1059 #define LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P(L) \
1060 (L)->epil_using_partial_vectors_p
1061 #define LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS(L) (L)->partial_load_store_bias
1062 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
1063 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
1064 #define LOOP_VINFO_MASKS(L) (L)->masks
1065 #define LOOP_VINFO_LENS(L) (L)->lens
1066 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
1067 #define LOOP_VINFO_RGROUP_COMPARE_TYPE(L) (L)->rgroup_compare_type
1068 #define LOOP_VINFO_RGROUP_IV_TYPE(L) (L)->rgroup_iv_type
1069 #define LOOP_VINFO_PARTIAL_VECTORS_STYLE(L) (L)->partial_vector_style
1070 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
1071 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
1072 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
1073 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
1074 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
1075 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
1076 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
1077 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
1078 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
1079 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
1080 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
1081 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
1082 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
1083 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
1084 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
1085 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
1086 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
1087 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
1088 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
1089 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
1090 #define LOOP_VINFO_EARLY_BREAKS(L) (L)->early_breaks
1091 #define LOOP_VINFO_EARLY_BRK_STORES(L) (L)->early_break_stores
1092 #define LOOP_VINFO_EARLY_BREAKS_VECT_PEELED(L) \
1093 (single_pred ((L)->loop->latch) != (L)->vec_loop_iv_exit->src)
1094 #define LOOP_VINFO_EARLY_BREAKS_LIVE_IVS(L) \
1095 (L)->early_break_live_ivs
1096 #define LOOP_VINFO_EARLY_BRK_DEST_BB(L) (L)->early_break_dest_bb
1097 #define LOOP_VINFO_EARLY_BRK_VUSES(L) (L)->early_break_vuses
1098 #define LOOP_VINFO_LOOP_CONDS(L) (L)->conds
1099 #define LOOP_VINFO_LOOP_IV_COND(L) (L)->loop_iv_cond
1100 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
1101 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
1102 #define LOOP_VINFO_SCALAR_LOOP_SCALING(L) (L)->scalar_loop_scaling
1103 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
1104 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
1105 #define LOOP_VINFO_MAIN_LOOP_INFO(L) (L)->main_loop_info
1106 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
1107 #define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
1108 #define LOOP_VINFO_INNER_LOOP_COST_FACTOR(L) (L)->inner_loop_cost_factor
1109 #define LOOP_VINFO_INV_PATTERN_DEF_SEQ(L) (L)->inv_pattern_def_seq
1110 #define LOOP_VINFO_DRS_ADVANCED_BY(L) (L)->drs_advanced_by
1112 #define LOOP_VINFO_FULLY_MASKED_P(L) \
1113 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
1114 && !LOOP_VINFO_MASKS (L).is_empty ())
1116 #define LOOP_VINFO_FULLY_WITH_LENGTH_P(L) \
1117 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
1118 && !LOOP_VINFO_LENS (L).is_empty ())
1120 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
1121 ((L)->may_misalign_stmts.length () > 0)
1122 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
1123 ((L)->comp_alias_ddrs.length () > 0 \
1124 || (L)->check_unequal_addrs.length () > 0 \
1125 || (L)->lower_bounds.length () > 0)
1126 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
1127 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
1128 #define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
1129 (LOOP_VINFO_SIMD_IF_COND (L))
1130 #define LOOP_REQUIRES_VERSIONING(L) \
1131 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
1132 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
1133 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
1134 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
1136 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
1137 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
1139 #define LOOP_VINFO_EPILOGUE_P(L) \
1140 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
1142 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
1143 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
1145 /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
1146 value signifies success, and a NULL value signifies failure, supporting
1147 propagating an opt_problem * describing the failure back up the call
1149 typedef opt_pointer_wrapper
<loop_vec_info
> opt_loop_vec_info
;
1151 inline loop_vec_info
1152 loop_vec_info_for_loop (class loop
*loop
)
1154 return (loop_vec_info
) loop
->aux
;
1159 slp_root (slp_instance_kind kind_
, vec
<stmt_vec_info
> stmts_
,
1160 vec
<stmt_vec_info
> roots_
, vec
<tree
> remain_
= vNULL
)
1161 : kind(kind_
), stmts(stmts_
), roots(roots_
), remain(remain_
) {}
1162 slp_instance_kind kind
;
1163 vec
<stmt_vec_info
> stmts
;
1164 vec
<stmt_vec_info
> roots
;
1168 typedef class _bb_vec_info
: public vec_info
1171 _bb_vec_info (vec
<basic_block
> bbs
, vec_info_shared
*);
1174 vec
<slp_root
> roots
;
1177 #define BB_VINFO_BBS(B) (B)->bbs
1178 #define BB_VINFO_NBBS(B) (B)->nbbs
1179 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
1180 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
1181 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
1182 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
1184 /*-----------------------------------------------------------------*/
1185 /* Info on vectorized defs. */
1186 /*-----------------------------------------------------------------*/
1187 enum stmt_vec_info_type
{
1188 undef_vec_info_type
= 0,
1190 store_vec_info_type
,
1191 shift_vec_info_type
,
1194 call_simd_clone_vec_info_type
,
1195 assignment_vec_info_type
,
1196 condition_vec_info_type
,
1197 comparison_vec_info_type
,
1198 reduc_vec_info_type
,
1199 induc_vec_info_type
,
1200 type_promotion_vec_info_type
,
1201 type_demotion_vec_info_type
,
1202 type_conversion_vec_info_type
,
1203 cycle_phi_info_type
,
1207 loop_exit_ctrl_vec_info_type
1210 /* Indicates whether/how a variable is used in the scope of loop/basic
1212 enum vect_relevant
{
1213 vect_unused_in_scope
= 0,
1215 /* The def is only used outside the loop. */
1216 vect_used_only_live
,
1217 /* The def is in the inner loop, and the use is in the outer loop, and the
1218 use is a reduction stmt. */
1219 vect_used_in_outer_by_reduction
,
1220 /* The def is in the inner loop, and the use is in the outer loop (and is
1221 not part of reduction). */
1224 /* defs that feed computations that end up (only) in a reduction. These
1225 defs may be used by non-reduction stmts, but eventually, any
1226 computations/values that are affected by these defs are used to compute
1227 a reduction (i.e. don't get stored to memory, for example). We use this
1228 to identify computations that we can change the order in which they are
1230 vect_used_by_reduction
,
1235 /* The type of vectorization that can be applied to the stmt: regular loop-based
1236 vectorization; pure SLP - the stmt is a part of SLP instances and does not
1237 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
1238 a part of SLP instance and also must be loop-based vectorized, since it has
1239 uses outside SLP sequences.
1241 In the loop context the meanings of pure and hybrid SLP are slightly
1242 different. By saying that pure SLP is applied to the loop, we mean that we
1243 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
1244 vectorized without doing any conceptual unrolling, cause we don't pack
1245 together stmts from different iterations, only within a single iteration.
1246 Loop hybrid SLP means that we exploit both intra-iteration and
1247 inter-iteration parallelism (e.g., number of elements in the vector is 4
1248 and the slp-group-size is 2, in which case we don't have enough parallelism
1249 within an iteration, so we obtain the rest of the parallelism from subsequent
1250 iterations by unrolling the loop by 2). */
1251 enum slp_vect_type
{
1257 /* Says whether a statement is a load, a store of a vectorized statement
1258 result, or a store of an invariant value. */
1259 enum vec_load_store_type
{
1267 /* The data reference itself. */
1269 /* The statement that contains the data reference. */
1271 /* The analysis group this DR belongs to when doing BB vectorization.
1272 DRs of the same group belong to the same conditional execution context. */
1274 /* The misalignment in bytes of the reference, or -1 if not known. */
1276 /* The byte alignment that we'd ideally like the reference to have,
1277 and the value that misalignment is measured against. */
1278 poly_uint64 target_alignment
;
1279 /* If true the alignment of base_decl needs to be increased. */
1280 bool base_misaligned
;
1282 /* Set by early break vectorization when this DR needs peeling for alignment
1284 bool need_peeling_for_alignment
;
1288 /* Stores current vectorized loop's offset. To be added to the DR's
1289 offset to calculate current offset of data reference. */
1293 typedef struct data_reference
*dr_p
;
1295 class _stmt_vec_info
{
1298 enum stmt_vec_info_type type
;
1300 /* Indicates whether this stmts is part of a computation whose result is
1301 used outside the loop. */
1304 /* Stmt is part of some pattern (computation idiom) */
1307 /* True if the statement was created during pattern recognition as
1308 part of the replacement for RELATED_STMT. This implies that the
1309 statement isn't part of any basic block, although for convenience
1310 its gimple_bb is the same as for RELATED_STMT. */
1311 bool pattern_stmt_p
;
1313 /* Is this statement vectorizable or should it be skipped in (partial)
1317 /* The stmt to which this info struct refers to. */
1320 /* The vector type to be used for the LHS of this statement. */
1323 /* The vectorized stmts. */
1324 vec
<gimple
*> vec_stmts
;
1326 /* The following is relevant only for stmts that contain a non-scalar
1327 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
1328 at most one such data-ref. */
1332 /* Information about the data-ref relative to this loop
1333 nest (the loop that is being considered for vectorization). */
1334 innermost_loop_behavior dr_wrt_vec_loop
;
1336 /* For loop PHI nodes, the base and evolution part of it. This makes sure
1337 this information is still available in vect_update_ivs_after_vectorizer
1338 where we may not be able to re-analyze the PHI nodes evolution as
1339 peeling for the prologue loop can make it unanalyzable. The evolution
1340 part is still correct after peeling, but the base may have changed from
1341 the version here. */
1342 tree loop_phi_evolution_base_unchanged
;
1343 tree loop_phi_evolution_part
;
1344 enum vect_induction_op_type loop_phi_evolution_type
;
1346 /* Used for various bookkeeping purposes, generally holding a pointer to
1347 some other stmt S that is in some way "related" to this stmt.
