1 /* Header file for the value range relational processing.
2 Copyright (C) 2020-2025 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_VALUE_RELATION_H
22 #define GCC_VALUE_RELATION_H
25 // This file provides access to a relation oracle which can be used to
26 // maintain and query relations and equivalences between SSA_NAMES.
28 // The general range_query object provided in value-query.h provides
29 // access to an oracle, if one is available, via the oracle() method.
30 // There are also a couple of access routines provided, which even if there is
31 // no oracle, will return the default VREL_VARYING no relation.
33 // Typically, when a ranger object is active, there will be an oracle, and
34 // any information available can be directly queried. Ranger also sets and
35 // utilizes the relation information to enhance it's range calculations, this
36 // is totally transparent to the client, and they are free to make queries.
38 // relation_kind is a new enum which represents the different relations,
39 // often with a direct mapping to tree codes. ie VREL_EQ is equivalent to
42 // A query is made requesting the relation between SSA1 and SSA@ in a basic
43 // block, or on an edge, the possible return values are:
45 // VREL_EQ, VREL_NE, VREL_LT, VREL_LE, VREL_GT, and VREL_GE mean the same.
46 // VREL_VARYING : No relation between the 2 names.
47 // VREL_UNDEFINED : Impossible relation (ie, A < B && A > B)
49 // The oracle maintains VREL_EQ relations with equivalency sets, so if a
50 // relation comes back VREL_EQ, it is also possible to query the set of
51 // equivalencies. These are basically bitmaps over ssa_names. An iterator is
52 // provided later for this activity.
54 // Relations are maintained via the dominance trees and are optimized assuming
55 // they are registered in dominance order. When a new relation is added, it
56 // is intersected with whatever existing relation exists in the dominance tree
57 // and registered at the specified block.
60 // These codes are arranged such that VREL_VARYING is the first code, and all
61 // the rest are contiguous.
63 typedef enum relation_kind_t
65 VREL_VARYING
= 0, // No known relation, AKA varying.
66 VREL_UNDEFINED
, // Impossible relation, ie (r1 < r2) && (r2 > r1)
73 VREL_PE8
, // 8 bit partial equivalency
74 VREL_PE16
, // 16 bit partial equivalency
75 VREL_PE32
, // 32 bit partial equivalency
76 VREL_PE64
, // 64 bit partial equivalency
77 VREL_LAST
// terminate, not a real relation.
80 // General relation kind transformations.
81 relation_kind
relation_union (relation_kind r1
, relation_kind r2
);
82 relation_kind
relation_intersect (relation_kind r1
, relation_kind r2
);
83 relation_kind
relation_negate (relation_kind r
);
84 relation_kind
relation_swap (relation_kind r
);
85 inline bool relation_lt_le_gt_ge_p (relation_kind r
)
86 { return (r
>= VREL_LT
&& r
<= VREL_GE
); }
87 inline bool relation_partial_equiv_p (relation_kind r
)
88 { return (r
>= VREL_PE8
&& r
<= VREL_PE64
); }
89 inline bool relation_equiv_p (relation_kind r
)
90 { return r
== VREL_EQ
|| relation_partial_equiv_p (r
); }
92 void print_relation (FILE *f
, relation_kind rel
);
94 // Adjust range as an equivalence.
95 void adjust_equivalence_range (vrange
&range
);
100 virtual ~relation_oracle () { }
102 // register a relation between 2 ssa names.
103 void record (gimple
*, relation_kind
, tree
, tree
);
104 void record (edge
, relation_kind
, tree
, tree
);
105 virtual void record (basic_block
, relation_kind
, tree
, tree
) { }
107 // Query if there is any relation between SSA1 and SSA2.
108 relation_kind
query (gimple
*s
, tree ssa1
, tree ssa2
);
109 relation_kind
query (edge e
, tree ssa1
, tree ssa2
);
110 virtual relation_kind
query (basic_block
, tree
, tree
) { return VREL_VARYING
; }
112 virtual void dump (FILE *, basic_block
) const { }
113 virtual void dump (FILE *) const { }
116 friend class equiv_relation_iterator
;
117 // Return equivalency set for an SSA name in a basic block.
118 virtual const_bitmap
equiv_set (tree
, basic_block
) { return NULL
; }
119 // Return partial equivalency record for an SSA name.
