1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 // See the comment at the top of mfbt/HashTable.h for a comparison between
8 // PLDHashTable and mozilla::HashTable.
10 #ifndef PLDHashTable_h
11 #define PLDHashTable_h
15 #include "mozilla/Assertions.h"
16 #include "mozilla/Atomics.h"
17 #include "mozilla/HashFunctions.h"
18 #include "mozilla/Maybe.h"
19 #include "mozilla/MemoryReporting.h"
20 #include "mozilla/fallible.h"
23 using PLDHashNumber
= mozilla::HashNumber
;
24 static const uint32_t kPLDHashNumberBits
= mozilla::kHashNumberBits
;
26 #if defined(DEBUG) || defined(FUZZING)
27 # define MOZ_HASH_TABLE_CHECKS_ENABLED 1
31 struct PLDHashTableOps
;
33 // Table entry header structure.
35 // In order to allow in-line allocation of key and value, we do not declare
36 // either here. Instead, the API uses const void *key as a formal parameter.
37 // The key need not be stored in the entry; it may be part of the value, but
38 // need not be stored at all.
40 // Callback types are defined below and grouped into the PLDHashTableOps
41 // structure, for single static initialization per hash table sub-type.
43 // Each hash table sub-type should make its entry type a subclass of
44 // PLDHashEntryHdr. PLDHashEntryHdr is merely a common superclass to present a
45 // uniform interface to PLDHashTable clients. The zero-sized base class
46 // optimization, employed by all of our supported C++ compilers, will ensure
47 // that this abstraction does not make objects needlessly larger.
48 struct PLDHashEntryHdr
{
49 PLDHashEntryHdr() = default;
50 PLDHashEntryHdr(const PLDHashEntryHdr
&) = delete;
51 PLDHashEntryHdr
& operator=(const PLDHashEntryHdr
&) = delete;
52 PLDHashEntryHdr(PLDHashEntryHdr
&&) = default;
53 PLDHashEntryHdr
& operator=(PLDHashEntryHdr
&&) = default;
56 friend class PLDHashTable
;
59 #ifdef MOZ_HASH_TABLE_CHECKS_ENABLED
61 // This class does three kinds of checking:
63 // - that calls to one of |mOps| or to an enumerator do not cause re-entry into
64 // the table in an unsafe way;
66 // - that multiple threads do not access the table in an unsafe way;
68 // - that a table marked as immutable is not modified.
70 // "Safe" here means that multiple concurrent read operations are ok, but a
71 // write operation (i.e. one that can cause the entry storage to be reallocated
72 // or destroyed) cannot safely run concurrently with another read or write
73 // operation. This meaning of "safe" is only partial; for example, it does not
74 // cover whether a single entry in the table is modified by two separate
75 // threads. (Doing such checking would be much harder.)
77 // It does this with two variables:
79 // - mState, which embodies a tri-stage tagged union with the following
82 // - Read(n), where 'n' is the number of concurrent read operations
85 // - mIsWritable, which indicates if the table is mutable.
89 constexpr Checker() : mState(kIdle
), mIsWritable(true) {}
91 Checker
& operator=(Checker
&& aOther
) {
92 // Atomic<> doesn't have an |operator=(Atomic<>&&)|.
93 mState
= uint32_t(aOther
.mState
);
94 mIsWritable
= bool(aOther
.mIsWritable
);
96 aOther
.mState
= kIdle
;
97 // XXX Shouldn't we set mIsWritable to true here for consistency?
102 static bool IsIdle(uint32_t aState
) { return aState
== kIdle
; }
103 static bool IsRead(uint32_t aState
) {
104 return kRead1
<= aState
&& aState
<= kReadMax
;
106 static bool IsRead1(uint32_t aState
) { return aState
== kRead1
; }
107 static bool IsWrite(uint32_t aState
) { return aState
== kWrite
; }
109 bool IsIdle() const { return mState
== kIdle
; }
111 bool IsWritable() const { return mIsWritable
; }
113 void SetNonWritable() { mIsWritable
= false; }
115 // NOTE: the obvious way to implement these functions is to (a) check
116 // |mState| is reasonable, and then (b) update |mState|. But the lack of
117 // atomicity in such an implementation can cause problems if we get unlucky
118 // thread interleaving between (a) and (b).
