action.c: UpdatePackage() reloads from disk
[geda-pcb/whiteaudio.git] / gts / triangle.c
blob5213a51265757d490b711e046e6799769b9e5f15
1 /* GTS - Library for the manipulation of triangulated surfaces
2 * Copyright (C) 1999 Stéphane Popinet
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
20 #include <math.h>
21 #include "gts.h"
23 static void triangle_destroy (GtsObject * object)
25 GtsTriangle * triangle = GTS_TRIANGLE (object);
26 GtsEdge * e1 = triangle->e1;
27 GtsEdge * e2 = triangle->e2;
28 GtsEdge * e3 = triangle->e3;
30 e1->triangles = g_slist_remove (e1->triangles, triangle);
31 if (!GTS_OBJECT_DESTROYED (e1) &&
32 !gts_allow_floating_edges && e1->triangles == NULL)
33 gts_object_destroy (GTS_OBJECT (e1));
35 e2->triangles = g_slist_remove (e2->triangles, triangle);
36 if (!GTS_OBJECT_DESTROYED (e2) &&
37 !gts_allow_floating_edges && e2->triangles == NULL)
38 gts_object_destroy (GTS_OBJECT (e2));
40 e3->triangles = g_slist_remove (e3->triangles, triangle);
41 if (!GTS_OBJECT_DESTROYED (e3) &&
42 !gts_allow_floating_edges && e3->triangles == NULL)
43 gts_object_destroy (GTS_OBJECT (e3));
45 (* GTS_OBJECT_CLASS (gts_triangle_class ())->parent_class->destroy) (object);
48 static void triangle_class_init (GtsObjectClass * klass)
50 klass->destroy = triangle_destroy;
53 static void triangle_init (GtsTriangle * triangle)
55 triangle->e1 = triangle->e2 = triangle->e3 = NULL;
58 /**
59 * gts_triangle_class:
61 * Returns: the #GtsTriangleClass.
63 GtsTriangleClass * gts_triangle_class (void)
65 static GtsTriangleClass * klass = NULL;
67 if (klass == NULL) {
68 GtsObjectClassInfo triangle_info = {
69 "GtsTriangle",
70 sizeof (GtsTriangle),
71 sizeof (GtsTriangleClass),
72 (GtsObjectClassInitFunc) triangle_class_init,
73 (GtsObjectInitFunc) triangle_init,
74 (GtsArgSetFunc) NULL,
75 (GtsArgGetFunc) NULL
77 klass = gts_object_class_new (gts_object_class (),
78 &triangle_info);
81 return klass;
84 /**
85 * gts_triangle_set:
86 * @triangle: a #GtsTriangle.
87 * @e1: a #GtsEdge.
88 * @e2: another #GtsEdge touching @e1.
89 * @e3: another #GtsEdge touching both @e1 and @e2.
91 * Sets the edge of @triangle to @e1, @e2 and @e3 while checking that they
92 * define a valid triangle.
94 void gts_triangle_set (GtsTriangle * triangle,
95 GtsEdge * e1,
96 GtsEdge * e2,
97 GtsEdge * e3)
99 g_return_if_fail (e1 != NULL);
100 g_return_if_fail (e2 != NULL);
101 g_return_if_fail (e3 != NULL);
102 g_return_if_fail (e1 != e2 && e1 != e3 && e2 != e3);
104 triangle->e1 = e1;
105 triangle->e2 = e2;
106 triangle->e3 = e3;
108 if (GTS_SEGMENT (e1)->v1 == GTS_SEGMENT (e2)->v1)
109 g_return_if_fail (gts_segment_connect (GTS_SEGMENT (e3),
110 GTS_SEGMENT (e1)->v2,
111 GTS_SEGMENT (e2)->v2));
112 else if (GTS_SEGMENT (e1)->v2 == GTS_SEGMENT (e2)->v1)
113 g_return_if_fail (gts_segment_connect (GTS_SEGMENT (e3),
114 GTS_SEGMENT (e1)->v1,
115 GTS_SEGMENT (e2)->v2));
116 else if (GTS_SEGMENT (e1)->v2 == GTS_SEGMENT (e2)->v2)
117 g_return_if_fail (gts_segment_connect (GTS_SEGMENT (e3),
118 GTS_SEGMENT (e1)->v1,
119 GTS_SEGMENT (e2)->v1));
120 else if (GTS_SEGMENT (e1)->v1 == GTS_SEGMENT (e2)->v2)
121 g_return_if_fail (gts_segment_connect (GTS_SEGMENT (e3),
122 GTS_SEGMENT (e1)->v2,
123 GTS_SEGMENT (e2)->v1));
124 else
125 g_assert_not_reached ();
127 e1->triangles = g_slist_prepend (e1->triangles, triangle);
128 e2->triangles = g_slist_prepend (e2->triangles, triangle);
129 e3->triangles = g_slist_prepend (e3->triangles, triangle);
133 * gts_triangle_new:
134 * @klass: a #GtsTriangleClass.
