1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
12 #include <unistd.h> // write(), only for testing LUL
14 #include <algorithm> // std::sort
18 #include "mozilla/Assertions.h"
19 #include "mozilla/ArrayUtils.h"
20 #include "mozilla/CheckedInt.h"
21 #include "mozilla/DebugOnly.h"
22 #include "mozilla/MemoryChecking.h"
23 #include "mozilla/Sprintf.h"
24 #include "mozilla/UniquePtr.h"
25 #include "mozilla/Unused.h"
27 #include "BaseProfiler.h"
28 #include "LulCommonExt.h"
29 #include "LulElfExt.h"
30 #include "LulMainInt.h"
32 using mozilla::baseprofiler::profiler_current_process_id
;
33 using mozilla::baseprofiler::profiler_current_thread_id
;
35 // Set this to 1 for verbose logging
40 using mozilla::CheckedInt
;
41 using mozilla::DebugOnly
;
42 using mozilla::MallocSizeOf
;
43 using mozilla::Unused
;
48 // WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING
50 // Some functions in this file are marked RUNS IN NO-MALLOC CONTEXT.
51 // Any such function -- and, hence, the transitive closure of those
52 // reachable from it -- must not do any dynamic memory allocation.
53 // Doing so risks deadlock. There is exactly one root function for
54 // the transitive closure: Lul::Unwind.
56 // WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING
58 ////////////////////////////////////////////////////////////////
60 ////////////////////////////////////////////////////////////////
62 static const char* NameOf_DW_REG(int16_t aReg
) {
66 #if defined(GP_ARCH_amd64) || defined(GP_ARCH_x86)
67 case DW_REG_INTEL_XBP
:
69 case DW_REG_INTEL_XSP
:
71 case DW_REG_INTEL_XIP
:
73 #elif defined(GP_ARCH_arm)
86 #elif defined(GP_ARCH_arm64)
87 case DW_REG_AARCH64_X29
:
89 case DW_REG_AARCH64_X30
:
91 case DW_REG_AARCH64_SP
:
93 #elif defined(GP_ARCH_mips64)
101 # error "Unsupported arch"
108 string
LExpr::ShowRule(const char* aNewReg
) const {
110 string res
= string(aNewReg
) + "=";
116 SprintfLiteral(buf
, "%s+%d", NameOf_DW_REG(mReg
), (int)mOffset
);
120 SprintfLiteral(buf
, "*(%s+%d)", NameOf_DW_REG(mReg
), (int)mOffset
);
124 SprintfLiteral(buf
, "PfxExpr-at-%d", (int)mOffset
);
134 void RuleSet::Print(void (*aLog
)(const char*)) const {
136 SprintfLiteral(buf
, "[%llx .. %llx]: let ", (unsigned long long int)mAddr
,
137 (unsigned long long int)(mAddr
+ mLen
- 1));
138 string res
= string(buf
);
139 res
+= mCfaExpr
.ShowRule("cfa");
141 // For each reg we care about, print the recovery expression.
142 #if defined(GP_ARCH_amd64) || defined(GP_ARCH_x86)
143 res
+= mXipExpr
.ShowRule(" RA");
144 res
+= mXspExpr
.ShowRule(" SP");
145 res
+= mXbpExpr
.ShowRule(" BP");
146 #elif defined(GP_ARCH_arm)
147 res
+= mR15expr
.ShowRule(" R15");
148 res
+= mR7expr
.ShowRule(" R7");
149 res
+= mR11expr
.ShowRule(" R11");
150 res
+= mR12expr
.ShowRule(" R12");
151 res
+= mR13expr
.ShowRule(" R13");
152 res
+= mR14expr
.ShowRule(" R14");
153 #elif defined(GP_ARCH_arm64)
154 res
+= mX29expr
.ShowRule(" X29");
155 res
+= mX30expr
.ShowRule(" X30");
156 res
+= mSPexpr
.ShowRule(" SP");
157 #elif defined(GP_ARCH_mips64)
158 res
+= mPCexpr
.ShowRule(" PC");
159 res
+= mSPexpr
.ShowRule(" SP");
160 res
+= mFPexpr
.ShowRule(" FP");
162 # error "Unsupported arch"
167 LExpr
* RuleSet::ExprForRegno(DW_REG_NUMBER aRegno
) {
171 #if defined(GP_ARCH_amd64) || defined(GP_ARCH_x86)
172 case DW_REG_INTEL_XIP
:
174 case DW_REG_INTEL_XSP
:
176 case DW_REG_INTEL_XBP
:
178 #elif defined(GP_ARCH_arm)
191 #elif defined(GP_ARCH_arm64)
192 case DW_REG_AARCH64_X29
:
194 case DW_REG_AARCH64_X30
:
196 case DW_REG_AARCH64_SP
:
198 #elif defined(GP_ARCH_mips64)
206 # error "Unknown arch"
216 // The only other fields are of type LExpr and those are initialised
217 // by LExpr::LExpr().
220 ////////////////////////////////////////////////////////////////
222 ////////////////////////////////////////////////////////////////
224 // See header file LulMainInt.h for comments about invariants.
226 SecMap::SecMap(void (*aLog
)(const char*))
227 : mSummaryMinAddr(1), mSummaryMaxAddr(0), mUsable(true), mLog(aLog
) {}
229 SecMap::~SecMap() { mRuleSets
.clear(); }
231 // RUNS IN NO-MALLOC CONTEXT
232 RuleSet
* SecMap::FindRuleSet(uintptr_t ia
) {
233 // Binary search mRuleSets to find one that brackets |ia|.
234 // lo and hi need to be signed, else the loop termination tests
235 // don't work properly. Note that this works correctly even when
236 // mRuleSets.size() == 0.
238 // Can't do this until the array has been sorted and preened.
242 long int hi
= (long int)mRuleSets
.size() - 1;
244 // current unsearched space is from lo to hi, inclusive.
249 long int mid
= lo
+ ((hi
- lo
) / 2);
250 RuleSet
* mid_ruleSet
= &mRuleSets
[mid
];
251 uintptr_t mid_minAddr
= mid_ruleSet
->mAddr
;
252 uintptr_t mid_maxAddr
= mid_minAddr
+ mid_ruleSet
->mLen
- 1;
253 if (ia
< mid_minAddr
) {
257 if (ia
> mid_maxAddr
) {
261 MOZ_ASSERT(mid_minAddr
<= ia
&& ia
<= mid_maxAddr
);
267 // Add a RuleSet to the collection. The rule is copied in. Calling
268 // this makes the map non-searchable.
269 void SecMap::AddRuleSet(const RuleSet
* rs
) {
271 mRuleSets
.push_back(*rs
);
274 // Add a PfxInstr to the vector of such instrs, and return the index
275 // in the vector. Calling this makes the map non-searchable.
276 uint32_t SecMap::AddPfxInstr(PfxInstr pfxi
) {
278 mPfxInstrs
.push_back(pfxi
);
279 return mPfxInstrs
.size() - 1;
282 static bool CmpRuleSetsByAddrLE(const RuleSet
& rs1
, const RuleSet
& rs2
) {
283 return rs1
.mAddr
< rs2
.mAddr
;
286 // Prepare the map for searching. Completely remove any which don't
287 // fall inside the specified range [start, +len).
288 void SecMap::PrepareRuleSets(uintptr_t aStart
, size_t aLen
) {
289 if (mRuleSets
.empty()) {
293 MOZ_ASSERT(aLen
> 0);
295 // This should never happen.
300 // Sort by start addresses.
301 std::sort(mRuleSets
.begin(), mRuleSets
.end(), CmpRuleSetsByAddrLE
);
303 // Detect any entry not completely contained within [start, +len).
304 // Set its length to zero, so that the next pass will remove it.
305 for (size_t i
= 0; i
< mRuleSets
.size(); ++i
) {
306 RuleSet
* rs
= &mRuleSets
[i
];
308 (rs
->mAddr
< aStart
|| rs
->mAddr
+ rs
->mLen
> aStart
+ aLen
)) {
313 // Iteratively truncate any overlaps and remove any zero length
314 // entries that might result, or that may have been present
315 // initially. Unless the input is seriously screwy, this is
316 // expected to iterate only once.
319 size_t n
= mRuleSets
.size();
326 for (i
= 1; i
< n
; ++i
) {
327 RuleSet
* prev
= &mRuleSets
[i
- 1];
328 RuleSet
* here
= &mRuleSets
[i
];
329 MOZ_ASSERT(prev
->mAddr
<= here
->mAddr
);
330 if (prev
->mAddr
+ prev
->mLen
> here
->mAddr
) {
331 prev
->mLen
= here
->mAddr
- prev
->mAddr
;
333 if (prev
->mLen
== 0) nZeroLen
++;
336 if (mRuleSets
[n
- 1].mLen
== 0) {
340 // At this point, the entries are in-order and non-overlapping.