120 virtual const class pe_slice
*partial_equiv_set (tree
) { return NULL
; }
121 void valid_equivs (bitmap b
, const_bitmap equivs
, basic_block bb
);
122 // Query for a relation between two equivalency sets in a basic block.
123 virtual relation_kind
query (basic_block
, const_bitmap
, const_bitmap
)
124 { return VREL_VARYING
; }
125 friend class path_oracle
;
128 // Instance with no storage used for default queries with no active oracle.
129 extern relation_oracle default_relation_oracle
;
131 // This class represents an equivalency set, and contains a link to the next
132 // one in the list to be searched.
137 bitmap m_names
; // ssa-names in equiv set.
138 basic_block m_bb
; // Block this belongs to
139 equiv_chain
*m_next
; // Next in block list.
140 void dump (FILE *f
) const; // Show names in this list.
141 equiv_chain
*find (unsigned ssa
);
147 tree ssa_base
; // Slice of this name.
148 relation_kind code
; // bits that are equivalent.
149 bitmap members
; // Other members in the partial equivalency.
152 // The equivalency oracle maintains equivalencies using the dominator tree.
153 // Equivalencies apply to an entire basic block. Equivalencies on edges
154 // can be represented only on edges whose destination is a single-pred block,
155 // and the equivalence is simply applied to that successor block.
157 class equiv_oracle
: public relation_oracle
163 const_bitmap
equiv_set (tree ssa
, basic_block bb
) final override
;
164 void record (basic_block bb
, relation_kind k
, tree ssa1
, tree ssa2
) override
;
166 relation_kind
partial_equiv (tree ssa1
, tree ssa2
, tree
*base
= NULL
) const;
167 relation_kind
query (basic_block
, tree
, tree
) override
;
168 relation_kind
query (basic_block
, const_bitmap
, const_bitmap
) override
;
169 void dump (FILE *f
, basic_block bb
) const override
;
170 void dump (FILE *f
) const override
;
173 void add_partial_equiv (relation_kind
, tree
, tree
);
174 const pe_slice
*partial_equiv_set (tree name
) final override
;
175 inline bool has_equiv_p (unsigned v
) { return bitmap_bit_p (m_equiv_set
, v
); }
176 bitmap_obstack m_bitmaps
;
177 struct obstack m_chain_obstack
;
179 bitmap m_equiv_set
; // Index by ssa-name. true if an equivalence exists.
180 vec
<equiv_chain
*> m_equiv
; // Index by BB. list of equivalences.
181 vec
<bitmap
> m_self_equiv
; // Index by ssa-name, self equivalency set.
182 vec
<pe_slice
> m_partial
; // Partial equivalencies.
184 void limit_check (basic_block bb
= NULL
);
185 equiv_chain
*find_equiv_block (unsigned ssa
, int bb
) const;
186 equiv_chain
*find_equiv_dom (tree name
, basic_block bb
) const;
188 bitmap
register_equiv (basic_block bb
, unsigned v
, equiv_chain
*equiv_1
);
189 bitmap
register_equiv (basic_block bb
, equiv_chain
*equiv_1
,
190 equiv_chain
*equiv_2
);
191 void register_initial_def (tree ssa
);
192 void add_equiv_to_block (basic_block bb
, bitmap equiv
);
195 // Summary block header for relations.
197 class relation_chain_head
200 bitmap m_names
; // ssa_names with relations in this block.
201 class relation_chain
*m_head
; // List of relations in block.
202 int m_num_relations
; // Number of relations in block.
203 relation_kind
find_relation (const_bitmap b1
, const_bitmap b2
) const;
206 // A relation oracle maintains a set of relations between ssa_names using the
207 // dominator tree structures. Equivalencies are considered a subset of
208 // a general relation and maintained by an equivalence oracle by transparently
209 // passing any EQ_EXPR relations to it.
210 // Relations are handled at the basic block level. All relations apply to
211 // an entire block, and are thus kept in a summary index by block.
212 // Similar to the equivalence oracle, edges are handled by applying the
213 // relation to the destination block of the edge, but ONLY if that block
214 // has a single successor. For now.
216 class dom_oracle
: public equiv_oracle
219 dom_oracle (bool do_trans_p
= true);
222 void record (basic_block bb
, relation_kind k
, tree op1
, tree op2
)
225 relation_kind
query (basic_block bb
, tree ssa1
, tree ssa2
) final override
;
226 relation_kind
query (basic_block bb
, const_bitmap b1
, const_bitmap b2
)
229 void dump (FILE *f
, basic_block bb
) const final override
;
230 void dump (FILE *f
) const final override
;
233 bitmap m_tmp
, m_tmp2
;
234 bitmap m_relation_set
; // Index by ssa-name. True if a relation exists
235 vec
<relation_chain_head
> m_relations
; // Index by BB, list of relations.