1348 Current use of this field is:
1349 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
1350 true): S is the "pattern stmt" that represents (and replaces) the
1351 sequence of stmts that constitutes the pattern. Similarly, the
1352 related_stmt of the "pattern stmt" points back to this stmt (which is
1353 the last stmt in the original sequence of stmts that constitutes the
1355 stmt_vec_info related_stmt
;
1357 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
1358 The sequence is attached to the original statement rather than the
1359 pattern statement. */
1360 gimple_seq pattern_def_seq
;
1362 /* Selected SIMD clone's function info. First vector element
1363 is SIMD clone's function decl, followed by a pair of trees (base + step)
1364 for linear arguments (pair of NULLs for other arguments). */
1365 vec
<tree
> simd_clone_info
;
1367 /* Classify the def of this stmt. */
1368 enum vect_def_type def_type
;
1370 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
1371 enum slp_vect_type slp_type
;
1373 /* Interleaving and reduction chains info. */
1374 /* First element in the group. */
1375 stmt_vec_info first_element
;
1376 /* Pointer to the next element in the group. */
1377 stmt_vec_info next_element
;
1378 /* The size of the group. */
1380 /* For stores, number of stores from this group seen. We vectorize the last
1382 unsigned int store_count
;
1383 /* For loads only, the gap from the previous load. For consecutive loads, GAP
1387 /* The minimum negative dependence distance this stmt participates in
1389 unsigned int min_neg_dist
;
1391 /* Not all stmts in the loop need to be vectorized. e.g, the increment
1392 of the loop induction variable and computation of array indexes. relevant
1393 indicates whether the stmt needs to be vectorized. */
1394 enum vect_relevant relevant
;
1396 /* For loads if this is a gather, for stores if this is a scatter. */
1397 bool gather_scatter_p
;
1399 /* True if this is an access with loop-invariant stride. */
1402 /* For both loads and stores. */
1403 unsigned simd_lane_access_p
: 3;
1405 /* Classifies how the load or store is going to be implemented
1406 for loop vectorization. */
1407 vect_memory_access_type memory_access_type
;
1409 /* For INTEGER_INDUC_COND_REDUCTION, the initial value to be used. */
1410 tree induc_cond_initial_val
;
1412 /* If not NULL the value to be added to compute final reduction value. */
1413 tree reduc_epilogue_adjustment
;
1415 /* On a reduction PHI the reduction type as detected by
1416 vect_is_simple_reduction and vectorizable_reduction. */
1417 enum vect_reduction_type reduc_type
;
1419 /* The original reduction code, to be used in the epilogue. */
1420 code_helper reduc_code
;
1421 /* An internal function we should use in the epilogue. */
1422 internal_fn reduc_fn
;
1424 /* On a stmt participating in the reduction the index of the operand
1425 on the reduction SSA cycle. */
1428 /* On a reduction PHI the def returned by vect_force_simple_reduction.
1429 On the def returned by vect_force_simple_reduction the
1430 corresponding PHI. */
1431 stmt_vec_info reduc_def
;
1433 /* The vector input type relevant for reduction vectorization. */
1434 tree reduc_vectype_in
;
1436 /* The vector type for performing the actual reduction. */
1439 /* For loop reduction with multiple vectorized results (ncopies > 1), a
1440 lane-reducing operation participating in it may not use all of those
1441 results, this field specifies result index starting from which any
1442 following land-reducing operation would be assigned to. */
1443 unsigned int reduc_result_pos
;
1445 /* If IS_REDUC_INFO is true and if the vector code is performing
1446 N scalar reductions in parallel, this variable gives the initial
1447 scalar values of those N reductions. */
1448 vec
<tree
> reduc_initial_values
;
1450 /* If IS_REDUC_INFO is true and if the vector code is performing
1451 N scalar reductions in parallel, this variable gives the vectorized code's
1452 final (scalar) result for each of those N reductions. In other words,
1453 REDUC_SCALAR_RESULTS[I] replaces the original scalar code's loop-closed
1454 SSA PHI for reduction number I. */
1455 vec
<tree
> reduc_scalar_results
;
1457 /* Only meaningful if IS_REDUC_INFO. If non-null, the reduction is
1458 being performed by an epilogue loop and we have decided to reuse
1459 this accumulator from the main loop. */
1460 vect_reusable_accumulator
*reused_accumulator
;
1462 /* Whether we force a single cycle PHI during reduction vectorization. */
1463 bool force_single_cycle
;
1465 /* Whether on this stmt reduction meta is recorded. */
1468 /* If nonzero, the lhs of the statement could be truncated to this
1469 many bits without affecting any users of the result. */
1470 unsigned int min_output_precision
;
1472 /* If nonzero, all non-boolean input operands have the same precision,
1473 and they could each be truncated to this many bits without changing
1475 unsigned int min_input_precision
;
1477 /* If OPERATION_BITS is nonzero, the statement could be performed on
1478 an integer with the sign and number of bits given by OPERATION_SIGN
1479 and OPERATION_BITS without changing the result. */
1480 unsigned int operation_precision
;
1481 signop operation_sign
;
1483 /* If the statement produces a boolean result, this value describes
1484 how we should choose the associated vector type. The possible
1487 - an integer precision N if we should use the vector mask type
1488 associated with N-bit integers. This is only used if all relevant
1489 input booleans also want the vector mask type for N-bit integers,
1490 or if we can convert them into that form by pattern-matching.
1492 - ~0U if we considered choosing a vector mask type but decided
1493 to treat the boolean as a normal integer type instead.
1495 - 0 otherwise. This means either that the operation isn't one that
1496 could have a vector mask type (and so should have a normal vector
1497 type instead) or that we simply haven't made a choice either way. */
1498 unsigned int mask_precision
;
1500 /* True if this is only suitable for SLP vectorization. */
1501 bool slp_vect_only_p
;
1503 /* True if this is a pattern that can only be handled by SLP
1505 bool slp_vect_pattern_only_p
;
1508 /* Information about a gather/scatter call. */
1509 struct gather_scatter_info
{
1510 /* The internal function to use for the gather/scatter operation,
1511 or IFN_LAST if a built-in function should be used instead. */
1514 /* The FUNCTION_DECL for the built-in gather/scatter function,
1515 or null if an internal function should be used instead. */
1518 /* The loop-invariant base value. */
1521 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
1524 /* Each offset element should be multiplied by this amount before
1525 being added to the base. */
1528 /* The definition type for the vectorized offset. */
1529 enum vect_def_type offset_dt
;
1531 /* The type of the vectorized offset. */
1532 tree offset_vectype
;
1534 /* The type of the scalar elements after loading or before storing. */
1537 /* The type of the scalar elements being loaded or stored. */
1541 /* Access Functions. */
1542 #define STMT_VINFO_TYPE(S) (S)->type
1543 #define STMT_VINFO_STMT(S) (S)->stmt
1544 #define STMT_VINFO_RELEVANT(S) (S)->relevant
1545 #define STMT_VINFO_LIVE_P(S) (S)->live
1546 #define STMT_VINFO_VECTYPE(S) (S)->vectype
1547 #define STMT_VINFO_VEC_STMTS(S) (S)->vec_stmts
1548 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1549 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1550 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1551 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1552 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1553 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1554 #define STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL(S) (S)->induc_cond_initial_val
1555 #define STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT(S) (S)->reduc_epilogue_adjustment
1556 #define STMT_VINFO_REDUC_IDX(S) (S)->reduc_idx
1557 #define STMT_VINFO_FORCE_SINGLE_CYCLE(S) (S)->force_single_cycle
1559 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1560 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1561 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1562 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1563 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1564 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1565 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1566 (S)->dr_wrt_vec_loop.base_misalignment
1567 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1568 (S)->dr_wrt_vec_loop.offset_alignment
1569 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1570 (S)->dr_wrt_vec_loop.step_alignment
1572 #define STMT_VINFO_DR_INFO(S) \
1573 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1575 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1576 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1577 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1578 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1579 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1580 #define STMT_VINFO_GROUPED_ACCESS(S) \
1581 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1582 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1583 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1584 #define STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE(S) (S)->loop_phi_evolution_type
1585 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1586 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1587 #define STMT_VINFO_REDUC_CODE(S) (S)->reduc_code
1588 #define STMT_VINFO_REDUC_FN(S) (S)->reduc_fn
1589 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1590 #define STMT_VINFO_REDUC_VECTYPE(S) (S)->reduc_vectype
1591 #define STMT_VINFO_REDUC_VECTYPE_IN(S) (S)->reduc_vectype_in
1592 #define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
1593 #define STMT_VINFO_SLP_VECT_ONLY_PATTERN(S) (S)->slp_vect_pattern_only_p
1595 #define DR_GROUP_FIRST_ELEMENT(S) \
1596 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1597 #define DR_GROUP_NEXT_ELEMENT(S) \
1598 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1599 #define DR_GROUP_SIZE(S) \
1600 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1601 #define DR_GROUP_STORE_COUNT(S) \
1602 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1603 #define DR_GROUP_GAP(S) \
1604 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1606 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1607 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1608 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1609 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1610 #define REDUC_GROUP_SIZE(S) \
1611 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1613 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1615 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1616 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1617 #define STMT_SLP_TYPE(S) (S)->slp_type
1619 /* Contains the scalar or vector costs for a vec_info. */
1623 vector_costs (vec_info
*, bool);
1624 virtual ~vector_costs () {}
1626 /* Update the costs in response to adding COUNT copies of a statement.