120 // So instead for |mState| we are careful to (a) first get |mState|'s old
121 // value and assign it a new value in single atomic operation, and only then
122 // (b) check the old value was reasonable. This ensures we don't have
123 // interleaving problems.
125 // For |mIsWritable| we don't need to be as careful because it can only in
126 // transition in one direction (from writable to non-writable).
129 uint32_t oldState
= mState
++; // this is an atomic increment
130 MOZ_RELEASE_ASSERT(IsIdle(oldState
) || IsRead(oldState
));
131 MOZ_RELEASE_ASSERT(oldState
< kReadMax
); // check for overflow
135 uint32_t oldState
= mState
--; // this is an atomic decrement
136 MOZ_RELEASE_ASSERT(IsRead(oldState
));
139 void StartWriteOp() {
140 MOZ_RELEASE_ASSERT(IsWritable());
141 uint32_t oldState
= mState
.exchange(kWrite
);
142 MOZ_RELEASE_ASSERT(IsIdle(oldState
));
146 // Check again that the table is writable, in case it was marked as
147 // non-writable just after the IsWritable() assertion in StartWriteOp()
149 MOZ_RELEASE_ASSERT(IsWritable());
150 uint32_t oldState
= mState
.exchange(kIdle
);
151 MOZ_RELEASE_ASSERT(IsWrite(oldState
));
154 void StartIteratorRemovalOp() {
155 // When doing removals at the end of iteration, we go from Read1 state to
156 // Write and then back.
157 MOZ_RELEASE_ASSERT(IsWritable());
158 uint32_t oldState
= mState
.exchange(kWrite
);
159 MOZ_RELEASE_ASSERT(IsRead1(oldState
));
162 void EndIteratorRemovalOp() {
163 // Check again that the table is writable, in case it was marked as
164 // non-writable just after the IsWritable() assertion in
165 // StartIteratorRemovalOp() occurred.
166 MOZ_RELEASE_ASSERT(IsWritable());
167 uint32_t oldState
= mState
.exchange(kRead1
);
168 MOZ_RELEASE_ASSERT(IsWrite(oldState
));
171 void StartDestructorOp() {
172 // A destructor op is like a write, but the table doesn't need to be
174 uint32_t oldState
= mState
.exchange(kWrite
);
175 MOZ_RELEASE_ASSERT(IsIdle(oldState
));
178 void EndDestructorOp() {
179 uint32_t oldState
= mState
.exchange(kIdle
);
180 MOZ_RELEASE_ASSERT(IsWrite(oldState
));
184 // Things of note about the representation of |mState|.
185 // - The values between kRead1..kReadMax represent valid Read(n) values.
186 // - kIdle and kRead1 are deliberately chosen so that incrementing the -
187 // former gives the latter.
188 // - 9999 concurrent readers should be enough for anybody.
189 static const uint32_t kIdle
= 0;
190 static const uint32_t kRead1
= 1;
191 static const uint32_t kReadMax
= 9999;
192 static const uint32_t kWrite
= 10000;
194 mozilla::Atomic
<uint32_t, mozilla::SequentiallyConsistent
> mState
;
195 mozilla::Atomic
<bool, mozilla::SequentiallyConsistent
> mIsWritable
;
199 // A PLDHashTable may be allocated on the stack or within another structure or
200 // class. No entry storage is allocated until the first element is added. This
201 // means that empty hash tables are cheap, which is good because they are
204 // There used to be a long, math-heavy comment here about the merits of
205 // double hashing vs. chaining; it was removed in bug 1058335. In short, double
206 // hashing is more space-efficient unless the element size gets large (in which
207 // case you should keep using double hashing but switch to using pointer
208 // elements). Also, with double hashing, you can't safely hold an entry pointer
209 // and use it after an add or remove operation, unless you sample Generation()
210 // before adding or removing, and compare the sample after, dereferencing the
211 // entry pointer only if Generation() has not changed.