135 * @e1: a #GtsEdge.
136 * @e2: another #GtsEdge touching @e1.
137 * @e3: another #GtsEdge touching both @e1 and @e2.
139 * Returns: a new #GtsTriangle having @e1, @e2 and @e3 as edges.
141 GtsTriangle * gts_triangle_new (GtsTriangleClass * klass,
142 GtsEdge * e1,
143 GtsEdge * e2,
144 GtsEdge * e3)
146 GtsTriangle * t;
148 t = GTS_TRIANGLE (gts_object_new (GTS_OBJECT_CLASS (klass)));
149 gts_triangle_set (t, e1, e2, e3);
151 return t;
155 * gts_triangle_vertex_opposite:
156 * @t: a #GtsTriangle.
157 * @e: a #GtsEdge used by @t.
159 * This function fails if @e is not an edge of @t.
161 * Returns: a #GtsVertex, vertex of @t which does not belong to @e.
163 GtsVertex * gts_triangle_vertex_opposite (GtsTriangle * t, GtsEdge * e)
165 g_return_val_if_fail (t != NULL, NULL);
166 g_return_val_if_fail (e != NULL, NULL);
168 if (t->e1 == e) {
169 GtsVertex * v = GTS_SEGMENT (t->e2)->v1;
170 if (v != GTS_SEGMENT (e)->v1 && v != GTS_SEGMENT (e)->v2)
171 return v;
172 return GTS_SEGMENT (t->e2)->v2;
174 if (t->e2 == e) {
175 GtsVertex * v = GTS_SEGMENT (t->e1)->v1;
176 if (v != GTS_SEGMENT (e)->v1 && v != GTS_SEGMENT (e)->v2)
177 return v;
178 return GTS_SEGMENT (t->e1)->v2;
180 if (t->e3 == e) {
181 GtsVertex * v = GTS_SEGMENT (t->e2)->v1;
182 if (v != GTS_SEGMENT (e)->v1 && v != GTS_SEGMENT (e)->v2)
183 return v;
184 return GTS_SEGMENT (t->e2)->v2;
186 g_assert_not_reached ();
187 return NULL;
191 * gts_triangle_edge_opposite:
192 * @t: a #GtsTriangle.
193 * @v: a #GtsVertex of @t.
195 * Returns: the edge of @t opposite @v or %NULL if @v is not a vertice of @t.
197 GtsEdge * gts_triangle_edge_opposite (GtsTriangle * t, GtsVertex * v)
199 GtsSegment * s1, * s2, * s3;
201 g_return_val_if_fail (t != NULL, NULL);
202 g_return_val_if_fail (v != NULL, NULL);
204 s1 = GTS_SEGMENT (t->e1);
205 s2 = GTS_SEGMENT (t->e2);
207 if (s1->v1 != v && s1->v2 != v) {
208 if (s2->v1 != v && s2->v2 != v)
209 return NULL;
210 return t->e1;
212 if (s2->v1 != v && s2->v2 != v)
213 return t->e2;
214 s3 = GTS_SEGMENT (t->e3);
215 g_assert (s3->v1 != v && s3->v2 != v);
216 return t->e3;
220 * gts_triangles_angle:
221 * @t1: a #GtsTriangle.