1628 - WHERE specifies whether the cost occurs in the loop prologue,
1629 the loop body, or the loop epilogue.
1630 - KIND is the kind of statement, which is always meaningful.
1631 - STMT_INFO or NODE, if nonnull, describe the statement that will be
1633 - VECTYPE, if nonnull, is the vector type that the vectorized
1634 statement will operate on. Note that this should be used in
1635 preference to STMT_VINFO_VECTYPE (STMT_INFO) since the latter
1636 is not correct for SLP.
1637 - for unaligned_load and unaligned_store statements, MISALIGN is
1638 the byte misalignment of the load or store relative to the target's
1639 preferred alignment for VECTYPE, or DR_MISALIGNMENT_UNKNOWN
1640 if the misalignment is not known.
1642 Return the calculated cost as well as recording it. The return
1643 value is used for dumping purposes. */
1644 virtual unsigned int add_stmt_cost (int count
, vect_cost_for_stmt kind
,
1645 stmt_vec_info stmt_info
,
1647 tree vectype
, int misalign
,
1648 vect_cost_model_location where
);
1650 /* Finish calculating the cost of the code. The results can be
1651 read back using the functions below.
1653 If the costs describe vector code, SCALAR_COSTS gives the costs
1654 of the corresponding scalar code, otherwise it is null. */
1655 virtual void finish_cost (const vector_costs
*scalar_costs
);
1657 /* The costs in THIS and OTHER both describe ways of vectorizing
1658 a main loop. Return true if the costs described by THIS are
1659 cheaper than the costs described by OTHER. Return false if any
1660 of the following are true:
1662 - THIS and OTHER are of equal cost
1663 - OTHER is better than THIS
1664 - we can't be sure about the relative costs of THIS and OTHER. */
1665 virtual bool better_main_loop_than_p (const vector_costs
*other
) const;
1667 /* Likewise, but the costs in THIS and OTHER both describe ways of
1668 vectorizing an epilogue loop of MAIN_LOOP. */
1669 virtual bool better_epilogue_loop_than_p (const vector_costs
*other
,
1670 loop_vec_info main_loop
) const;
1672 unsigned int prologue_cost () const;
1673 unsigned int body_cost () const;
1674 unsigned int epilogue_cost () const;
1675 unsigned int outside_cost () const;
1676 unsigned int total_cost () const;
1677 unsigned int suggested_unroll_factor () const;
1678 machine_mode
suggested_epilogue_mode () const;
1681 unsigned int record_stmt_cost (stmt_vec_info
, vect_cost_model_location
,
1683 unsigned int adjust_cost_for_freq (stmt_vec_info
, vect_cost_model_location
,
1685 int compare_inside_loop_cost (const vector_costs
*) const;
1686 int compare_outside_loop_cost (const vector_costs
*) const;
1688 /* The region of code that we're considering vectorizing. */
1691 /* True if we're costing the scalar code, false if we're costing
1693 bool m_costing_for_scalar
;
1695 /* The costs of the three regions, indexed by vect_cost_model_location. */
1696 unsigned int m_costs
[3];
1698 /* The suggested unrolling factor determined at finish_cost. */
1699 unsigned int m_suggested_unroll_factor
;
1701 /* The suggested mode to be used for a vectorized epilogue or VOIDmode,
1702 determined at finish_cost. */
1703 machine_mode m_suggested_epilogue_mode
;
1705 /* True if finish_cost has been called. */
1709 /* Create costs for VINFO. COSTING_FOR_SCALAR is true if the costs
1710 are for scalar code, false if they are for vector code. */
1713 vector_costs::vector_costs (vec_info
*vinfo
, bool costing_for_scalar
)
1715 m_costing_for_scalar (costing_for_scalar
),
1717 m_suggested_unroll_factor(1),
1718 m_suggested_epilogue_mode(VOIDmode
),
1723 /* Return the cost of the prologue code (in abstract units). */
1726 vector_costs::prologue_cost () const
1728 gcc_checking_assert (m_finished
);
1729 return m_costs
[vect_prologue
];
1732 /* Return the cost of the body code (in abstract units). */
1735 vector_costs::body_cost () const
1737 gcc_checking_assert (m_finished
);
1738 return m_costs
[vect_body
];
1741 /* Return the cost of the epilogue code (in abstract units). */
1744 vector_costs::epilogue_cost () const
1746 gcc_checking_assert (m_finished
);
1747 return m_costs
[vect_epilogue
];
1750 /* Return the cost of the prologue and epilogue code (in abstract units). */
1753 vector_costs::outside_cost () const
1755 return prologue_cost () + epilogue_cost ();
1758 /* Return the cost of the prologue, body and epilogue code
1759 (in abstract units). */
1762 vector_costs::total_cost () const
1764 return body_cost () + outside_cost ();
1767 /* Return the suggested unroll factor. */
1770 vector_costs::suggested_unroll_factor () const
1772 gcc_checking_assert (m_finished
);
1773 return m_suggested_unroll_factor
;
1776 /* Return the suggested epilogue mode. */
1779 vector_costs::suggested_epilogue_mode () const
1781 gcc_checking_assert (m_finished
);
1782 return m_suggested_epilogue_mode
;
1785 #define VECT_MAX_COST 1000
1787 /* The maximum number of intermediate steps required in multi-step type
1789 #define MAX_INTERM_CVT_STEPS 3
1791 #define MAX_VECTORIZATION_FACTOR INT_MAX
1793 /* Nonzero if TYPE represents a (scalar) boolean type or type
1794 in the middle-end compatible with it (unsigned precision 1 integral
1795 types). Used to determine which types should be vectorized as
1796 VECTOR_BOOLEAN_TYPE_P. */
1798 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1799 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1800 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1801 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1802 && TYPE_PRECISION (TYPE) == 1 \
1803 && TYPE_UNSIGNED (TYPE)))
1806 nested_in_vect_loop_p (class loop
*loop
, stmt_vec_info stmt_info
)
1809 && (loop
->inner
== (gimple_bb (stmt_info
->stmt
))->loop_father
));
1812 /* PHI is either a scalar reduction phi or a scalar induction phi.