214 // A slot represents a cached hash value and its associated entry stored in
215 // the hash table. The hash value and the entry are not stored contiguously.
217 Slot(PLDHashEntryHdr
* aEntry
, PLDHashNumber
* aKeyHash
)
218 : mEntry(aEntry
), mKeyHash(aKeyHash
) {}
220 Slot(const Slot
&) = default;
221 Slot(Slot
&& aOther
) = default;
223 Slot
& operator=(Slot
&& aOther
) = default;
225 bool operator==(const Slot
& aOther
) const {
226 return mEntry
== aOther
.mEntry
;
229 PLDHashNumber
KeyHash() const { return *HashPtr(); }
230 void SetKeyHash(PLDHashNumber aHash
) { *HashPtr() = aHash
; }
232 PLDHashEntryHdr
* ToEntry() const { return mEntry
; }
234 bool IsFree() const { return KeyHash() == 0; }
235 bool IsRemoved() const { return KeyHash() == 1; }
236 bool IsLive() const { return IsLiveHash(KeyHash()); }
237 static bool IsLiveHash(uint32_t aHash
) { return aHash
>= 2; }
239 void MarkFree() { *HashPtr() = 0; }
240 void MarkRemoved() { *HashPtr() = 1; }
241 void MarkColliding() { *HashPtr() |= kCollisionFlag
; }
243 void Next(uint32_t aEntrySize
) {
244 char* p
= reinterpret_cast<char*>(mEntry
);
246 mEntry
= reinterpret_cast<PLDHashEntryHdr
*>(p
);
249 PLDHashNumber
* HashPtr() const { return mKeyHash
; }
252 PLDHashEntryHdr
* mEntry
;
253 PLDHashNumber
* mKeyHash
;
256 // This class maintains the invariant that every time the entry store is
257 // changed, the generation is updated.
259 // The data layout separates the cached hashes of entries and the entries
260 // themselves to save space. We could store the entries thusly:
262 // +--------+--------+---------+
263 // | entry0 | entry1 | ... |
264 // +--------+--------+---------+
266 // where the entries themselves contain the cached hash stored as their
267 // first member. PLDHashTable did this for a long time, with entries looking
270 // class PLDHashEntryHdr
272 // PLDHashNumber mKeyHash;
275 // class MyEntry : public PLDHashEntryHdr
280 // The problem with this setup is that, depending on the layout of
281 // `MyEntry`, there may be platform ABI-mandated padding between `mKeyHash`
282 // and the first member of `MyEntry`. This ABI-mandated padding is wasted
283 // space, and was surprisingly common, e.g. when MyEntry contained a single
284 // pointer on 64-bit platforms.
286 // As previously alluded to, the current setup stores things thusly:
288 // +-------+-------+-------+-------+--------+--------+---------+
289 // | hash0 | hash1 | ..... | hashN | entry0 | entry1 | ... |
290 // +-------+-------+-------+-------+--------+--------+---------+
292 // which contains no wasted space between the hashes themselves, and no
293 // wasted space between the entries themselves. malloc is guaranteed to
294 // return blocks of memory with at least word alignment on all of our major
295 // platforms. PLDHashTable mandates that the size of the hash table is
296 // always a power of two, so the alignment of the memory containing the
297 // first entry is always at least the alignment of the entire entry store.
298 // That means the alignment of `entry0` should be its natural alignment.
299 // Entries may have problems if they contain over-aligned members such as
300 // SIMD vector types, but this has not been a problem in practice.
302 // Note: It would be natural to store the generation within this class, but
303 // we can't do that without bloating sizeof(PLDHashTable) on 64-bit machines.
