Daily bump.
[gcc.git] / libphobos / src / std / complex.d
blob01e8dd2c1dac946d7f88012e3f7874a4f6a92847
1 // Written in the D programming language.
3 /** This module contains the $(LREF Complex) type, which is used to represent
4 complex numbers, along with related mathematical operations and functions.
6 $(LREF Complex) will eventually
7 $(DDLINK deprecate, Deprecated Features, replace)
8 the built-in types `cfloat`, `cdouble`, `creal`, `ifloat`,
9 `idouble`, and `ireal`.
11 Macros:
12 TABLE_SV = <table border="1" cellpadding="4" cellspacing="0">
13 <caption>Special Values</caption>
14 $0</table>
15 PLUSMN = &plusmn;
16 NAN = $(RED NAN)
17 INFIN = &infin;
18 PI = &pi;
20 Authors: Lars Tandle Kyllingstad, Don Clugston
21 Copyright: Copyright (c) 2010, Lars T. Kyllingstad.
22 License: $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0)
23 Source: $(PHOBOSSRC std/complex.d)
25 module std.complex;
27 import std.traits;
29 /** Helper function that returns a complex number with the specified
30 real and imaginary parts.
32 Params:
33 R = (template parameter) type of real part of complex number
34 I = (template parameter) type of imaginary part of complex number
36 re = real part of complex number to be constructed
37 im = (optional) imaginary part of complex number, 0 if omitted.
39 Returns:
40 `Complex` instance with real and imaginary parts set
41 to the values provided as input. If neither `re` nor
42 `im` are floating-point numbers, the return type will
43 be `Complex!double`. Otherwise, the return type is
44 deduced using $(D std.traits.CommonType!(R, I)).
46 auto complex(R)(const R re) @safe pure nothrow @nogc
47 if (is(R : double))
49 static if (isFloatingPoint!R)
50 return Complex!R(re, 0);
51 else
52 return Complex!double(re, 0);
55 /// ditto
56 auto complex(R, I)(const R re, const I im) @safe pure nothrow @nogc
57 if (is(R : double) && is(I : double))
59 static if (isFloatingPoint!R || isFloatingPoint!I)
60 return Complex!(CommonType!(R, I))(re, im);
61 else
62 return Complex!double(re, im);
65 ///
66 @safe pure nothrow unittest
68 auto a = complex(1.0);
69 static assert(is(typeof(a) == Complex!double));
70 assert(a.re == 1.0);
71 assert(a.im == 0.0);
73 auto b = complex(2.0L);
74 static assert(is(typeof(b) == Complex!real));
75 assert(b.re == 2.0L);
76 assert(b.im == 0.0L);
78 auto c = complex(1.0, 2.0);
79 static assert(is(typeof(c) == Complex!double));
80 assert(c.re == 1.0);
81 assert(c.im == 2.0);
83 auto d = complex(3.0, 4.0L);
84 static assert(is(typeof(d) == Complex!real));
85 assert(d.re == 3.0);
86 assert(d.im == 4.0L);
88 auto e = complex(1);
89 static assert(is(typeof(e) == Complex!double));
90 assert(e.re == 1);
91 assert(e.im == 0);
93 auto f = complex(1L, 2);
94 static assert(is(typeof(f) == Complex!double));
95 assert(f.re == 1L);
96 assert(f.im == 2);
98 auto g = complex(3, 4.0L);
99 static assert(is(typeof(g) == Complex!real));
100 assert(g.re == 3);
101 assert(g.im == 4.0L);
105 /** A complex number parametrised by a type `T`, which must be either
106 `float`, `double` or `real`.
108 struct Complex(T)
109 if (isFloatingPoint!T)
111 import std.format.spec : FormatSpec;
112 import std.range.primitives : isOutputRange;
114 /** The real part of the number. */
115 T re;
117 /** The imaginary part of the number. */
118 T im;
120 /** Converts the complex number to a string representation.
122 The second form of this function is usually not called directly;
123 instead, it is used via $(REF format, std,string), as shown in the examples
124 below. Supported format characters are 'e', 'f', 'g', 'a', and 's'.
126 See the $(MREF std, format) and $(REF format, std,string)
127 documentation for more information.
129 string toString() const @safe /* TODO: pure nothrow */
131 import std.exception : assumeUnique;
132 char[] buf;
133 buf.reserve(100);
134 auto fmt = FormatSpec!char("%s");
135 toString((const(char)[] s) { buf ~= s; }, fmt);
136 static trustedAssumeUnique(T)(T t) @trusted { return assumeUnique(t); }
137 return trustedAssumeUnique(buf);
140 static if (is(T == double))
142 @safe unittest
144 auto c = complex(1.2, 3.4);
146 // Vanilla toString formatting:
147 assert(c.toString() == "1.2+3.4i");
149 // Formatting with std.string.format specs: the precision and width
150 // specifiers apply to both the real and imaginary parts of the
151 // complex number.
152 import std.format : format;
153 assert(format("%.2f", c) == "1.20+3.40i");
154 assert(format("%4.1f", c) == " 1.2+ 3.4i");
157 /// ditto
158 void toString(Writer, Char)(scope Writer w, scope const ref FormatSpec!Char formatSpec) const
159 if (isOutputRange!(Writer, const(Char)[]))
161 import std.format.write : formatValue;
162 import std.math.traits : signbit;
163 import std.range.primitives : put;
164 formatValue(w, re, formatSpec);
165 if (signbit(im) == 0)
166 put(w, "+");
167 formatValue(w, im, formatSpec);
168 put(w, "i");
171 @safe pure nothrow @nogc:
173 /** Construct a complex number with the specified real and
174 imaginary parts. In the case where a single argument is passed
175 that is not complex, the imaginary part of the result will be
176 zero.
178 this(R : T)(Complex!R z)
180 re = z.re;
181 im = z.im;
184 /// ditto
185 this(Rx : T, Ry : T)(const Rx x, const Ry y)
187 re = x;
188 im = y;
191 /// ditto
192 this(R : T)(const R r)
194 re = r;
195 im = 0;
198 // ASSIGNMENT OPERATORS
200 // this = complex
201 ref Complex opAssign(R : T)(Complex!R z)
203 re = z.re;
204 im = z.im;
205 return this;
208 // this = numeric
209 ref Complex opAssign(R : T)(const R r)
211 re = r;
212 im = 0;
213 return this;
216 // COMPARISON OPERATORS
218 // this == complex
219 bool opEquals(R : T)(Complex!R z) const
221 return re == z.re && im == z.im;
224 // this == numeric
225 bool opEquals(R : T)(const R r) const
227 return re == r && im == 0;
230 // UNARY OPERATORS
232 // +complex
233 Complex opUnary(string op)() const
234 if (op == "+")
236 return this;
239 // -complex
240 Complex opUnary(string op)() const
241 if (op == "-")
243 return Complex(-re, -im);
246 // BINARY OPERATORS
248 // complex op complex
249 Complex!(CommonType!(T,R)) opBinary(string op, R)(Complex!R z) const
251 alias C = typeof(return);
252 auto w = C(this.re, this.im);
253 return w.opOpAssign!(op)(z);
256 // complex op numeric
257 Complex!(CommonType!(T,R)) opBinary(string op, R)(const R r) const
258 if (isNumeric!R)
260 alias C = typeof(return);
261 auto w = C(this.re, this.im);
262 return w.opOpAssign!(op)(r);
265 // numeric + complex, numeric * complex
266 Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(const R r) const
267 if ((op == "+" || op == "*") && (isNumeric!R))
269 return opBinary!(op)(r);
272 // numeric - complex
273 Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(const R r) const
274 if (op == "-" && isNumeric!R)
276 return Complex(r - re, -im);
279 // numeric / complex
280 Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(const R r) const