222 * @t2: a #GtsTriangle.
224 * Returns: the value (in radians) of the angle between @t1 and @t2.
226 gdouble gts_triangles_angle (GtsTriangle * t1,
227 GtsTriangle * t2)
229 gdouble nx1, ny1, nz1, nx2, ny2, nz2;
230 gdouble pvx, pvy, pvz;
231 gdouble theta;
233 g_return_val_if_fail (t1 != NULL && t2 != NULL, 0.0);
235 gts_triangle_normal (t1, &nx1, &ny1, &nz1);
236 gts_triangle_normal (t2, &nx2, &ny2, &nz2);
238 pvx = ny1*nz2 - nz1*ny2;
239 pvy = nz1*nx2 - nx1*nz2;
240 pvz = nx1*ny2 - ny1*nx2;
242 theta = atan2 (sqrt (pvx*pvx + pvy*pvy + pvz*pvz),
243 nx1*nx2 + ny1*ny2 + nz1*nz2) - M_PI;
244 return theta < - M_PI ? theta + 2.*M_PI : theta;
248 * gts_triangles_are_compatible:
249 * @t1: a #GtsTriangle.
250 * @t2: a #GtsTriangle.
251 * @e: a #GtsEdge used by both @t1 and @t2.
253 * Checks if @t1 and @t2 have compatible orientations i.e. if @t1 and
254 * @t2 can be part of the same surface without conflict in the surface
255 * normal orientation.
257 * Returns: %TRUE if @t1 and @t2 are compatible, %FALSE otherwise.
259 gboolean gts_triangles_are_compatible (GtsTriangle * t1,
260 GtsTriangle * t2,
261 GtsEdge * e)
263 GtsEdge * e1 = NULL, * e2 = NULL;
265 g_return_val_if_fail (t1 != NULL, FALSE);
266 g_return_val_if_fail (t2 != NULL, FALSE);
267 g_return_val_if_fail (e != NULL, FALSE);
269 if (t1->e1 == e) e1 = t1->e2;
270 else if (t1->e2 == e) e1 = t1->e3;
271 else if (t1->e3 == e) e1 = t1->e1;
272 else
273 g_assert_not_reached ();
274 if (t2->e1 == e) e2 = t2->e2;
275 else if (t2->e2 == e) e2 = t2->e3;
276 else if (t2->e3 == e) e2 = t2->e1;
277 else
278 g_assert_not_reached ();
279 if (GTS_SEGMENT (e1)->v1 == GTS_SEGMENT (e2)->v1 ||
280 GTS_SEGMENT (e1)->v1 == GTS_SEGMENT (e2)->v2 ||
281 GTS_SEGMENT (e1)->v2 == GTS_SEGMENT (e2)->v1 ||
282 GTS_SEGMENT (e1)->v2 == GTS_SEGMENT (e2)->v2)
283 return FALSE;
284 return TRUE;
288 * gts_triangle_area:
289 * @t: a #GtsTriangle.
291 * Returns: the area of the triangle @t.
293 gdouble gts_triangle_area (GtsTriangle * t)
295 gdouble x, y, z;
297 g_return_val_if_fail (t != NULL, 0.0);
299 gts_triangle_normal (t, &x, &y, &z);
301 return sqrt (x*x + y*y + z*z)/2.;
305 * gts_triangle_perimeter:
306 * @t: a #GtsTriangle.
308 * Returns: the perimeter of the triangle @t.
310 gdouble gts_triangle_perimeter (GtsTriangle * t)
312 GtsVertex * v;
314 g_return_val_if_fail (t != NULL, 0.0);
316 v = gts_triangle_vertex (t);
317 return
318 gts_point_distance (GTS_POINT (GTS_SEGMENT (t->e1)->v1),
319 GTS_POINT (GTS_SEGMENT (t->e1)->v2)) +
320 gts_point_distance (GTS_POINT (GTS_SEGMENT (t->e1)->v1),
321 GTS_POINT (v)) +
322 gts_point_distance (GTS_POINT (GTS_SEGMENT (t->e1)->v2),
323 GTS_POINT (v));
326 /* perimeter of the equilateral triangle of area unity */
327 #define GOLDEN_PERIMETER 4.5590141139
330 * gts_triangle_quality:
331 * @t: a #GtsTriangle.