304 // So instead we store it outside this class, and Set() takes a pointer to it
305 // and ensures it is updated as necessary.
310 static char* Entries(char* aStore
, uint32_t aCapacity
) {
311 return aStore
+ aCapacity
* sizeof(PLDHashNumber
);
314 char* Entries(uint32_t aCapacity
) const {
315 return Entries(Get(), aCapacity
);
319 EntryStore() : mEntryStore(nullptr) {}
323 mEntryStore
= nullptr;
326 char* Get() const { return mEntryStore
; }
327 bool IsAllocated() const { return !!mEntryStore
; }
329 Slot
SlotForIndex(uint32_t aIndex
, uint32_t aEntrySize
,
330 uint32_t aCapacity
) const {
331 char* entries
= Entries(aCapacity
);
333 reinterpret_cast<PLDHashEntryHdr
*>(entries
+ aIndex
* aEntrySize
);
334 auto hashes
= reinterpret_cast<PLDHashNumber
*>(Get());
335 return Slot(entry
, &hashes
[aIndex
]);
338 Slot
SlotForPLDHashEntry(PLDHashEntryHdr
* aEntry
, uint32_t aCapacity
,
339 uint32_t aEntrySize
) {
340 char* entries
= Entries(aCapacity
);
341 char* entry
= reinterpret_cast<char*>(aEntry
);
342 uint32_t entryOffset
= entry
- entries
;
343 uint32_t slotIndex
= entryOffset
/ aEntrySize
;
344 return SlotForIndex(slotIndex
, aEntrySize
, aCapacity
);
347 template <typename F
>
348 void ForEachSlot(uint32_t aCapacity
, uint32_t aEntrySize
, F
&& aFunc
) {
349 ForEachSlot(Get(), aCapacity
, aEntrySize
, std::move(aFunc
));
352 template <typename F
>
353 static void ForEachSlot(char* aStore
, uint32_t aCapacity
,
354 uint32_t aEntrySize
, F
&& aFunc
) {
355 char* entries
= Entries(aStore
, aCapacity
);
356 Slot
slot(reinterpret_cast<PLDHashEntryHdr
*>(entries
),
357 reinterpret_cast<PLDHashNumber
*>(aStore
));
358 for (size_t i
= 0; i
< aCapacity
; ++i
) {
360 slot
.Next(aEntrySize
);
364 void Set(char* aEntryStore
, uint16_t* aGeneration
) {
365 mEntryStore
= aEntryStore
;
370 // These fields are packed carefully. On 32-bit platforms,
371 // sizeof(PLDHashTable) is 20. On 64-bit platforms, sizeof(PLDHashTable) is
372 // 32; 28 bytes of data followed by 4 bytes of padding for alignment.
373 const PLDHashTableOps
* const mOps
; // Virtual operations; see below.
374 EntryStore mEntryStore
; // (Lazy) entry storage and generation.
375 uint16_t mGeneration
; // The storage generation.
376 uint8_t mHashShift
; // Multiplicative hash shift.
377 const uint8_t mEntrySize
; // Number of bytes in an entry.
378 uint32_t mEntryCount
; // Number of entries in table.
379 uint32_t mRemovedCount
; // Removed entry sentinels in table.
381 #ifdef MOZ_HASH_TABLE_CHECKS_ENABLED
382 mutable Checker mChecker
;
386 // Table capacity limit; do not exceed. The max capacity used to be 1<<23 but
387 // that occasionally that wasn't enough. Making it much bigger than 1<<26
388 // probably isn't worthwhile -- tables that big are kind of ridiculous.
389 // Also, the growth operation will (deliberately) fail if |capacity *
390 // mEntrySize| overflows a uint32_t, and mEntrySize is always at least 8
392 static const uint32_t kMaxCapacity
= ((uint32_t)1 << 26);
394 static const uint32_t kMinCapacity
= 8;
396 // Making this half of kMaxCapacity ensures it'll fit. Nobody should need an
397 // initial length anywhere nearly this large, anyway.