281 if (op == "/" && isNumeric!R)
283 version (FastMath)
285 // Compute norm(this)
286 immutable norm = re * re + im * im;
287 // Compute r * conj(this)
288 immutable prod_re = r * re;
289 immutable prod_im = r * -im;
290 // Divide the product by the norm
291 typeof(return) w = void;
292 w.re = prod_re / norm;
293 w.im = prod_im / norm;
294 return w;
296 else
298 import core.math : fabs;
299 typeof(return) w = void;
300 if (fabs(re) < fabs(im))
302 immutable ratio = re/im;
303 immutable rdivd = r/(re*ratio + im);
305 w.re = rdivd*ratio;
306 w.im = -rdivd;
308 else
310 immutable ratio = im/re;
311 immutable rdivd = r/(re + im*ratio);
313 w.re = rdivd;
314 w.im = -rdivd*ratio;
317 return w;
321 // numeric ^^ complex
322 Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(const R lhs) const
323 if (op == "^^" && isNumeric!R)
325 import core.math : cos, sin;
326 import std.math.exponential : exp, log;
327 import std.math.constants : PI;
328 Unqual!(CommonType!(T, R)) ab = void, ar = void;
330 if (lhs >= 0)
332 // r = lhs
333 // theta = 0
334 ab = lhs ^^ this.re;
335 ar = log(lhs) * this.im;
337 else
339 // r = -lhs
340 // theta = PI
341 ab = (-lhs) ^^ this.re * exp(-PI * this.im);
342 ar = PI * this.re + log(-lhs) * this.im;
345 return typeof(return)(ab * cos(ar), ab * sin(ar));
348 // OP-ASSIGN OPERATORS
350 // complex += complex, complex -= complex
351 ref Complex opOpAssign(string op, C)(const C z)
352 if ((op == "+" || op == "-") && is(C R == Complex!R))
354 mixin ("re "~op~"= z.re;");
355 mixin ("im "~op~"= z.im;");
356 return this;
359 // complex *= complex
360 ref Complex opOpAssign(string op, C)(const C z)
361 if (op == "*" && is(C R == Complex!R))
363 auto temp = re*z.re - im*z.im;
364 im = im*z.re + re*z.im;
365 re = temp;
366 return this;
369 // complex /= complex
370 ref Complex opOpAssign(string op, C)(const C z)
371 if (op == "/" && is(C R == Complex!R))
373 version (FastMath)
375 // Compute norm(z)
376 immutable norm = z.re * z.re + z.im * z.im;
377 // Compute this * conj(z)
378 immutable prod_re = re * z.re - im * -z.im;
379 immutable prod_im = im * z.re + re * -z.im;
380 // Divide the product by the norm
381 re = prod_re / norm;
382 im = prod_im / norm;
383 return this;
385 else
387 import core.math : fabs;
388 if (fabs(z.re) < fabs(z.im))
390 immutable ratio = z.re/z.im;
391 immutable denom = z.re*ratio + z.im;
393 immutable temp = (re*ratio + im)/denom;
394 im = (im*ratio - re)/denom;
395 re = temp;
397 else
399 immutable ratio = z.im/z.re;
400 immutable denom = z.re + z.im*ratio;
402 immutable temp = (re + im*ratio)/denom;
403 im = (im - re*ratio)/denom;
404 re = temp;
406 return this;
410 // complex ^^= complex
411 ref Complex opOpAssign(string op, C)(const C z)
412 if (op == "^^" && is(C R == Complex!R))
414 import core.math : cos, sin;
415 import std.math.exponential : exp, log;
416 immutable r = abs(this);
417 immutable t = arg(this);
418 immutable ab = r^^z.re * exp(-t*z.im);
419 immutable ar = t*z.re + log(r)*z.im;
421 re = ab*cos(ar);
422 im = ab*sin(ar);
423 return this;
426 // complex += numeric, complex -= numeric
427 ref Complex opOpAssign(string op, U : T)(const U a)
428 if (op == "+" || op == "-")
430 mixin ("re "~op~"= a;");
431 return this;
434 // complex *= numeric, complex /= numeric
435 ref Complex opOpAssign(string op, U : T)(const U a)
436 if (op == "*" || op == "/")
438 mixin ("re "~op~"= a;");
439 mixin ("im "~op~"= a;");
440 return this;
443 // complex ^^= real
444 ref Complex opOpAssign(string op, R)(const R r)
445 if (op == "^^" && isFloatingPoint!R)
447 import core.math : cos, sin;
448 immutable ab = abs(this)^^r;
449 immutable ar = arg(this)*r;
450 re = ab*cos(ar);
451 im = ab*sin(ar);
452 return this;
455 // complex ^^= int
456 ref Complex opOpAssign(string op, U)(const U i)
457 if (op == "^^" && isIntegral!U)
459 switch (i)
461 case 0:
462 re = 1.0;
463 im = 0.0;
464 break;
465 case 1:
466 // identity; do nothing
467 break;
468 case 2:
469 this *= this;
470 break;
471 case 3:
472 auto z = this;
473 this *= z;
474 this *= z;
475 break;
476 default:
477 this ^^= cast(real) i;
479 return this;
482 /** Returns a complex number instance that correponds in size and in ABI
483 to the associated C compiler's `_Complex` type.
485 auto toNative()
487 import core.stdc.config : c_complex_float, c_complex_double, c_complex_real;
488 static if (is(T == float))
489 return c_complex_float(re, im);
490 else static if (is(T == double))
491 return c_complex_double(re, im);
492 else
493 return c_complex_real(re, im);
497 @safe pure nothrow unittest
499 import std.complex;
500 static import core.math;
501 import std.math;
503 enum EPS = double.epsilon;
504 auto c1 = complex(1.0, 1.0);
506 // Check unary operations.
507 auto c2 = Complex!double(0.5, 2.0);
509 assert(c2 == +c2);
511 assert((-c2).re == -(c2.re));
512 assert((-c2).im == -(c2.im));
513 assert(c2 == -(-c2));
515 // Check complex-complex operations.
516 auto cpc = c1 + c2;
517 assert(cpc.re == c1.re + c2.re);
518 assert(cpc.im == c1.im + c2.im);
520 auto cmc = c1 - c2;
521 assert(cmc.re == c1.re - c2.re);
522 assert(cmc.im == c1.im - c2.im);
524 auto ctc = c1 * c2;
525 assert(isClose(abs(ctc), abs(c1)*abs(c2), EPS));
526 assert(isClose(arg(ctc), arg(c1)+arg(c2), EPS));
528 auto cdc = c1 / c2;
529 assert(isClose(abs(cdc), abs(c1)/abs(c2), EPS));
530 assert(isClose(arg(cdc), arg(c1)-arg(c2), EPS));
532 auto cec = c1^^c2;
533 assert(isClose(cec.re, 0.1152413197994, 1e-12));
534 assert(isClose(cec.im, 0.2187079045274, 1e-12));
536 // Check complex-real operations.
537 double a = 123.456;
539 auto cpr = c1 + a;
540 assert(cpr.re == c1.re + a);
541 assert(cpr.im == c1.im);
543 auto cmr = c1 - a;
544 assert(cmr.re == c1.re - a);
545 assert(cmr.im == c1.im);
547 auto ctr = c1 * a;
548 assert(ctr.re == c1.re*a);
549 assert(ctr.im == c1.im*a);
551 auto cdr = c1 / a;
552 assert(isClose(abs(cdr), abs(c1)/a, EPS));
553 assert(isClose(arg(cdr), arg(c1), EPS));
555 auto cer = c1^^3.0;
556 assert(isClose(abs(cer), abs(c1)^^3, EPS));
557 assert(isClose(arg(cer), arg(c1)*3, EPS));
559 auto rpc = a + c1;
560 assert(rpc == cpr);
562 auto rmc = a - c1;
563 assert(rmc.re == a-c1.re);
564 assert(rmc.im == -c1.im);
566 auto rtc = a * c1;
567 assert(rtc == ctr);
569 auto rdc = a / c1;
570 assert(isClose(abs(rdc), a/abs(c1), EPS));
571 assert(isClose(arg(rdc), -arg(c1), EPS));
573 rdc = a / c2;
574 assert(isClose(abs(rdc), a/abs(c2), EPS));
575 assert(isClose(arg(rdc), -arg(c2), EPS));
577 auto rec1a = 1.0 ^^ c1;
578 assert(rec1a.re == 1.0);
579 assert(rec1a.im == 0.0);
581 auto rec2a = 1.0 ^^ c2;
582 assert(rec2a.re == 1.0);
583 assert(rec2a.im == 0.0);
585 auto rec1b = (-1.0) ^^ c1;
586 assert(isClose(abs(rec1b), std.math.exp(-PI * c1.im), EPS));
587 auto arg1b = arg(rec1b);
588 /* The argument _should_ be PI, but floating-point rounding error
589 * means that in fact the imaginary part is very slightly negative.
