Backed out changeset b71c8c052463 (bug 1943846) for causing mass failures. CLOSED...
[gecko.git] / ipc / chromium / src / base / message_pump_win.cc
blobf0caa1db6c73d77b1208e40fd2aa8c51b1e24d09
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 // Copyright (c) 2009 The Chromium Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style license that can be
5 // found in the LICENSE file.
7 #include "base/message_pump_win.h"
9 #include <math.h>
11 #include "base/message_loop.h"
12 #include "base/histogram.h"
13 #include "base/win_util.h"
14 #include "mozilla/Maybe.h"
15 #include "mozilla/ProfilerLabels.h"
16 #include "mozilla/ProfilerThreadSleep.h"
17 #include "WinUtils.h"
19 using base::Time;
21 namespace base {
23 static const wchar_t kWndClass[] = L"Chrome_MessagePumpWindow";
25 // Message sent to get an additional time slice for pumping (processing) another
26 // task (a series of such messages creates a continuous task pump).
27 static const int kMsgHaveWork = WM_USER + 1;
29 //-----------------------------------------------------------------------------
30 // MessagePumpWin public:
32 void MessagePumpWin::AddObserver(Observer* observer) {
33 observers_.AddObserver(observer);
36 void MessagePumpWin::RemoveObserver(Observer* observer) {
37 observers_.RemoveObserver(observer);
40 void MessagePumpWin::WillProcessMessage(const MSG& msg) {
41 FOR_EACH_OBSERVER(Observer, observers_, WillProcessMessage(msg));
44 void MessagePumpWin::DidProcessMessage(const MSG& msg) {
45 FOR_EACH_OBSERVER(Observer, observers_, DidProcessMessage(msg));
48 void MessagePumpWin::RunWithDispatcher(Delegate* delegate,
49 Dispatcher* dispatcher) {
50 RunState s;
51 s.delegate = delegate;
52 s.dispatcher = dispatcher;
53 s.should_quit = false;
54 s.run_depth = state_ ? state_->run_depth + 1 : 1;
56 RunState* previous_state = state_;
57 state_ = &s;
59 DoRunLoop();
61 state_ = previous_state;
64 void MessagePumpWin::Quit() {
65 DCHECK(state_);
66 state_->should_quit = true;
69 //-----------------------------------------------------------------------------
70 // MessagePumpWin protected:
72 int MessagePumpWin::GetCurrentDelay() const {
73 if (delayed_work_time_.is_null()) return -1;
75 // Be careful here. TimeDelta has a precision of microseconds, but we want a
76 // value in milliseconds. If there are 5.5ms left, should the delay be 5 or
77 // 6? It should be 6 to avoid executing delayed work too early.
78 double timeout =
79 ceil((delayed_work_time_ - TimeTicks::Now()).InMillisecondsF());
81 // If this value is negative, then we need to run delayed work soon.
82 int delay = static_cast<int>(timeout);
83 if (delay < 0) delay = 0;
85 return delay;
88 //-----------------------------------------------------------------------------
89 // MessagePumpForUI public:
91 MessagePumpForUI::MessagePumpForUI() { InitMessageWnd(); }
93 MessagePumpForUI::~MessagePumpForUI() {
94 DestroyWindow(message_hwnd_);
95 UnregisterClass(kWndClass, GetModuleHandle(NULL));
98 void MessagePumpForUI::ScheduleWork() {
99 if (InterlockedExchange(&have_work_, 1))
100 return; // Someone else continued the pumping.
102 // Make sure the MessagePump does some work for us.
103 PostMessage(message_hwnd_, kMsgHaveWork, reinterpret_cast<WPARAM>(this), 0);
105 // In order to wake up any cross-process COM calls which may currently be
106 // pending on the main thread, we also have to post a UI message.
107 PostMessage(message_hwnd_, WM_NULL, 0, 0);
110 void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
112 // We would *like* to provide high resolution timers. Windows timers using
113 // SetTimer() have a 10ms granularity. We have to use WM_TIMER as a wakeup
114 // mechanism because the application can enter modal windows loops where it
115 // is not running our MessageLoop; the only way to have our timers fire in
116 // these cases is to post messages there.