398 static const uint32_t kMaxInitialLength
= kMaxCapacity
/ 2;
400 // This gives a default initial capacity of 8.
401 static const uint32_t kDefaultInitialLength
= 4;
403 // Initialize the table with |aOps| and |aEntrySize|. The table's initial
404 // capacity is chosen such that |aLength| elements can be inserted without
405 // rehashing; if |aLength| is a power-of-two, this capacity will be
406 // |2*length|. However, because entry storage is allocated lazily, this
407 // initial capacity won't be relevant until the first element is added; prior
408 // to that the capacity will be zero.
410 // This will crash if |aEntrySize| and/or |aLength| are too large.
411 PLDHashTable(const PLDHashTableOps
* aOps
, uint32_t aEntrySize
,
412 uint32_t aLength
= kDefaultInitialLength
);
414 PLDHashTable(PLDHashTable
&& aOther
)
415 // Initialize fields which are checked by the move assignment operator
416 // and the destructor (which the move assignment operator calls).
417 : mOps(nullptr), mGeneration(0), mEntrySize(0) {
418 *this = std::move(aOther
);
421 PLDHashTable
& operator=(PLDHashTable
&& aOther
);
425 // This should be used rarely.
426 const PLDHashTableOps
* Ops() const { return mOps
; }
428 // Size in entries (gross, not net of free and removed sentinels) for table.
429 // This can be zero if no elements have been added yet, in which case the
430 // entry storage will not have yet been allocated.
431 uint32_t Capacity() const {
432 return mEntryStore
.IsAllocated() ? CapacityFromHashShift() : 0;
435 uint32_t EntrySize() const { return mEntrySize
; }
436 uint32_t EntryCount() const { return mEntryCount
; }
437 uint32_t Generation() const { return mGeneration
; }
439 // To search for a |key| in |table|, call:
441 // entry = table.Search(key);
443 // If |entry| is non-null, |key| was found. If |entry| is null, key was not
445 PLDHashEntryHdr
* Search(const void* aKey
) const;
447 // To add an entry identified by |key| to table, call:
449 // entry = table.Add(key, mozilla::fallible);
451 // If |entry| is null upon return, then the table is severely overloaded and
452 // memory can't be allocated for entry storage.
454 // Otherwise, if the initEntry hook was provided, |entry| will be
455 // initialized. If the initEntry hook was not provided, the caller
456 // should initialize |entry| as appropriate.
457 PLDHashEntryHdr
* Add(const void* aKey
, const mozilla::fallible_t
&);
459 // This is like the other Add() function, but infallible, and so never
461 PLDHashEntryHdr
* Add(const void* aKey
);
463 // To remove an entry identified by |key| from table, call:
465 // table.Remove(key);
467 // If |key|'s entry is found, it is cleared (via table->mOps->clearEntry).
468 // The table's capacity may be reduced afterwards.
469 void Remove(const void* aKey
);
471 // To remove an entry found by a prior search, call:
473 // table.RemoveEntry(entry);
475 // The entry, which must be present and in use, is cleared (via
476 // table->mOps->clearEntry). The table's capacity may be reduced afterwards.
477 void RemoveEntry(PLDHashEntryHdr
* aEntry
);
479 // Remove an entry already accessed via Search() or Add().
481 // NB: this is a "raw" or low-level method. It does not shrink the table if
482 // it is underloaded. Don't use it unless necessary and you know what you are
483 // doing, and if so, please explain in a comment why it is necessary instead
485 void RawRemove(PLDHashEntryHdr
* aEntry
);
487 // This function is equivalent to
488 // ClearAndPrepareForLength(kDefaultInitialLength).
491 // This function clears the table's contents and frees its entry storage,
492 // leaving it in a empty state ready to be used again. Afterwards, when the
493 // first element is added the entry storage that gets allocated will have a
494 // capacity large enough to fit |aLength| elements without rehashing.
