gnetlist: Add basic concatenated net support for verilog.
[geda-gaf/whiteaudio.git] / libgeda / src / m_polygon.c
blobee2c3c6a19f9339f5e018101c132ff80b12ad629
1 /* gEDA - GPL Electronic Design Automation
2 * libgeda - gEDA's library
3 * Copyright (C) 1998-2010 Ales Hvezda
4 * Copyright (C) 1998-2010 gEDA Contributors (see ChangeLog for details)
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 #include <config.h>
21 #include <math.h>
22 #include <string.h>
23 #include <libgeda_priv.h>
25 /*! \brief Appends a bezier curve to the polygon
27 * \param points [inout] The vertices of the polygon. This parameter must not
28 * be NULL.
29 * \param bezier [in] The bezier curve to append.
30 * \param segments [in] The number of segments to subdivide the bezier curve into.
32 void m_polygon_append_bezier (GArray *points, BEZIER *bezier, int segments)
34 m_polygon_append_point (points, bezier->x[0], bezier->y[0]);
36 if (segments > 1) {
37 int i;
39 double a = 3 / (double) segments;
40 double b = 6 / pow (segments, 2);
41 double c = 6 / pow (segments, 3);
43 double x = bezier->x[0];
44 double xd = a * (bezier->x[1] - bezier->x[0]);
45 double xdd = b * (bezier->x[0] - 2 * bezier->x[1] + bezier->x[2]);
46 double xddd = c * (3 * (bezier->x[1] - bezier->x[2]) + bezier->x[3] - bezier->x[0]);
48 double xdd_div2 = xdd / 2;
49 double xddd_div2 = xddd / 2;
50 double xddd_div6 = xddd / 6;
52 double y = bezier->y[0];
53 double yd = a * (bezier->y[1] - bezier->y[0]);
54 double ydd = b * (bezier->y[0] - 2 * bezier->y[1] + bezier->y[2]);
55 double yddd = c * (3 * (bezier->y[1] - bezier->y[2]) + bezier->y[3] - bezier->y[0]);
57 double ydd_div2 = ydd / 2;
58 double yddd_div2 = yddd / 2;
59 double yddd_div6 = yddd / 6;
61 for (i=1; i < segments; i++) {
62 x += xd + xdd_div2 + xddd_div6;
63 xd += xdd + xddd_div2;
64 xdd += xddd;
65 xdd_div2 += xddd_div2;
67 y += yd + ydd_div2 + yddd_div6;
68 yd += ydd + yddd_div2;
69 ydd += yddd;
70 ydd_div2 += yddd_div2;
72 m_polygon_append_point (points, round (x), round (y));
76 m_polygon_append_point (points, bezier->x[3], bezier->y[3]);
79 /*! \brief Appends a point to the list of vertices in a polygon
81 * \param points [inout] The vertices of the polygon. This parameter must not
82 * be NULL.
83 * \param x [in] The x coordinate of the point to append.
84 * \param y [in] The y coordinate of the point to append.
86 void m_polygon_append_point (GArray *points, int x, int y)
88 sPOINT point = { x, y };
90 point.x = x;
91 point.y = y;
93 if (points->len == 0 ||
94 memcmp (&g_array_index (points, sPOINT, points->len - 1),
95 &point, sizeof (sPOINT)) != 0) {
96 g_array_append_val (points, point);
100 /*! \brief Determines if a point lies inside a polygon
102 * TODO Untested
104 * \param points [in] The vertices of the polygon. This function assumes the
105 * list of points represents a closed polygon. If the first and last point do
106 * not match, the line segment between them is implied. This parameter must
107 * not be NULL.
108 * \param x [in] The x coordinate of the given point.
109 * \param y [in] The y coordinate of the given point.
110 * \returns TRUE if the point lies inside the polygon, FALSE if the point lies
111 * outside the polygon.
113 gboolean m_polygon_interior_point (GArray *points, int x, int y)
115 int count = 0;
117 if (points->len > 0) {
118 int i;
119 sPOINT p1 = g_array_index (points, sPOINT, points->len - 1);
121 for (i=0; i < points->len; i++) {
122 sPOINT p0 = p1;
123 double xi;
125 p1 = g_array_index (points, sPOINT, i);
127 if (y < p0.y && y < p1.y)
128 continue;
130 if (y >= p0.y && y >= p1.y)
131 continue;
133 xi = ((double) (p1.x - p0.x)) * (y - p0.y) / (p1.y - p0.y) + p0.x;
135 if (x < xi)
136 count++;
139 return (count % 2) == 1; /* odd */
142 /*! \brief Calculates the distance between the given point and the closest
143 * point on the perimeter of the polygon.
145 * \param [in] points The polygon, where polygon != NULL.
146 * \param [in] x The x coordinate of the given point.
147 * \param [in] y The y coordinate of the given point.
148 * \param [in] closed If TRUE, the function treats the polygon as a closed
149 * shape, creating a line between the first and last points, if needed. If
150 * the first and last points are equal, or inherintly closed, this parameter
151 * does not matter.
152 * \return The shortest distance from the polygon to the point. With an
153 * invalid parameter, this function returns G_MAXDOUBLE.
155 double m_polygon_shortest_distance (GArray *points, int x, int y, gboolean closed)
157 gdouble shortest = G_MAXDOUBLE;
159 if (points->len > 0) {
160 int i = 0;
161 sPOINT point;
163 if (closed) {
164 point = g_array_index (points, sPOINT, points->len - 1);
165 } else {
166 point = g_array_index (points, sPOINT, i++);
169 while (i < points->len) {
170 double distance;
171 LINE line;
173 line.x[0] = point.x;
174 line.y[0] = point.y;
176 point = g_array_index (points, sPOINT, i++);
178 line.x[1] = point.x;
179 line.y[1] = point.y;
181 distance = m_line_shortest_distance (&line, x, y);
183 shortest = min (shortest, distance);
187 return shortest;