236 relation_kind
find_relation_block (unsigned bb
, const_bitmap b1
,
237 const_bitmap b2
) const;
238 relation_kind
find_relation_block (int bb
, unsigned v1
, unsigned v2
,
239 relation_chain
**obj
= NULL
) const;
240 relation_kind
find_relation_dom (basic_block bb
, unsigned v1
, unsigned v2
) const;
241 relation_chain
*set_one_relation (basic_block bb
, relation_kind k
, tree op1
,
243 void register_transitives (basic_block
, const class value_relation
&);
247 // A path_oracle implements relations in a list. The only sense of ordering
248 // is the latest registered relation is the first found during a search.
249 // It can be constructed with an optional "root" oracle which will be used
250 // to look up any relations not found in the list.
251 // This allows the client to walk paths starting at some block and register
252 // and query relations along that path, ignoring other edges.
254 // For registering a relation, a query if made of the root oracle if there is
255 // any known relationship at block BB, and it is combined with this new
256 // relation and entered in the list.
258 // Queries are resolved by looking first in the list, and only if nothing is
259 // found is the root oracle queried at block BB.
261 // reset_path is used to clear all locally registered paths to initial state.
263 class path_oracle
: public relation_oracle
266 path_oracle (relation_oracle
*oracle
= NULL
);
268 const_bitmap
equiv_set (tree
, basic_block
) final override
;
269 void record (basic_block
, relation_kind
, tree
, tree
) final override
;
270 void killing_def (tree
);
271 relation_kind
query (basic_block
, tree
, tree
) final override
;
272 relation_kind
query (basic_block
, const_bitmap
, const_bitmap
) final override
;
273 void reset_path (relation_oracle
*oracle
= NULL
);
274 void set_root_oracle (relation_oracle
*oracle
) { m_root
= oracle
; }
275 void dump (FILE *, basic_block
) const final override
;
276 void dump (FILE *) const final override
;
278 void register_equiv (basic_block bb
, tree ssa1
, tree ssa2
);
280 relation_chain_head m_relations
;
281 relation_oracle
*m_root
;
282 bitmap m_killed_defs
;
284 bitmap_obstack m_bitmaps
;
285 struct obstack m_chain_obstack
;
288 // Used to assist with iterating over the equivalence list.
289 class equiv_relation_iterator
{
291 equiv_relation_iterator (relation_oracle
*oracle
, basic_block bb
, tree name
,
292 bool full
= true, bool partial
= false);
294 tree
get_name (relation_kind
*rel
= NULL
);
296 relation_oracle
*m_oracle
;
298 const pe_slice
*m_pe
;
299 bitmap_iterator m_bi
;
304 #define FOR_EACH_EQUIVALENCE(oracle, bb, name, equiv_name) \
305 for (equiv_relation_iterator iter (oracle, bb, name, true, false); \
306 ((equiv_name) = iter.get_name ()); \
309 #define FOR_EACH_PARTIAL_EQUIV(oracle, bb, name, equiv_name, equiv_rel) \
310 for (equiv_relation_iterator iter (oracle, bb, name, false, true); \
311 ((equiv_name) = iter.get_name (&equiv_rel)); \
314 #define FOR_EACH_PARTIAL_AND_FULL_EQUIV(oracle, bb, name, equiv_name, \
316 for (equiv_relation_iterator iter (oracle, bb, name, true, true); \
317 ((equiv_name) = iter.get_name (&equiv_rel)); \
320 // -----------------------------------------------------------------------
322 // Range-ops deals with a LHS and 2 operands. A relation trio is a set of
323 // 3 potential relations packed into a single unsigned value.
324 // 1 - LHS relation OP1
325 // 2 - LHS relation OP2
326 // 3 - OP1 relation OP2
327 // VREL_VARYING is a value of 0, and is the default for each position.