341 // If none of them are zero-length, we are done.
346 // Slide back the entries to remove the zero length ones.
347 size_t j
= 0; // The write-point.
348 for (i
= 0; i
< n
; ++i
) {
349 if (mRuleSets
[i
].mLen
== 0) {
352 if (j
!= i
) mRuleSets
[j
] = mRuleSets
[i
];
356 MOZ_ASSERT(nZeroLen
<= n
);
357 MOZ_ASSERT(j
== n
- nZeroLen
);
358 while (nZeroLen
> 0) {
359 mRuleSets
.pop_back();
363 MOZ_ASSERT(mRuleSets
.size() == j
);
366 size_t n
= mRuleSets
.size();
369 // Do a final check on the rules: their address ranges must be
370 // ascending, non overlapping, non zero sized.
372 MOZ_ASSERT(mRuleSets
[0].mLen
> 0);
373 for (size_t i
= 1; i
< n
; ++i
) {
374 RuleSet
* prev
= &mRuleSets
[i
- 1];
375 RuleSet
* here
= &mRuleSets
[i
];
376 MOZ_ASSERT(prev
->mAddr
< here
->mAddr
);
377 MOZ_ASSERT(here
->mLen
> 0);
378 MOZ_ASSERT(prev
->mAddr
+ prev
->mLen
<= here
->mAddr
);
383 // Set the summary min and max address values.
385 // Use the values defined in comments in the class declaration.
389 mSummaryMinAddr
= mRuleSets
[0].mAddr
;
390 mSummaryMaxAddr
= mRuleSets
[n
- 1].mAddr
+ mRuleSets
[n
- 1].mLen
- 1;
393 SprintfLiteral(buf
, "PrepareRuleSets: %d entries, smin/smax 0x%llx, 0x%llx\n",
394 (int)n
, (unsigned long long int)mSummaryMinAddr
,
395 (unsigned long long int)mSummaryMaxAddr
);
396 buf
[sizeof(buf
) - 1] = 0;
399 // Is now usable for binary search.
403 mLog("\nRulesets after preening\n");
404 for (size_t i
= 0; i
< mRuleSets
.size(); ++i
) {
405 mRuleSets
[i
].Print(mLog
);
412 bool SecMap::IsEmpty() { return mRuleSets
.empty(); }
414 size_t SecMap::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf
) const {
415 size_t n
= aMallocSizeOf(this);
417 // It's conceivable that these calls would be unsafe with some
418 // implementations of std::vector, but it seems to be working for now...
419 n
+= aMallocSizeOf(mRuleSets
.data());
420 n
+= aMallocSizeOf(mPfxInstrs
.data());
425 ////////////////////////////////////////////////////////////////
427 ////////////////////////////////////////////////////////////////
429 // A SegArray holds a set of address ranges that together exactly
430 // cover an address range, with no overlaps or holes. Each range has
431 // an associated value, which in this case has been specialised to be
432 // a simple boolean. The representation is kept to minimal canonical
433 // form in which adjacent ranges with the same associated value are
434 // merged together. Each range is represented by a |struct Seg|.
436 // SegArrays are used to keep track of which parts of the address
437 // space are known to contain instructions.
440 void add(uintptr_t lo
, uintptr_t hi
, bool val
) {
445 if (hi
< UINTPTR_MAX
) {
448 std::vector
<Seg
>::size_type iLo
, iHi
, i
;
451 for (i
= iLo
; i
<= iHi
; ++i
) {
457 // RUNS IN NO-MALLOC CONTEXT
458 bool getBoundingCodeSegment(/*OUT*/ uintptr_t* rx_min
,
459 /*OUT*/ uintptr_t* rx_max
, uintptr_t addr
) {
460 std::vector
<Seg
>::size_type i
= find(addr
);
464 *rx_min
= mSegs
[i
].lo
;
465 *rx_max
= mSegs
[i
].hi
;
470 Seg
s(0, UINTPTR_MAX
, false);
476 Seg(uintptr_t lo
, uintptr_t hi
, bool val
) : lo(lo
), hi(hi
), val(val
) {}
483 for (std::vector
<Seg
>::iterator iter
= mSegs
.begin();
484 iter
< mSegs
.end() - 1; ++iter
) {
485 if (iter
[0].val
!= iter
[1].val
) {
488 iter
[0].hi
= iter
[1].hi
;
489 mSegs
.erase(iter
+ 1);
490 // Back up one, so as not to miss an opportunity to merge
491 // with the entry after this one.
496 // RUNS IN NO-MALLOC CONTEXT
497 std::vector
<Seg
>::size_type
find(uintptr_t a
) {
499 long int hi
= (long int)mSegs
.size();
501 // The unsearched space is lo .. hi inclusive.
503 // Not found. This can't happen.
504 return (std::vector
<Seg
>::size_type
)(-1);
506 long int mid
= lo
+ ((hi
- lo
) / 2);
507 uintptr_t mid_lo
= mSegs
[mid
].lo
;
508 uintptr_t mid_hi
= mSegs
[mid
].hi
;
517 return (std::vector
<Seg
>::size_type
)mid
;
521 void split_at(uintptr_t a
) {
522 std::vector
<Seg
>::size_type i
= find(a
);
523 if (mSegs
[i
].lo
== a
) {
526 mSegs
.insert(mSegs
.begin() + i
+ 1, mSegs
[i
]);
532 printf("<< %d entries:\n", (int)mSegs
.size());
533 for (std::vector
<Seg
>::iterator iter
= mSegs
.begin(); iter
< mSegs
.end();
535 printf(" %016llx %016llx %s\n", (unsigned long long int)(*iter
).lo
,
536 (unsigned long long int)(*iter
).hi
,
537 (*iter
).val
? "true" : "false");
542 std::vector
<Seg
> mSegs
;
545 ////////////////////////////////////////////////////////////////
547 ////////////////////////////////////////////////////////////////
551 explicit PriMap(void (*aLog
)(const char*)) : mLog(aLog
) {}
553 // RUNS IN NO-MALLOC CONTEXT
554 pair
<const RuleSet
*, const vector
<PfxInstr
>*> Lookup(uintptr_t ia
) {
555 SecMap
* sm
= FindSecMap(ia
);
556 return pair
<const RuleSet
*, const vector
<PfxInstr
>*>(
557 sm
? sm
->FindRuleSet(ia
) : nullptr, sm
? sm
->GetPfxInstrs() : nullptr);
560 // Add a secondary map. No overlaps allowed w.r.t. existing
562 void AddSecMap(mozilla::UniquePtr
<SecMap
>&& aSecMap
) {
563 // We can't add an empty SecMap to the PriMap. But that's OK
564 // since we'd never be able to find anything in it anyway.
565 if (aSecMap
->IsEmpty()) {
569 // Iterate through the SecMaps and find the right place for this
570 // one. At the same time, ensure that the in-order
571 // non-overlapping invariant is preserved (and, generally, holds).
572 // FIXME: this gives a cost that is O(N^2) in the total number of
573 // shared objects in the system. ToDo: better.
574 MOZ_ASSERT(aSecMap
->mSummaryMinAddr
<= aSecMap
->mSummaryMaxAddr
);
576 size_t num_secMaps
= mSecMaps
.size();
578 for (i
= 0; i
< num_secMaps
; ++i
) {
579 mozilla::UniquePtr
<SecMap
>& sm_i
= mSecMaps
[i
];
580 MOZ_ASSERT(sm_i
->mSummaryMinAddr
<= sm_i
->mSummaryMaxAddr
);
581 if (aSecMap
->mSummaryMinAddr
< sm_i
->mSummaryMaxAddr
) {
582 // |aSecMap| needs to be inserted immediately before mSecMaps[i].
586 MOZ_ASSERT(i
<= num_secMaps
);
587 if (i
== num_secMaps
) {
588 // It goes at the end.
589 mSecMaps
.push_back(std::move(aSecMap
));
591 std::vector
<mozilla::UniquePtr
<SecMap
>>::iterator iter
=
592 mSecMaps
.begin() + i
;
593 mSecMaps
.insert(iter
, std::move(aSecMap
));
596 SprintfLiteral(buf
, "AddSecMap: now have %d SecMaps\n",
597 (int)mSecMaps
.size());
598 buf
[sizeof(buf
) - 1] = 0;
602 // Remove and delete any SecMaps in the mapping, that intersect
603 // with the specified address range.
604 void RemoveSecMapsInRange(uintptr_t avma_min
, uintptr_t avma_max
) {
605 MOZ_ASSERT(avma_min
<= avma_max
);
606 size_t num_secMaps
= mSecMaps
.size();
607 if (num_secMaps
> 0) {
609 // Iterate from end to start over the vector, so as to ensure
610 // that the special case where |avma_min| and |avma_max| denote
611 // the entire address space, can be completed in time proportional
612 // to the number of elements in the map.
