OpenMP: Update documentation of metadirective implementation status.
[gcc.git] / gcc / value-relation.h
blob23cfb41c6357eaa85ba73879ca551a023dc2c2f2
1 /* Header file for the value range relational processing.
2 Copyright (C) 2020-2025 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_VALUE_RELATION_H
22 #define GCC_VALUE_RELATION_H
25 // This file provides access to a relation oracle which can be used to
26 // maintain and query relations and equivalences between SSA_NAMES.
28 // The general range_query object provided in value-query.h provides
29 // access to an oracle, if one is available, via the oracle() method.
30 // There are also a couple of access routines provided, which even if there is
31 // no oracle, will return the default VREL_VARYING no relation.
33 // Typically, when a ranger object is active, there will be an oracle, and
34 // any information available can be directly queried. Ranger also sets and
35 // utilizes the relation information to enhance it's range calculations, this
36 // is totally transparent to the client, and they are free to make queries.
38 // relation_kind is a new enum which represents the different relations,
39 // often with a direct mapping to tree codes. ie VREL_EQ is equivalent to
40 // EQ_EXPR.
42 // A query is made requesting the relation between SSA1 and SSA@ in a basic
43 // block, or on an edge, the possible return values are:
45 // VREL_EQ, VREL_NE, VREL_LT, VREL_LE, VREL_GT, and VREL_GE mean the same.
46 // VREL_VARYING : No relation between the 2 names.
47 // VREL_UNDEFINED : Impossible relation (ie, A < B && A > B)
49 // The oracle maintains VREL_EQ relations with equivalency sets, so if a
50 // relation comes back VREL_EQ, it is also possible to query the set of
51 // equivalencies. These are basically bitmaps over ssa_names. An iterator is
52 // provided later for this activity.
54 // Relations are maintained via the dominance trees and are optimized assuming
55 // they are registered in dominance order. When a new relation is added, it
56 // is intersected with whatever existing relation exists in the dominance tree
57 // and registered at the specified block.
60 // These codes are arranged such that VREL_VARYING is the first code, and all
61 // the rest are contiguous.
63 typedef enum relation_kind_t
65 VREL_VARYING = 0, // No known relation, AKA varying.
66 VREL_UNDEFINED, // Impossible relation, ie (r1 < r2) && (r2 > r1)
67 VREL_LT, // r1 < r2
68 VREL_LE, // r1 <= r2
69 VREL_GT, // r1 > r2
70 VREL_GE, // r1 >= r2
71 VREL_EQ, // r1 == r2
72 VREL_NE, // r1 != r2
73 VREL_PE8, // 8 bit partial equivalency
74 VREL_PE16, // 16 bit partial equivalency
75 VREL_PE32, // 32 bit partial equivalency
76 VREL_PE64, // 64 bit partial equivalency
77 VREL_LAST // terminate, not a real relation.
78 } relation_kind;
80 // General relation kind transformations.
81 relation_kind relation_union (relation_kind r1, relation_kind r2);
82 relation_kind relation_intersect (relation_kind r1, relation_kind r2);
83 relation_kind relation_negate (relation_kind r);
84 relation_kind relation_swap (relation_kind r);
85 inline bool relation_lt_le_gt_ge_p (relation_kind r)
86 { return (r >= VREL_LT && r <= VREL_GE); }
87 inline bool relation_partial_equiv_p (relation_kind r)
88 { return (r >= VREL_PE8 && r <= VREL_PE64); }
89 inline bool relation_equiv_p (relation_kind r)
90 { return r == VREL_EQ || relation_partial_equiv_p (r); }
92 void print_relation (FILE *f, relation_kind rel);
94 // Adjust range as an equivalence.
95 void adjust_equivalence_range (vrange &range);
97 class relation_oracle
99 public:
100 virtual ~relation_oracle () { }
102 // register a relation between 2 ssa names.
103 void record (gimple *, relation_kind, tree, tree);
104 void record (edge, relation_kind, tree, tree);
105 virtual void record (basic_block, relation_kind, tree, tree) { }
107 // Query if there is any relation between SSA1 and SSA2.
108 relation_kind query (gimple *s, tree ssa1, tree ssa2);
109 relation_kind query (edge e, tree ssa1, tree ssa2);
110 virtual relation_kind query (basic_block, tree, tree) { return VREL_VARYING; }
112 virtual void dump (FILE *, basic_block) const { }
113 virtual void dump (FILE *) const { }
114 void debug () const;
115 protected:
116 friend class equiv_relation_iterator;
117 // Return equivalency set for an SSA name in a basic block.
118 virtual const_bitmap equiv_set (tree, basic_block) { return NULL; }
119 // Return partial equivalency record for an SSA name.