591 assert(isClose(arg1b, PI, EPS) || isClose(arg1b, -PI, EPS));
593 auto rec2b = (-1.0) ^^ c2;
594 assert(isClose(abs(rec2b), std.math.exp(-2 * PI), EPS));
595 assert(isClose(arg(rec2b), PI_2, EPS));
597 auto rec3a = 0.79 ^^ complex(6.8, 5.7);
598 auto rec3b = complex(0.79, 0.0) ^^ complex(6.8, 5.7);
599 assert(isClose(rec3a.re, rec3b.re, 1e-14));
600 assert(isClose(rec3a.im, rec3b.im, 1e-14));
602 auto rec4a = (-0.79) ^^ complex(6.8, 5.7);
603 auto rec4b = complex(-0.79, 0.0) ^^ complex(6.8, 5.7);
604 assert(isClose(rec4a.re, rec4b.re, 1e-14));
605 assert(isClose(rec4a.im, rec4b.im, 1e-14));
607 auto rer = a ^^ complex(2.0, 0.0);
608 auto rcheck = a ^^ 2.0;
609 static assert(is(typeof(rcheck) == double));
610 assert(feqrel(rer.re, rcheck) == double.mant_dig);
611 assert(isIdentical(rer.re, rcheck));
612 assert(rer.im == 0.0);
614 auto rer2 = (-a) ^^ complex(2.0, 0.0);
615 rcheck = (-a) ^^ 2.0;
616 assert(feqrel(rer2.re, rcheck) == double.mant_dig);
617 assert(isIdentical(rer2.re, rcheck));
618 assert(isClose(rer2.im, 0.0, 0.0, 1e-10));
620 auto rer3 = (-a) ^^ complex(-2.0, 0.0);
621 rcheck = (-a) ^^ (-2.0);
622 assert(feqrel(rer3.re, rcheck) == double.mant_dig);
623 assert(isIdentical(rer3.re, rcheck));
624 assert(isClose(rer3.im, 0.0, 0.0, EPS));
626 auto rer4 = a ^^ complex(-2.0, 0.0);
627 rcheck = a ^^ (-2.0);
628 assert(feqrel(rer4.re, rcheck) == double.mant_dig);
629 assert(isIdentical(rer4.re, rcheck));
630 assert(rer4.im == 0.0);
632 // Check Complex-int operations.
633 foreach (i; 0 .. 6)
635 auto cei = c1^^i;
636 assert(isClose(abs(cei), abs(c1)^^i, 1e-14));
637 // Use cos() here to deal with arguments that go outside
638 // the (-pi,pi] interval (only an issue for i>3).
639 assert(isClose(core.math.cos(arg(cei)), core.math.cos(arg(c1)*i), 1e-14));
642 // Check operations between different complex types.
643 auto cf = Complex!float(1.0, 1.0);
644 auto cr = Complex!real(1.0, 1.0);
645 auto c1pcf = c1 + cf;
646 auto c1pcr = c1 + cr;
647 static assert(is(typeof(c1pcf) == Complex!double));
648 static assert(is(typeof(c1pcr) == Complex!real));
649 assert(c1pcf.re == c1pcr.re);
650 assert(c1pcf.im == c1pcr.im);
652 auto c1c = c1;
653 auto c2c = c2;
655 c1c /= c1;
656 assert(isClose(c1c.re, 1.0, EPS));
657 assert(isClose(c1c.im, 0.0, 0.0, EPS));
659 c1c = c1;
660 c1c /= c2;
661 assert(isClose(c1c.re, 0.5882352941177, 1e-12));
662 assert(isClose(c1c.im, -0.3529411764706, 1e-12));
664 c2c /= c1;
665 assert(isClose(c2c.re, 1.25, EPS));
666 assert(isClose(c2c.im, 0.75, EPS));
668 c2c = c2;
669 c2c /= c2;
670 assert(isClose(c2c.re, 1.0, EPS));
671 assert(isClose(c2c.im, 0.0, 0.0, EPS));
674 @safe pure nothrow unittest
676 // Initialization
677 Complex!double a = 1;
678 assert(a.re == 1 && a.im == 0);
679 Complex!double b = 1.0;
680 assert(b.re == 1.0 && b.im == 0);
681 Complex!double c = Complex!real(1.0, 2);
682 assert(c.re == 1.0 && c.im == 2);
685 @safe pure nothrow unittest
687 // Assignments and comparisons
688 Complex!double z;
690 z = 1;
691 assert(z == 1);
692 assert(z.re == 1.0 && z.im == 0.0);
694 z = 2.0;
695 assert(z == 2.0);
696 assert(z.re == 2.0 && z.im == 0.0);
698 z = 1.0L;
699 assert(z == 1.0L);
700 assert(z.re == 1.0 && z.im == 0.0);
702 auto w = Complex!real(1.0, 1.0);
703 z = w;
704 assert(z == w);
705 assert(z.re == 1.0 && z.im == 1.0);
707 auto c = Complex!float(2.0, 2.0);
708 z = c;
709 assert(z == c);
710 assert(z.re == 2.0 && z.im == 2.0);
714 /* Makes Complex!(Complex!T) fold to Complex!T.
716 The rationale for this is that just like the real line is a
717 subspace of the complex plane, the complex plane is a subspace
718 of itself. Example of usage:
720 Complex!T addI(T)(T x)
722 return x + Complex!T(0.0, 1.0);
725 The above will work if T is both real and complex.
727 template Complex(T)
728 if (is(T R == Complex!R))
730 alias Complex = T;
733 @safe pure nothrow unittest
735 static assert(is(Complex!(Complex!real) == Complex!real));
737 Complex!T addI(T)(T x)
739 return x + Complex!T(0.0, 1.0);
742 auto z1 = addI(1.0);
743 assert(z1.re == 1.0 && z1.im == 1.0);
745 enum one = Complex!double(1.0, 0.0);
746 auto z2 = addI(one);
747 assert(z1 == z2);
752 Params: z = A complex number.
753 Returns: The absolute value (or modulus) of `z`.
755 T abs(T)(Complex!T z) @safe pure nothrow @nogc
757 import std.math.algebraic : hypot;
758 return hypot(z.re, z.im);
762 @safe pure nothrow unittest
764 static import core.math;
765 assert(abs(complex(1.0)) == 1.0);
766 assert(abs(complex(0.0, 1.0)) == 1.0);
767 assert(abs(complex(1.0L, -2.0L)) == core.math.sqrt(5.0L));
770 @safe pure nothrow @nogc unittest
772 static import core.math;
773 assert(abs(complex(0.0L, -3.2L)) == 3.2L);
774 assert(abs(complex(0.0L, 71.6L)) == 71.6L);
775 assert(abs(complex(-1.0L, 1.0L)) == core.math.sqrt(2.0L));
778 @safe pure nothrow @nogc unittest
780 import std.meta : AliasSeq;
781 static foreach (T; AliasSeq!(float, double, real))
783 static import std.math;
784 Complex!T a = complex(T(-12), T(3));
785 T b = std.math.hypot(a.re, a.im);
786 assert(std.math.isClose(abs(a), b));
787 assert(std.math.isClose(abs(-a), b));
792 Params:
793 z = A complex number.
794 x = A real number.