118 // To provide sub-10ms timers, we process timers directly from our run loop.
119 // For the common case, timers will be processed there as the run loop does
120 // its normal work. However, we *also* set the system timer so that WM_TIMER
121 // events fire. This mops up the case of timers not being able to work in
122 // modal message loops. It is possible for the SetTimer to pop and have no
123 // pending timers, because they could have already been processed by the
124 // run loop itself.
126 // We use a single SetTimer corresponding to the timer that will expire
127 // soonest. As new timers are created and destroyed, we update SetTimer.
128 // Getting a spurrious SetTimer event firing is benign, as we'll just be
129 // processing an empty timer queue.
131 delayed_work_time_ = delayed_work_time;
133 int delay_msec = GetCurrentDelay();
134 DCHECK(delay_msec >= 0);
135 if (delay_msec < USER_TIMER_MINIMUM) delay_msec = USER_TIMER_MINIMUM;
137 // Create a WM_TIMER event that will wake us up to check for any pending
138 // timers (in case we are running within a nested, external sub-pump).
139 SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this), delay_msec, NULL);
142 void MessagePumpForUI::PumpOutPendingPaintMessages() {
143 // If we are being called outside of the context of Run, then don't try to do
144 // any work.
145 if (!state_) return;
147 // Create a mini-message-pump to force immediate processing of only Windows
148 // WM_PAINT messages. Don't provide an infinite loop, but do enough peeking
149 // to get the job done. Actual common max is 4 peeks, but we'll be a little
150 // safe here.
151 const int kMaxPeekCount = 20;
152 int peek_count;
153 for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count) {
154 MSG msg;
155 if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT)) break;
156 ProcessMessageHelper(msg);
157 if (state_->should_quit) break;
161 //-----------------------------------------------------------------------------
162 // MessagePumpForUI private:
164 // static
165 LRESULT CALLBACK MessagePumpForUI::WndProcThunk(HWND hwnd, UINT message,
166 WPARAM wparam, LPARAM lparam) {
167 switch (message) {
168 case kMsgHaveWork:
169 reinterpret_cast<MessagePumpForUI*>(wparam)->HandleWorkMessage();
170 break;
171 case WM_TIMER:
172 reinterpret_cast<MessagePumpForUI*>(wparam)->HandleTimerMessage();
173 break;
175 return DefWindowProc(hwnd, message, wparam, lparam);
178 void MessagePumpForUI::DoRunLoop() {
179 // IF this was just a simple PeekMessage() loop (servicing all possible work
180 // queues), then Windows would try to achieve the following order according
181 // to MSDN documentation about PeekMessage with no filter):
182 // * Sent messages
183 // * Posted messages
184 // * Sent messages (again)
185 // * WM_PAINT messages
186 // * WM_TIMER messages
188 // Summary: none of the above classes is starved, and sent messages has twice
189 // the chance of being processed (i.e., reduced service time).
191 for (;;) {
192 // If we do any work, we may create more messages etc., and more work may
193 // possibly be waiting in another task group. When we (for example)
194 // ProcessNextWindowsMessage(), there is a good chance there are still more
195 // messages waiting. On the other hand, when any of these methods return
196 // having done no work, then it is pretty unlikely that calling them again
197 // quickly will find any work to do. Finally, if they all say they had no
198 // work, then it is a good time to consider sleeping (waiting) for more
199 // work.
201 bool more_work_is_plausible = ProcessNextWindowsMessage();
202 if (state_->should_quit) break;
204 more_work_is_plausible |= state_->delegate->DoWork();
205 if (state_->should_quit) break;
207 more_work_is_plausible |=
208 state_->delegate->DoDelayedWork(&delayed_work_time_);
209 // If we did not process any delayed work, then we can assume that our
210 // existing WM_TIMER if any will fire when delayed work should run. We
211 // don't want to disturb that timer if it is already in flight. However,
212 // if we did do all remaining delayed work, then lets kill the WM_TIMER.