333 * The quality of a triangle is defined as the ratio of the square
334 * root of its surface area to its perimeter relative to this same
335 * ratio for an equilateral triangle with the same area. The quality
336 * is then one for an equilateral triangle and tends to zero for a
337 * very stretched triangle.
339 * Returns: the quality of the triangle @t.
341 gdouble gts_triangle_quality (GtsTriangle * t)
343 gdouble perimeter;
345 g_return_val_if_fail (t != NULL, 0.0);
347 perimeter = gts_triangle_perimeter (t);
348 return perimeter > 0.0 ?
349 GOLDEN_PERIMETER*sqrt (gts_triangle_area (t))/perimeter :
350 0.0;
354 * gts_triangle_normal:
355 * @t: a #GtsTriangle.
356 * @x: the x coordinate of the normal.
357 * @y: the y coordinate of the normal.
358 * @z: the z coordinate of the normal.
360 * Computes the coordinates of the oriented normal of @t as the
361 * cross-product of two edges, using the left-hand rule. The normal is
362 * not normalized. If this triangle is part of a closed and oriented
363 * surface, the normal points to the outside of the surface.
365 void gts_triangle_normal (GtsTriangle * t,
366 gdouble * x,
367 gdouble * y,
368 gdouble * z)
370 GtsVertex * v1, * v2 = NULL, * v3 = NULL;
371 GtsPoint * p1, * p2, * p3;
372 gdouble x1, y1, z1, x2, y2, z2;
374 g_return_if_fail (t != NULL);
376 v1 = GTS_SEGMENT (t->e1)->v1;
377 if (GTS_SEGMENT (t->e1)->v1 == GTS_SEGMENT (t->e2)->v1) {
378 v2 = GTS_SEGMENT (t->e2)->v2;
379 v3 = GTS_SEGMENT (t->e1)->v2;
381 else if (GTS_SEGMENT (t->e1)->v2 == GTS_SEGMENT (t->e2)->v2) {
382 v2 = GTS_SEGMENT (t->e1)->v2;
383 v3 = GTS_SEGMENT (t->e2)->v1;
385 else if (GTS_SEGMENT (t->e1)->v1 == GTS_SEGMENT (t->e2)->v2) {
386 v2 = GTS_SEGMENT (t->e2)->v1;
387 v3 = GTS_SEGMENT (t->e1)->v2;
389 else if (GTS_SEGMENT (t->e1)->v2 == GTS_SEGMENT (t->e2)->v1) {
390 v2 = GTS_SEGMENT (t->e1)->v2;
391 v3 = GTS_SEGMENT (t->e2)->v2;
393 else {
394 fprintf (stderr, "t: %p t->e1: %p t->e2: %p t->e3: %p t->e1->v1: %p t->e1->v2: %p t->e2->v1: %p t->e2->v2: %p t->e3->v1: %p t->e3->v2: %p\n",
395 t, t->e1, t->e2,
396 t->e3, GTS_SEGMENT (t->e1)->v1, GTS_SEGMENT (t->e1)->v2,
397 GTS_SEGMENT (t->e2)->v1, GTS_SEGMENT (t->e2)->v2,
398 GTS_SEGMENT (t->e3)->v1, GTS_SEGMENT (t->e3)->v2);
399 g_assert_not_reached ();
402 p1 = GTS_POINT (v1);
403 p2 = GTS_POINT (v2);
404 p3 = GTS_POINT (v3);
406 x1 = p2->x - p1->x;
407 y1 = p2->y - p1->y;
408 z1 = p2->z - p1->z;
410 x2 = p3->x - p1->x;
411 y2 = p3->y - p1->y;
412 z2 = p3->z - p1->z;
414 *x = y1*z2 - z1*y2;
415 *y = z1*x2 - x1*z2;
416 *z = x1*y2 - y1*x2;
420 * gts_triangle_orientation:
421 * @t: a #GtsTriangle.