795 Returns: The squared modulus of `z`.
796 For genericity, if called on a real number, returns its square.
798 T sqAbs(T)(Complex!T z) @safe pure nothrow @nogc
800 return z.re*z.re + z.im*z.im;
804 @safe pure nothrow unittest
806 import std.math.operations : isClose;
807 assert(sqAbs(complex(0.0)) == 0.0);
808 assert(sqAbs(complex(1.0)) == 1.0);
809 assert(sqAbs(complex(0.0, 1.0)) == 1.0);
810 assert(isClose(sqAbs(complex(1.0L, -2.0L)), 5.0L));
811 assert(isClose(sqAbs(complex(-3.0L, 1.0L)), 10.0L));
812 assert(isClose(sqAbs(complex(1.0f,-1.0f)), 2.0f));
815 /// ditto
816 T sqAbs(T)(const T x) @safe pure nothrow @nogc
817 if (isFloatingPoint!T)
819 return x*x;
822 @safe pure nothrow unittest
824 import std.math.operations : isClose;
825 assert(sqAbs(0.0) == 0.0);
826 assert(sqAbs(-1.0) == 1.0);
827 assert(isClose(sqAbs(-3.0L), 9.0L));
828 assert(isClose(sqAbs(-5.0f), 25.0f));
833 Params: z = A complex number.
834 Returns: The argument (or phase) of `z`.
836 T arg(T)(Complex!T z) @safe pure nothrow @nogc
838 import std.math.trigonometry : atan2;
839 return atan2(z.im, z.re);
843 @safe pure nothrow unittest
845 import std.math.constants : PI_2, PI_4;
846 assert(arg(complex(1.0)) == 0.0);
847 assert(arg(complex(0.0L, 1.0L)) == PI_2);
848 assert(arg(complex(1.0L, 1.0L)) == PI_4);
853 * Extracts the norm of a complex number.
854 * Params:
855 * z = A complex number
856 * Returns:
857 * The squared magnitude of `z`.
859 T norm(T)(Complex!T z) @safe pure nothrow @nogc
861 return z.re * z.re + z.im * z.im;
865 @safe pure nothrow @nogc unittest
867 import std.math.operations : isClose;
868 import std.math.constants : PI;
869 assert(norm(complex(3.0, 4.0)) == 25.0);
870 assert(norm(fromPolar(5.0, 0.0)) == 25.0);
871 assert(isClose(norm(fromPolar(5.0L, PI / 6)), 25.0L));
872 assert(isClose(norm(fromPolar(5.0L, 13 * PI / 6)), 25.0L));
877 Params: z = A complex number.
878 Returns: The complex conjugate of `z`.
880 Complex!T conj(T)(Complex!T z) @safe pure nothrow @nogc
882 return Complex!T(z.re, -z.im);
886 @safe pure nothrow unittest
888 assert(conj(complex(1.0)) == complex(1.0));
889 assert(conj(complex(1.0, 2.0)) == complex(1.0, -2.0));
892 @safe pure nothrow @nogc unittest
894 import std.meta : AliasSeq;
895 static foreach (T; AliasSeq!(float, double, real))
897 auto c = Complex!T(7, 3L);
898 assert(conj(c) == Complex!T(7, -3L));
899 auto z = Complex!T(0, -3.2L);
900 assert(conj(z) == -z);
905 * Returns the projection of `z` onto the Riemann sphere.
906 * Params:
907 * z = A complex number
908 * Returns:
909 * The projection of `z` onto the Riemann sphere.
911 Complex!T proj(T)(Complex!T z)
913 static import std.math;
915 if (std.math.isInfinity(z.re) || std.math.isInfinity(z.im))
916 return Complex!T(T.infinity, std.math.copysign(0.0, z.im));
918 return z;
922 @safe pure nothrow unittest
924 assert(proj(complex(1.0)) == complex(1.0));
925 assert(proj(complex(double.infinity, 5.0)) == complex(double.infinity, 0.0));
926 assert(proj(complex(5.0, -double.infinity)) == complex(double.infinity, -0.0));
931 Constructs a complex number given its absolute value and argument.
932 Params:
933 modulus = The modulus
934 argument = The argument
935 Returns: The complex number with the given modulus and argument.
937 Complex!(CommonType!(T, U)) fromPolar(T, U)(const T modulus, const U argument)
938 @safe pure nothrow @nogc
940 import core.math : sin, cos;
941 return Complex!(CommonType!(T,U))
942 (modulus*cos(argument), modulus*sin(argument));
946 @safe pure nothrow unittest
948 import core.math;
949 import std.math.operations : isClose;
950 import std.math.algebraic : sqrt;
951 import std.math.constants : PI_4;
952 auto z = fromPolar(core.math.sqrt(2.0L), PI_4);
953 assert(isClose(z.re, 1.0L));
954 assert(isClose(z.im, 1.0L));
957 version (StdUnittest)
959 // Helper function for comparing two Complex numbers.
960 int ceqrel(T)(const Complex!T x, const Complex!T y) @safe pure nothrow @nogc
962 import std.math.operations : feqrel;
963 const r = feqrel(x.re, y.re);
964 const i = feqrel(x.im, y.im);
965 return r < i ? r : i;
970 Trigonometric functions on complex numbers.
972 Params: z = A complex number.
973 Returns: The sine, cosine and tangent of `z`, respectively.
975 Complex!T sin(T)(Complex!T z) @safe pure nothrow @nogc
977 auto cs = expi(z.re);
978 auto csh = coshisinh(z.im);
979 return typeof(return)(cs.im * csh.re, cs.re * csh.im);
983 @safe pure nothrow unittest
985 static import core.math;
986 assert(sin(complex(0.0)) == 0.0);
987 assert(sin(complex(2.0, 0)) == core.math.sin(2.0));
990 @safe pure nothrow unittest
992 static import core.math;
993 assert(ceqrel(sin(complex(2.0L, 0)), complex(core.math.sin(2.0L))) >= real.mant_dig - 1);
996 /// ditto
997 Complex!T cos(T)(Complex!T z) @safe pure nothrow @nogc
999 auto cs = expi(z.re);
1000 auto csh = coshisinh(z.im);
1001 return typeof(return)(cs.re * csh.re, - cs.im * csh.im);
1005 @safe pure nothrow unittest
1007 static import core.math;
1008 static import std.math;
1009 assert(cos(complex(0.0)) == 1.0);
1010 assert(cos(complex(1.3, 0.0)) == core.math.cos(1.3));
1011 assert(cos(complex(0.0, 5.2)) == std.math.cosh(5.2));
1014 @safe pure nothrow unittest
1016 static import core.math;
1017 static import std.math;
1018 assert(ceqrel(cos(complex(0, 5.2L)), complex(std.math.cosh(5.2L), 0.0L)) >= real.mant_dig - 1);
1019 assert(ceqrel(cos(complex(1.3L)), complex(core.math.cos(1.3L))) >= real.mant_dig - 1);
1022 /// ditto
1023 Complex!T tan(T)(Complex!T z) @safe pure nothrow @nogc
1025 return sin(z) / cos(z);
1029 @safe pure nothrow @nogc unittest
1031 static import std.math;
1033 int ceqrel(T)(const Complex!T x, const Complex!T y) @safe pure nothrow @nogc
1035 import std.math.operations : feqrel;
1036 const r = feqrel(x.re, y.re);
1037 const i = feqrel(x.im, y.im);
1038 return r < i ? r : i;
1040 assert(ceqrel(tan(complex(1.0, 0.0)), complex(std.math.tan(1.0), 0.0)) >= double.mant_dig - 2);
1041 assert(ceqrel(tan(complex(0.0, 1.0)), complex(0.0, std.math.tanh(1.0))) >= double.mant_dig - 2);