613 for (i
= (intptr_t)num_secMaps
- 1; i
>= 0; i
--) {
614 mozilla::UniquePtr
<SecMap
>& sm_i
= mSecMaps
[i
];
615 if (sm_i
->mSummaryMaxAddr
< avma_min
||
616 avma_max
< sm_i
->mSummaryMinAddr
) {
617 // There's no overlap. Move on.
620 // We need to remove mSecMaps[i] and slide all those above it
621 // downwards to cover the hole.
622 mSecMaps
.erase(mSecMaps
.begin() + i
);
627 // Return the number of currently contained SecMaps.
628 size_t CountSecMaps() { return mSecMaps
.size(); }
630 size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf
) const {
631 size_t n
= aMallocSizeOf(this);
633 // It's conceivable that this call would be unsafe with some
634 // implementations of std::vector, but it seems to be working for now...
635 n
+= aMallocSizeOf(mSecMaps
.data());
637 for (size_t i
= 0; i
< mSecMaps
.size(); i
++) {
638 n
+= mSecMaps
[i
]->SizeOfIncludingThis(aMallocSizeOf
);
645 // RUNS IN NO-MALLOC CONTEXT
646 SecMap
* FindSecMap(uintptr_t ia
) {
647 // Binary search mSecMaps to find one that brackets |ia|.
648 // lo and hi need to be signed, else the loop termination tests
649 // don't work properly.
651 long int hi
= (long int)mSecMaps
.size() - 1;
653 // current unsearched space is from lo to hi, inclusive.
658 long int mid
= lo
+ ((hi
- lo
) / 2);
659 mozilla::UniquePtr
<SecMap
>& mid_secMap
= mSecMaps
[mid
];
660 uintptr_t mid_minAddr
= mid_secMap
->mSummaryMinAddr
;
661 uintptr_t mid_maxAddr
= mid_secMap
->mSummaryMaxAddr
;
662 if (ia
< mid_minAddr
) {
666 if (ia
> mid_maxAddr
) {
670 MOZ_ASSERT(mid_minAddr
<= ia
&& ia
<= mid_maxAddr
);
671 return mid_secMap
.get();
677 // sorted array of per-object ranges, non overlapping, non empty
678 std::vector
<mozilla::UniquePtr
<SecMap
>> mSecMaps
;
680 // a logging sink, for debugging.
681 void (*mLog
)(const char*);
684 ////////////////////////////////////////////////////////////////
686 ////////////////////////////////////////////////////////////////
688 #define LUL_LOG(_str) \
691 SprintfLiteral(buf, "LUL: pid %" PRIu64 " tid %" PRIu64 " lul-obj %p: %s", \
692 uint64_t(profiler_current_process_id().ToNumber()), \
693 uint64_t(profiler_current_thread_id().ToNumber()), this, \
695 buf[sizeof(buf) - 1] = 0; \
699 LUL::LUL(void (*aLog
)(const char*))
702 mAdminThreadId(profiler_current_thread_id()),
703 mPriMap(new PriMap(aLog
)),
704 mSegArray(new SegArray()),
705 mUSU(new UniqueStringUniverse()) {
706 LUL_LOG("LUL::LUL: Created object");
710 LUL_LOG("LUL::~LUL: Destroyed object");
717 void LUL::MaybeShowStats() {
718 // This is racey in the sense that it can't guarantee that
719 // n_new == n_new_Context + n_new_CFI + n_new_Scanned
720 // if it should happen that mStats is updated by some other thread
721 // in between computation of n_new and n_new_{Context,CFI,FP}.
722 // But it's just stats printing, so we don't really care.
723 uint32_t n_new
= mStats
- mStatsPrevious
;
725 uint32_t n_new_Context
= mStats
.mContext
- mStatsPrevious
.mContext
;
726 uint32_t n_new_CFI
= mStats
.mCFI
- mStatsPrevious
.mCFI
;
727 uint32_t n_new_FP
= mStats
.mFP
- mStatsPrevious
.mFP
;
728 mStatsPrevious
= mStats
;
731 "LUL frame stats: TOTAL %5u"
732 " CTX %4u CFI %4u FP %4u",
733 n_new
, n_new_Context
, n_new_CFI
, n_new_FP
);
734 buf
[sizeof(buf
) - 1] = 0;
739 size_t LUL::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf
) const {
740 size_t n
= aMallocSizeOf(this);
741 n
+= mPriMap
->SizeOfIncludingThis(aMallocSizeOf
);
743 // Measurement of the following members may be added later if DMD finds it
751 void LUL::EnableUnwinding() {
752 LUL_LOG("LUL::EnableUnwinding");
753 // Don't assert for Admin mode here. That is, tolerate a call here
754 // if we are already in Unwinding mode.
755 MOZ_RELEASE_ASSERT(profiler_current_thread_id() == mAdminThreadId
);
760 void LUL::NotifyAfterMap(uintptr_t aRXavma
, size_t aSize
, const char* aFileName
,
761 const void* aMappedImage
) {
762 MOZ_RELEASE_ASSERT(mAdminMode
);
763 MOZ_RELEASE_ASSERT(profiler_current_thread_id() == mAdminThreadId
);
767 SprintfLiteral(buf
, "NotifyMap %llx %llu %s\n",
768 (unsigned long long int)aRXavma
, (unsigned long long int)aSize
,
770 buf
[sizeof(buf
) - 1] = 0;
773 // Ignore obviously-stupid notifications.
775 // Here's a new mapping, for this object.
776 mozilla::UniquePtr
<SecMap
> smap
= mozilla::MakeUnique
<SecMap
>(mLog
);
778 // Read CFI or EXIDX unwind data into |smap|.
780 (void)lul::ReadSymbolData(string(aFileName
), std::vector
<string
>(),
781 smap
.get(), (void*)aRXavma
, aSize
, mUSU
, mLog
);
783 (void)lul::ReadSymbolDataInternal(
784 (const uint8_t*)aMappedImage
, string(aFileName
),
785 std::vector
<string
>(), smap
.get(), (void*)aRXavma
, aSize
, mUSU
, mLog
);
788 mLog("NotifyMap .. preparing entries\n");
790 smap
->PrepareRuleSets(aRXavma
, aSize
);
792 SprintfLiteral(buf
, "NotifyMap got %lld entries\n",
793 (long long int)smap
->Size());
794 buf
[sizeof(buf
) - 1] = 0;
797 // Add it to the primary map (the top level set of mapped objects).
798 mPriMap
->AddSecMap(std::move(smap
));
800 // Tell the segment array about the mapping, so that the stack
801 // scan and __kernel_syscall mechanisms know where valid code is.
802 mSegArray
->add(aRXavma
, aRXavma
+ aSize
- 1, true);
806 void LUL::NotifyExecutableArea(uintptr_t aRXavma
, size_t aSize
) {
807 MOZ_RELEASE_ASSERT(mAdminMode
);
808 MOZ_RELEASE_ASSERT(profiler_current_thread_id() == mAdminThreadId
);
812 SprintfLiteral(buf
, "NotifyExecutableArea %llx %llu\n",
813 (unsigned long long int)aRXavma
,
814 (unsigned long long int)aSize
);
815 buf
[sizeof(buf
) - 1] = 0;
818 // Ignore obviously-stupid notifications.
820 // Tell the segment array about the mapping, so that the stack
821 // scan and __kernel_syscall mechanisms know where valid code is.
822 mSegArray
->add(aRXavma
, aRXavma
+ aSize
- 1, true);
826 void LUL::NotifyBeforeUnmap(uintptr_t aRXavmaMin
, uintptr_t aRXavmaMax
) {
827 MOZ_RELEASE_ASSERT(mAdminMode
);
828 MOZ_RELEASE_ASSERT(profiler_current_thread_id() == mAdminThreadId
);
832 SprintfLiteral(buf
, "NotifyUnmap %016llx-%016llx\n",
833 (unsigned long long int)aRXavmaMin
,
834 (unsigned long long int)aRXavmaMax
);
835 buf
[sizeof(buf
) - 1] = 0;
838 MOZ_ASSERT(aRXavmaMin
<= aRXavmaMax
);
840 // Remove from the primary map, any secondary maps that intersect
841 // with the address range. Also delete the secondary maps.
842 mPriMap
->RemoveSecMapsInRange(aRXavmaMin
, aRXavmaMax
);
844 // Tell the segment array that the address range no longer
845 // contains valid code.