120 virtual const class pe_slice *partial_equiv_set (tree) { return NULL; }
121 void valid_equivs (bitmap b, const_bitmap equivs, basic_block bb);
122 // Query for a relation between two equivalency sets in a basic block.
123 virtual relation_kind query (basic_block, const_bitmap, const_bitmap)
124 { return VREL_VARYING; }
125 friend class path_oracle;
128 // Instance with no storage used for default queries with no active oracle.
129 extern relation_oracle default_relation_oracle;
131 // This class represents an equivalency set, and contains a link to the next
132 // one in the list to be searched.
134 class equiv_chain
136 public:
137 bitmap m_names; // ssa-names in equiv set.
138 basic_block m_bb; // Block this belongs to
139 equiv_chain *m_next; // Next in block list.
140 void dump (FILE *f) const; // Show names in this list.
141 equiv_chain *find (unsigned ssa);
144 class pe_slice
146 public:
147 tree ssa_base; // Slice of this name.
148 relation_kind code; // bits that are equivalent.
149 bitmap members; // Other members in the partial equivalency.
152 // The equivalency oracle maintains equivalencies using the dominator tree.
153 // Equivalencies apply to an entire basic block. Equivalencies on edges
154 // can be represented only on edges whose destination is a single-pred block,
155 // and the equivalence is simply applied to that successor block.
157 class equiv_oracle : public relation_oracle
159 public:
160 equiv_oracle ();
161 ~equiv_oracle ();
163 const_bitmap equiv_set (tree ssa, basic_block bb) final override;
164 void record (basic_block bb, relation_kind k, tree ssa1, tree ssa2) override;
166 relation_kind partial_equiv (tree ssa1, tree ssa2, tree *base = NULL) const;
167 relation_kind query (basic_block, tree, tree) override;
168 relation_kind query (basic_block, const_bitmap, const_bitmap) override;
169 void dump (FILE *f, basic_block bb) const override;
170 void dump (FILE *f) const override;
172 protected:
173 void add_partial_equiv (relation_kind, tree, tree);
174 const pe_slice *partial_equiv_set (tree name) final override;
175 inline bool has_equiv_p (unsigned v) { return bitmap_bit_p (m_equiv_set, v); }
176 bitmap_obstack m_bitmaps;
177 struct obstack m_chain_obstack;
178 private:
179 bitmap m_equiv_set; // Index by ssa-name. true if an equivalence exists.
180 vec <equiv_chain *> m_equiv; // Index by BB. list of equivalences.
181 vec <bitmap> m_self_equiv; // Index by ssa-name, self equivalency set.
182 vec <pe_slice> m_partial; // Partial equivalencies.
184 void limit_check (basic_block bb = NULL);
185 equiv_chain *find_equiv_block (unsigned ssa, int bb) const;
186 equiv_chain *find_equiv_dom (tree name, basic_block bb) const;
188 bitmap register_equiv (basic_block bb, unsigned v, equiv_chain *equiv_1);
189 bitmap register_equiv (basic_block bb, equiv_chain *equiv_1,
190 equiv_chain *equiv_2);
191 void register_initial_def (tree ssa);
192 void add_equiv_to_block (basic_block bb, bitmap equiv);
195 // Summary block header for relations.
197 class relation_chain_head
199 public:
200 bitmap m_names; // ssa_names with relations in this block.
201 class relation_chain *m_head; // List of relations in block.
202 int m_num_relations; // Number of relations in block.
203 relation_kind find_relation (const_bitmap b1, const_bitmap b2) const;
206 // A relation oracle maintains a set of relations between ssa_names using the
207 // dominator tree structures. Equivalencies are considered a subset of
208 // a general relation and maintained by an equivalence oracle by transparently
209 // passing any EQ_EXPR relations to it.
210 // Relations are handled at the basic block level. All relations apply to
211 // an entire block, and are thus kept in a summary index by block.
212 // Similar to the equivalence oracle, edges are handled by applying the
213 // relation to the destination block of the edge, but ONLY if that block
214 // has a single successor. For now.
216 class dom_oracle : public equiv_oracle
218 public:
219 dom_oracle (bool do_trans_p = true);
220 ~dom_oracle ();
222 void record (basic_block bb, relation_kind k, tree op1, tree op2)
223 final override;
225 relation_kind query (basic_block bb, tree ssa1, tree ssa2) final override;
226 relation_kind query (basic_block bb, const_bitmap b1, const_bitmap b2)
227 final override;
229 void dump (FILE *f, basic_block bb) const final override;
230 void dump (FILE *f) const final override;
231 private:
232 bool m_do_trans_p;
233 bitmap m_tmp, m_tmp2;
234 bitmap m_relation_set; // Index by ssa-name. True if a relation exists
235 vec <relation_chain_head> m_relations; // Index by BB, list of relations.