213 if (more_work_is_plausible && delayed_work_time_.is_null())
214 KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
215 if (state_->should_quit) break;
217 if (more_work_is_plausible) continue;
219 more_work_is_plausible = state_->delegate->DoIdleWork();
220 if (state_->should_quit) break;
222 if (more_work_is_plausible) continue;
224 WaitForWork(); // Wait (sleep) until we have work to do again.
228 void MessagePumpForUI::InitMessageWnd() {
229 HINSTANCE hinst = GetModuleHandle(NULL);
231 WNDCLASSEX wc = {0};
232 wc.cbSize = sizeof(wc);
233 wc.lpfnWndProc = WndProcThunk;
234 wc.hInstance = hinst;
235 wc.lpszClassName = kWndClass;
236 RegisterClassEx(&wc);
238 message_hwnd_ =
239 CreateWindow(kWndClass, 0, 0, 0, 0, 0, 0, HWND_MESSAGE, 0, hinst, 0);
240 DCHECK(message_hwnd_);
243 void MessagePumpForUI::WaitForWork() {
244 AUTO_PROFILER_LABEL("MessagePumpForUI::WaitForWork", IDLE);
246 // Wait until a message is available, up to the time needed by the timer
247 // manager to fire the next set of timers.
248 int delay = GetCurrentDelay();
249 if (delay < 0) // Negative value means no timers waiting.
250 delay = INFINITE;
252 mozilla::widget::WinUtils::WaitForMessage(delay);
255 void MessagePumpForUI::HandleWorkMessage() {
256 // If we are being called outside of the context of Run, then don't try to do
257 // any work. This could correspond to a MessageBox call or something of that
258 // sort.
259 if (!state_) {
260 // Since we handled a kMsgHaveWork message, we must still update this flag.
261 InterlockedExchange(&have_work_, 0);
262 return;
265 // Let whatever would have run had we not been putting messages in the queue
266 // run now. This is an attempt to make our dummy message not starve other
267 // messages that may be in the Windows message queue.
268 ProcessPumpReplacementMessage();
270 // Now give the delegate a chance to do some work. He'll let us know if he
271 // needs to do more work.
272 if (state_->delegate->DoWork()) ScheduleWork();
275 void MessagePumpForUI::HandleTimerMessage() {
276 KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
278 // If we are being called outside of the context of Run, then don't do
279 // anything. This could correspond to a MessageBox call or something of
280 // that sort.
281 if (!state_) return;
283 state_->delegate->DoDelayedWork(&delayed_work_time_);
284 if (!delayed_work_time_.is_null()) {
285 // A bit gratuitous to set delayed_work_time_ again, but oh well.
286 ScheduleDelayedWork(delayed_work_time_);
290 bool MessagePumpForUI::ProcessNextWindowsMessage() {
291 // If there are sent messages in the queue then PeekMessage internally
292 // dispatches the message and returns false. We return true in this
293 // case to ensure that the message loop peeks again instead of calling
294 // MsgWaitForMultipleObjectsEx again.
295 bool sent_messages_in_queue = false;
296 DWORD queue_status = ::GetQueueStatus(QS_SENDMESSAGE);
297 if (HIWORD(queue_status) & QS_SENDMESSAGE) sent_messages_in_queue = true;
299 MSG msg;
300 if (::PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
301 return ProcessMessageHelper(msg);
303 return sent_messages_in_queue;
306 bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) {
307 if (WM_QUIT == msg.message) {
308 // WM_QUIT is the standard way to exit a ::GetMessage() loop. Our
309 // MessageLoop has its own quit mechanism, so WM_QUIT is unexpected and
310 // should be ignored.
311 return true;
314 // While running our main message pump, we discard kMsgHaveWork messages.
315 if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_)
316 return ProcessPumpReplacementMessage();
318 WillProcessMessage(msg);
320 if (state_->dispatcher) {
321 if (!state_->dispatcher->Dispatch(msg)) state_->should_quit = true;
322 } else {
323 ::TranslateMessage(&msg);
324 ::DispatchMessage(&msg);
327 DidProcessMessage(msg);
328 return true;
331 bool MessagePumpForUI::ProcessPumpReplacementMessage() {
332 // When we encounter a kMsgHaveWork message, this method is called to peek
333 // and process a replacement message, such as a WM_PAINT or WM_TIMER. The
334 // goal is to make the kMsgHaveWork as non-intrusive as possible, even though
335 // a continuous stream of such messages are posted. This method carefully
336 // peeks a message while there is no chance for a kMsgHaveWork to be pending,
337 // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to
338 // possibly be posted), and finally dispatches that peeked replacement. Note
339 // that the re-post of kMsgHaveWork may be asynchronous to this thread!!