846 mSegArray
->add(aRXavmaMin
, aRXavmaMax
, false);
848 SprintfLiteral(buf
, "NotifyUnmap: now have %d SecMaps\n",
849 (int)mPriMap
->CountSecMaps());
850 buf
[sizeof(buf
) - 1] = 0;
854 size_t LUL::CountMappings() {
855 MOZ_RELEASE_ASSERT(mAdminMode
);
856 MOZ_RELEASE_ASSERT(profiler_current_thread_id() == mAdminThreadId
);
858 return mPriMap
->CountSecMaps();
861 // RUNS IN NO-MALLOC CONTEXT
862 static TaggedUWord
DerefTUW(TaggedUWord aAddr
, const StackImage
* aStackImg
) {
863 if (!aAddr
.Valid()) {
864 return TaggedUWord();
867 // Lower limit check. |aAddr.Value()| is the lowest requested address
868 // and |aStackImg->mStartAvma| is the lowest address we actually have,
869 // so the comparison is straightforward.
870 if (aAddr
.Value() < aStackImg
->mStartAvma
) {
871 return TaggedUWord();
874 // Upper limit check. We must compute the highest requested address
875 // and the highest address we actually have, but being careful to
876 // avoid overflow. In particular if |aAddr| is 0xFFF...FFF or the
877 // 3/7 values below that, then we will get overflow. See bug #1245477.
878 typedef CheckedInt
<uintptr_t> CheckedUWord
;
879 CheckedUWord highest_requested_plus_one
=
880 CheckedUWord(aAddr
.Value()) + CheckedUWord(sizeof(uintptr_t));
881 CheckedUWord highest_available_plus_one
=
882 CheckedUWord(aStackImg
->mStartAvma
) + CheckedUWord(aStackImg
->mLen
);
883 if (!highest_requested_plus_one
.isValid() // overflow?
884 || !highest_available_plus_one
.isValid() // overflow?
885 || (highest_requested_plus_one
.value() >
886 highest_available_plus_one
.value())) { // in range?
887 return TaggedUWord();
891 *(uintptr_t*)(&aStackImg
892 ->mContents
[aAddr
.Value() - aStackImg
->mStartAvma
]));
895 // RUNS IN NO-MALLOC CONTEXT
896 static TaggedUWord
EvaluateReg(int16_t aReg
, const UnwindRegs
* aOldRegs
,
901 #if defined(GP_ARCH_amd64) || defined(GP_ARCH_x86)
902 case DW_REG_INTEL_XBP
:
903 return aOldRegs
->xbp
;
904 case DW_REG_INTEL_XSP
:
905 return aOldRegs
->xsp
;
906 case DW_REG_INTEL_XIP
:
907 return aOldRegs
->xip
;
908 #elif defined(GP_ARCH_arm)
912 return aOldRegs
->r11
;
914 return aOldRegs
->r12
;
916 return aOldRegs
->r13
;
918 return aOldRegs
->r14
;
920 return aOldRegs
->r15
;
921 #elif defined(GP_ARCH_arm64)
922 case DW_REG_AARCH64_X29
:
923 return aOldRegs
->x29
;
924 case DW_REG_AARCH64_X30
:
925 return aOldRegs
->x30
;
926 case DW_REG_AARCH64_SP
:
928 #elif defined(GP_ARCH_mips64)
936 # error "Unsupported arch"
940 return TaggedUWord();
944 // RUNS IN NO-MALLOC CONTEXT
945 // See prototype for comment.
946 TaggedUWord
EvaluatePfxExpr(int32_t start
, const UnwindRegs
* aOldRegs
,
947 TaggedUWord aCFA
, const StackImage
* aStackImg
,
948 const vector
<PfxInstr
>& aPfxInstrs
) {
949 // A small evaluation stack, and a stack pointer, which points to
950 // the highest numbered in-use element.
951 const int N_STACK
= 10;
952 TaggedUWord stack
[N_STACK
];
953 int stackPointer
= -1;
954 for (int i
= 0; i
< N_STACK
; i
++) stack
[i
] = TaggedUWord();
958 if (stackPointer >= N_STACK - 1) goto fail; /* overflow */ \
959 stack[++stackPointer] = (_tuw); \
964 if (stackPointer < 0) goto fail; /* underflow */ \
965 _lval = stack[stackPointer--]; \
968 // Cursor in the instruction sequence.
969 size_t curr
= start
+ 1;
971 // Check the start point is sane.
972 size_t nInstrs
= aPfxInstrs
.size();
973 if (start
< 0 || (size_t)start
>= nInstrs
) goto fail
;
976 // The instruction sequence must start with PX_Start. If not,
977 // something is seriously wrong.
978 PfxInstr first
= aPfxInstrs
[start
];
979 if (first
.mOpcode
!= PX_Start
) goto fail
;
981 // Push the CFA on the stack to start with (or not), as required by
982 // the original DW_OP_*expression* CFI.
983 if (first
.mOperand
!= 0) PUSH(aCFA
);
987 if (curr
>= nInstrs
) goto fail
; // ran off the end of the sequence
989 PfxInstr pfxi
= aPfxInstrs
[curr
++];
990 if (pfxi
.mOpcode
== PX_End
) break; // we're done
992 switch (pfxi
.mOpcode
) {
994 // This should appear only at the start of the sequence.
997 // We just took care of that, so we shouldn't see it again.
1001 PUSH(TaggedUWord((intptr_t)pfxi
.mOperand
));
1004 DW_REG_NUMBER reg
= (DW_REG_NUMBER
)pfxi
.mOperand
;
1005 MOZ_ASSERT(reg
!= DW_REG_CFA
);
1006 PUSH(EvaluateReg(reg
, aOldRegs
, aCFA
));
1012 PUSH(DerefTUW(addr
, aStackImg
));
1063 // Evaluation finished. The top value on the stack is the result.
1064 if (stackPointer
>= 0) {
1065 return stack
[stackPointer
];
1067 // Else fall through
1070 return TaggedUWord();
1076 // RUNS IN NO-MALLOC CONTEXT
1077 TaggedUWord
LExpr::EvaluateExpr(const UnwindRegs
* aOldRegs
, TaggedUWord aCFA
,
1078 const StackImage
* aStackImg
,
1079 const vector
<PfxInstr
>* aPfxInstrs
) const {
1082 return TaggedUWord();
1084 TaggedUWord tuw
= EvaluateReg(mReg
, aOldRegs
, aCFA
);
1085 tuw
= tuw
+ TaggedUWord((intptr_t)mOffset
);
1089 TaggedUWord tuw
= EvaluateReg(mReg
, aOldRegs
, aCFA
);
1090 tuw
= tuw
+ TaggedUWord((intptr_t)mOffset
);
1091 return DerefTUW(tuw
, aStackImg
);
1094 MOZ_ASSERT(aPfxInstrs
);
1096 return TaggedUWord();
1098 return EvaluatePfxExpr(mOffset
, aOldRegs
, aCFA
, aStackImg
, *aPfxInstrs
);
1102 return TaggedUWord();
1106 // RUNS IN NO-MALLOC CONTEXT
1107 static void UseRuleSet(/*MOD*/ UnwindRegs
* aRegs
, const StackImage
* aStackImg
,
1108 const RuleSet
* aRS
, const vector
<PfxInstr
>* aPfxInstrs
) {
1109 // Take a copy of regs, since we'll need to refer to the old values
1110 // whilst computing the new ones.
1111 UnwindRegs old_regs
= *aRegs
;
1113 // Mark all the current register values as invalid, so that the
1114 // caller can see, on our return, which ones have been computed
1115 // anew. If we don't even manage to compute a new PC value, then
1116 // the caller will have to abandon the unwind.
1117 // FIXME: Create and use instead: aRegs->SetAllInvalid();
1118 #if defined(GP_ARCH_amd64) || defined(GP_ARCH_x86)
1119 aRegs
->xbp
= TaggedUWord();
1120 aRegs
->xsp
= TaggedUWord();
1121 aRegs
->xip
= TaggedUWord();
1122 #elif defined(GP_ARCH_arm)
1123 aRegs
->r7
= TaggedUWord();
1124 aRegs
->r11
= TaggedUWord();
1125 aRegs
->r12
= TaggedUWord();
1126 aRegs
->r13
= TaggedUWord();
1127 aRegs
->r14
= TaggedUWord();
1128 aRegs
->r15
= TaggedUWord();
1129 #elif defined(GP_ARCH_arm64)
1130 aRegs
->x29
= TaggedUWord();
1131 aRegs
->x30
= TaggedUWord();
1132 aRegs
->sp
= TaggedUWord();
1133 aRegs
->pc
= TaggedUWord();
1134 #elif defined(GP_ARCH_mips64)
1135 aRegs
->sp
= TaggedUWord();
1136 aRegs
->fp
= TaggedUWord();
1137 aRegs
->pc
= TaggedUWord();
1139 # error "Unsupported arch"
1142 // This is generally useful.
1143 const TaggedUWord inval
= TaggedUWord();
1145 // First, compute the CFA.