496 // It's conceptually the same as calling the destructor and then re-calling
497 // the constructor with the original |aOps| and |aEntrySize| arguments, and
498 // a new |aLength| argument.
499 void ClearAndPrepareForLength(uint32_t aLength
);
501 // Measure the size of the table's entry storage. If the entries contain
502 // pointers to other heap blocks, you have to iterate over the table and
503 // measure those separately; hence the "Shallow" prefix.
504 size_t ShallowSizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf
) const;
506 // Like ShallowSizeOfExcludingThis(), but includes sizeof(*this).
507 size_t ShallowSizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf
) const;
509 // Mark a table as immutable for the remainder of its lifetime. This
510 // changes the implementation from asserting one set of invariants to
511 // asserting a different set.
512 void MarkImmutable() {
513 #ifdef MOZ_HASH_TABLE_CHECKS_ENABLED
514 mChecker
.SetNonWritable();
518 // If you use PLDHashEntryStub or a subclass of it as your entry struct, and
519 // if your entries move via memcpy and clear via memset(0), you can use these
521 static const PLDHashTableOps
* StubOps();
523 // The individual stub operations in StubOps().
524 static PLDHashNumber
HashVoidPtrKeyStub(const void* aKey
);
525 static bool MatchEntryStub(const PLDHashEntryHdr
* aEntry
, const void* aKey
);
526 static void MoveEntryStub(PLDHashTable
* aTable
, const PLDHashEntryHdr
* aFrom
,
527 PLDHashEntryHdr
* aTo
);
528 static void ClearEntryStub(PLDHashTable
* aTable
, PLDHashEntryHdr
* aEntry
);
530 // Hash/match operations for tables holding C strings.
531 static PLDHashNumber
HashStringKey(const void* aKey
);
532 static bool MatchStringKey(const PLDHashEntryHdr
* aEntry
, const void* aKey
);
536 EntryHandle(EntryHandle
&& aOther
) noexcept
;
537 #ifdef MOZ_HASH_TABLE_CHECKS_ENABLED
541 EntryHandle(const EntryHandle
&) = delete;
542 EntryHandle
& operator=(const EntryHandle
&) = delete;
543 EntryHandle
& operator=(EntryHandle
&& aOther
) = delete;
545 // Is this slot currently occupied?
546 bool HasEntry() const { return mSlot
.IsLive(); }
548 explicit operator bool() const { return HasEntry(); }
550 // Get the entry stored in this slot. May not be called unless the slot is
551 // currently occupied.
552 PLDHashEntryHdr
* Entry() {
553 MOZ_ASSERT(HasEntry());
554 return mSlot
.ToEntry();
558 void Insert(F
&& aInitEntry
) {
559 MOZ_ASSERT(!HasEntry());
561 std::forward
<F
>(aInitEntry
)(Entry());
564 // If the slot is currently vacant, the slot is occupied and `initEntry` is
565 // invoked to initialize the entry. Returns the entry stored in now-occupied
568 PLDHashEntryHdr
* OrInsert(F
&& aInitEntry
) {
570 Insert(std::forward
<F
>(aInitEntry
));
575 /** Removes the entry. Note that the table won't shrink on destruction of
583 /** Removes the entry, if it exists. Note that the table won't shrink on
584 * destruction of the EntryHandle.
591 friend class PLDHashTable
;
593 EntryHandle(PLDHashTable
* aTable
, PLDHashNumber aKeyHash
, Slot aSlot
);
597 PLDHashTable
* mTable
;
598 PLDHashNumber mKeyHash
;
603 auto WithEntryHandle(const void* aKey
,
604 F
&& aFunc
) -> std::invoke_result_t
<F
, EntryHandle
&&> {
605 return std::forward
<F
>(aFunc
)(MakeEntryHandle(aKey
));
609 auto WithEntryHandle(const void* aKey
, const mozilla::fallible_t
& aFallible
,
611 -> std::invoke_result_t
<F
, mozilla::Maybe
<EntryHandle
>&&> {
612 return std::forward
<F
>(aFunc
)(MakeEntryHandle(aKey
, aFallible
));
615 // This is an iterator for PLDHashtable. Assertions will detect some, but not
616 // all, mid-iteration table modifications that might invalidate (e.g.