341 MSG msg;
342 bool have_message = false;
343 if (MessageLoop::current()->os_modal_loop()) {
344 // We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above.
345 have_message = ::PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE) ||
346 ::PeekMessage(&msg, NULL, WM_TIMER, WM_TIMER, PM_REMOVE);
347 } else {
348 have_message = (0 != ::PeekMessage(&msg, NULL, 0, 0, PM_REMOVE));
350 if (have_message && msg.message == WM_NULL)
351 have_message = (0 != ::PeekMessage(&msg, NULL, 0, 0, PM_REMOVE));
354 DCHECK(!have_message || kMsgHaveWork != msg.message ||
355 msg.hwnd != message_hwnd_);
357 // Since we discarded a kMsgHaveWork message, we must update the flag.
358 int old_have_work = InterlockedExchange(&have_work_, 0);
359 DCHECK(old_have_work);
361 // We don't need a special time slice if we didn't have_message to process.
362 if (!have_message) return false;
364 if (WM_QUIT == msg.message) {
365 // If we're in a nested ::GetMessage() loop then we must let that loop see
366 // the WM_QUIT in order for it to exit. If we're in DoRunLoop then the re-
367 // posted WM_QUIT will be either ignored, or handled, by
368 // ProcessMessageHelper() called directly from ProcessNextWindowsMessage().
369 ::PostQuitMessage(static_cast<int>(msg.wParam));
370 // Note: we *must not* ScheduleWork() here as WM_QUIT is a low-priority
371 // message on Windows (it is only returned by ::PeekMessage() when idle) :
372 // https://blogs.msdn.microsoft.com/oldnewthing/20051104-33/?p=33453. As
373 // such posting a kMsgHaveWork message via ScheduleWork() would cause an
374 // infinite loop (kMsgHaveWork message handled first means we end up here
375 // again and repost WM_QUIT+ScheduleWork() again, etc.). Not leaving a
376 // kMsgHaveWork message behind however is also problematic as unwinding
377 // multiple layers of nested ::GetMessage() loops can result in starving
378 // application tasks. TODO(https://crbug.com/890016) : Fix this.
380 // The return value is mostly irrelevant but return true like we would after
381 // processing a QuitClosure() task.
382 return true;
385 // Guarantee we'll get another time slice in the case where we go into native
386 // windows code. This ScheduleWork() may hurt performance a tiny bit when
387 // tasks appear very infrequently, but when the event queue is busy, the
388 // kMsgHaveWork events get (percentage wise) rarer and rarer.
389 ScheduleWork();
390 return ProcessMessageHelper(msg);
393 //-----------------------------------------------------------------------------
394 // MessagePumpForIO public:
396 MessagePumpForIO::MessagePumpForIO() {
397 port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, 0, 1));
398 DCHECK(port_.IsValid());
401 void MessagePumpForIO::ScheduleWork() {
402 if (InterlockedExchange(&have_work_, 1))
403 return; // Someone else continued the pumping.
405 // Make sure the MessagePump does some work for us.
406 BOOL ret =
407 PostQueuedCompletionStatus(port_, 0, reinterpret_cast<ULONG_PTR>(this),
408 reinterpret_cast<OVERLAPPED*>(this));
409 DCHECK(ret);
412 void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
413 // We know that we can't be blocked right now since this method can only be
414 // called on the same thread as Run, so we only need to update our record of
415 // how long to sleep when we do sleep.