1146 TaggedUWord cfa
= aRS
->mCfaExpr
.EvaluateExpr(&old_regs
, inval
/*old cfa*/,
1147 aStackImg
, aPfxInstrs
);
1149 // If we didn't manage to compute the CFA, well .. that's ungood,
1150 // but keep going anyway. It'll be OK provided none of the register
1151 // value rules mention the CFA. In any case, compute the new values
1152 // for each register that we're tracking.
1154 #if defined(GP_ARCH_amd64) || defined(GP_ARCH_x86)
1156 aRS
->mXbpExpr
.EvaluateExpr(&old_regs
, cfa
, aStackImg
, aPfxInstrs
);
1158 aRS
->mXspExpr
.EvaluateExpr(&old_regs
, cfa
, aStackImg
, aPfxInstrs
);
1160 aRS
->mXipExpr
.EvaluateExpr(&old_regs
, cfa
, aStackImg
, aPfxInstrs
);
1161 #elif defined(GP_ARCH_arm)
1162 aRegs
->r7
= aRS
->mR7expr
.EvaluateExpr(&old_regs
, cfa
, aStackImg
, aPfxInstrs
);
1164 aRS
->mR11expr
.EvaluateExpr(&old_regs
, cfa
, aStackImg
, aPfxInstrs
);
1166 aRS
->mR12expr
.EvaluateExpr(&old_regs
, cfa
, aStackImg
, aPfxInstrs
);
1168 aRS
->mR13expr
.EvaluateExpr(&old_regs
, cfa
, aStackImg
, aPfxInstrs
);
1170 aRS
->mR14expr
.EvaluateExpr(&old_regs
, cfa
, aStackImg
, aPfxInstrs
);
1172 aRS
->mR15expr
.EvaluateExpr(&old_regs
, cfa
, aStackImg
, aPfxInstrs
);
1173 #elif defined(GP_ARCH_arm64)
1175 aRS
->mX29expr
.EvaluateExpr(&old_regs
, cfa
, aStackImg
, aPfxInstrs
);
1177 aRS
->mX30expr
.EvaluateExpr(&old_regs
, cfa
, aStackImg
, aPfxInstrs
);
1178 aRegs
->sp
= aRS
->mSPexpr
.EvaluateExpr(&old_regs
, cfa
, aStackImg
, aPfxInstrs
);
1179 #elif defined(GP_ARCH_mips64)
1180 aRegs
->sp
= aRS
->mSPexpr
.EvaluateExpr(&old_regs
, cfa
, aStackImg
, aPfxInstrs
);
1181 aRegs
->fp
= aRS
->mFPexpr
.EvaluateExpr(&old_regs
, cfa
, aStackImg
, aPfxInstrs
);
1182 aRegs
->pc
= aRS
->mPCexpr
.EvaluateExpr(&old_regs
, cfa
, aStackImg
, aPfxInstrs
);
1184 # error "Unsupported arch"
1187 // We're done. Any regs for which we didn't manage to compute a
1188 // new value will now be marked as invalid.
1191 // RUNS IN NO-MALLOC CONTEXT
1192 void LUL::Unwind(/*OUT*/ uintptr_t* aFramePCs
,
1193 /*OUT*/ uintptr_t* aFrameSPs
,
1194 /*OUT*/ size_t* aFramesUsed
,
1195 /*OUT*/ size_t* aFramePointerFramesAcquired
,
1196 size_t aFramesAvail
, UnwindRegs
* aStartRegs
,
1197 StackImage
* aStackImg
) {
1198 MOZ_RELEASE_ASSERT(!mAdminMode
);
1200 /////////////////////////////////////////////////////////
1205 UnwindRegs regs
= *aStartRegs
;
1206 TaggedUWord last_valid_sp
= TaggedUWord();
1212 #if defined(GP_ARCH_amd64) || defined(GP_ARCH_x86)
1214 buf
, "LoopTop: rip %d/%llx rsp %d/%llx rbp %d/%llx\n",
1215 (int)regs
.xip
.Valid(), (unsigned long long int)regs
.xip
.Value(),
1216 (int)regs
.xsp
.Valid(), (unsigned long long int)regs
.xsp
.Value(),
1217 (int)regs
.xbp
.Valid(), (unsigned long long int)regs
.xbp
.Value());
1218 buf
[sizeof(buf
) - 1] = 0;
1220 #elif defined(GP_ARCH_arm)
1223 "LoopTop: r15 %d/%llx r7 %d/%llx r11 %d/%llx"
1224 " r12 %d/%llx r13 %d/%llx r14 %d/%llx\n",
1225 (int)regs
.r15
.Valid(), (unsigned long long int)regs
.r15
.Value(),
1226 (int)regs
.r7
.Valid(), (unsigned long long int)regs
.r7
.Value(),
1227 (int)regs
.r11
.Valid(), (unsigned long long int)regs
.r11
.Value(),
1228 (int)regs
.r12
.Valid(), (unsigned long long int)regs
.r12
.Value(),
1229 (int)regs
.r13
.Valid(), (unsigned long long int)regs
.r13
.Value(),
1230 (int)regs
.r14
.Valid(), (unsigned long long int)regs
.r14
.Value());
1231 buf
[sizeof(buf
) - 1] = 0;
1233 #elif defined(GP_ARCH_arm64)
1236 "LoopTop: pc %d/%llx x29 %d/%llx x30 %d/%llx"
1238 (int)regs
.pc
.Valid(), (unsigned long long int)regs
.pc
.Value(),
1239 (int)regs
.x29
.Valid(), (unsigned long long int)regs
.x29
.Value(),
1240 (int)regs
.x30
.Valid(), (unsigned long long int)regs
.x30
.Value(),
1241 (int)regs
.sp
.Valid(), (unsigned long long int)regs
.sp
.Value());
1242 buf
[sizeof(buf
) - 1] = 0;
1244 #elif defined(GP_ARCH_mips64)
1246 buf
, "LoopTop: pc %d/%llx sp %d/%llx fp %d/%llx\n",
1247 (int)regs
.pc
.Valid(), (unsigned long long int)regs
.pc
.Value(),
1248 (int)regs
.sp
.Valid(), (unsigned long long int)regs
.sp
.Value(),
1249 (int)regs
.fp
.Valid(), (unsigned long long int)regs
.fp
.Value());
1250 buf
[sizeof(buf
) - 1] = 0;
1253 # error "Unsupported arch"
1257 #if defined(GP_ARCH_amd64) || defined(GP_ARCH_x86)
1258 TaggedUWord ia
= regs
.xip
;
1259 TaggedUWord sp
= regs
.xsp
;
1260 #elif defined(GP_ARCH_arm)
1261 TaggedUWord ia
= (*aFramesUsed
== 0 ? regs
.r15
: regs
.r14
);
1262 TaggedUWord sp
= regs
.r13
;
1263 #elif defined(GP_ARCH_arm64)
1264 TaggedUWord ia
= (*aFramesUsed
== 0 ? regs
.pc
: regs
.x30
);
1265 TaggedUWord sp
= regs
.sp
;
1266 #elif defined(GP_ARCH_mips64)
1267 TaggedUWord ia
= regs
.pc
;
1268 TaggedUWord sp
= regs
.sp
;
1270 # error "Unsupported arch"
1273 if (*aFramesUsed
>= aFramesAvail
) {
1277 // If we don't have a valid value for the PC, give up.
1282 // If this is the innermost frame, record the SP value, which
1283 // presumably is valid. If this isn't the innermost frame, and we
1284 // have a valid SP value, check that its SP value isn't less that
1285 // the one we've seen so far, so as to catch potential SP value
1287 if (*aFramesUsed
== 0) {
1290 MOZ_ASSERT(last_valid_sp
.Valid());
1292 if (sp
.Value() < last_valid_sp
.Value()) {
1293 // Hmm, SP going in the wrong direction. Let's stop.
1296 // Remember where we got to.
1301 // For the innermost frame, the IA value is what we need. For all
1302 // other frames, it's actually the return address, so back up one
1303 // byte so as to get it into the calling instruction.
1304 aFramePCs
[*aFramesUsed
] = ia
.Value() - (*aFramesUsed
== 0 ? 0 : 1);
1305 aFrameSPs
[*aFramesUsed
] = sp
.Valid() ? sp
.Value() : 0;
1308 // Find the RuleSet for the current IA, if any. This will also
1309 // query the backing (secondary) maps if it isn't found in the
1310 // thread-local cache.
1312 // If this isn't the innermost frame, back up into the calling insn.