423 * Checks for the orientation of the plane (x,y) projection of a
424 * triangle. See gts_point_orientation() for details. This function
425 * is geometrically robust.
427 * Returns: a number depending on the orientation of the vertices of @t.
429 gdouble gts_triangle_orientation (GtsTriangle * t)
431 GtsVertex * v1, * v2 = NULL, * v3 = NULL;
433 g_return_val_if_fail (t != NULL, 0.0);
435 v1 = GTS_SEGMENT (t->e1)->v1;
436 if (GTS_SEGMENT (t->e1)->v1 == GTS_SEGMENT (t->e2)->v1) {
437 v2 = GTS_SEGMENT (t->e2)->v2;
438 v3 = GTS_SEGMENT (t->e1)->v2;
440 else if (GTS_SEGMENT (t->e1)->v2 == GTS_SEGMENT (t->e2)->v2) {
441 v2 = GTS_SEGMENT (t->e1)->v2;
442 v3 = GTS_SEGMENT (t->e2)->v1;
444 else if (GTS_SEGMENT (t->e1)->v1 == GTS_SEGMENT (t->e2)->v2) {
445 v2 = GTS_SEGMENT (t->e2)->v1;
446 v3 = GTS_SEGMENT (t->e1)->v2;
448 else if (GTS_SEGMENT (t->e1)->v2 == GTS_SEGMENT (t->e2)->v1) {
449 v2 = GTS_SEGMENT (t->e1)->v2;
450 v3 = GTS_SEGMENT (t->e2)->v2;
452 else
453 g_assert_not_reached ();
454 return gts_point_orientation (GTS_POINT (v1),
455 GTS_POINT (v2),
456 GTS_POINT (v3));
460 * gts_triangle_revert:
461 * @t: a #GtsTriangle.
463 * Changes the orientation of triangle @t, turning it inside out.
465 void gts_triangle_revert (GtsTriangle * t)
467 GtsEdge * e;
469 g_return_if_fail (t != NULL);
471 e = t->e1;
472 t->e1 = t->e2;
473 t->e2 = e;
477 * gts_triangles_from_edges:
478 * @edges: a list of #GtsEdge.
480 * Builds a list of unique triangles which have one of their edges in @edges.
482 * Returns: the list of triangles.
484 GSList * gts_triangles_from_edges (GSList * edges)
486 GHashTable * hash;
487 GSList * triangles = NULL, * i;
489 hash = g_hash_table_new (NULL, NULL);
490 i = edges;
491 while (i) {
492 GSList * j = GTS_EDGE (i->data)->triangles;
493 while (j) {
494 GtsTriangle * t = j->data;
495 if (g_hash_table_lookup (hash, t) == NULL) {
496 triangles = g_slist_prepend (triangles, t);
497 g_hash_table_insert (hash, t, i);
499 j = j->next;
501 i = i->next;
503 g_hash_table_destroy (hash);
505 return triangles;
509 * gts_triangle_vertices_edges:
510 * @t: a #GtsTriangle.
511 * @e: a #GtsEdge belonging to the edges of @t or %NULL.
512 * @v1: a #GtsVertex used by @t.
513 * @v2: a #GtsVertex used by @t.
514 * @v3: a #GtsVertex used by @t.
515 * @e1: a #GtsEdge used by @t.
516 * @e2: a #GtsEdge used by @t.
517 * @e3: a #GtsEdge used by @t.
519 * Given @t and @e, returns @v1, @v2, @v3, @e1, @e2 and @e3. @e1
520 * has @v1 and @v2 as vertices, @e2 has @v2 and @v3 as vertices
521 * and @e3 has @v3 and @v1 as vertices. @v1, @v2 and @v3 respects
522 * the orientation of @t. If @e is not NULL, @e1 and @e are
523 * identical.