1813 Return the initial value of the variable on entry to the containing
1817 vect_phi_initial_value (gphi
*phi
)
1819 basic_block bb
= gimple_bb (phi
);
1820 edge pe
= loop_preheader_edge (bb
->loop_father
);
1821 gcc_assert (pe
->dest
== bb
);
1822 return PHI_ARG_DEF_FROM_EDGE (phi
, pe
);
1825 /* Return true if STMT_INFO should produce a vector mask type rather than
1826 a normal nonmask type. */
1829 vect_use_mask_type_p (stmt_vec_info stmt_info
)
1831 return stmt_info
->mask_precision
&& stmt_info
->mask_precision
!= ~0U;
1834 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1838 is_pattern_stmt_p (stmt_vec_info stmt_info
)
1840 return stmt_info
->pattern_stmt_p
;
1843 /* If STMT_INFO is a pattern statement, return the statement that it
1844 replaces, otherwise return STMT_INFO itself. */
1846 inline stmt_vec_info
1847 vect_orig_stmt (stmt_vec_info stmt_info
)
1849 if (is_pattern_stmt_p (stmt_info
))
1850 return STMT_VINFO_RELATED_STMT (stmt_info
);
1854 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1856 inline stmt_vec_info
1857 get_later_stmt (stmt_vec_info stmt1_info
, stmt_vec_info stmt2_info
)
1859 if (gimple_uid (vect_orig_stmt (stmt1_info
)->stmt
)
1860 > gimple_uid (vect_orig_stmt (stmt2_info
)->stmt
))
1866 /* If STMT_INFO has been replaced by a pattern statement, return the
1867 replacement statement, otherwise return STMT_INFO itself. */
1869 inline stmt_vec_info
1870 vect_stmt_to_vectorize (stmt_vec_info stmt_info
)
1872 if (STMT_VINFO_IN_PATTERN_P (stmt_info
))
1873 return STMT_VINFO_RELATED_STMT (stmt_info
);
1877 /* Return true if BB is a loop header. */
1880 is_loop_header_bb_p (basic_block bb
)
1882 if (bb
== (bb
->loop_father
)->header
)
1888 /* Return pow2 (X). */
1895 for (i
= 0; i
< x
; i
++)
1901 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1904 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost
,
1905 tree vectype
, int misalign
)
1907 return targetm
.vectorize
.builtin_vectorization_cost (type_of_cost
,
1911 /* Get cost by calling cost target builtin. */
1914 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost
)
1916 return builtin_vectorization_cost (type_of_cost
, NULL
, 0);
1919 /* Alias targetm.vectorize.init_cost. */
1921 inline vector_costs
*
1922 init_cost (vec_info
*vinfo
, bool costing_for_scalar
)
1924 return targetm
.vectorize
.create_costs (vinfo
, costing_for_scalar
);
1927 extern void dump_stmt_cost (FILE *, int, enum vect_cost_for_stmt
,
1928 stmt_vec_info
, slp_tree
, tree
, int, unsigned,
1929 enum vect_cost_model_location
);
1931 /* Dump and add costs. */
1934 add_stmt_cost (vector_costs
*costs
, int count
,
1935 enum vect_cost_for_stmt kind
,
1936 stmt_vec_info stmt_info
, slp_tree node
,
1937 tree vectype
, int misalign
,
1938 enum vect_cost_model_location where
)
1940 unsigned cost
= costs
->add_stmt_cost (count
, kind
, stmt_info
, node
, vectype
,
1942 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1943 dump_stmt_cost (dump_file
, count
, kind
, stmt_info
, node
, vectype
, misalign
,
1949 add_stmt_cost (vector_costs
*costs
, int count
, enum vect_cost_for_stmt kind
,
1950 enum vect_cost_model_location where
)
1952 gcc_assert (kind
== cond_branch_taken
|| kind
== cond_branch_not_taken
1953 || kind
== scalar_stmt
);
1954 return add_stmt_cost (costs
, count
, kind
, NULL
, NULL
, NULL_TREE
, 0, where
);
1958 add_stmt_cost (vector_costs
*costs
, stmt_info_for_cost
*i
)
1960 return add_stmt_cost (costs
, i
->count
, i
->kind
, i
->stmt_info
, i
->node
,
1961 i
->vectype
, i
->misalign
, i
->where
);
1965 add_stmt_costs (vector_costs
*costs
, stmt_vector_for_cost
*cost_vec
)
1967 stmt_info_for_cost
*cost
;
1969 FOR_EACH_VEC_ELT (*cost_vec
, i
, cost
)
1970 add_stmt_cost (costs
, cost
->count
, cost
->kind
, cost
->stmt_info
,
1971 cost
->node
, cost
->vectype
, cost
->misalign
, cost
->where
);
1974 /*-----------------------------------------------------------------*/
1975 /* Info on data references alignment. */
1976 /*-----------------------------------------------------------------*/
1977 #define DR_MISALIGNMENT_UNKNOWN (-1)
1978 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1981 set_dr_misalignment (dr_vec_info
*dr_info
, int val
)
1983 dr_info
->misalignment
= val
;
1986 extern int dr_misalignment (dr_vec_info
*dr_info
, tree vectype
,
1987 poly_int64 offset
= 0);
1989 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1991 /* Only defined once DR_MISALIGNMENT is defined. */
1992 inline const poly_uint64
1993 dr_target_alignment (dr_vec_info
*dr_info
)
1995 if (STMT_VINFO_GROUPED_ACCESS (dr_info
->stmt
))
1996 dr_info
= STMT_VINFO_DR_INFO (DR_GROUP_FIRST_ELEMENT (dr_info
->stmt
));
1997 return dr_info
->target_alignment
;
1999 #define DR_TARGET_ALIGNMENT(DR) dr_target_alignment (DR)
2002 set_dr_target_alignment (dr_vec_info
*dr_info
, poly_uint64 val
)
2004 dr_info
->target_alignment
= val
;
2006 #define SET_DR_TARGET_ALIGNMENT(DR, VAL) set_dr_target_alignment (DR, VAL)
2008 /* Return true if data access DR_INFO is aligned to the targets
2009 preferred alignment for VECTYPE (which may be less than a full vector). */
2012 aligned_access_p (dr_vec_info
*dr_info
, tree vectype
)
2014 return (dr_misalignment (dr_info
, vectype
) == 0);
2017 /* Return TRUE if the (mis-)alignment of the data access is known with
2018 respect to the targets preferred alignment for VECTYPE, and FALSE
2022 known_alignment_for_access_p (dr_vec_info
*dr_info
, tree vectype
)
2024 return (dr_misalignment (dr_info
, vectype
) != DR_MISALIGNMENT_UNKNOWN
);
2027 /* Return the minimum alignment in bytes that the vectorized version
2028 of DR_INFO is guaranteed to have. */
2031 vect_known_alignment_in_bytes (dr_vec_info
*dr_info
, tree vectype
,
2032 poly_int64 offset
= 0)
2034 int misalignment
= dr_misalignment (dr_info
, vectype
, offset
);
2035 if (misalignment
== DR_MISALIGNMENT_UNKNOWN
)
2036 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info
->dr
)));
2037 else if (misalignment
== 0)
2038 return known_alignment (DR_TARGET_ALIGNMENT (dr_info
));
2039 return misalignment
& -misalignment
;
2042 /* Return the behavior of DR_INFO with respect to the vectorization context
2043 (which for outer loop vectorization might not be the behavior recorded
2044 in DR_INFO itself). */
2046 inline innermost_loop_behavior
*
2047 vect_dr_behavior (vec_info
*vinfo
, dr_vec_info
*dr_info
)
2049 stmt_vec_info stmt_info
= dr_info
->stmt
;
2050 loop_vec_info loop_vinfo
= dyn_cast
<loop_vec_info
> (vinfo
);
2051 if (loop_vinfo
== NULL
2052 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo
), stmt_info
))
2053 return &DR_INNERMOST (dr_info
->dr
);
2055 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info
);
2058 /* Return the offset calculated by adding the offset of this DR_INFO to the
2059 corresponding data_reference's offset. If CHECK_OUTER then use
2060 vect_dr_behavior to select the appropriate data_reference to use. */
2063 get_dr_vinfo_offset (vec_info
*vinfo
,
2064 dr_vec_info
*dr_info
, bool check_outer
= false)
2066 innermost_loop_behavior
*base
;
2068 base
= vect_dr_behavior (vinfo
, dr_info
);
2070 base
= &dr_info
->dr
->innermost
;
2072 tree offset
= base
->offset
;
2074 if (!dr_info
->offset
)
2077 offset
= fold_convert (sizetype
, offset
);
2078 return fold_build2 (PLUS_EXPR
, TREE_TYPE (dr_info
->offset
), offset
,
2083 /* Return the vect cost model for LOOP. */
2084 inline enum vect_cost_model
2085 loop_cost_model (loop_p loop
)
2088 && loop
->force_vectorize
2089 && flag_simd_cost_model
!= VECT_COST_MODEL_DEFAULT
)
2090 return flag_simd_cost_model
;
2091 return flag_vect_cost_model
;
2094 /* Return true if the vect cost model is unlimited. */
2096 unlimited_cost_model (loop_p loop
)
2098 return loop_cost_model (loop
) == VECT_COST_MODEL_UNLIMITED
;
2101 /* Return true if the loop described by LOOP_VINFO is fully-masked and
2102 if the first iteration should use a partial mask in order to achieve
2106 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo
)
2108 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo
)
2109 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
));
2112 /* Return the number of vectors of type VECTYPE that are needed to get
2113 NUNITS elements. NUNITS should be based on the vectorization factor,
2114 so it is always a known multiple of the number of elements in VECTYPE. */
2117 vect_get_num_vectors (poly_uint64 nunits
, tree vectype
)
2119 return exact_div (nunits
, TYPE_VECTOR_SUBPARTS (vectype
)).to_constant ();
2122 /* Return the number of vectors in the context of vectorization region VINFO,
2123 needed for a group of statements, whose size is specified by lanes of NODE,
2124 if NULL, it is 1. The statements are supposed to be interleaved together
2125 with no gap, and all operate on vectors of type VECTYPE, if NULL, the
2126 vectype of NODE is used. */
2129 vect_get_num_copies (vec_info
*vinfo
, slp_tree node
, tree vectype
= NULL
)
2133 if (loop_vec_info loop_vinfo
= dyn_cast
<loop_vec_info
> (vinfo
))
2134 vf
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
2140 vf
*= SLP_TREE_LANES (node
);
2142 vectype
= SLP_TREE_VECTYPE (node
);
2145 return vect_get_num_vectors (vf
, vectype
);
2148 /* Return the number of copies needed for loop vectorization when
2149 a statement operates on vectors of type VECTYPE. This is the
2150 vectorization factor divided by the number of elements in
2151 VECTYPE and is always known at compile time. */
2154 vect_get_num_copies (loop_vec_info loop_vinfo
, tree vectype
)
2156 return vect_get_num_copies (loop_vinfo
, NULL
, vectype
);
2159 /* Update maximum unit count *MAX_NUNITS so that it accounts for
2160 NUNITS. *MAX_NUNITS can be 1 if we haven't yet recorded anything. */
2163 vect_update_max_nunits (poly_uint64
*max_nunits
, poly_uint64 nunits
)
2165 /* All unit counts have the form vec_info::vector_size * X for some
2166 rational X, so two unit sizes must have a common multiple.