1313 if (*aFramesUsed
> 1) {
1314 ia
= ia
+ TaggedUWord((uintptr_t)(-1));
1317 pair
<const RuleSet
*, const vector
<PfxInstr
>*> ruleset_and_pfxinstrs
=
1318 mPriMap
->Lookup(ia
.Value());
1319 const RuleSet
* ruleset
= ruleset_and_pfxinstrs
.first
;
1320 const vector
<PfxInstr
>* pfxinstrs
= ruleset_and_pfxinstrs
.second
;
1324 SprintfLiteral(buf
, "ruleset for 0x%llx = %p\n",
1325 (unsigned long long int)ia
.Value(), ruleset
);
1326 buf
[sizeof(buf
) - 1] = 0;
1330 #if defined(GP_PLAT_x86_android) || defined(GP_PLAT_x86_linux)
1331 /////////////////////////////////////////////
1333 // On 32 bit x86-linux, syscalls are often done via the VDSO
1334 // function __kernel_vsyscall, which doesn't have a corresponding
1335 // object that we can read debuginfo from. That effectively kills
1336 // off all stack traces for threads blocked in syscalls. Hence
1337 // special-case by looking at the code surrounding the program
1340 // 0xf7757420 <__kernel_vsyscall+0>: push %ecx
1341 // 0xf7757421 <__kernel_vsyscall+1>: push %edx
1342 // 0xf7757422 <__kernel_vsyscall+2>: push %ebp
1343 // 0xf7757423 <__kernel_vsyscall+3>: mov %esp,%ebp
1344 // 0xf7757425 <__kernel_vsyscall+5>: sysenter
1345 // 0xf7757427 <__kernel_vsyscall+7>: nop
1346 // 0xf7757428 <__kernel_vsyscall+8>: nop
1347 // 0xf7757429 <__kernel_vsyscall+9>: nop
1348 // 0xf775742a <__kernel_vsyscall+10>: nop
1349 // 0xf775742b <__kernel_vsyscall+11>: nop
1350 // 0xf775742c <__kernel_vsyscall+12>: nop
1351 // 0xf775742d <__kernel_vsyscall+13>: nop
1352 // 0xf775742e <__kernel_vsyscall+14>: int $0x80
1353 // 0xf7757430 <__kernel_vsyscall+16>: pop %ebp
1354 // 0xf7757431 <__kernel_vsyscall+17>: pop %edx
1355 // 0xf7757432 <__kernel_vsyscall+18>: pop %ecx
1356 // 0xf7757433 <__kernel_vsyscall+19>: ret
1358 // In cases where the sampled thread is blocked in a syscall, its
1359 // program counter will point at "pop %ebp". Hence we look for
1360 // the sequence "int $0x80; pop %ebp; pop %edx; pop %ecx; ret", and
1361 // the corresponding register-recovery actions are:
1362 // new_ebp = *(old_esp + 0)
1363 // new eip = *(old_esp + 12)
1364 // new_esp = old_esp + 16
1366 // It may also be the case that the program counter points two
1367 // nops before the "int $0x80", viz, is __kernel_vsyscall+12, in
1368 // the case where the syscall has been restarted but the thread
1369 // hasn't been rescheduled. The code below doesn't handle that;
1370 // it could easily be made to.
1372 if (!ruleset
&& *aFramesUsed
== 1 && ia
.Valid() && sp
.Valid()) {
1373 uintptr_t insns_min
, insns_max
;
1374 uintptr_t eip
= ia
.Value();
1375 bool b
= mSegArray
->getBoundingCodeSegment(&insns_min
, &insns_max
, eip
);
1376 if (b
&& eip
- 2 >= insns_min
&& eip
+ 3 <= insns_max
) {
1377 uint8_t* eipC
= (uint8_t*)eip
;
1378 if (eipC
[-2] == 0xCD && eipC
[-1] == 0x80 && eipC
[0] == 0x5D &&
1379 eipC
[1] == 0x5A && eipC
[2] == 0x59 && eipC
[3] == 0xC3) {
1380 TaggedUWord sp_plus_0
= sp
;
1381 TaggedUWord sp_plus_12
= sp
;
1382 TaggedUWord sp_plus_16
= sp
;
1383 sp_plus_12
= sp_plus_12
+ TaggedUWord(12);
1384 sp_plus_16
= sp_plus_16
+ TaggedUWord(16);
1385 TaggedUWord new_ebp
= DerefTUW(sp_plus_0
, aStackImg
);
1386 TaggedUWord new_eip
= DerefTUW(sp_plus_12
, aStackImg
);
1387 TaggedUWord new_esp
= sp_plus_16
;
1388 if (new_ebp
.Valid() && new_eip
.Valid() && new_esp
.Valid()) {
1398 /////////////////////////////////////////////
1399 #endif // defined(GP_PLAT_x86_android) || defined(GP_PLAT_x86_linux)
1401 // So, do we have a ruleset for this address? If so, use it now.
1404 ruleset
->Print(mLog
);
1407 // Use the RuleSet to compute the registers for the previous
1408 // frame. |regs| is modified in-place.
1409 UseRuleSet(®s
, aStackImg
, ruleset
, pfxinstrs
);
1413 #if defined(GP_PLAT_amd64_linux) || defined(GP_PLAT_x86_linux) || \
1414 defined(GP_PLAT_amd64_android) || defined(GP_PLAT_x86_android) || \
1415 defined(GP_PLAT_amd64_freebsd)
1416 // There's no RuleSet for the specified address. On amd64/x86_linux, see if
1417 // it's possible to recover the caller's frame by using the frame pointer.
1419 // We seek to compute (new_IP, new_SP, new_BP) from (old_BP, stack image),
1420 // and assume the following layout:
1424 // | new_IP | (return address)
1426 // | new_BP | <--- old_BP
1431 // +----------+ <---- old_SP (arbitrary, but must be <= old_BP)
1433 const size_t wordSzB
= sizeof(uintptr_t);
1434 TaggedUWord old_xsp
= regs
.xsp
;
1436 // points at new_BP ?
1437 TaggedUWord old_xbp
= regs
.xbp
;
1438 // points at new_IP ?
1439 TaggedUWord old_xbp_plus1
= regs
.xbp
+ TaggedUWord(1 * wordSzB
);
1441 TaggedUWord old_xbp_plus2
= regs
.xbp
+ TaggedUWord(2 * wordSzB
);
1443 if (old_xbp
.Valid() && old_xbp
.IsAligned() && old_xsp
.Valid() &&
1444 old_xsp
.IsAligned() && old_xsp
.Value() <= old_xbp
.Value()) {
1445 // We don't need to do any range, alignment or validity checks for
1446 // addresses passed to DerefTUW, since that performs them itself, and
1447 // returns an invalid value on failure. Any such value will poison
1448 // subsequent uses, and we do a final check for validity before putting
1449 // the computed values into |regs|.
1450 TaggedUWord new_xbp
= DerefTUW(old_xbp
, aStackImg
);
1451 if (new_xbp
.Valid() && new_xbp
.IsAligned() &&
1452 old_xbp
.Value() < new_xbp
.Value()) {
1453 TaggedUWord new_xip
= DerefTUW(old_xbp_plus1
, aStackImg
);
1454 TaggedUWord new_xsp
= old_xbp_plus2
;
1455 if (new_xbp
.Valid() && new_xip
.Valid() && new_xsp
.Valid()) {
1459 (*aFramePointerFramesAcquired
)++;
1464 #elif defined(GP_ARCH_arm64)
1465 // Here is an example of generated code for prologue and epilogue..
1467 // stp x29, x30, [sp, #-16]!
1470 // ldp x29, x30, [sp], #16
1473 // Next is another example of generated code.
1475 // stp x20, x19, [sp, #-32]!
1476 // stp x29, x30, [sp, #16]
1477 // add x29, sp, #0x10
1479 // ldp x29, x30, [sp, #16]
1480 // ldp x20, x19, [sp], #32
1483 // Previous x29 and x30 register are stored in the address of x29 register.
1484 // But since sp register value depends on local variables, we cannot compute
1485 // previous sp register from current sp/fp/lr register and there is no
1486 // regular rule for sp register in prologue. But since return address is lr
1487 // register, if x29 is valid, we will get return address without sp
1490 // So we assume the following layout that if no rule set. x29 is frame
1491 // pointer, so we will be able to compute x29 and x30 .
1493 // +----------+ <--- new_sp (cannot compute)
1496 // | new_lr | (return address)
1498 // | new_fp | <--- old_fp
1502 // +----------+ <---- old_sp (arbitrary, but unused)
1504 TaggedUWord old_fp
= regs
.x29
;
1505 if (old_fp
.Valid() && old_fp
.IsAligned() && last_valid_sp
.Valid() &&
1506 last_valid_sp
.Value() <= old_fp
.Value()) {
1507 TaggedUWord new_fp
= DerefTUW(old_fp
, aStackImg
);
1508 if (new_fp
.Valid() && new_fp
.IsAligned() &&
1509 old_fp
.Value() < new_fp
.Value()) {
1510 TaggedUWord old_fp_plus1
= old_fp
+ TaggedUWord(8);
1511 TaggedUWord new_lr
= DerefTUW(old_fp_plus1
, aStackImg
);
1512 if (new_lr
.Valid()) {
1515 // When using frame pointer to walk stack, we cannot compute sp
1516 // register since we cannot compute sp register from fp/lr/sp
1517 // register, and there is no regular rule to compute previous sp
1518 // register. So mark as invalid.