236 relation_kind find_relation_block (unsigned bb, const_bitmap b1,
237 const_bitmap b2) const;
238 relation_kind find_relation_block (int bb, unsigned v1, unsigned v2,
239 relation_chain **obj = NULL) const;
240 relation_kind find_relation_dom (basic_block bb, unsigned v1, unsigned v2) const;
241 relation_chain *set_one_relation (basic_block bb, relation_kind k, tree op1,
242 tree op2);
243 void register_transitives (basic_block, const class value_relation &);
247 // A path_oracle implements relations in a list. The only sense of ordering
248 // is the latest registered relation is the first found during a search.
249 // It can be constructed with an optional "root" oracle which will be used
250 // to look up any relations not found in the list.
251 // This allows the client to walk paths starting at some block and register
252 // and query relations along that path, ignoring other edges.
254 // For registering a relation, a query if made of the root oracle if there is
255 // any known relationship at block BB, and it is combined with this new
256 // relation and entered in the list.
258 // Queries are resolved by looking first in the list, and only if nothing is
259 // found is the root oracle queried at block BB.
261 // reset_path is used to clear all locally registered paths to initial state.
263 class path_oracle : public relation_oracle
265 public:
266 path_oracle (relation_oracle *oracle = NULL);
267 ~path_oracle ();
268 const_bitmap equiv_set (tree, basic_block) final override;
269 void record (basic_block, relation_kind, tree, tree) final override;
270 void killing_def (tree);
271 relation_kind query (basic_block, tree, tree) final override;
272 relation_kind query (basic_block, const_bitmap, const_bitmap) final override;
273 void reset_path (relation_oracle *oracle = NULL);
274 void set_root_oracle (relation_oracle *oracle) { m_root = oracle; }
275 void dump (FILE *, basic_block) const final override;
276 void dump (FILE *) const final override;
277 private:
278 void register_equiv (basic_block bb, tree ssa1, tree ssa2);
279 equiv_chain m_equiv;
280 relation_chain_head m_relations;
281 relation_oracle *m_root;
282 bitmap m_killed_defs;
284 bitmap_obstack m_bitmaps;
285 struct obstack m_chain_obstack;
288 // Used to assist with iterating over the equivalence list.
289 class equiv_relation_iterator {
290 public:
291 equiv_relation_iterator (relation_oracle *oracle, basic_block bb, tree name,
292 bool full = true, bool partial = false);
293 void next ();
294 tree get_name (relation_kind *rel = NULL);
295 protected:
296 relation_oracle *m_oracle;
297 const_bitmap m_bm;
298 const pe_slice *m_pe;
299 bitmap_iterator m_bi;
300 unsigned m_y;
301 tree m_name;
304 #define FOR_EACH_EQUIVALENCE(oracle, bb, name, equiv_name) \
305 for (equiv_relation_iterator iter (oracle, bb, name, true, false); \
306 ((equiv_name) = iter.get_name ()); \
307 iter.next ())
309 #define FOR_EACH_PARTIAL_EQUIV(oracle, bb, name, equiv_name, equiv_rel) \
310 for (equiv_relation_iterator iter (oracle, bb, name, false, true); \
311 ((equiv_name) = iter.get_name (&equiv_rel)); \
312 iter.next ())
314 #define FOR_EACH_PARTIAL_AND_FULL_EQUIV(oracle, bb, name, equiv_name, \
315 equiv_rel) \
316 for (equiv_relation_iterator iter (oracle, bb, name, true, true); \
317 ((equiv_name) = iter.get_name (&equiv_rel)); \
318 iter.next ())
320 // -----------------------------------------------------------------------
322 // Range-ops deals with a LHS and 2 operands. A relation trio is a set of
323 // 3 potential relations packed into a single unsigned value.
324 // 1 - LHS relation OP1
325 // 2 - LHS relation OP2
326 // 3 - OP1 relation OP2
327 // VREL_VARYING is a value of 0, and is the default for each position.
328 class relation_trio
330 public:
331 relation_trio ();
332 relation_trio (relation_kind lhs_op1, relation_kind lhs_op2,
333 relation_kind op1_op2);
334 relation_kind lhs_op1 ();
335 relation_kind lhs_op2 ();
336 relation_kind op1_op2 ();
337 relation_trio swap_op1_op2 ();
339 static relation_trio lhs_op1 (relation_kind k);
340 static relation_trio lhs_op2 (relation_kind k);
341 static relation_trio op1_op2 (relation_kind k);
343 protected:
344 unsigned m_val;
347 // Default VREL_VARYING for all 3 relations.
348 #define TRIO_VARYING relation_trio ()
350 #define TRIO_SHIFT 4
351 #define TRIO_MASK 0x000F
353 // These 3 classes are shortcuts for when a caller has a single relation to
354 // pass as a trio, it can simply construct the appropriate one. The other
355 // unspecified relations will be VREL_VARYING.