2167 Everything is a multiple of the initial value of 1. */
2168 *max_nunits
= force_common_multiple (*max_nunits
, nunits
);
2171 /* Update maximum unit count *MAX_NUNITS so that it accounts for
2172 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
2173 if we haven't yet recorded any vector types. */
2176 vect_update_max_nunits (poly_uint64
*max_nunits
, tree vectype
)
2178 vect_update_max_nunits (max_nunits
, TYPE_VECTOR_SUBPARTS (vectype
));
2181 /* Return the vectorization factor that should be used for costing
2182 purposes while vectorizing the loop described by LOOP_VINFO.
2183 Pick a reasonable estimate if the vectorization factor isn't
2184 known at compile time. */
2187 vect_vf_for_cost (loop_vec_info loop_vinfo
)
2189 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo
));
2192 /* Estimate the number of elements in VEC_TYPE for costing purposes.
2193 Pick a reasonable estimate if the exact number isn't known at
2197 vect_nunits_for_cost (tree vec_type
)
2199 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type
));
2202 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
2204 inline unsigned HOST_WIDE_INT
2205 vect_max_vf (loop_vec_info loop_vinfo
)
2207 unsigned HOST_WIDE_INT vf
;
2208 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo
).is_constant (&vf
))
2210 return MAX_VECTORIZATION_FACTOR
;
2213 /* Return the size of the value accessed by unvectorized data reference
2214 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
2215 for the associated gimple statement, since that guarantees that DR_INFO
2216 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
2217 here includes things like V1SI, which can be vectorized in the same way
2221 vect_get_scalar_dr_size (dr_vec_info
*dr_info
)
2223 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info
->dr
))));
2226 /* Return true if LOOP_VINFO requires a runtime check for whether the
2227 vector loop is profitable. */
2230 vect_apply_runtime_profitability_check_p (loop_vec_info loop_vinfo
)
2232 unsigned int th
= LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo
);
2233 return (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
)
2234 && th
>= vect_vf_for_cost (loop_vinfo
));
2237 /* Return true if CODE is a lane-reducing opcode. */
2240 lane_reducing_op_p (code_helper code
)
2242 return code
== DOT_PROD_EXPR
|| code
== WIDEN_SUM_EXPR
|| code
== SAD_EXPR
;
2245 /* Return true if STMT is a lane-reducing statement. */
2248 lane_reducing_stmt_p (gimple
*stmt
)
2250 if (auto *assign
= dyn_cast
<gassign
*> (stmt
))
2251 return lane_reducing_op_p (gimple_assign_rhs_code (assign
));
2255 /* Source location + hotness information. */
2256 extern dump_user_location_t vect_location
;
2258 /* A macro for calling:
2259 dump_begin_scope (MSG, vect_location);
2260 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
2263 once the object goes out of scope, thus capturing the nesting of
2266 These scopes affect dump messages within them: dump messages at the
2267 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
2268 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
2270 #define DUMP_VECT_SCOPE(MSG) \
2271 AUTO_DUMP_SCOPE (MSG, vect_location)
2273 /* A sentinel class for ensuring that the "vect_location" global gets
2274 reset at the end of a scope.
2276 The "vect_location" global is used during dumping and contains a
2277 location_t, which could contain references to a tree block via the
2278 ad-hoc data. This data is used for tracking inlining information,
2279 but it's not a GC root; it's simply assumed that such locations never
2280 get accessed if the blocks are optimized away.
2282 Hence we need to ensure that such locations are purged at the end
2283 of any operations using them (e.g. via this class). */
2285 class auto_purge_vect_location
2288 ~auto_purge_vect_location ();
2291 /*-----------------------------------------------------------------*/
2292 /* Function prototypes. */
2293 /*-----------------------------------------------------------------*/
2295 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
2296 in tree-vect-loop-manip.cc. */
2297 extern void vect_set_loop_condition (class loop
*, edge
, loop_vec_info
,
2298 tree
, tree
, tree
, bool);
2299 extern bool slpeel_can_duplicate_loop_p (const class loop
*, const_edge
,
2301 class loop
*slpeel_tree_duplicate_loop_to_edge_cfg (class loop
*, edge
,
2303 edge
, edge
*, bool = true,
2304 vec
<basic_block
> * = NULL
);
2305 class loop
*vect_loop_versioning (loop_vec_info
, gimple
*);
2306 extern class loop
*vect_do_peeling (loop_vec_info
, tree
, tree
,
2307 tree
*, tree
*, tree
*, int, bool, bool,
2309 extern tree
vect_get_main_loop_result (loop_vec_info
, tree
, tree
);
2310 extern void vect_prepare_for_masked_peels (loop_vec_info
);
2311 extern dump_user_location_t
find_loop_location (class loop
*);
2312 extern bool vect_can_advance_ivs_p (loop_vec_info
);
2313 extern void vect_update_inits_of_drs (loop_vec_info
, tree
, tree_code
);
2314 extern edge
vec_init_loop_exit_info (class loop
*);
2315 extern void vect_iv_increment_position (edge
, gimple_stmt_iterator
*, bool *);
2317 /* In tree-vect-stmts.cc. */
2318 extern tree
get_related_vectype_for_scalar_type (machine_mode
, tree
,
2320 extern tree
get_vectype_for_scalar_type (vec_info
*, tree
, unsigned int = 0);
2321 extern tree
get_vectype_for_scalar_type (vec_info
*, tree
, slp_tree
);
2322 extern tree
get_mask_type_for_scalar_type (vec_info
*, tree
, unsigned int = 0);
2323 extern tree
get_mask_type_for_scalar_type (vec_info
*, tree
, slp_tree
);
2324 extern tree
get_same_sized_vectype (tree
, tree
);
2325 extern bool vect_chooses_same_modes_p (vec_info
*, machine_mode
);
2326 extern bool vect_get_loop_mask_type (loop_vec_info
);
2327 extern bool vect_is_simple_use (tree
, vec_info
*, enum vect_def_type
*,
2328 stmt_vec_info
* = NULL
, gimple
** = NULL
);
2329 extern bool vect_is_simple_use (tree
, vec_info
*, enum vect_def_type
*,
2330 tree
*, stmt_vec_info
* = NULL
,
2332 extern bool vect_is_simple_use (vec_info
*, stmt_vec_info
, slp_tree
,
2333 unsigned, tree
*, slp_tree
*,
2334 enum vect_def_type
*,
2335 tree
*, stmt_vec_info
* = NULL
);
2336 extern bool vect_maybe_update_slp_op_vectype (slp_tree
, tree
);
2337 extern tree
perm_mask_for_reverse (tree
);
2338 extern bool supportable_widening_operation (vec_info
*, code_helper
,
2339 stmt_vec_info
, tree
, tree
,
2340 code_helper
*, code_helper
*,
2342 extern bool supportable_narrowing_operation (code_helper
, tree
, tree
,
2343 code_helper
*, int *,
2345 extern bool supportable_indirect_convert_operation (code_helper
,
2347 vec
<std::pair
<tree
, tree_code
> > &,
2349 extern int compare_step_with_zero (vec_info
*, stmt_vec_info
);
2351 extern unsigned record_stmt_cost (stmt_vector_for_cost