1519 regs
.sp
= TaggedUWord();
1520 (*aFramePointerFramesAcquired
)++;
1525 #endif // defined(GP_PLAT_amd64_linux) || defined(GP_PLAT_x86_linux) ||
1526 // defined(GP_PLAT_amd64_android) || defined(GP_PLAT_x86_android)
1528 // We failed to recover a frame either using CFI or FP chasing, and we
1529 // have no other ways to recover the frame. So we have to give up.
1532 } // top level unwind loop
1535 /////////////////////////////////////////////////////////
1538 ////////////////////////////////////////////////////////////////
1539 // LUL Unit Testing //
1540 ////////////////////////////////////////////////////////////////
1542 static const int LUL_UNIT_TEST_STACK_SIZE
= 32768;
1544 #if defined(GP_ARCH_mips64)
1545 static __attribute__((noinline
)) unsigned long __getpc(void) {
1546 unsigned long rtaddr
;
1547 __asm__
volatile("move %0, $31" : "=r"(rtaddr
));
1552 // This function is innermost in the test call sequence. It uses LUL
1553 // to unwind, and compares the result with the sequence specified in
1554 // the director string. These need to agree in order for the test to
1555 // pass. In order not to screw up the results, this function needs
1556 // to have a not-very big stack frame, since we're only presenting
1557 // the innermost LUL_UNIT_TEST_STACK_SIZE bytes of stack to LUL, and
1558 // that chunk unavoidably includes the frame for this function.
1560 // This function must not be inlined into its callers. Doing so will
1561 // cause the expected-vs-actual backtrace consistency checking to
1562 // fail. Prints summary results to |aLUL|'s logging sink and also
1563 // returns a boolean indicating whether or not the test failed.
1564 static __attribute__((noinline
)) bool GetAndCheckStackTrace(
1565 LUL
* aLUL
, const char* dstring
) {
1566 // Get hold of the current unwind-start registers.
1567 UnwindRegs startRegs
;
1568 memset(&startRegs
, 0, sizeof(startRegs
));
1569 #if defined(GP_ARCH_amd64)
1570 volatile uintptr_t block
[3];
1571 MOZ_ASSERT(sizeof(block
) == 24);
1572 __asm__
__volatile__(
1573 "leaq 0(%%rip), %%r15"
1579 "movq %%rbp, 16(%0)"
1584 startRegs
.xip
= TaggedUWord(block
[0]);
1585 startRegs
.xsp
= TaggedUWord(block
[1]);
1586 startRegs
.xbp
= TaggedUWord(block
[2]);
1587 const uintptr_t REDZONE_SIZE
= 128;
1588 uintptr_t start
= block
[1] - REDZONE_SIZE
;
1589 #elif defined(GP_PLAT_x86_linux) || defined(GP_PLAT_x86_android)
1590 volatile uintptr_t block
[3];
1591 MOZ_ASSERT(sizeof(block
) == 12);
1592 __asm__
__volatile__(
1593 ".byte 0xE8,0x00,0x00,0x00,0x00" /*call next insn*/
1606 startRegs
.xip
= TaggedUWord(block
[0]);
1607 startRegs
.xsp
= TaggedUWord(block
[1]);
1608 startRegs
.xbp
= TaggedUWord(block
[2]);
1609 const uintptr_t REDZONE_SIZE
= 0;
1610 uintptr_t start
= block
[1] - REDZONE_SIZE
;
1611 #elif defined(GP_PLAT_arm_linux) || defined(GP_PLAT_arm_android)
1612 volatile uintptr_t block
[6];
1613 MOZ_ASSERT(sizeof(block
) == 24);
1614 __asm__
__volatile__(
1623 "str r12, [%0, #12]"
1625 "str r11, [%0, #16]"
1632 startRegs
.r15
= TaggedUWord(block
[0]);
1633 startRegs
.r14
= TaggedUWord(block
[1]);
1634 startRegs
.r13
= TaggedUWord(block
[2]);
1635 startRegs
.r12
= TaggedUWord(block
[3]);
1636 startRegs
.r11
= TaggedUWord(block
[4]);
1637 startRegs
.r7
= TaggedUWord(block
[5]);
1638 const uintptr_t REDZONE_SIZE
= 0;
1639 uintptr_t start
= block
[1] - REDZONE_SIZE
;
1640 #elif defined(GP_ARCH_arm64)
1641 volatile uintptr_t block
[4];
1642 MOZ_ASSERT(sizeof(block
) == 32);
1643 __asm__
__volatile__(
1645 "str x0, [%0, #0] \n\t"
1646 "str x29, [%0, #8] \n\t"
1647 "str x30, [%0, #16] \n\t"
1649 "str x0, [%0, #24] \n\t"
1653 startRegs
.pc
= TaggedUWord(block
[0]);
1654 startRegs
.x29
= TaggedUWord(block
[1]);
1655 startRegs
.x30
= TaggedUWord(block
[2]);
1656 startRegs
.sp
= TaggedUWord(block
[3]);
1657 const uintptr_t REDZONE_SIZE
= 0;
1658 uintptr_t start
= block
[1] - REDZONE_SIZE
;
1659 #elif defined(GP_ARCH_mips64)
1660 volatile uintptr_t block
[3];
1661 MOZ_ASSERT(sizeof(block
) == 24);
1662 __asm__
__volatile__(
1668 block
[0] = __getpc();
1669 startRegs
.pc
= TaggedUWord(block
[0]);
1670 startRegs
.sp
= TaggedUWord(block
[1]);
1671 startRegs
.fp
= TaggedUWord(block
[2]);
1672 const uintptr_t REDZONE_SIZE
= 0;
1673 uintptr_t start
= block
[1] - REDZONE_SIZE
;
1675 # error "Unsupported platform"
1678 // Get hold of the innermost LUL_UNIT_TEST_STACK_SIZE bytes of the
1680 uintptr_t end
= start
+ LUL_UNIT_TEST_STACK_SIZE
;
1681 uintptr_t ws
= sizeof(void*);
1684 uintptr_t nToCopy
= end
- start
;
1685 if (nToCopy
> lul::N_STACK_BYTES
) {
1686 nToCopy
= lul::N_STACK_BYTES
;
1688 MOZ_ASSERT(nToCopy
<= lul::N_STACK_BYTES
);
1689 StackImage
* stackImg
= new StackImage();
1690 stackImg
->mLen
= nToCopy
;
1691 stackImg
->mStartAvma
= start
;
1693 MOZ_MAKE_MEM_DEFINED((void*)start
, nToCopy
);
1694 memcpy(&stackImg
->mContents
[0], (void*)start
, nToCopy
);
1698 const int MAX_TEST_FRAMES
= 64;
1699 uintptr_t framePCs
[MAX_TEST_FRAMES
];
1700 uintptr_t frameSPs
[MAX_TEST_FRAMES
];
1701 size_t framesAvail
= std::size(framePCs
);
1702 size_t framesUsed
= 0;
1703 size_t framePointerFramesAcquired
= 0;
1704 aLUL
->Unwind(&framePCs
[0], &frameSPs
[0], &framesUsed
,
1705 &framePointerFramesAcquired
, framesAvail
, &startRegs
, stackImg
);
1710 // // Show what we have.
1711 // fprintf(stderr, "Got %d frames:\n", (int)framesUsed);
1712 // for (size_t i = 0; i < framesUsed; i++) {
1713 // fprintf(stderr, " [%2d] SP %p PC %p\n",
1714 // (int)i, (void*)frameSPs[i], (void*)framePCs[i]);
1716 // fprintf(stderr, "\n");
1719 // Check to see if there's a consistent binding between digits in
1720 // the director string ('1' .. '8') and the PC values acquired by
1721 // the unwind. If there isn't, the unwinding has failed somehow.
1722 uintptr_t binding
[8]; // binding for '1' .. binding for '8'
1723 memset((void*)binding
, 0, sizeof(binding
));
1725 // The general plan is to work backwards along the director string
1726 // and forwards along the framePCs array. Doing so corresponds to
1727 // working outwards from the innermost frame of the recursive test set.
1728 const char* cursor
= dstring
;
1730 // Find the end. This leaves |cursor| two bytes past the first
1731 // character we want to look at -- see comment below.
1732 while (*cursor
) cursor
++;
1734 // Counts the number of consistent frames.
