Backed out 2 changesets (bug 1943998) for causing wd failures @ phases.py CLOSED...
[gecko.git] / ipc / chromium / src / base / stl_util-inl.h
blob034c16049ccbabaf4d596bf5a64d7ba27cc875af
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style license that can be
5 // found in the LICENSE file.
7 // STL utility functions. Usually, these replace built-in, but slow(!),
8 // STL functions with more efficient versions.
10 #ifndef BASE_STL_UTIL_INL_H_
11 #define BASE_STL_UTIL_INL_H_
13 #include <string.h> // for memcpy
14 #include <functional>
15 #include <set>
16 #include <string>
17 #include <vector>
18 #include <cassert>
20 // Clear internal memory of an STL object.
21 // STL clear()/reserve(0) does not always free internal memory allocated
22 // This function uses swap/destructor to ensure the internal memory is freed.
23 template <class T>
24 void STLClearObject(T* obj) {
25 T tmp;
26 tmp.swap(*obj);
27 obj->reserve(0); // this is because sometimes "T tmp" allocates objects with
28 // memory (arena implementation?). use reserve()
29 // to clear() even if it doesn't always work
32 // Reduce memory usage on behalf of object if it is using more than
33 // "bytes" bytes of space. By default, we clear objects over 1MB.
34 template <class T>
35 inline void STLClearIfBig(T* obj, size_t limit = 1 << 20) {
36 if (obj->capacity() >= limit) {
37 STLClearObject(obj);
38 } else {
39 obj->clear();
43 // Reserve space for STL object.
44 // STL's reserve() will always copy.
45 // This function avoid the copy if we already have capacity
46 template <class T>
47 void STLReserveIfNeeded(T* obj, int new_size) {
48 if (obj->capacity() < new_size) // increase capacity
49 obj->reserve(new_size);
50 else if (obj->size() > new_size) // reduce size
51 obj->resize(new_size);
54 // STLDeleteContainerPointers()
55 // For a range within a container of pointers, calls delete
56 // (non-array version) on these pointers.
57 // NOTE: for these three functions, we could just implement a DeleteObject
58 // functor and then call for_each() on the range and functor, but this
59 // requires us to pull in all of algorithm.h, which seems expensive.
60 // For hash_[multi]set, it is important that this deletes behind the iterator
61 // because the hash_set may call the hash function on the iterator when it is
62 // advanced, which could result in the hash function trying to deference a
63 // stale pointer.
64 template <class ForwardIterator>
65 void STLDeleteContainerPointers(ForwardIterator begin, ForwardIterator end) {
66 while (begin != end) {
67 ForwardIterator temp = begin;
68 ++begin;
69 delete *temp;
73 // STLDeleteContainerPairPointers()
74 // For a range within a container of pairs, calls delete
75 // (non-array version) on BOTH items in the pairs.
76 // NOTE: Like STLDeleteContainerPointers, it is important that this deletes
77 // behind the iterator because if both the key and value are deleted, the
78 // container may call the hash function on the iterator when it is advanced,
79 // which could result in the hash function trying to dereference a stale
80 // pointer.
81 template <class ForwardIterator>
82 void STLDeleteContainerPairPointers(ForwardIterator begin,
83 ForwardIterator end) {
84 while (begin != end) {
85 ForwardIterator temp = begin;
86 ++begin;
87 delete temp->first;
88 delete temp->second;
92 // STLDeleteContainerPairFirstPointers()
93 // For a range within a container of pairs, calls delete (non-array version)
94 // on the FIRST item in the pairs.
95 // NOTE: Like STLDeleteContainerPointers, deleting behind the iterator.
96 template <class ForwardIterator>
97 void STLDeleteContainerPairFirstPointers(ForwardIterator begin,
98 ForwardIterator end) {
99 while (begin != end) {
100 ForwardIterator temp = begin;
101 ++begin;
102 delete temp->first;
106 // STLDeleteContainerPairSecondPointers()
107 // For a range within a container of pairs, calls delete
108 // (non-array version) on the SECOND item in the pairs.
