c++: Fix ICE with #embed/RAW_DATA_CST after list conversion [PR118671]
[gcc.git] / libstdc++-v3 / testsuite / util / testsuite_random.h
blob533be4fc29b21368fc849f4f0d2528486b762796
1 // -*- C++ -*-
3 // Copyright (C) 2011-2025 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the terms
7 // of the GNU General Public License as published by the Free Software
8 // Foundation; either version 3, or (at your option) any later
9 // version.
11 // This library is distributed in the hope that it will be useful, but
12 // WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 // General Public License for more details.
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING3. If not see
18 // <http://www.gnu.org/licenses/>.
20 /**
21 * @file testsuite_random.h
24 #ifndef _GLIBCXX_TESTSUITE_RANDOM_H
25 #define _GLIBCXX_TESTSUITE_RANDOM_H
27 #include <cmath>
28 #include <initializer_list>
29 #include <system_error>
30 #include <testsuite_hooks.h>
32 namespace __gnu_test
34 // Adapted for libstdc++ from GNU gsl-1.14/randist/test.c
35 // Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2010
36 // James Theiler, Brian Gough
37 template<unsigned long BINS = 100,
38 unsigned long N = 100000,
39 typename Distribution, typename Pdf>
40 void
41 testDiscreteDist(Distribution& f, Pdf pdf)
43 double count[BINS], p[BINS];
45 for (unsigned long i = 0; i < BINS; i++)
46 count[i] = 0;
48 for (unsigned long i = 0; i < N; i++)
50 auto r = f();
51 if (r >= 0 && (unsigned long)r < BINS)
52 count[r]++;
55 for (unsigned long i = 0; i < BINS; i++)
56 p[i] = pdf(i);
58 for (unsigned long i = 0; i < BINS; i++)
60 bool status_i;
61 double d = std::abs(count[i] - N * p[i]);
63 if (p[i] != 0)
65 double s = d / std::sqrt(N * p[i]);
66 status_i = (s > 5) && (d > 1);
68 else
69 status_i = (count[i] != 0);
71 VERIFY( !status_i );
75 inline double
76 bernoulli_pdf(int k, double p)
78 if (k == 0)
79 return 1 - p;
80 else if (k == 1)
81 return p;
82 else
83 return 0.0;
86 #ifdef _GLIBCXX_USE_C99_MATH_FUNCS
87 inline double
88 binomial_pdf(int k, int n, double p)
90 if (k < 0 || k > n)
91 return 0.0;
92 else
94 double q;
96 if (p == 0.0)
97 q = (k == 0) ? 1.0 : 0.0;
98 else if (p == 1.0)
99 q = (k == n) ? 1.0 : 0.0;
100 else
102 double ln_Cnk = (std::lgamma(n + 1.0) - std::lgamma(k + 1.0)
103 - std::lgamma(n - k + 1.0));
104 q = ln_Cnk + k * std::log(p) + (n - k) * std::log1p(-p);
105 q = std::exp(q);
108 return q;
111 #endif
113 inline double
114 discrete_pdf(int k, std::initializer_list<double> wl)
116 if (!wl.size())
118 static std::initializer_list<double> one = { 1.0 };
119 wl = one;
122 if (k < 0 || (std::size_t)k >= wl.size())
123 return 0.0;
124 else
126 double sum = 0.0;
127 for (auto it = wl.begin(); it != wl.end(); ++it)
128 sum += *it;
129 return wl.begin()[k] / sum;
133 inline double
134 geometric_pdf(int k, double p)
136 if (k < 0)
137 return 0.0;
138 else if (k == 0)
139 return p;
140 else
141 return p * std::pow(1 - p, k);
144 #ifdef _GLIBCXX_USE_C99_MATH_FUNCS
145 inline double
146 negative_binomial_pdf(int k, int n, double p)
148 if (k < 0)
149 return 0.0;
150 else
152 double f = std::lgamma(k + (double)n);
153 double a = std::lgamma(n);
154 double b = std::lgamma(k + 1.0);
156 return std::exp(f - a - b) * std::pow(p, n) * std::pow(1 - p, k);
160 inline double
161 poisson_pdf(int k, double mu)
163 if (k < 0)
164 return 0.0;
165 else
167 double lf = std::lgamma(k + 1.0);
168 return std::exp(std::log(mu) * k - lf - mu);
171 #endif
173 inline double
174 uniform_int_pdf(int k, int a, int b)
176 if (k < 0 || k < a || k > b)
177 return 0.0;
178 else
179 return 1.0 / (b - a + 1.0);
182 #ifdef _GLIBCXX_USE_C99_MATH_FUNCS
183 inline double
184 lbincoef(int n, int k)
186 return std::lgamma(double(1 + n))
187 - std::lgamma(double(1 + k))
188 - std::lgamma(double(1 + n - k));
191 inline double
192 hypergeometric_pdf(int k, int N, int K, int n)
194 if (k < 0 || k < std::max(0, n - (N - K)) || k > std::min(K, n))
195 return 0.0;
196 else
197 return lbincoef(K, k) + lbincoef(N - K, n - k) - lbincoef(N, n);
199 #endif
201 // Check whether TOKEN can construct a std::random_device successfully.
202 inline bool
203 random_device_available(const std::string& token) noexcept
205 try {
206 std::random_device dev(token);
207 return true;
208 } catch (const std::system_error& /* See PR libstdc++/105081 */) {
209 return false;
213 } // namespace __gnu_test
215 #endif // #ifndef _GLIBCXX_TESTSUITE_RANDOM_H