332 relation_trio (relation_kind lhs_op1
, relation_kind lhs_op2
,
333 relation_kind op1_op2
);
334 relation_kind
lhs_op1 ();
335 relation_kind
lhs_op2 ();
336 relation_kind
op1_op2 ();
337 relation_trio
swap_op1_op2 ();
339 static relation_trio
lhs_op1 (relation_kind k
);
340 static relation_trio
lhs_op2 (relation_kind k
);
341 static relation_trio
op1_op2 (relation_kind k
);
347 // Default VREL_VARYING for all 3 relations.
348 #define TRIO_VARYING relation_trio ()
351 #define TRIO_MASK 0x000F
353 // These 3 classes are shortcuts for when a caller has a single relation to
354 // pass as a trio, it can simply construct the appropriate one. The other
355 // unspecified relations will be VREL_VARYING.
357 inline relation_trio::relation_trio ()
359 STATIC_ASSERT (VREL_LAST
<= (1 << TRIO_SHIFT
));
363 inline relation_trio::relation_trio (relation_kind lhs_op1
,
364 relation_kind lhs_op2
,
365 relation_kind op1_op2
)
367 STATIC_ASSERT (VREL_LAST
<= (1 << TRIO_SHIFT
));
368 unsigned i1
= (unsigned) lhs_op1
;
369 unsigned i2
= ((unsigned) lhs_op2
) << TRIO_SHIFT
;
370 unsigned i3
= ((unsigned) op1_op2
) << (TRIO_SHIFT
* 2);
371 m_val
= i1
| i2
| i3
;
375 relation_trio::lhs_op1 (relation_kind k
)
377 return relation_trio (k
, VREL_VARYING
, VREL_VARYING
);
380 relation_trio::lhs_op2 (relation_kind k
)
382 return relation_trio (VREL_VARYING
, k
, VREL_VARYING
);
385 relation_trio::op1_op2 (relation_kind k
)
387 return relation_trio (VREL_VARYING
, VREL_VARYING
, k
);
391 relation_trio::lhs_op1 ()
393 return (relation_kind
) (m_val
& TRIO_MASK
);
397 relation_trio::lhs_op2 ()
399 return (relation_kind
) ((m_val
>> TRIO_SHIFT
) & TRIO_MASK
);
403 relation_trio::op1_op2 ()
405 return (relation_kind
) ((m_val
>> (TRIO_SHIFT
* 2)) & TRIO_MASK
);
409 relation_trio::swap_op1_op2 ()
411 return relation_trio (lhs_op2 (), lhs_op1 (), relation_swap (op1_op2 ()));
414 // -----------------------------------------------------------------------
416 // The value-relation class is used to encapsulate the representation of an
417 // individual relation between 2 ssa-names, and to facilitate operating on
424 value_relation (relation_kind kind
, tree n1
, tree n2
);
425 void set_relation (relation_kind kind
, tree n1
, tree n2
);
427 inline relation_kind
kind () const { return related
; }
428 inline tree
op1 () const { return name1
; }
429 inline tree
op2 () const { return name2
; }
431 relation_trio
create_trio (tree lhs
, tree op1
, tree op2
);
432 bool union_ (value_relation
&p
);
433 bool intersect (value_relation
&p
);
435 bool apply_transitive (const value_relation
&rel
);
437 void dump (FILE *f
) const;
439 relation_kind related
;
443 // Set relation R between ssa_name N1 and N2.
446 value_relation::set_relation (relation_kind r
, tree n1
, tree n2
)
448 gcc_checking_assert (TREE_CODE (n1
) == SSA_NAME
449 && TREE_CODE (n2
) == SSA_NAME
);
455 // Default constructor.
458 value_relation::value_relation ()
460 related
= VREL_VARYING
;
465 // Constructor for relation R between SSA version N1 and N2.
468 value_relation::value_relation (relation_kind kind
, tree n1
, tree n2
)
470 set_relation (kind
, n1
, n2
);
473 // Return the number of bits associated with partial equivalency T.
474 // Return 0 if this is not a supported partial equivalency relation.
477 pe_to_bits (relation_kind t
)
494 // Return the partial equivalency code associated with the number of BITS.
495 // return VREL_VARYING if there is no exact match.
498 bits_to_pe (int bits
)
515 // Given partial equivalencies T1 and T2, return the smallest kind.
518 pe_min (relation_kind t1
, relation_kind t2
)
520 gcc_checking_assert (relation_partial_equiv_p (t1
));
521 gcc_checking_assert (relation_partial_equiv_p (t2
));
522 // VREL_PE are declared small to large, so simple min will suffice.
525 #endif /* GCC_VALUE_RELATION_H */