109 template <class ForwardIterator>
110 void STLDeleteContainerPairSecondPointers(ForwardIterator begin,
111 ForwardIterator end) {
112 while (begin != end) {
113 delete begin->second;
114 ++begin;
118 template <typename T>
119 inline void STLAssignToVector(std::vector<T>* vec, const T* ptr, size_t n) {
120 vec->resize(n);
121 memcpy(&vec->front(), ptr, n * sizeof(T));
124 /***** Hack to allow faster assignment to a vector *****/
126 // This routine speeds up an assignment of 32 bytes to a vector from
127 // about 250 cycles per assignment to about 140 cycles.
129 // Usage:
130 // STLAssignToVectorChar(&vec, ptr, size);
131 // STLAssignToString(&str, ptr, size);
133 inline void STLAssignToVectorChar(std::vector<char>* vec, const char* ptr,
134 size_t n) {
135 STLAssignToVector(vec, ptr, n);
138 inline void STLAssignToString(std::string* str, const char* ptr, size_t n) {
139 str->resize(n);
140 memcpy(&*str->begin(), ptr, n);
143 // To treat a possibly-empty vector as an array, use these functions.
144 // If you know the array will never be empty, you can use &*v.begin()
145 // directly, but that is allowed to dump core if v is empty. This
146 // function is the most efficient code that will work, taking into
147 // account how our STL is actually implemented. THIS IS NON-PORTABLE
148 // CODE, so call us instead of repeating the nonportable code
149 // everywhere. If our STL implementation changes, we will need to
150 // change this as well.
152 template <typename T>
153 inline T* vector_as_array(std::vector<T>* v) {
154 #ifdef NDEBUG
155 return &*v->begin();
156 #else
157 return v->empty() ? NULL : &*v->begin();
158 #endif
161 template <typename T>
162 inline const T* vector_as_array(const std::vector<T>* v) {
163 #ifdef NDEBUG
164 return &*v->begin();
165 #else
166 return v->empty() ? NULL : &*v->begin();
167 #endif
170 // Return a mutable char* pointing to a string's internal buffer,
171 // which may not be null-terminated. Writing through this pointer will
172 // modify the string.
174 // string_as_array(&str)[i] is valid for 0 <= i < str.size() until the
175 // next call to a string method that invalidates iterators.
177 // As of 2006-04, there is no standard-blessed way of getting a
178 // mutable reference to a string's internal buffer. However, issue 530
179 // (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-active.html#530)
180 // proposes this as the method. According to Matt Austern, this should
181 // already work on all current implementations.
182 inline char* string_as_array(std::string* str) {
183 // DO NOT USE const_cast<char*>(str->data())! See the unittest for why.
184 return str->empty() ? NULL : &*str->begin();
187 // These are methods that test two hash maps/sets for equality. These exist
188 // because the == operator in the STL can return false when the maps/sets
189 // contain identical elements. This is because it compares the internal hash
190 // tables which may be different if the order of insertions and deletions
191 // differed.
193 template <class HashSet>
194 inline bool HashSetEquality(const HashSet& set_a, const HashSet& set_b) {
195 if (set_a.size() != set_b.size()) return false;
196 for (typename HashSet::const_iterator i = set_a.begin(); i != set_a.end();
197 ++i) {
198 if (set_b.find(*i) == set_b.end()) return false;
200 return true;
203 template <class HashMap>
204 inline bool HashMapEquality(const HashMap& map_a, const HashMap& map_b) {
205 if (map_a.size() != map_b.size()) return false;
206 for (typename HashMap::const_iterator i = map_a.begin(); i != map_a.end();
207 ++i) {
208 typename HashMap::const_iterator j = map_b.find(i->first);
209 if (j == map_b.end()) return false;
210 if (i->second != j->second) return false;
212 return true;
215 // The following functions are useful for cleaning up STL containers
216 // whose elements point to allocated memory.