357 inline relation_trio::relation_trio ()
359 STATIC_ASSERT (VREL_LAST <= (1 << TRIO_SHIFT));
360 m_val = 0;
363 inline relation_trio::relation_trio (relation_kind lhs_op1,
364 relation_kind lhs_op2,
365 relation_kind op1_op2)
367 STATIC_ASSERT (VREL_LAST <= (1 << TRIO_SHIFT));
368 unsigned i1 = (unsigned) lhs_op1;
369 unsigned i2 = ((unsigned) lhs_op2) << TRIO_SHIFT;
370 unsigned i3 = ((unsigned) op1_op2) << (TRIO_SHIFT * 2);
371 m_val = i1 | i2 | i3;
374 inline relation_trio
375 relation_trio::lhs_op1 (relation_kind k)
377 return relation_trio (k, VREL_VARYING, VREL_VARYING);
379 inline relation_trio
380 relation_trio::lhs_op2 (relation_kind k)
382 return relation_trio (VREL_VARYING, k, VREL_VARYING);
384 inline relation_trio
385 relation_trio::op1_op2 (relation_kind k)
387 return relation_trio (VREL_VARYING, VREL_VARYING, k);
390 inline relation_kind
391 relation_trio::lhs_op1 ()
393 return (relation_kind) (m_val & TRIO_MASK);
396 inline relation_kind
397 relation_trio::lhs_op2 ()
399 return (relation_kind) ((m_val >> TRIO_SHIFT) & TRIO_MASK);
402 inline relation_kind
403 relation_trio::op1_op2 ()
405 return (relation_kind) ((m_val >> (TRIO_SHIFT * 2)) & TRIO_MASK);
408 inline relation_trio
409 relation_trio::swap_op1_op2 ()
411 return relation_trio (lhs_op2 (), lhs_op1 (), relation_swap (op1_op2 ()));
414 // -----------------------------------------------------------------------
416 // The value-relation class is used to encapsulate the representation of an
417 // individual relation between 2 ssa-names, and to facilitate operating on
418 // the relation.
420 class value_relation
422 public:
423 value_relation ();
424 value_relation (relation_kind kind, tree n1, tree n2);
425 void set_relation (relation_kind kind, tree n1, tree n2);
427 inline relation_kind kind () const { return related; }
428 inline tree op1 () const { return name1; }
429 inline tree op2 () const { return name2; }
431 relation_trio create_trio (tree lhs, tree op1, tree op2);
432 bool union_ (value_relation &p);
433 bool intersect (value_relation &p);
434 void negate ();
435 bool apply_transitive (const value_relation &rel);
437 void dump (FILE *f) const;
438 private:
439 relation_kind related;
440 tree name1, name2;
443 // Set relation R between ssa_name N1 and N2.
445 inline void
446 value_relation::set_relation (relation_kind r, tree n1, tree n2)
448 gcc_checking_assert (TREE_CODE (n1) == SSA_NAME
449 && TREE_CODE (n2) == SSA_NAME);
450 related = r;
451 name1 = n1;
452 name2 = n2;
455 // Default constructor.
457 inline
458 value_relation::value_relation ()
460 related = VREL_VARYING;
461 name1 = NULL_TREE;
462 name2 = NULL_TREE;
465 // Constructor for relation R between SSA version N1 and N2.
467 inline
468 value_relation::value_relation (relation_kind kind, tree n1, tree n2)
470 set_relation (kind, n1, n2);
473 // Return the number of bits associated with partial equivalency T.
474 // Return 0 if this is not a supported partial equivalency relation.
476 inline int
477 pe_to_bits (relation_kind t)
479 switch (t)
481 case VREL_PE8:
482 return 8;
483 case VREL_PE16:
484 return 16;
485 case VREL_PE32:
486 return 32;
487 case VREL_PE64:
488 return 64;
489 default:
490 return 0;
494 // Return the partial equivalency code associated with the number of BITS.
495 // return VREL_VARYING if there is no exact match.
497 inline relation_kind
498 bits_to_pe (int bits)
500 switch (bits)
502 case 8:
503 return VREL_PE8;
504 case 16:
505 return VREL_PE16;
506 case 32:
507 return VREL_PE32;
508 case 64:
509 return VREL_PE64;
510 default:
511 return VREL_VARYING;
515 // Given partial equivalencies T1 and T2, return the smallest kind.
517 inline relation_kind
518 pe_min (relation_kind t1, relation_kind t2)
520 gcc_checking_assert (relation_partial_equiv_p (t1));
521 gcc_checking_assert (relation_partial_equiv_p (t2));
522 // VREL_PE are declared small to large, so simple min will suffice.
523 return MIN (t1, t2);
525 #endif /* GCC_VALUE_RELATION_H */