1045 Inverse trigonometric functions on complex numbers.
1047 Params: z = A complex number.
1048 Returns: The arcsine, arccosine and arctangent of `z`, respectively.
1050 Complex!T asin(T)(Complex!T z) @safe pure nothrow @nogc
1052 auto ash = asinh(Complex!T(-z.im, z.re));
1053 return Complex!T(ash.im, -ash.re);
1057 @safe pure nothrow unittest
1059 import std.math.operations : isClose;
1060 import std.math.constants : PI;
1061 assert(asin(complex(0.0)) == 0.0);
1062 assert(isClose(asin(complex(0.5L)), PI / 6));
1065 @safe pure nothrow unittest
1067 import std.math.operations : isClose;
1068 import std.math.constants : PI;
1069 version (DigitalMars) {} else // Disabled because of https://issues.dlang.org/show_bug.cgi?id=21376
1070 assert(isClose(asin(complex(0.5f)), float(PI) / 6));
1073 /// ditto
1074 Complex!T acos(T)(Complex!T z) @safe pure nothrow @nogc
1076 static import std.math;
1077 auto as = asin(z);
1078 return Complex!T(T(std.math.PI_2) - as.re, as.im);
1082 @safe pure nothrow unittest
1084 import std.math.operations : isClose;
1085 import std.math.constants : PI;
1086 import std.math.trigonometry : std_math_acos = acos;
1087 assert(acos(complex(0.0)) == std_math_acos(0.0));
1088 assert(isClose(acos(complex(0.5L)), PI / 3));
1091 @safe pure nothrow unittest
1093 import std.math.operations : isClose;
1094 import std.math.constants : PI;
1095 version (DigitalMars) {} else // Disabled because of https://issues.dlang.org/show_bug.cgi?id=21376
1096 assert(isClose(acos(complex(0.5f)), float(PI) / 3));
1099 /// ditto
1100 Complex!T atan(T)(Complex!T z) @safe pure nothrow @nogc
1102 static import std.math;
1103 const T re2 = z.re * z.re;
1104 const T x = 1 - re2 - z.im * z.im;
1106 T num = z.im + 1;
1107 T den = z.im - 1;
1109 num = re2 + num * num;
1110 den = re2 + den * den;
1112 return Complex!T(T(0.5) * std.math.atan2(2 * z.re, x),
1113 T(0.25) * std.math.log(num / den));
1117 @safe pure nothrow @nogc unittest
1119 import std.math.operations : isClose;
1120 import std.math.constants : PI;
1121 assert(atan(complex(0.0)) == 0.0);
1122 assert(isClose(atan(sqrt(complex(3.0L))), PI / 3));
1123 assert(isClose(atan(sqrt(complex(3.0f))), float(PI) / 3));
1127 Hyperbolic trigonometric functions on complex numbers.
1129 Params: z = A complex number.
1130 Returns: The hyperbolic sine, cosine and tangent of `z`, respectively.
1132 Complex!T sinh(T)(Complex!T z) @safe pure nothrow @nogc
1134 static import core.math, std.math;
1135 return Complex!T(std.math.sinh(z.re) * core.math.cos(z.im),
1136 std.math.cosh(z.re) * core.math.sin(z.im));
1140 @safe pure nothrow unittest
1142 static import std.math;
1143 assert(sinh(complex(0.0)) == 0.0);
1144 assert(sinh(complex(1.0L)) == std.math.sinh(1.0L));
1145 assert(sinh(complex(1.0f)) == std.math.sinh(1.0f));
1148 /// ditto
1149 Complex!T cosh(T)(Complex!T z) @safe pure nothrow @nogc
1151 static import core.math, std.math;
1152 return Complex!T(std.math.cosh(z.re) * core.math.cos(z.im),
1153 std.math.sinh(z.re) * core.math.sin(z.im));
1157 @safe pure nothrow unittest
1159 static import std.math;
1160 assert(cosh(complex(0.0)) == 1.0);
1161 assert(cosh(complex(1.0L)) == std.math.cosh(1.0L));
1162 assert(cosh(complex(1.0f)) == std.math.cosh(1.0f));
1165 /// ditto
1166 Complex!T tanh(T)(Complex!T z) @safe pure nothrow @nogc
1168 return sinh(z) / cosh(z);
1172 @safe pure nothrow @nogc unittest
1174 import std.math.operations : isClose;
1175 import std.math.trigonometry : std_math_tanh = tanh;
1176 assert(tanh(complex(0.0)) == 0.0);
1177 assert(isClose(tanh(complex(1.0L)), std_math_tanh(1.0L)));
1178 assert(isClose(tanh(complex(1.0f)), std_math_tanh(1.0f)));
1182 Inverse hyperbolic trigonometric functions on complex numbers.
1184 Params: z = A complex number.
1185 Returns: The hyperbolic arcsine, arccosine and arctangent of `z`, respectively.
1187 Complex!T asinh(T)(Complex!T z) @safe pure nothrow @nogc
1189 auto t = Complex!T((z.re - z.im) * (z.re + z.im) + 1, 2 * z.re * z.im);
1190 return log(sqrt(t) + z);
1194 @safe pure nothrow unittest
1196 import std.math.operations : isClose;
1197 import std.math.trigonometry : std_math_asinh = asinh;
1198 assert(asinh(complex(0.0)) == 0.0);
1199 assert(isClose(asinh(complex(1.0L)), std_math_asinh(1.0L)));
1200 assert(isClose(asinh(complex(1.0f)), std_math_asinh(1.0f)));
1203 /// ditto
1204 Complex!T acosh(T)(Complex!T z) @safe pure nothrow @nogc
1206 return 2 * log(sqrt(T(0.5) * (z + 1)) + sqrt(T(0.5) * (z - 1)));
1210 @safe pure nothrow unittest
1212 import std.math.operations : isClose;
1213 import std.math.trigonometry : std_math_acosh = acosh;
1214 assert(acosh(complex(1.0)) == 0.0);
1215 assert(isClose(acosh(complex(3.0L)), std_math_acosh(3.0L)));
1216 assert(isClose(acosh(complex(3.0f)), std_math_acosh(3.0f)));
1219 /// ditto
1220 Complex!T atanh(T)(Complex!T z) @safe pure nothrow @nogc
1222 static import std.math;
1223 const T im2 = z.im * z.im;
1224 const T x = 1 - im2 - z.re * z.re;
1226 T num = 1 + z.re;
1227 T den = 1 - z.re;
1229 num = im2 + num * num;
1230 den = im2 + den * den;
1232 return Complex!T(T(0.25) * (std.math.log(num) - std.math.log(den)),
1233 T(0.5) * std.math.atan2(2 * z.im, x));
1237 @safe pure nothrow @nogc unittest
1239 import std.math.operations : isClose;
1240 import std.math.trigonometry : std_math_atanh = atanh;
1241 assert(atanh(complex(0.0)) == 0.0);
1242 assert(isClose(atanh(complex(0.5L)), std_math_atanh(0.5L)));
1243 assert(isClose(atanh(complex(0.5f)), std_math_atanh(0.5f)));
1247 Params: y = A real number.
1248 Returns: The value of cos(y) + i sin(y).
1250 Note:
1251 `expi` is included here for convenience and for easy migration of code.
1253 Complex!real expi(real y) @trusted pure nothrow @nogc
1255 import core.math : cos, sin;
1256 return Complex!real(cos(y), sin(y));
1260 @safe pure nothrow unittest
1262 import core.math : cos, sin;
1263 assert(expi(0.0L) == 1.0L);
1264 assert(expi(1.3e5L) == complex(cos(1.3e5L), sin(1.3e5L)));
1268 Params: y = A real number.
1269 Returns: The value of cosh(y) + i sinh(y)
1271 Note:
1272 `coshisinh` is included here for convenience and for easy migration of code.
1274 Complex!real coshisinh(real y) @safe pure nothrow @nogc
1276 static import core.math;
1277 static import std.math;
1278 if (core.math.fabs(y) <= 0.5)
1279 return Complex!real(std.math.cosh(y), std.math.sinh(y));
1280 else
1282 auto z = std.math.exp(y);
1283 auto zi = 0.5 / z;
1284 z = 0.5 * z;
1285 return Complex!real(z + zi, z - zi);
1290 @safe pure nothrow @nogc unittest
1292 import std.math.trigonometry : cosh, sinh;
1293 assert(coshisinh(3.0L) == complex(cosh(3.0L), sinh(3.0L)));