617 // reallocate) the entry storage.
619 // Any element can be removed during iteration using Remove(). If any
620 // elements are removed, the table may be resized once iteration ends.
624 // for (auto iter = table.Iter(); !iter.Done(); iter.Next()) {
625 // auto entry = static_cast<FooEntry*>(iter.Get());
626 // // ... do stuff with |entry| ...
627 // // ... possibly call iter.Remove() once ...
632 // for (PLDHashTable::Iterator iter(&table); !iter.Done(); iter.Next()) {
633 // auto entry = static_cast<FooEntry*>(iter.Get());
634 // // ... do stuff with |entry| ...
635 // // ... possibly call iter.Remove() once ...
638 // The latter form is more verbose but is easier to work with when
639 // making subclasses of Iterator.
643 explicit Iterator(PLDHashTable
* aTable
);
644 struct EndIteratorTag
{};
645 Iterator(PLDHashTable
* aTable
, EndIteratorTag aTag
);
646 Iterator(Iterator
&& aOther
);
650 bool Done() const { return mNexts
== mNextsLimit
; }
652 // Get the current entry.
653 PLDHashEntryHdr
* Get() const {
655 MOZ_ASSERT(mCurrent
.IsLive());
656 return mCurrent
.ToEntry();
659 // Advance to the next entry.
662 // Remove the current entry. Must only be called once per entry, and Get()
663 // must not be called on that entry afterwards.
666 bool operator==(const Iterator
& aOther
) const {
667 MOZ_ASSERT(mTable
== aOther
.mTable
);
668 return mNexts
== aOther
.mNexts
;
671 Iterator
Clone() const { return {*this}; }
674 PLDHashTable
* mTable
; // Main table pointer.
677 Slot mCurrent
; // Pointer to the current entry.
678 uint32_t mNexts
; // Number of Next() calls.
679 uint32_t mNextsLimit
; // Next() call limit.
681 bool mHaveRemoved
; // Have any elements been removed?
682 uint8_t mEntrySize
; // Size of entries.
684 bool IsOnNonLiveEntry() const;
686 void MoveToNextLiveEntry();
689 Iterator(const Iterator
&);
690 Iterator
& operator=(const Iterator
&) = delete;
691 Iterator
& operator=(const Iterator
&&) = delete;
694 Iterator
Iter() { return Iterator(this); }
696 // Use this if you need to initialize an Iterator in a const method. If you
697 // use this case, you should not call Remove() on the iterator.
698 Iterator
ConstIter() const {
699 return Iterator(const_cast<PLDHashTable
*>(this));
703 static uint32_t HashShift(uint32_t aEntrySize
, uint32_t aLength
);
705 static const PLDHashNumber kCollisionFlag
= 1;
707 PLDHashNumber
Hash1(PLDHashNumber aHash0
) const;
708 void Hash2(PLDHashNumber aHash
, uint32_t& aHash2Out
,
709 uint32_t& aSizeMaskOut
) const;
711 static bool MatchSlotKeyhash(Slot
& aSlot
, const PLDHashNumber aHash
);
712 Slot
SlotForIndex(uint32_t aIndex
) const;
714 // We store mHashShift rather than sizeLog2 to optimize the collision-free
715 // case in SearchTable.
716 uint32_t CapacityFromHashShift() const {
717 return ((uint32_t)1 << (kPLDHashNumberBits
- mHashShift
));
720 PLDHashNumber
ComputeKeyHash(const void* aKey
) const;
722 enum SearchReason
{ ForSearchOrRemove
, ForAdd
};
724 // Avoid using bare `Success` and `Failure`, as those names are commonly
725 // defined as macros.