1735 size_t nConsistent
= 0;
1737 // Iterate back to the start of the director string. The starting
1738 // points are a bit complex. We can't use framePCs[0] because that
1739 // contains the PC in this frame (above). We can't use framePCs[1]
1740 // because that will contain the PC at return point in the recursive
1741 // test group (TestFn[1-8]) for their call "out" to this function,
1742 // GetAndCheckStackTrace. Although LUL will compute a correct
1743 // return address, that will not be the same return address as for a
1744 // recursive call out of the the function to another function in the
1745 // group. Hence we can only start consistency checking at
1748 // To be consistent, then, we must ignore the last element in the
1749 // director string as that corresponds to framePCs[1]. Hence the
1750 // start points are: framePCs[2] and the director string 2 bytes
1751 // before the terminating zero.
1753 // Also as a result of this, the number of consistent frames counted
1754 // will always be one less than the length of the director string
1755 // (not including its terminating zero).
1757 for (cursor
= cursor
- 2, frameIx
= 2;
1758 cursor
>= dstring
&& frameIx
< framesUsed
; cursor
--, frameIx
++) {
1760 uintptr_t pc
= framePCs
[frameIx
];
1761 // If this doesn't hold, the director string is ill-formed.
1762 MOZ_ASSERT(c
>= '1' && c
<= '8');
1763 int n
= ((int)c
) - ((int)'1');
1764 if (binding
[n
] == 0) {
1765 // There's no binding for |c| yet, so install |pc| and carry on.
1770 // There's a pre-existing binding for |c|. Check it's consistent.
1771 if (binding
[n
] != pc
) {
1772 // Not consistent. Give up now.
1775 // Consistent. Keep going.
1779 // So, did we succeed?
1780 bool passed
= nConsistent
+ 1 == strlen(dstring
);
1782 // Show the results.
1784 SprintfLiteral(buf
, "LULUnitTest: dstring = %s\n", dstring
);
1785 buf
[sizeof(buf
) - 1] = 0;
1787 SprintfLiteral(buf
, "LULUnitTest: %d consistent, %d in dstring: %s\n",
1788 (int)nConsistent
, (int)strlen(dstring
),
1789 passed
? "PASS" : "FAIL");
1790 buf
[sizeof(buf
) - 1] = 0;
1796 // Macro magic to create a set of 8 mutually recursive functions with
1797 // varying frame sizes. These will recurse amongst themselves as
1798 // specified by |strP|, the directory string, and call
1799 // GetAndCheckStackTrace when the string becomes empty, passing it the
1800 // original value of the string. This checks the result, printing
1801 // results on |aLUL|'s logging sink, and also returns a boolean
1802 // indicating whether or not the results are acceptable (correct).
1804 #define DECL_TEST_FN(NAME) \
1805 bool NAME(LUL* aLUL, const char* strPorig, const char* strP);
1807 #define GEN_TEST_FN(NAME, FRAMESIZE) \
1808 bool NAME(LUL* aLUL, const char* strPorig, const char* strP) { \
1809 /* Create a frame of size (at least) FRAMESIZE, so that the */ \
1810 /* 8 functions created by this macro offer some variation in frame */ \
1811 /* sizes. This isn't as simple as it might seem, since a clever */ \
1812 /* optimizing compiler (eg, clang-5) detects that the array is unused */ \
1813 /* and removes it. We try to defeat this by passing it to a function */ \
1814 /* in a different compilation unit, and hoping that clang does not */ \
1815 /* notice that the call is a no-op. */ \
1816 char space[FRAMESIZE]; \
1817 Unused << write(1, space, 0); /* write zero bytes of |space| to stdout */ \
1819 if (*strP == '\0') { \
1820 /* We've come to the end of the director string. */ \
1821 /* Take a stack snapshot. */ \
1822 /* We purposefully use a negation to avoid tail-call optimization */ \
1823 return !GetAndCheckStackTrace(aLUL, strPorig); \
1825 /* Recurse onwards. This is a bit subtle. The obvious */ \
1826 /* thing to do here is call onwards directly, from within the */ \
1827 /* arms of the case statement. That gives a problem in that */ \
1828 /* there will be multiple return points inside each function when */ \
1829 /* unwinding, so it will be difficult to check for consistency */ \
1830 /* against the director string. Instead, we make an indirect */ \
1831 /* call, so as to guarantee that there is only one call site */ \
1832 /* within each function. This does assume that the compiler */ \
1833 /* won't transform it back to the simple direct-call form. */ \
1834 /* To discourage it from doing so, the call is bracketed with */ \
1835 /* __asm__ __volatile__ sections so as to make it not-movable. */ \
1836 bool (*nextFn)(LUL*, const char*, const char*) = NULL; \
1866 /* "use" |space| immediately after the recursive call, */ \
1867 /* so as to dissuade clang from deallocating the space while */ \
1868 /* the call is active, or otherwise messing with the stack frame. */ \
1869 __asm__ __volatile__("" ::: "cc", "memory"); \
1870 bool passed = nextFn(aLUL, strPorig, strP + 1); \
1871 Unused << write(1, space, 0); \
1872 __asm__ __volatile__("" ::: "cc", "memory"); \
1877 // The test functions are mutually recursive, so it is necessary to
1878 // declare them before defining them.
1879 DECL_TEST_FN(TestFn1
)
1880 DECL_TEST_FN(TestFn2
)
1881 DECL_TEST_FN(TestFn3
)
1882 DECL_TEST_FN(TestFn4
)
1883 DECL_TEST_FN(TestFn5
)
1884 DECL_TEST_FN(TestFn6
)
1885 DECL_TEST_FN(TestFn7
)
1886 DECL_TEST_FN(TestFn8
)
1888 GEN_TEST_FN(TestFn1
, 123)
1889 GEN_TEST_FN(TestFn2
, 456)
1890 GEN_TEST_FN(TestFn3
, 789)
1891 GEN_TEST_FN(TestFn4
, 23)
1892 GEN_TEST_FN(TestFn5
, 47)
1893 GEN_TEST_FN(TestFn6
, 117)
1894 GEN_TEST_FN(TestFn7
, 1)
1895 GEN_TEST_FN(TestFn8
, 99)
1897 // This starts the test sequence going. Call here to generate a
1898 // sequence of calls as directed by the string |dstring|. The call
1899 // sequence will, from its innermost frame, finish by calling
1900 // GetAndCheckStackTrace() and passing it |dstring|.
1901 // GetAndCheckStackTrace() will unwind the stack, check consistency
1902 // of those results against |dstring|, and print a pass/fail message
1903 // to aLUL's logging sink. It also updates the counters in *aNTests
1904 // and aNTestsPassed.
1905 __attribute__((noinline
)) void TestUnw(/*OUT*/ int* aNTests
,
1906 /*OUT*/ int* aNTestsPassed
, LUL
* aLUL
,
1907 const char* dstring
) {
1908 // Ensure that the stack has at least this much space on it. This
1909 // makes it safe to saw off the top LUL_UNIT_TEST_STACK_SIZE bytes
1910 // and hand it to LUL. Safe in the sense that no segfault can
1911 // happen because the stack is at least this big. This is all
1912 // somewhat dubious in the sense that a sufficiently clever compiler
1913 // (clang, for one) can figure out that space[] is unused and delete
1914 // it from the frame. Hence the somewhat elaborate hoop jumping to
1915 // fill it up before the call and to at least appear to use the
1916 // value afterwards.
1918 volatile char space
[LUL_UNIT_TEST_STACK_SIZE
];
1919 for (i
= 0; i
< LUL_UNIT_TEST_STACK_SIZE
; i
++) {
1920 space
[i
] = (char)(i
& 0x7F);
1923 // Really run the test.
1924 bool passed
= TestFn1(aLUL
, dstring
, dstring
);
1926 // Appear to use space[], by visiting the value to compute some kind
1927 // of checksum, and then (apparently) using the checksum.
1929 for (i
= 0; i
< LUL_UNIT_TEST_STACK_SIZE
; i
++) {
1930 // If this doesn't fool LLVM, I don't know what will.
1931 sum
+= space
[i
] - 3 * i
;
1933 __asm__
__volatile__("" : : "r"(sum
));
1935 // Update the counters.
1942 void RunLulUnitTests(/*OUT*/ int* aNTests
, /*OUT*/ int* aNTestsPassed
,
1945 aLUL
->mLog("LULUnitTest: BEGIN\n");
1946 *aNTests
= *aNTestsPassed
= 0;
1947 TestUnw(aNTests
, aNTestsPassed
, aLUL
, "11111111");
1948 TestUnw(aNTests
, aNTestsPassed
, aLUL
, "11222211");
1949 TestUnw(aNTests
, aNTestsPassed
, aLUL
, "111222333");
1950 TestUnw(aNTests
, aNTestsPassed
, aLUL
, "1212121231212331212121212121212");
1951 TestUnw(aNTests
, aNTestsPassed
, aLUL
, "31415827271828325332173258");
1952 TestUnw(aNTests
, aNTestsPassed
, aLUL
,
1953 "123456781122334455667788777777777777777777777");
1954 aLUL
->mLog("LULUnitTest: END\n");