218 // STLDeleteElements() deletes all the elements in an STL container and clears
219 // the container. This function is suitable for use with a vector, set,
220 // hash_set, or any other STL container which defines sensible begin(), end(),
221 // and clear() methods.
223 // If container is NULL, this function is a no-op.
225 // As an alternative to calling STLDeleteElements() directly, consider
226 // STLElementDeleter (defined below), which ensures that your container's
227 // elements are deleted when the STLElementDeleter goes out of scope.
228 template <class T>
229 void STLDeleteElements(T* container) {
230 if (!container) return;
231 STLDeleteContainerPointers(container->begin(), container->end());
232 container->clear();
235 // Given an STL container consisting of (key, value) pairs, STLDeleteValues
236 // deletes all the "value" components and clears the container. Does nothing
237 // in the case it's given a NULL pointer.
239 template <class T>
240 void STLDeleteValues(T* v) {
241 if (!v) return;
242 for (typename T::iterator i = v->begin(); i != v->end(); ++i) {
243 delete i->second;
245 v->clear();
248 // The following classes provide a convenient way to delete all elements or
249 // values from STL containers when they goes out of scope. This greatly
250 // simplifies code that creates temporary objects and has multiple return
251 // statements. Example:
253 // vector<MyProto *> tmp_proto;
254 // STLElementDeleter<vector<MyProto *> > d(&tmp_proto);
255 // if (...) return false;
256 // ...
257 // return success;
259 // Given a pointer to an STL container this class will delete all the element
260 // pointers when it goes out of scope.
262 template <class STLContainer>
263 class STLElementDeleter {
264 public:
265 explicit STLElementDeleter(STLContainer* ptr) : container_ptr_(ptr) {}
266 ~STLElementDeleter() { STLDeleteElements(container_ptr_); }
268 private:
269 STLContainer* container_ptr_;
272 // Given a pointer to an STL container this class will delete all the value
273 // pointers when it goes out of scope.
275 template <class STLContainer>
276 class STLValueDeleter {
277 public:
278 explicit STLValueDeleter(STLContainer* ptr) : container_ptr_(ptr) {}
279 ~STLValueDeleter() { STLDeleteValues(container_ptr_); }
281 private:
282 STLContainer* container_ptr_;
285 // Forward declare some callback classes in callback.h for STLBinaryFunction
286 template <class R, class T1, class T2>
287 class ResultCallback2;
289 // STLBinaryFunction is a wrapper for the ResultCallback2 class in callback.h
290 // It provides an operator () method instead of a Run method, so it may be
291 // passed to STL functions in <algorithm>.
293 // The client should create callback with NewPermanentCallback, and should
294 // delete callback after it is done using the STLBinaryFunction.
296 template <class Result, class Arg1, class Arg2>
297 class STLBinaryFunction : public std::binary_function<Arg1, Arg2, Result> {
298 public:
299 typedef ResultCallback2<Result, Arg1, Arg2> Callback;
301 explicit STLBinaryFunction(Callback* callback) : callback_(callback) {
302 assert(callback_);
305 Result operator()(Arg1 arg1, Arg2 arg2) { return callback_->Run(arg1, arg2); }
307 private:
308 Callback* callback_;
311 // STLBinaryPredicate is a specialized version of STLBinaryFunction, where the
312 // return type is bool and both arguments have type Arg. It can be used
313 // wherever STL requires a StrictWeakOrdering, such as in sort() or
314 // lower_bound().
316 // templated typedefs are not supported, so instead we use inheritance.
318 template <class Arg>
319 class STLBinaryPredicate : public STLBinaryFunction<bool, Arg, Arg> {
320 public:
321 typedef typename STLBinaryPredicate<Arg>::Callback Callback;
322 explicit STLBinaryPredicate(Callback* callback)
323 : STLBinaryFunction<bool, Arg, Arg>(callback) {}
326 // Functors that compose arbitrary unary and binary functions with a
327 // function that "projects" one of the members of a pair.