1297 Params: z = A complex number.
1298 Returns: The square root of `z`.
1300 Complex!T sqrt(T)(Complex!T z) @safe pure nothrow @nogc
1302 static import core.math;
1303 typeof(return) c;
1304 real x,y,w,r;
1306 if (z == 0)
1308 c = typeof(return)(0, 0);
1310 else
1312 real z_re = z.re;
1313 real z_im = z.im;
1315 x = core.math.fabs(z_re);
1316 y = core.math.fabs(z_im);
1317 if (x >= y)
1319 r = y / x;
1320 w = core.math.sqrt(x)
1321 * core.math.sqrt(0.5 * (1 + core.math.sqrt(1 + r * r)));
1323 else
1325 r = x / y;
1326 w = core.math.sqrt(y)
1327 * core.math.sqrt(0.5 * (r + core.math.sqrt(1 + r * r)));
1330 if (z_re >= 0)
1332 c = typeof(return)(w, z_im / (w + w));
1334 else
1336 if (z_im < 0)
1337 w = -w;
1338 c = typeof(return)(z_im / (w + w), w);
1341 return c;
1345 @safe pure nothrow unittest
1347 static import core.math;
1348 assert(sqrt(complex(0.0)) == 0.0);
1349 assert(sqrt(complex(1.0L, 0)) == core.math.sqrt(1.0L));
1350 assert(sqrt(complex(-1.0L, 0)) == complex(0, 1.0L));
1351 assert(sqrt(complex(-8.0, -6.0)) == complex(1.0, -3.0));
1354 @safe pure nothrow unittest
1356 import std.math.operations : isClose;
1358 auto c1 = complex(1.0, 1.0);
1359 auto c2 = Complex!double(0.5, 2.0);
1361 auto c1s = sqrt(c1);
1362 assert(isClose(c1s.re, 1.09868411347));
1363 assert(isClose(c1s.im, 0.455089860562));
1365 auto c2s = sqrt(c2);
1366 assert(isClose(c2s.re, 1.13171392428));
1367 assert(isClose(c2s.im, 0.883615530876));
1370 // support %f formatting of complex numbers
1371 // https://issues.dlang.org/show_bug.cgi?id=10881
1372 @safe unittest
1374 import std.format : format;
1376 auto x = complex(1.2, 3.4);
1377 assert(format("%.2f", x) == "1.20+3.40i");
1379 auto y = complex(1.2, -3.4);
1380 assert(format("%.2f", y) == "1.20-3.40i");
1383 @safe unittest
1385 // Test wide string formatting
1386 import std.format.write : formattedWrite;
1387 wstring wformat(T)(string format, Complex!T c)
1389 import std.array : appender;
1390 auto w = appender!wstring();
1391 auto n = formattedWrite(w, format, c);
1392 return w.data;
1395 auto x = complex(1.2, 3.4);
1396 assert(wformat("%.2f", x) == "1.20+3.40i"w);
1399 @safe unittest
1401 // Test ease of use (vanilla toString() should be supported)
1402 assert(complex(1.2, 3.4).toString() == "1.2+3.4i");
1405 @safe pure nothrow @nogc unittest
1407 auto c = complex(3.0L, 4.0L);
1408 c = sqrt(c);
1409 assert(c.re == 2.0L);
1410 assert(c.im == 1.0L);
1414 * Calculates e$(SUPERSCRIPT x).
1415 * Params:
1416 * x = A complex number
1417 * Returns:
1418 * The complex base e exponential of `x`
1420 * $(TABLE_SV
1421 * $(TR $(TH x) $(TH exp(x)))
1422 * $(TR $(TD ($(PLUSMN)0, +0)) $(TD (1, +0)))
1423 * $(TR $(TD (any, +$(INFIN))) $(TD ($(NAN), $(NAN))))
1424 * $(TR $(TD (any, $(NAN)) $(TD ($(NAN), $(NAN)))))
1425 * $(TR $(TD (+$(INFIN), +0)) $(TD (+$(INFIN), +0)))
1426 * $(TR $(TD (-$(INFIN), any)) $(TD ($(PLUSMN)0, cis(x.im))))
1427 * $(TR $(TD (+$(INFIN), any)) $(TD ($(PLUSMN)$(INFIN), cis(x.im))))
1428 * $(TR $(TD (-$(INFIN), +$(INFIN))) $(TD ($(PLUSMN)0, $(PLUSMN)0)))
1429 * $(TR $(TD (+$(INFIN), +$(INFIN))) $(TD ($(PLUSMN)$(INFIN), $(NAN))))
1430 * $(TR $(TD (-$(INFIN), $(NAN))) $(TD ($(PLUSMN)0, $(PLUSMN)0)))
1431 * $(TR $(TD (+$(INFIN), $(NAN))) $(TD ($(PLUSMN)$(INFIN), $(NAN))))
1432 * $(TR $(TD ($(NAN), +0)) $(TD ($(NAN), +0)))
1433 * $(TR $(TD ($(NAN), any)) $(TD ($(NAN), $(NAN))))
1434 * $(TR $(TD ($(NAN), $(NAN))) $(TD ($(NAN), $(NAN))))
1437 Complex!T exp(T)(Complex!T x) @trusted pure nothrow @nogc // TODO: @safe
1439 static import std.math;
1441 // Handle special cases explicitly here, as fromPolar will otherwise
1442 // cause them to return Complex!T(NaN, NaN), or with the wrong sign.
1443 if (std.math.isInfinity(x.re))
1445 if (std.math.isNaN(x.im))
1447 if (std.math.signbit(x.re))
1448 return Complex!T(0, std.math.copysign(0, x.im));
1449 else
1450 return x;
1452 if (std.math.isInfinity(x.im))
1454 if (std.math.signbit(x.re))
1455 return Complex!T(0, std.math.copysign(0, x.im));
1456 else
1457 return Complex!T(T.infinity, -T.nan);
1459 if (x.im == 0.0)
1461 if (std.math.signbit(x.re))
1462 return Complex!T(0.0);
1463 else
1464 return Complex!T(T.infinity);
1467 if (std.math.isNaN(x.re))
1469 if (std.math.isNaN(x.im) || std.math.isInfinity(x.im))
1470 return Complex!T(T.nan, T.nan);
1471 if (x.im == 0.0)
1472 return x;
1474 if (x.re == 0.0)
1476 if (std.math.isNaN(x.im) || std.math.isInfinity(x.im))
1477 return Complex!T(T.nan, T.nan);
1478 if (x.im == 0.0)
1479 return Complex!T(1.0, 0.0);
1482 return fromPolar!(T, T)(std.math.exp(x.re), x.im);
1486 @safe pure nothrow @nogc unittest
1488 import std.math.operations : isClose;
1489 import std.math.constants : PI;
1491 assert(exp(complex(0.0, 0.0)) == complex(1.0, 0.0));
1493 auto a = complex(2.0, 1.0);
1494 assert(exp(conj(a)) == conj(exp(a)));
1496 auto b = exp(complex(0.0L, 1.0L) * PI);
1497 assert(isClose(b, -1.0L, 0.0, 1e-15));
1500 @safe pure nothrow @nogc unittest
1502 import std.math.traits : isNaN, isInfinity;
1504 auto a = exp(complex(0.0, double.infinity));
1505 assert(a.re.isNaN && a.im.isNaN);
1506 auto b = exp(complex(0.0, double.infinity));
1507 assert(b.re.isNaN && b.im.isNaN);
1508 auto c = exp(complex(0.0, double.nan));
1509 assert(c.re.isNaN && c.im.isNaN);
1511 auto d = exp(complex(+double.infinity, 0.0));
1512 assert(d == complex(double.infinity, 0.0));
1513 auto e = exp(complex(-double.infinity, 0.0));
1514 assert(e == complex(0.0));
1515 auto f = exp(complex(-double.infinity, 1.0));
1516 assert(f == complex(0.0));
1517 auto g = exp(complex(+double.infinity, 1.0));
1518 assert(g == complex(double.infinity, double.infinity));
1519 auto h = exp(complex(-double.infinity, +double.infinity));
1520 assert(h == complex(0.0));
1521 auto i = exp(complex(+double.infinity, +double.infinity));
1522 assert(i.re.isInfinity && i.im.isNaN);
1523 auto j = exp(complex(-double.infinity, double.nan));
1524 assert(j == complex(0.0));
1525 auto k = exp(complex(+double.infinity, double.nan));
1526 assert(k.re.isInfinity && k.im.isNaN);
1528 auto l = exp(complex(double.nan, 0));
1529 assert(l.re.isNaN && l.im == 0.0);
1530 auto m = exp(complex(double.nan, 1));
1531 assert(m.re.isNaN && m.im.isNaN);
1532 auto n = exp(complex(double.nan, double.nan));
1533 assert(n.re.isNaN && n.im.isNaN);
1536 @safe pure nothrow @nogc unittest
1538 import std.math.constants : PI;
1539 import std.math.operations : isClose;
1541 auto a = exp(complex(0.0, -PI));
1542 assert(isClose(a, -1.0, 0.0, 1e-15));
1544 auto b = exp(complex(0.0, -2.0 * PI / 3.0));
1545 assert(isClose(b, complex(-0.5L, -0.866025403784438646763L)));
1547 auto c = exp(complex(0.0, PI / 3.0));
1548 assert(isClose(c, complex(0.5L, 0.866025403784438646763L)));
1550 auto d = exp(complex(0.0, 2.0 * PI / 3.0));
1551 assert(isClose(d, complex(-0.5L, 0.866025403784438646763L)));
1553 auto e = exp(complex(0.0, PI));
1554 assert(isClose(e, -1.0, 0.0, 1e-15));
1558 * Calculate the natural logarithm of x.