726 template <SearchReason Reason
, typename PLDSuccess
, typename PLDFailure
>
727 auto SearchTable(const void* aKey
, PLDHashNumber aKeyHash
,
728 PLDSuccess
&& aSucess
, PLDFailure
&& aFailure
) const;
730 Slot
FindFreeSlot(PLDHashNumber aKeyHash
) const;
732 bool ChangeTable(int aDeltaLog2
);
734 void RawRemove(Slot
& aSlot
);
735 void ShrinkIfAppropriate();
737 mozilla::Maybe
<EntryHandle
> MakeEntryHandle(const void* aKey
,
738 const mozilla::fallible_t
&);
740 EntryHandle
MakeEntryHandle(const void* aKey
);
742 PLDHashTable(const PLDHashTable
& aOther
) = delete;
743 PLDHashTable
& operator=(const PLDHashTable
& aOther
) = delete;
746 // Compute the hash code for a given key to be looked up, added, or removed.
747 // A hash code may have any PLDHashNumber value.
748 typedef PLDHashNumber (*PLDHashHashKey
)(const void* aKey
);
750 // Compare the key identifying aEntry with the provided key parameter. Return
751 // true if keys match, false otherwise.
752 typedef bool (*PLDHashMatchEntry
)(const PLDHashEntryHdr
* aEntry
,
755 // Copy the data starting at aFrom to the new entry storage at aTo. Do not add
756 // reference counts for any strong references in the entry, however, as this
757 // is a "move" operation: the old entry storage at from will be freed without
758 // any reference-decrementing callback shortly.
759 typedef void (*PLDHashMoveEntry
)(PLDHashTable
* aTable
,
760 const PLDHashEntryHdr
* aFrom
,
761 PLDHashEntryHdr
* aTo
);
763 // Clear the entry and drop any strong references it holds. This callback is
764 // invoked by Remove(), but only if the given key is found in the table.
765 typedef void (*PLDHashClearEntry
)(PLDHashTable
* aTable
,
766 PLDHashEntryHdr
* aEntry
);
768 // Initialize a new entry. This function is called when
769 // Add() finds no existing entry for the given key, and must add a new one.
770 typedef void (*PLDHashInitEntry
)(PLDHashEntryHdr
* aEntry
, const void* aKey
);
772 // Finally, the "vtable" structure for PLDHashTable. The first four hooks
773 // must be provided by implementations; they're called unconditionally by the
774 // generic PLDHashTable.cpp code. Hooks after these may be null.
776 // Summary of allocation-related hook usage with C++ placement new emphasis:
777 // initEntry Call placement new using default key-based ctor.
778 // moveEntry Call placement new using copy ctor, run dtor on old
780 // clearEntry Run dtor on entry.
782 // Note the reason why initEntry is optional: the default hooks (stubs) clear
783 // entry storage. On a successful Add(tbl, key), the returned entry pointer
784 // addresses an entry struct whose entry members are still clear (null). Add()
785 // callers can test such members to see whether the entry was newly created by
786 // the Add() call that just succeeded. If placement new or similar
787 // initialization is required, define an |initEntry| hook. Of course, the
788 // |clearEntry| hook must zero or null appropriately.
790 // XXX assumes 0 is null for pointer types.
791 struct PLDHashTableOps
{
792 // Mandatory hooks. All implementations must provide these.
793 PLDHashHashKey hashKey
;
794 PLDHashMatchEntry matchEntry
;
795 PLDHashMoveEntry moveEntry
;
797 // Optional hooks start here. If null, these are not called.
798 PLDHashClearEntry clearEntry
;
799 PLDHashInitEntry initEntry
;
802 // A minimal entry is a subclass of PLDHashEntryHdr and has a void* key pointer.
803 struct PLDHashEntryStub
: public PLDHashEntryHdr
{
807 #endif /* PLDHashTable_h */