525 void gts_triangle_vertices_edges (GtsTriangle * t,
526 GtsEdge * e,
527 GtsVertex ** v1,
528 GtsVertex ** v2,
529 GtsVertex ** v3,
530 GtsEdge ** e1,
531 GtsEdge ** e2,
532 GtsEdge ** e3)
534 GtsEdge * ee1, * ee2;
536 g_return_if_fail (t != NULL);
538 if (e == t->e1 || e == NULL) {
539 *e1 = ee1 = t->e1; *e2 = ee2 = t->e2; *e3 = t->e3;
541 else if (e == t->e2) {
542 *e1 = ee1 = e; *e2 = ee2 = t->e3; *e3 = t->e1;
544 else if (e == t->e3) {
545 *e1 = ee1 = e; *e2 = ee2 = t->e1; *e3 = t->e2;
547 else {
548 g_assert_not_reached ();
549 ee1 = ee2 = NULL; /* to avoid complaints from the compiler */
551 if (GTS_SEGMENT (ee1)->v2 == GTS_SEGMENT (ee2)->v1) {
552 *v1 = GTS_SEGMENT (ee1)->v1;
553 *v2 = GTS_SEGMENT (ee1)->v2;
554 *v3 = GTS_SEGMENT (ee2)->v2;
556 else if (GTS_SEGMENT (ee1)->v2 == GTS_SEGMENT (ee2)->v2) {
557 *v1 = GTS_SEGMENT (ee1)->v1;
558 *v2 = GTS_SEGMENT (ee1)->v2;
559 *v3 = GTS_SEGMENT (ee2)->v1;
561 else if (GTS_SEGMENT (ee1)->v1 == GTS_SEGMENT (ee2)->v1) {
562 *v1 = GTS_SEGMENT (ee1)->v2;
563 *v2 = GTS_SEGMENT (ee1)->v1;
564 *v3 = GTS_SEGMENT (ee2)->v2;
566 else if (GTS_SEGMENT (ee1)->v1 == GTS_SEGMENT (ee2)->v2) {
567 *v1 = GTS_SEGMENT (ee1)->v2;
568 *v2 = GTS_SEGMENT (ee1)->v1;
569 *v3 = GTS_SEGMENT (ee2)->v1;
571 else
572 g_assert_not_reached ();
575 /* sqrt(3) */
576 #define SQRT3 1.73205080757
579 * gts_triangle_enclosing:
580 * @klass: the class of the new triangle.
581 * @points: a list of #GtsPoint.
582 * @scale: a scaling factor (must be larger than one).
584 * Builds a new triangle (including new vertices and edges) enclosing
585 * the plane projection of all the points in @points. This triangle is
586 * equilateral and encloses a rectangle defined by the maximum and
587 * minimum x and y coordinates of the points. @scale is an homothetic
588 * scaling factor. If equal to one, the triangle encloses exactly the
589 * enclosing rectangle.
591 * Returns: a new #GtsTriangle.
593 GtsTriangle * gts_triangle_enclosing (GtsTriangleClass * klass,
594 GSList * points, gdouble scale)
596 gdouble xmax, xmin, ymax, ymin;
597 gdouble xo, yo, r;
598 GtsVertex * v1, * v2, * v3;
599 GtsEdge * e1, * e2, * e3;
601 if (points == NULL)
602 return NULL;
604 xmax = xmin = GTS_POINT (points->data)->x;
605 ymax = ymin = GTS_POINT (points->data)->y;
606 points = points->next;
607 while (points) {
608 GtsPoint * p = points->data;
609 if (p->x > xmax) xmax = p->x;
610 else if (p->x < xmin) xmin = p->x;
611 if (p->y > ymax) ymax = p->y;
612 else if (p->y < ymin) ymin = p->y;
613 points = points->next;
615 xo = (xmax + xmin)/2.;
616 yo = (ymax + ymin)/2.;
617 r = scale*sqrt((xmax - xo)*(xmax - xo) + (ymax - yo)*(ymax - yo));
618 if (r == 0.0) r = scale;
619 v1 = gts_vertex_new (gts_vertex_class (),
620 xo + r*SQRT3, yo - r, 0.0);
621 v2 = gts_vertex_new (gts_vertex_class (),
622 xo, yo + 2.*r, 0.0);
623 v3 = gts_vertex_new (gts_vertex_class (),
624 xo - r*SQRT3, yo - r, 0.0);
625 e1 = gts_edge_new (gts_edge_class (), v1, v2);
626 e2 = gts_edge_new (gts_edge_class (), v2, v3);
627 e3 = gts_edge_new (gts_edge_class (), v3, v1);
628 return gts_triangle_new (gts_triangle_class (), e1, e2, e3);
632 * gts_triangle_neighbor_number:
633 * @t: a #GtsTriangle.