*, int,
2352 enum vect_cost_for_stmt
, stmt_vec_info
,
2353 tree
, int, enum vect_cost_model_location
);
2354 extern unsigned record_stmt_cost (stmt_vector_for_cost
*, int,
2355 enum vect_cost_for_stmt
, slp_tree
,
2356 tree
, int, enum vect_cost_model_location
);
2357 extern unsigned record_stmt_cost (stmt_vector_for_cost
*, int,
2358 enum vect_cost_for_stmt
,
2359 enum vect_cost_model_location
);
2360 extern unsigned record_stmt_cost (stmt_vector_for_cost
*, int,
2361 enum vect_cost_for_stmt
, stmt_vec_info
,
2362 slp_tree
, tree
, int,
2363 enum vect_cost_model_location
);
2365 /* Overload of record_stmt_cost with VECTYPE derived from STMT_INFO. */
2368 record_stmt_cost (stmt_vector_for_cost
*body_cost_vec
, int count
,
2369 enum vect_cost_for_stmt kind
, stmt_vec_info stmt_info
,
2370 int misalign
, enum vect_cost_model_location where
)
2372 return record_stmt_cost (body_cost_vec
, count
, kind
, stmt_info
,
2373 STMT_VINFO_VECTYPE (stmt_info
), misalign
, where
);
2376 /* Overload of record_stmt_cost with VECTYPE derived from STMT_INFO and
2377 SLP node specified. */
2380 record_stmt_cost (stmt_vector_for_cost
*body_cost_vec
, int count
,
2381 enum vect_cost_for_stmt kind
, stmt_vec_info stmt_info
,
2383 int misalign
, enum vect_cost_model_location where
)
2385 return record_stmt_cost (body_cost_vec
, count
, kind
, stmt_info
, node
,
2386 STMT_VINFO_VECTYPE (stmt_info
), misalign
, where
);
2389 extern void vect_finish_replace_stmt (vec_info
*, stmt_vec_info
, gimple
*);
2390 extern void vect_finish_stmt_generation (vec_info
*, stmt_vec_info
, gimple
*,
2391 gimple_stmt_iterator
*);
2392 extern opt_result
vect_mark_stmts_to_be_vectorized (loop_vec_info
, bool *);
2393 extern tree
vect_get_store_rhs (stmt_vec_info
);
2394 void vect_get_vec_defs_for_operand (vec_info
*vinfo
, stmt_vec_info
, unsigned,
2395 tree op
, vec
<tree
> *, tree
= NULL
);
2396 void vect_get_vec_defs (vec_info
*, stmt_vec_info
, slp_tree
, unsigned,
2398 tree
= NULL
, vec
<tree
> * = NULL
,
2399 tree
= NULL
, vec
<tree
> * = NULL
,
2400 tree
= NULL
, vec
<tree
> * = NULL
);
2401 void vect_get_vec_defs (vec_info
*, stmt_vec_info
, slp_tree
, unsigned,
2402 tree
, tree
, vec
<tree
> *,
2403 tree
= NULL
, tree
= NULL
, vec
<tree
> * = NULL
,
2404 tree
= NULL
, tree
= NULL
, vec
<tree
> * = NULL
,
2405 tree
= NULL
, tree
= NULL
, vec
<tree
> * = NULL
);
2406 extern tree
vect_init_vector (vec_info
*, stmt_vec_info
, tree
, tree
,
2407 gimple_stmt_iterator
*);
2408 extern tree
vect_get_slp_vect_def (slp_tree
, unsigned);
2409 extern bool vect_transform_stmt (vec_info
*, stmt_vec_info
,
2410 gimple_stmt_iterator
*,
2411 slp_tree
, slp_instance
);
2412 extern void vect_remove_stores (vec_info
*, stmt_vec_info
);
2413 extern bool vect_nop_conversion_p (stmt_vec_info
);
2414 extern opt_result
vect_analyze_stmt (vec_info
*, stmt_vec_info
, bool *,
2416 slp_instance
, stmt_vector_for_cost
*);
2417 extern void vect_get_load_cost (vec_info
*, stmt_vec_info
, slp_tree
, int,
2418 dr_alignment_support
, int, bool,
2419 unsigned int *, unsigned int *,
2420 stmt_vector_for_cost
*,
2421 stmt_vector_for_cost
*, bool);
2422 extern void vect_get_store_cost (vec_info
*, stmt_vec_info
, slp_tree
, int,
2423 dr_alignment_support
, int,
2424 unsigned int *, stmt_vector_for_cost
*);
2425 extern bool vect_supportable_shift (vec_info
*, enum tree_code
, tree
);
2426 extern tree
vect_gen_perm_mask_any (tree
, const vec_perm_indices
&);
2427 extern tree
vect_gen_perm_mask_checked (tree
, const vec_perm_indices
&);
2428 extern void optimize_mask_stores (class loop
*);
2429 extern tree
vect_gen_while (gimple_seq
*, tree
, tree
, tree
,
2430 const char * = nullptr);
2431 extern tree
vect_gen_while_not (gimple_seq
*, tree
, tree
, tree
);
2432 extern opt_result
vect_get_vector_types_for_stmt (vec_info
*,
2433 stmt_vec_info
, tree
*,
2434 tree
*, unsigned int = 0);
2435 extern opt_tree
vect_get_mask_type_for_stmt (stmt_vec_info
, unsigned int = 0);
2437 /* In tree-if-conv.cc. */
2438 extern bool ref_within_array_bound (gimple
*, tree
);
2440 /* In tree-vect-data-refs.cc. */
2441 extern bool vect_can_force_dr_alignment_p (const_tree
, poly_uint64
);
2442 extern enum dr_alignment_support vect_supportable_dr_alignment
2443 (vec_info
*, dr_vec_info
*, tree
, int);
2444 extern tree
vect_get_smallest_scalar_type (stmt_vec_info
, tree
);
2445 extern opt_result
vect_analyze_data_ref_dependences (loop_vec_info
, unsigned int *);
2446 extern bool vect_slp_analyze_instance_dependence (vec_info
*, slp_instance
);
2447 extern opt_result
vect_enhance_data_refs_alignment (loop_vec_info
);
2448 extern opt_result
vect_analyze_data_refs_alignment (loop_vec_info
);
2449 extern bool vect_slp_analyze_instance_alignment (vec_info
*, slp_instance
);
2450 extern opt_result
vect_analyze_data_ref_accesses (vec_info
*, vec
<int> *);
2451 extern opt_result
vect_prune_runtime_alias_test_list (loop_vec_info
);
2452 extern bool vect_gather_scatter_fn_p (vec_info
*, bool, bool, tree
, tree
,
2453 tree
, int, internal_fn
*, tree
*,
2454 vec
<int> * = nullptr);
2455 extern bool vect_check_gather_scatter (stmt_vec_info
, loop_vec_info
,
2456 gather_scatter_info
*,
2457 vec
<int> * = nullptr);
2458 extern opt_result
vect_find_stmt_data_reference (loop_p
, gimple
*,
2459 vec
<data_reference_p
> *,
2461 extern opt_result
vect_analyze_data_refs (vec_info
*, poly_uint64
*, bool *);
2462 extern void vect_record_base_alignments (vec_info
*);
2463 extern tree
vect_create_data_ref_ptr (vec_info
*,
2464 stmt_vec_info
, tree
, class loop
*, tree
,
2465 tree
*, gimple_stmt_iterator
*,
2468 extern tree
bump_vector_ptr (vec_info
*, tree
, gimple
*, gimple_stmt_iterator
*,
2469 stmt_vec_info
, tree
);
2470 extern void vect_copy_ref_info (tree
, tree
);
2471 extern tree
vect_create_destination_var (tree
, tree
);
2472 extern bool vect_grouped_store_supported (tree
, unsigned HOST_WIDE_INT
);
2473 extern internal_fn
vect_store_lanes_supported (tree
, unsigned HOST_WIDE_INT
, bool);
2474 extern bool vect_grouped_load_supported (tree
, bool, unsigned HOST_WIDE_INT
);
2475 extern internal_fn
vect_load_lanes_supported (tree
, unsigned HOST_WIDE_INT
,
2476 bool, vec
<int> * = nullptr);
2477 extern void vect_permute_store_chain (vec_info
*, vec
<tree
> &,
2478 unsigned int, stmt_vec_info
,
2479 gimple_stmt_iterator
*, vec
<tree
> *);
2480 extern tree
vect_setup_realignment (vec_info
*,
2481 stmt_vec_info
, gimple_stmt_iterator
*,
2482 tree
*, enum dr_alignment_support
, tree
,
2484 extern void vect_transform_grouped_load (vec_info
*, stmt_vec_info
, vec
<tree
>,
2485 int, gimple_stmt_iterator
*);
2486 extern void vect_record_grouped_load_vectors (vec_info
*,
2487 stmt_vec_info
, vec
<tree
>);
2488 extern tree
vect_get_new_vect_var (tree