416 delayed_work_time_ = delayed_work_time;
419 void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle,
420 IOHandler* handler) {
421 ULONG_PTR key = reinterpret_cast<ULONG_PTR>(handler);
422 HANDLE port = CreateIoCompletionPort(file_handle, port_, key, 1);
423 DCHECK(port == port_.Get());
426 //-----------------------------------------------------------------------------
427 // MessagePumpForIO private:
429 void MessagePumpForIO::DoRunLoop() {
430 for (;;) {
431 // If we do any work, we may create more messages etc., and more work may
432 // possibly be waiting in another task group. When we (for example)
433 // WaitForIOCompletion(), there is a good chance there are still more
434 // messages waiting. On the other hand, when any of these methods return
435 // having done no work, then it is pretty unlikely that calling them
436 // again quickly will find any work to do. Finally, if they all say they
437 // had no work, then it is a good time to consider sleeping (waiting) for
438 // more work.
440 bool more_work_is_plausible = state_->delegate->DoWork();
441 if (state_->should_quit) break;
443 more_work_is_plausible |= WaitForIOCompletion(0, NULL);
444 if (state_->should_quit) break;
446 more_work_is_plausible |=
447 state_->delegate->DoDelayedWork(&delayed_work_time_);
448 if (state_->should_quit) break;
450 if (more_work_is_plausible) continue;
452 more_work_is_plausible = state_->delegate->DoIdleWork();
453 if (state_->should_quit) break;
455 if (more_work_is_plausible) continue;
457 WaitForWork(); // Wait (sleep) until we have work to do again.
461 // Wait until IO completes, up to the time needed by the timer manager to fire
462 // the next set of timers.
463 void MessagePumpForIO::WaitForWork() {
464 // We do not support nested IO message loops. This is to avoid messy
465 // recursion problems.
466 DCHECK(state_->run_depth == 1) << "Cannot nest an IO message loop!";
468 int timeout = GetCurrentDelay();
469 if (timeout < 0) // Negative value means no timers waiting.
470 timeout = INFINITE;
472 WaitForIOCompletion(timeout, NULL);
475 bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
476 IOItem item;
477 if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) {
478 // We have to ask the system for another IO completion.
479 if (!GetIOItem(timeout, &item)) return false;
481 if (ProcessInternalIOItem(item)) return true;
484 if (item.context->handler) {
485 if (filter && item.handler != filter) {
486 // Save this item for later
487 completed_io_.push_back(item);
488 } else {
489 DCHECK(item.context->handler == item.handler);
490 item.handler->OnIOCompleted(item.context, item.bytes_transfered,
491 item.error);
493 } else {
494 // The handler must be gone by now, just cleanup the mess.
495 delete item.context;
497 return true;
500 // Asks the OS for another IO completion result.
501 bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) {
502 memset(item, 0, sizeof(*item));
503 ULONG_PTR key = 0;
504 OVERLAPPED* overlapped = NULL;
505 BOOL success;
507 AUTO_PROFILER_LABEL("MessagePumpForIO::GetIOItem::Wait", IDLE);
508 #ifdef MOZ_GECKO_PROFILER
509 mozilla::Maybe<mozilla::AutoProfilerThreadSleep> profilerThreadSleep;
510 if (timeout != 0) {
511 profilerThreadSleep.emplace();
513 #endif
514 success = GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered,
515 &key, &overlapped, timeout);
517 if (!success) {
518 if (!overlapped) return false; // Nothing in the queue.
519 item->error = GetLastError();
520 item->bytes_transfered = 0;
523 item->handler = reinterpret_cast<IOHandler*>(key);
524 item->context = reinterpret_cast<IOContext*>(overlapped);
525 return true;
528 bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) {
529 if (this == reinterpret_cast<MessagePumpForIO*>(item.context) &&
530 this == reinterpret_cast<MessagePumpForIO*>(item.handler)) {
531 // This is our internal completion.
532 DCHECK(!item.bytes_transfered);
533 InterlockedExchange(&have_work_, 0);
534 return true;
536 return false;
539 // Returns a completion item that was previously received.
540 bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) {
541 DCHECK(!completed_io_.empty());
542 for (std::list<IOItem>::iterator it = completed_io_.begin();
543 it != completed_io_.end(); ++it) {
544 if (!filter || it->handler == filter) {
545 *item = *it;
546 completed_io_.erase(it);
547 return true;
550 return false;
553 } // namespace base