635 * Returns: the number of triangles neighbors of @t.
637 guint gts_triangle_neighbor_number (GtsTriangle * t)
639 GSList * i;
640 guint nn = 0;
641 GtsEdge * ee[4], ** e = ee;
643 g_return_val_if_fail (t != NULL, 0);
645 ee[0] = t->e1; ee[1] = t->e2; ee[2] = t->e3; ee[3] = NULL;
646 while (*e) {
647 i = (*e++)->triangles;
648 while (i) {
649 GtsTriangle * t1 = i->data;
650 if (t1 != t)
651 nn++;
652 i = i->next;
655 return nn;
659 * gts_triangle_neighbors:
660 * @t: a #GtsTriangle.
662 * Returns: a list of #GtsTriangle neighbors of @t.
664 GSList * gts_triangle_neighbors (GtsTriangle * t)
666 GSList * i, * list = NULL;
667 GtsEdge * ee[4], ** e = ee;
669 g_return_val_if_fail (t != NULL, NULL);
671 ee[0] = t->e1; ee[1] = t->e2; ee[2] = t->e3; ee[3] = NULL;
672 while (*e) {
673 i = (*e++)->triangles;
674 while (i) {
675 GtsTriangle * t1 = i->data;
676 if (t1 != t)
677 list = g_slist_prepend (list, t1);
678 i = i->next;
681 return list;
685 * gts_triangles_common_edge:
686 * @t1: a #GtsTriangle.
687 * @t2: a #GtsTriangle.
689 * Returns: a #GtsEdge common to both @t1 and @t2 or %NULL if @t1 and @t2
690 * do not share any edge.
692 GtsEdge * gts_triangles_common_edge (GtsTriangle * t1,
693 GtsTriangle * t2)
695 g_return_val_if_fail (t1 != NULL, NULL);
696 g_return_val_if_fail (t2 != NULL, NULL);
698 if (t1->e1 == t2->e1 || t1->e1 == t2->e2 || t1->e1 == t2->e3)
699 return t1->e1;
700 if (t1->e2 == t2->e1 || t1->e2 == t2->e2 || t1->e2 == t2->e3)
701 return t1->e2;
702 if (t1->e3 == t2->e1 || t1->e3 == t2->e2 || t1->e3 == t2->e3)
703 return t1->e3;
704 return NULL;
708 * gts_triangle_is_duplicate:
709 * @t: a #GtsTriangle.
711 * Returns: a #GtsTriangle different from @t but sharing all its edges
712 * with @t or %NULL if there is none.
714 GtsTriangle * gts_triangle_is_duplicate (GtsTriangle * t)
716 GSList * i;
717 GtsEdge * e2, * e3;
719 g_return_val_if_fail (t != NULL, NULL);
721 e2 = t->e2;
722 e3 = t->e3;
723 i = t->e1->triangles;
724 while (i) {
725 GtsTriangle * t1 = i->data;
726 if (t1 != t &&
727 (t1->e1 == e2 || t1->e2 == e2 || t1->e3 == e2) &&
728 (t1->e1 == e3 || t1->e2 == e3 || t1->e3 == e3))
729 return t1;
730 i = i->next;
733 return NULL;
737 * gts_triangle_use_edges:
738 * @e1: a #GtsEdge.
739 * @e2: a #GtsEdge.
740 * @e3: a #GtsEdge.
742 * Returns: a #GtsTriangle having @e1, @e2 and @e3 as edges or %NULL if @e1,
743 * @e2 and @e3 are not part of any triangle.