, enum vect_var_kind
, const char *);
2489 extern tree
vect_get_new_ssa_name (tree
, enum vect_var_kind
,
2490 const char * = NULL
);
2491 extern tree
vect_create_addr_base_for_vector_ref (vec_info
*,
2492 stmt_vec_info
, gimple_seq
*,
2495 /* In tree-vect-loop.cc. */
2496 extern tree
neutral_op_for_reduction (tree
, code_helper
, tree
, bool = true);
2497 extern widest_int
vect_iv_limit_for_partial_vectors (loop_vec_info loop_vinfo
);
2498 bool vect_rgroup_iv_might_wrap_p (loop_vec_info
, rgroup_controls
*);
2499 /* Used in tree-vect-loop-manip.cc */
2500 extern opt_result
vect_determine_partial_vectors_and_peeling (loop_vec_info
);
2501 /* Used in gimple-loop-interchange.c and tree-parloops.cc. */
2502 extern bool check_reduction_path (dump_user_location_t
, loop_p
, gphi
*, tree
,
2504 extern bool needs_fold_left_reduction_p (tree
, code_helper
);
2505 /* Drive for loop analysis stage. */
2506 extern opt_loop_vec_info
vect_analyze_loop (class loop
*, gimple
*,
2508 extern tree
vect_build_loop_niters (loop_vec_info
, bool * = NULL
);
2509 extern void vect_gen_vector_loop_niters (loop_vec_info
, tree
, tree
*,
2511 extern tree
vect_halve_mask_nunits (tree
, machine_mode
);
2512 extern tree
vect_double_mask_nunits (tree
, machine_mode
);
2513 extern void vect_record_loop_mask (loop_vec_info
, vec_loop_masks
*,
2514 unsigned int, tree
, tree
);
2515 extern tree
vect_get_loop_mask (loop_vec_info
, gimple_stmt_iterator
*,
2517 unsigned int, tree
, unsigned int);
2518 extern void vect_record_loop_len (loop_vec_info
, vec_loop_lens
*, unsigned int,
2519 tree
, unsigned int);
2520 extern tree
vect_get_loop_len (loop_vec_info
, gimple_stmt_iterator
*,
2521 vec_loop_lens
*, unsigned int, tree
,
2522 unsigned int, unsigned int);
2523 extern tree
vect_gen_loop_len_mask (loop_vec_info
, gimple_stmt_iterator
*,
2524 gimple_stmt_iterator
*, vec_loop_lens
*,
2525 unsigned int, tree
, tree
, unsigned int,
2527 extern gimple_seq
vect_gen_len (tree
, tree
, tree
, tree
);
2528 extern stmt_vec_info
info_for_reduction (vec_info
*, stmt_vec_info
);
2529 extern bool reduction_fn_for_scalar_code (code_helper
, internal_fn
*);
2531 /* Drive for loop transformation stage. */
2532 extern class loop
*vect_transform_loop (loop_vec_info
, gimple
*);
2533 struct vect_loop_form_info
2535 tree number_of_iterations
;
2536 tree number_of_iterationsm1
;
2538 auto_vec
<gcond
*> conds
;
2539 gcond
*inner_loop_cond
;
2542 extern opt_result
vect_analyze_loop_form (class loop
*, gimple
*,
2543 vect_loop_form_info
*);
2544 extern loop_vec_info
vect_create_loop_vinfo (class loop
*, vec_info_shared
*,
2545 const vect_loop_form_info
*,
2546 loop_vec_info
= nullptr);
2547 extern bool vectorizable_live_operation (vec_info
*, stmt_vec_info
,
2548 slp_tree
, slp_instance
, int,
2549 bool, stmt_vector_for_cost
*);
2550 extern bool vectorizable_lane_reducing (loop_vec_info
, stmt_vec_info
,
2551 slp_tree
, stmt_vector_for_cost
*);
2552 extern bool vectorizable_reduction (loop_vec_info
, stmt_vec_info
,
2553 slp_tree
, slp_instance
,
2554 stmt_vector_for_cost
*);
2555 extern bool vectorizable_induction (loop_vec_info
, stmt_vec_info
,
2556 gimple
**, slp_tree
,
2557 stmt_vector_for_cost
*);
2558 extern bool vect_transform_reduction (loop_vec_info
, stmt_vec_info
,
2559 gimple_stmt_iterator
*,
2560 gimple
**, slp_tree
);
2561 extern bool vect_transform_cycle_phi (loop_vec_info
, stmt_vec_info
,
2563 slp_tree
, slp_instance
);
2564 extern bool vectorizable_lc_phi (loop_vec_info
, stmt_vec_info
,
2565 gimple
**, slp_tree
);
2566 extern bool vectorizable_phi (vec_info
*, stmt_vec_info
, gimple
**, slp_tree
,
2567 stmt_vector_for_cost
*);
2568 extern bool vectorizable_recurr (loop_vec_info
, stmt_vec_info
,
2569 gimple
**, slp_tree
, stmt_vector_for_cost
*);
2570 extern bool vectorizable_early_exit (vec_info
*, stmt_vec_info
,
2571 gimple_stmt_iterator
*, gimple
**,
2572 slp_tree
, stmt_vector_for_cost
*);
2573 extern bool vect_emulated_vector_p (tree
);
2574 extern bool vect_can_vectorize_without_simd_p (tree_code
);
2575 extern bool vect_can_vectorize_without_simd_p (code_helper
);
2576 extern int vect_get_known_peeling_cost (loop_vec_info
, int, int *,
2577 stmt_vector_for_cost
*,
2578 stmt_vector_for_cost
*,
2579 stmt_vector_for_cost
*);
2580 extern tree
cse_and_gimplify_to_preheader (loop_vec_info
, tree
);
2582 /* Nonlinear induction. */
2583 extern tree
vect_peel_nonlinear_iv_init (gimple_seq
*, tree
, tree
,
2584 tree
, enum vect_induction_op_type
);
2586 /* In tree-vect-slp.cc. */
2587 extern void vect_slp_init (void);
2588 extern void vect_slp_fini (void);
2589 extern void vect_free_slp_instance (slp_instance
);
2590 extern bool vect_transform_slp_perm_load (vec_info
*, slp_tree
, const vec
<tree
> &,
2591 gimple_stmt_iterator
*, poly_uint64
,
2593 unsigned * = nullptr, bool = false);
2594 extern bool vect_slp_analyze_operations (vec_info
*);
2595 extern void vect_schedule_slp (vec_info
*, const vec
<slp_instance
> &);
2596 extern opt_result
vect_analyze_slp (vec_info
*, unsigned, bool);
2597 extern bool vect_make_slp_decision (loop_vec_info
);
2598 extern void vect_detect_hybrid_slp (loop_vec_info
);
2599 extern void vect_optimize_slp (vec_info
*);
2600 extern void vect_gather_slp_loads (vec_info
*);
2601 extern void vect_get_slp_defs (slp_tree
, vec
<tree
> *);
2602 extern void vect_get_slp_defs (vec_info
*, slp_tree
, vec
<vec
<tree
> > *,
2604 extern bool vect_slp_if_converted_bb (basic_block bb
, loop_p orig_loop
);
2605 extern bool vect_slp_function (function
*);
2606 extern stmt_vec_info
vect_find_last_scalar_stmt_in_slp (slp_tree
);
2607 extern stmt_vec_info
vect_find_first_scalar_stmt_in_slp (slp_tree
);
2608 extern bool is_simple_and_all_uses_invariant (stmt_vec_info
, loop_vec_info
);
2609 extern bool can_duplicate_and_interleave_p (vec_info
*, unsigned int, tree
,
2610 unsigned int * = NULL
,
2611 tree
* = NULL
, tree
* = NULL
);
2612 extern void duplicate_and_interleave (vec_info
*, gimple_seq
*, tree
,
2613 const vec
<tree
> &, unsigned int, vec
<tree
> &);
2614 extern int vect_get_place_in_interleaving_chain (stmt_vec_info
, stmt_vec_info
);
2615 extern slp_tree
vect_create_new_slp_node (unsigned, tree_code
);
2616 extern void vect_free_slp_tree (slp_tree
);
2617 extern bool compatible_calls_p (gcall
*, gcall
*);
2618 extern int vect_slp_child_index_for_operand (const gimple
*, int op
, bool);
2620 extern tree
prepare_vec_mask (loop_vec_info
, tree
, tree
, tree
,
2621 gimple_stmt_iterator
*);
2622 extern tree
vect_get_mask_load_else (int, tree
);
2624 /* In tree-vect-patterns.cc. */
2626 vect_mark_pattern_stmts (vec_info
*, stmt_vec_info
, gimple
*, tree
);
2627 extern bool vect_get_range_info (tree
, wide_int
*, wide_int
*);
2629 /* Pattern recognition functions.