328 // Specifically, if p1 and p2, respectively, are the functions that
329 // map a pair to its first and second, respectively, members, the
330 // table below summarizes the functions that can be constructed:
332 // * UnaryOperate1st<pair>(f) returns the function x -> f(p1(x))
333 // * UnaryOperate2nd<pair>(f) returns the function x -> f(p2(x))
334 // * BinaryOperate1st<pair>(f) returns the function (x,y) -> f(p1(x),p1(y))
335 // * BinaryOperate2nd<pair>(f) returns the function (x,y) -> f(p2(x),p2(y))
337 // A typical usage for these functions would be when iterating over
338 // the contents of an STL map. For other sample usage, see the unittest.
340 template <typename Pair, typename UnaryOp>
341 class UnaryOperateOnFirst
342 : public std::unary_function<Pair, typename UnaryOp::result_type> {
343 public:
344 UnaryOperateOnFirst() {}
346 explicit UnaryOperateOnFirst(const UnaryOp& f) : f_(f) {}
348 typename UnaryOp::result_type operator()(const Pair& p) const {
349 return f_(p.first);
352 private:
353 UnaryOp f_;
356 template <typename Pair, typename UnaryOp>
357 UnaryOperateOnFirst<Pair, UnaryOp> UnaryOperate1st(const UnaryOp& f) {
358 return UnaryOperateOnFirst<Pair, UnaryOp>(f);
361 template <typename Pair, typename UnaryOp>
362 class UnaryOperateOnSecond
363 : public std::unary_function<Pair, typename UnaryOp::result_type> {
364 public:
365 UnaryOperateOnSecond() {}
367 explicit UnaryOperateOnSecond(const UnaryOp& f) : f_(f) {}
369 typename UnaryOp::result_type operator()(const Pair& p) const {
370 return f_(p.second);
373 private:
374 UnaryOp f_;
377 template <typename Pair, typename UnaryOp>
378 UnaryOperateOnSecond<Pair, UnaryOp> UnaryOperate2nd(const UnaryOp& f) {
379 return UnaryOperateOnSecond<Pair, UnaryOp>(f);
382 template <typename Pair, typename BinaryOp>
383 class BinaryOperateOnFirst
384 : public std::binary_function<Pair, Pair, typename BinaryOp::result_type> {
385 public:
386 BinaryOperateOnFirst() {}
388 explicit BinaryOperateOnFirst(const BinaryOp& f) : f_(f) {}
390 typename BinaryOp::result_type operator()(const Pair& p1,
391 const Pair& p2) const {
392 return f_(p1.first, p2.first);
395 private:
396 BinaryOp f_;
399 template <typename Pair, typename BinaryOp>
400 BinaryOperateOnFirst<Pair, BinaryOp> BinaryOperate1st(const BinaryOp& f) {
401 return BinaryOperateOnFirst<Pair, BinaryOp>(f);
404 template <typename Pair, typename BinaryOp>
405 class BinaryOperateOnSecond
406 : public std::binary_function<Pair, Pair, typename BinaryOp::result_type> {
407 public:
408 BinaryOperateOnSecond() {}
410 explicit BinaryOperateOnSecond(const BinaryOp& f) : f_(f) {}
412 typename BinaryOp::result_type operator()(const Pair& p1,
413 const Pair& p2) const {
414 return f_(p1.second, p2.second);
417 private:
418 BinaryOp f_;
421 template <typename Pair, typename BinaryOp>
422 BinaryOperateOnSecond<Pair, BinaryOp> BinaryOperate2nd(const BinaryOp& f) {
423 return BinaryOperateOnSecond<Pair, BinaryOp>(f);
426 // Translates a set into a vector.
427 template <typename T>
428 std::vector<T> SetToVector(const std::set<T>& values) {
429 std::vector<T> result;
430 result.reserve(values.size());
431 result.insert(result.begin(), values.begin(), values.end());
432 return result;
435 #endif // BASE_STL_UTIL_INL_H_