1559 * The branch cut is along the negative axis.
1560 * Params:
1561 * x = A complex number
1562 * Returns:
1563 * The complex natural logarithm of `x`
1565 * $(TABLE_SV
1566 * $(TR $(TH x) $(TH log(x)))
1567 * $(TR $(TD (-0, +0)) $(TD (-$(INFIN), $(PI))))
1568 * $(TR $(TD (+0, +0)) $(TD (-$(INFIN), +0)))
1569 * $(TR $(TD (any, +$(INFIN))) $(TD (+$(INFIN), $(PI)/2)))
1570 * $(TR $(TD (any, $(NAN))) $(TD ($(NAN), $(NAN))))
1571 * $(TR $(TD (-$(INFIN), any)) $(TD (+$(INFIN), $(PI))))
1572 * $(TR $(TD (+$(INFIN), any)) $(TD (+$(INFIN), +0)))
1573 * $(TR $(TD (-$(INFIN), +$(INFIN))) $(TD (+$(INFIN), 3$(PI)/4)))
1574 * $(TR $(TD (+$(INFIN), +$(INFIN))) $(TD (+$(INFIN), $(PI)/4)))
1575 * $(TR $(TD ($(PLUSMN)$(INFIN), $(NAN))) $(TD (+$(INFIN), $(NAN))))
1576 * $(TR $(TD ($(NAN), any)) $(TD ($(NAN), $(NAN))))
1577 * $(TR $(TD ($(NAN), +$(INFIN))) $(TD (+$(INFIN), $(NAN))))
1578 * $(TR $(TD ($(NAN), $(NAN))) $(TD ($(NAN), $(NAN))))
1581 Complex!T log(T)(Complex!T x) @safe pure nothrow @nogc
1583 static import std.math;
1585 // Handle special cases explicitly here for better accuracy.
1586 // The order here is important, so that the correct path is chosen.
1587 if (std.math.isNaN(x.re))
1589 if (std.math.isInfinity(x.im))
1590 return Complex!T(T.infinity, T.nan);
1591 else
1592 return Complex!T(T.nan, T.nan);
1594 if (std.math.isInfinity(x.re))
1596 if (std.math.isNaN(x.im))
1597 return Complex!T(T.infinity, T.nan);
1598 else if (std.math.isInfinity(x.im))
1600 if (std.math.signbit(x.re))
1601 return Complex!T(T.infinity, std.math.copysign(3.0 * std.math.PI_4, x.im));
1602 else
1603 return Complex!T(T.infinity, std.math.copysign(std.math.PI_4, x.im));
1605 else
1607 if (std.math.signbit(x.re))
1608 return Complex!T(T.infinity, std.math.copysign(std.math.PI, x.im));
1609 else
1610 return Complex!T(T.infinity, std.math.copysign(0.0, x.im));
1613 if (std.math.isNaN(x.im))
1614 return Complex!T(T.nan, T.nan);
1615 if (std.math.isInfinity(x.im))
1616 return Complex!T(T.infinity, std.math.copysign(std.math.PI_2, x.im));
1617 if (x.re == 0.0 && x.im == 0.0)
1619 if (std.math.signbit(x.re))
1620 return Complex!T(-T.infinity, std.math.copysign(std.math.PI, x.im));
1621 else
1622 return Complex!T(-T.infinity, std.math.copysign(0.0, x.im));
1625 return Complex!T(std.math.log(abs(x)), arg(x));
1629 @safe pure nothrow @nogc unittest
1631 import core.math : sqrt;
1632 import std.math.constants : PI;
1633 import std.math.operations : isClose;
1635 auto a = complex(2.0, 1.0);
1636 assert(log(conj(a)) == conj(log(a)));
1638 auto b = 2.0 * log10(complex(0.0, 1.0));
1639 auto c = 4.0 * log10(complex(sqrt(2.0) / 2, sqrt(2.0) / 2));
1640 assert(isClose(b, c, 0.0, 1e-15));
1642 assert(log(complex(-1.0L, 0.0L)) == complex(0.0L, PI));
1643 assert(log(complex(-1.0L, -0.0L)) == complex(0.0L, -PI));
1646 @safe pure nothrow @nogc unittest
1648 import std.math.traits : isNaN, isInfinity;
1649 import std.math.constants : PI, PI_2, PI_4;
1651 auto a = log(complex(-0.0L, 0.0L));
1652 assert(a == complex(-real.infinity, PI));
1653 auto b = log(complex(0.0L, 0.0L));
1654 assert(b == complex(-real.infinity, +0.0L));
1655 auto c = log(complex(1.0L, real.infinity));
1656 assert(c == complex(real.infinity, PI_2));
1657 auto d = log(complex(1.0L, real.nan));
1658 assert(d.re.isNaN && d.im.isNaN);
1660 auto e = log(complex(-real.infinity, 1.0L));
1661 assert(e == complex(real.infinity, PI));
1662 auto f = log(complex(real.infinity, 1.0L));
1663 assert(f == complex(real.infinity, 0.0L));
1664 auto g = log(complex(-real.infinity, real.infinity));
1665 assert(g == complex(real.infinity, 3.0 * PI_4));
1666 auto h = log(complex(real.infinity, real.infinity));
1667 assert(h == complex(real.infinity, PI_4));
1668 auto i = log(complex(real.infinity, real.nan));
1669 assert(i.re.isInfinity && i.im.isNaN);
1671 auto j = log(complex(real.nan, 1.0L));
1672 assert(j.re.isNaN && j.im.isNaN);
1673 auto k = log(complex(real.nan, real.infinity));
1674 assert(k.re.isInfinity && k.im.isNaN);
1675 auto l = log(complex(real.nan, real.nan));
1676 assert(l.re.isNaN && l.im.isNaN);
1679 @safe pure nothrow @nogc unittest
1681 import std.math.constants : PI;
1682 import std.math.operations : isClose;
1684 auto a = log(fromPolar(1.0, PI / 6.0));
1685 assert(isClose(a, complex(0.0L, 0.523598775598298873077L), 0.0, 1e-15));
1687 auto b = log(fromPolar(1.0, PI / 3.0));
1688 assert(isClose(b, complex(0.0L, 1.04719755119659774615L), 0.0, 1e-15));
1690 auto c = log(fromPolar(1.0, PI / 2.0));
1691 assert(isClose(c, complex(0.0L, 1.57079632679489661923L), 0.0, 1e-15));
1693 auto d = log(fromPolar(1.0, 2.0 * PI / 3.0));
1694 assert(isClose(d, complex(0.0L, 2.09439510239319549230L), 0.0, 1e-15));
1696 auto e = log(fromPolar(1.0, 5.0 * PI / 6.0));
1697 assert(isClose(e, complex(0.0L, 2.61799387799149436538L), 0.0, 1e-15));
1699 auto f = log(complex(-1.0L, 0.0L));
1700 assert(isClose(f, complex(0.0L, PI), 0.0, 1e-15));
1704 * Calculate the base-10 logarithm of x.