2630 Additional pattern recognition functions can (and will) be added
2632 void vect_pattern_recog (vec_info
*);
2634 /* In tree-vectorizer.cc. */
2635 unsigned vectorize_loops (void);
2636 void vect_free_loop_info_assumptions (class loop
*);
2637 gimple
*vect_loop_vectorized_call (class loop
*, gcond
**cond
= NULL
);
2638 bool vect_stmt_dominates_stmt_p (gimple
*, gimple
*);
2640 /* SLP Pattern matcher types, tree-vect-slp-patterns.cc. */
2642 /* Forward declaration of possible two operands operation that can be matched
2643 by the complex numbers pattern matchers. */
2644 enum _complex_operation
: unsigned;
2646 /* All possible load permute values that could result from the partial data-flow
2648 typedef enum _complex_perm_kinds
{
2654 /* Can be combined with any other PERM values. */
2656 } complex_perm_kinds_t
;
2658 /* Cache from nodes to the load permutation they represent. */
2659 typedef hash_map
<slp_tree
, complex_perm_kinds_t
>
2660 slp_tree_to_load_perm_map_t
;
2662 /* Cache from nodes pair to being compatible or not. */
2663 typedef pair_hash
<nofree_ptr_hash
<_slp_tree
>,
2664 nofree_ptr_hash
<_slp_tree
>> slp_node_hash
;
2665 typedef hash_map
<slp_node_hash
, bool> slp_compat_nodes_map_t
;
2668 /* Vector pattern matcher base class. All SLP pattern matchers must inherit
2674 /* The number of arguments that the IFN requires. */
2675 unsigned m_num_args
;
2677 /* The internal function that will be used when a pattern is created. */
2680 /* The current node being inspected. */
2683 /* The list of operands to be the children for the node produced when the
2684 internal function is created. */
2685 vec
<slp_tree
> m_ops
;
2687 /* Default constructor where NODE is the root of the tree to inspect. */
2688 vect_pattern (slp_tree
*node
, vec
<slp_tree
> *m_ops
, internal_fn ifn
)
2691 this->m_node
= node
;
2692 this->m_ops
.create (0);
2694 this->m_ops
.safe_splice (*m_ops
);
2699 /* Create a new instance of the pattern matcher class of the given type. */
2700 static vect_pattern
* recognize (slp_tree_to_load_perm_map_t
*,
2701 slp_compat_nodes_map_t
*, slp_tree
*);
2703 /* Build the pattern from the data collected so far. */
2704 virtual void build (vec_info
*) = 0;
2706 /* Default destructor. */
2707 virtual ~vect_pattern ()
2709 this->m_ops
.release ();
2713 /* Function pointer to create a new pattern matcher from a generic type. */
2714 typedef vect_pattern
* (*vect_pattern_decl_t
) (slp_tree_to_load_perm_map_t
*,
2715 slp_compat_nodes_map_t
*,
2718 /* List of supported pattern matchers. */
2719 extern vect_pattern_decl_t slp_patterns
[];
2721 /* Number of supported pattern matchers. */
2722 extern size_t num__slp_patterns
;
2724 /* ----------------------------------------------------------------------
2725 Target support routines
2726 -----------------------------------------------------------------------
2727 The following routines are provided to simplify costing decisions in
2728 target code. Please add more as needed. */
2730 /* Return true if an operaton of kind KIND for STMT_INFO represents
2731 the extraction of an element from a vector in preparation for
2732 storing the element to memory. */
2734 vect_is_store_elt_extraction (vect_cost_for_stmt kind
, stmt_vec_info stmt_info
)
2736 return (kind
== vec_to_scalar
2737 && STMT_VINFO_DATA_REF (stmt_info
)
2738 && DR_IS_WRITE (STMT_VINFO_DATA_REF (stmt_info
)));
2741 /* Return true if STMT_INFO represents part of a reduction. */
2743 vect_is_reduction (stmt_vec_info stmt_info
)
2745 return STMT_VINFO_REDUC_IDX (stmt_info
) >= 0;
2748 /* Returns the memory acccess type being used to vectorize the statement. If
2749 SLP this is read from NODE, otherwise it's read from the STMT_VINFO. */
2751 inline vect_memory_access_type
2752 vect_mem_access_type (stmt_vec_info stmt_info
, slp_tree node
)
2755 return SLP_TREE_MEMORY_ACCESS_TYPE (node
);
2757 return STMT_VINFO_MEMORY_ACCESS_TYPE (stmt_info
);
2760 /* If STMT_INFO describes a reduction, return the vect_reduction_type
2761 of the reduction it describes, otherwise return -1. */
2763 vect_reduc_type (vec_info
*vinfo
, stmt_vec_info stmt_info
)
2765 if (loop_vec_info loop_vinfo
= dyn_cast
<loop_vec_info
> (vinfo
))
2766 if (STMT_VINFO_REDUC_DEF (stmt_info
))
2768 stmt_vec_info reduc_info
= info_for_reduction (loop_vinfo
, stmt_info
);
2769 return int (STMT_VINFO_REDUC_TYPE (reduc_info
));
2774 /* If STMT_INFO is a COND_EXPR that includes an embedded comparison, return the
2775 scalar type of the values being compared. Return null otherwise. */
2777 vect_embedded_comparison_type (stmt_vec_info stmt_info
)
2779 if (auto *assign
= dyn_cast
<gassign
*> (stmt_info
->stmt
))
2780 if (gimple_assign_rhs_code (assign
) == COND_EXPR
)
2782 tree cond
= gimple_assign_rhs1 (assign
);
2783 if (COMPARISON_CLASS_P (cond
))
2784 return TREE_TYPE (TREE_OPERAND (cond
, 0));
2789 /* If STMT_INFO is a comparison or contains an embedded comparison, return the
2790 scalar type of the values being compared. Return null otherwise. */
2792 vect_comparison_type (stmt_vec_info stmt_info
)
2794 if (auto *assign
= dyn_cast
<gassign
*> (stmt_info
->stmt
))
2795 if (TREE_CODE_CLASS (gimple_assign_rhs_code (assign
)) == tcc_comparison
)
2796 return TREE_TYPE (gimple_assign_rhs1 (assign
));
2797 return vect_embedded_comparison_type (stmt_info
);
2800 /* Return true if STMT_INFO extends the result of a load. */
2802 vect_is_extending_load (class vec_info
*vinfo
, stmt_vec_info stmt_info
)
2804 /* Although this is quite large for an inline function, this part
2805 at least should be inline. */
2806 gassign
*assign
= dyn_cast
<gassign
*> (stmt_info
->stmt
);
2807 if (!assign
|| !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign
)))
2810 tree rhs
= gimple_assign_rhs1 (stmt_info
->stmt
);
2811 tree lhs_type
= TREE_TYPE (gimple_assign_lhs (assign
));
2812 tree rhs_type
= TREE_TYPE (rhs
);
2813 if (!INTEGRAL_TYPE_P (lhs_type
)
2814 || !INTEGRAL_TYPE_P (rhs_type
)
2815 || TYPE_PRECISION (lhs_type
) <= TYPE_PRECISION (rhs_type
))
2818 stmt_vec_info def_stmt_info
= vinfo
->lookup_def (rhs
);
2819 return (def_stmt_info
2820 && STMT_VINFO_DATA_REF (def_stmt_info
)
2821 && DR_IS_READ (STMT_VINFO_DATA_REF (def_stmt_info
)));
2824 /* Return true if STMT_INFO is an integer truncation. */
2826 vect_is_integer_truncation (stmt_vec_info stmt_info
)
2828 gassign
*assign
= dyn_cast
<gassign
*> (stmt_info
->stmt
);
2829 if (!assign
|| !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign
)))
2832 tree lhs_type
= TREE_TYPE (gimple_assign_lhs (assign
));
2833 tree rhs_type
= TREE_TYPE (gimple_assign_rhs1 (assign
));
2834 return (INTEGRAL_TYPE_P (lhs_type
)
2835 && INTEGRAL_TYPE_P (rhs_type
)
2836 && TYPE_PRECISION (lhs_type
) < TYPE_PRECISION (rhs_type
));
2839 /* Build a GIMPLE_ASSIGN or GIMPLE_CALL with the tree_code,
2840 or internal_fn contained in ch, respectively. */
2841 gimple
* vect_gimple_build (tree
, code_helper
, tree
, tree
= NULL_TREE
);
2842 #endif /* GCC_TREE_VECTORIZER_H */