1705 * Params:
1706 * x = A complex number
1707 * Returns:
1708 * The complex base 10 logarithm of `x`
1710 Complex!T log10(T)(Complex!T x) @safe pure nothrow @nogc
1712 import std.math.constants : LN10;
1714 return log(x) / Complex!T(LN10);
1718 @safe pure nothrow @nogc unittest
1720 import core.math : sqrt;
1721 import std.math.constants : LN10, PI;
1722 import std.math.operations : isClose;
1724 auto a = complex(2.0, 1.0);
1725 assert(log10(a) == log(a) / log(complex(10.0)));
1727 auto b = log10(complex(0.0, 1.0)) * 2.0;
1728 auto c = log10(complex(sqrt(2.0) / 2, sqrt(2.0) / 2)) * 4.0;
1729 assert(isClose(b, c, 0.0, 1e-15));
1732 @safe pure nothrow @nogc unittest
1734 import std.math.constants : LN10, PI;
1735 import std.math.operations : isClose;
1737 auto a = log10(fromPolar(1.0, PI / 6.0));
1738 assert(isClose(a, complex(0.0L, 0.227396058973640224580L), 0.0, 1e-15));
1740 auto b = log10(fromPolar(1.0, PI / 3.0));
1741 assert(isClose(b, complex(0.0L, 0.454792117947280449161L), 0.0, 1e-15));
1743 auto c = log10(fromPolar(1.0, PI / 2.0));
1744 assert(isClose(c, complex(0.0L, 0.682188176920920673742L), 0.0, 1e-15));
1746 auto d = log10(fromPolar(1.0, 2.0 * PI / 3.0));
1747 assert(isClose(d, complex(0.0L, 0.909584235894560898323L), 0.0, 1e-15));
1749 auto e = log10(fromPolar(1.0, 5.0 * PI / 6.0));
1750 assert(isClose(e, complex(0.0L, 1.13698029486820112290L), 0.0, 1e-15));
1752 auto f = log10(complex(-1.0L, 0.0L));
1753 assert(isClose(f, complex(0.0L, 1.36437635384184134748L), 0.0, 1e-15));
1755 assert(ceqrel(log10(complex(-100.0L, 0.0L)), complex(2.0L, PI / LN10)) >= real.mant_dig - 1);
1756 assert(ceqrel(log10(complex(-100.0L, -0.0L)), complex(2.0L, -PI / LN10)) >= real.mant_dig - 1);
1760 * Calculates x$(SUPERSCRIPT n).
1761 * The branch cut is on the negative axis.
1762 * Params:
1763 * x = base
1764 * n = exponent
1765 * Returns:
1766 * `x` raised to the power of `n`
1768 Complex!T pow(T, Int)(Complex!T x, const Int n) @safe pure nothrow @nogc
1769 if (isIntegral!Int)
1771 alias UInt = Unsigned!(Unqual!Int);
1773 UInt m = (n < 0) ? -cast(UInt) n : n;
1774 Complex!T y = (m % 2) ? x : Complex!T(1);
1776 while (m >>= 1)
1778 x *= x;
1779 if (m % 2)
1780 y *= x;
1783 return (n < 0) ? Complex!T(1) / y : y;
1787 @safe pure nothrow @nogc unittest
1789 import std.math.operations : isClose;
1791 auto a = complex(1.0, 2.0);
1792 assert(pow(a, 2) == a * a);
1793 assert(pow(a, 3) == a * a * a);
1794 assert(pow(a, -2) == 1.0 / (a * a));
1795 assert(isClose(pow(a, -3), 1.0 / (a * a * a)));
1798 /// ditto
1799 Complex!T pow(T)(Complex!T x, const T n) @trusted pure nothrow @nogc
1801 static import std.math;
1803 if (x == 0.0)
1804 return Complex!T(0.0);
1806 if (x.im == 0 && x.re > 0.0)
1807 return Complex!T(std.math.pow(x.re, n));
1809 Complex!T t = log(x);
1810 return fromPolar!(T, T)(std.math.exp(n * t.re), n * t.im);
1814 @safe pure nothrow @nogc unittest
1816 import std.math.operations : isClose;
1817 assert(pow(complex(0.0), 2.0) == complex(0.0));
1818 assert(pow(complex(5.0), 2.0) == complex(25.0));
1820 auto a = pow(complex(-1.0, 0.0), 0.5);
1821 assert(isClose(a, complex(0.0, +1.0), 0.0, 1e-16));
1823 auto b = pow(complex(-1.0, -0.0), 0.5);
1824 assert(isClose(b, complex(0.0, -1.0), 0.0, 1e-16));
1827 /// ditto
1828 Complex!T pow(T)(Complex!T x, Complex!T y) @trusted pure nothrow @nogc
1830 return (x == 0) ? Complex!T(0) : exp(y * log(x));
1834 @safe pure nothrow @nogc unittest
1836 import std.math.operations : isClose;
1837 import std.math.exponential : exp;
1838 import std.math.constants : PI;
1839 auto a = complex(0.0);
1840 auto b = complex(2.0);
1841 assert(pow(a, b) == complex(0.0));
1843 auto c = complex(0.0L, 1.0L);
1844 assert(isClose(pow(c, c), exp((-PI) / 2)));
1847 /// ditto
1848 Complex!T pow(T)(const T x, Complex!T n) @trusted pure nothrow @nogc
1850 static import std.math;
1852 return (x > 0.0)
1853 ? fromPolar!(T, T)(std.math.pow(x, n.re), n.im * std.math.log(x))
1854 : pow(Complex!T(x), n);
1858 @safe pure nothrow @nogc unittest
1860 import std.math.operations : isClose;
1861 assert(pow(2.0, complex(0.0)) == complex(1.0));
1862 assert(pow(2.0, complex(5.0)) == complex(32.0));
1864 auto a = pow(-2.0, complex(-1.0));
1865 assert(isClose(a, complex(-0.5), 0.0, 1e-16));
1867 auto b = pow(-0.5, complex(-1.0));
1868 assert(isClose(b, complex(-2.0), 0.0, 1e-15));
1871 @safe pure nothrow @nogc unittest
1873 import std.math.constants : PI;
1874 import std.math.operations : isClose;
1876 auto a = pow(complex(3.0, 4.0), 2);
1877 assert(isClose(a, complex(-7.0, 24.0)));
1879 auto b = pow(complex(3.0, 4.0), PI);
1880 assert(ceqrel(b, complex(-152.91512205297134, 35.547499631917738)) >= double.mant_dig - 3);
1882 auto c = pow(complex(3.0, 4.0), complex(-2.0, 1.0));
1883 assert(ceqrel(c, complex(0.015351734187477306, -0.0038407695456661503)) >= double.mant_dig - 3);
1885 auto d = pow(PI, complex(2.0, -1.0));
1886 assert(ceqrel(d, complex(4.0790296880118296, -8.9872469554541869)) >= double.mant_dig - 1);
1888 auto e = complex(2.0);
1889 assert(ceqrel(pow(e, 3), exp(3 * log(e))) >= double.mant_dig - 1);
1892 @safe pure nothrow @nogc unittest
1894 import std.meta : AliasSeq;
1895 import std.math.traits : floatTraits, RealFormat;
1896 static foreach (T; AliasSeq!(float, double, real))
1898 static if (floatTraits!T.realFormat == RealFormat.ibmExtended)
1900 /* For IBM real, epsilon is too small (since 1.0 plus any double is
1901 representable) to be able to expect results within epsilon * 100. */
1903 else
1905 T eps = T.epsilon * 100;
1907 T a = -1.0;
1908 T b = 0.5;
1909 Complex!T ref1 = pow(complex(a), complex(b));
1910 Complex!T res1 = pow(a, complex(b));
1911 Complex!T res2 = pow(complex(a), b);
1912 assert(abs(ref1 - res1) < eps);
1913 assert(abs(ref1 - res2) < eps);
1914 assert(abs(res1 - res2) < eps);
1916 T c = -3.2;
1917 T d = 1.4;
1918 Complex!T ref2 = pow(complex(a), complex(b));
1919 Complex!T res3 = pow(a, complex(b));
1920 Complex!T res4 = pow(complex(a), b);
1921 assert(abs(ref2 - res3) < eps);
1922 assert(abs(ref2 - res4) < eps);
1923 assert(abs(res3 - res4) < eps);
1928 @safe pure nothrow @nogc unittest
1930 import std.meta : AliasSeq;
1931 static foreach (T; AliasSeq!(float, double, real))
1933 auto c = Complex!T(123, 456);
1934 auto n = c.toNative();
1935 assert(c.re == n.re && c.im == n.im);