745 GtsTriangle * gts_triangle_use_edges (GtsEdge * e1,
746 GtsEdge * e2,
747 GtsEdge * e3)
749 GSList * i;
751 g_return_val_if_fail (e1 != NULL, NULL);
752 g_return_val_if_fail (e2 != NULL, NULL);
753 g_return_val_if_fail (e3 != NULL, NULL);
755 i = e1->triangles;
756 while (i) {
757 GtsTriangle * t = i->data;
758 if ((t->e1 == e2 && (t->e2 == e3 || t->e3 == e3)) ||
759 (t->e2 == e2 && (t->e1 == e3 || t->e3 == e3)) ||
760 (t->e3 == e2 && (t->e1 == e3 || t->e2 == e3)))
761 return t;
762 i = i->next;
765 return NULL;
769 * gts_triangle_is_ok:
770 * @t: a #GtsTriangle.
772 * Returns: %TRUE if @t is a non-degenerate, non-duplicate triangle,
773 * %FALSE otherwise.
775 gboolean gts_triangle_is_ok (GtsTriangle * t)
777 g_return_val_if_fail (t != NULL, FALSE);
778 g_return_val_if_fail (t->e1 != NULL, FALSE);
779 g_return_val_if_fail (t->e2 != NULL, FALSE);
780 g_return_val_if_fail (t->e3 != NULL, FALSE);
781 g_return_val_if_fail (t->e1 != t->e2 && t->e1 != t->e3 && t->e2 != t->e3,
782 FALSE);
783 g_return_val_if_fail (gts_segments_touch (GTS_SEGMENT (t->e1),
784 GTS_SEGMENT (t->e2)),
785 FALSE);
786 g_return_val_if_fail (gts_segments_touch (GTS_SEGMENT (t->e1),
787 GTS_SEGMENT (t->e3)),
788 FALSE);
789 g_return_val_if_fail (gts_segments_touch (GTS_SEGMENT (t->e2),
790 GTS_SEGMENT (t->e3)),
791 FALSE);
792 g_return_val_if_fail (GTS_SEGMENT (t->e1)->v1 != GTS_SEGMENT (t->e1)->v2,
793 FALSE);
794 g_return_val_if_fail (GTS_SEGMENT (t->e2)->v1 != GTS_SEGMENT (t->e2)->v2,
795 FALSE);
796 g_return_val_if_fail (GTS_SEGMENT (t->e3)->v1 != GTS_SEGMENT (t->e3)->v2,
797 FALSE);
798 g_return_val_if_fail (GTS_OBJECT (t)->reserved == NULL, FALSE);
799 g_return_val_if_fail (!gts_triangle_is_duplicate (t), FALSE);
800 return TRUE;
804 * gts_triangle_vertices:
805 * @t: a #GtsTriangle.
806 * @v1: a pointer on a #GtsVertex.
807 * @v2: a pointer on a #GtsVertex.
808 * @v3: a pointer on a #GtsVertex.
810 * Fills @v1, @v2 and @v3 with the oriented set of vertices, summits of @t.
812 void gts_triangle_vertices (GtsTriangle * t,
813 GtsVertex ** v1, GtsVertex ** v2, GtsVertex ** v3)
815 GtsSegment * e1, * e2;
817 g_return_if_fail (t != NULL);
818 g_return_if_fail (v1 != NULL && v2 != NULL && v3 != NULL);
820 e1 = GTS_SEGMENT (t->e1);
821 e2 = GTS_SEGMENT (t->e2);
823 if (GTS_SEGMENT (e1)->v2 == GTS_SEGMENT (e2)->v1) {
824 *v1 = GTS_SEGMENT (e1)->v1;
825 *v2 = GTS_SEGMENT (e1)->v2;
826 *v3 = GTS_SEGMENT (e2)->v2;
828 else if (GTS_SEGMENT (e1)->v2 == GTS_SEGMENT (e2)->v2) {
829 *v1 = GTS_SEGMENT (e1)->v1;
830 *v2 = GTS_SEGMENT (e1)->v2;
831 *v3 = GTS_SEGMENT (e2)->v1;
833 else if (GTS_SEGMENT (e1)->v1 == GTS_SEGMENT (e2)->v1) {
834 *v1 = GTS_SEGMENT (e1)->v2;
835 *v2 = GTS_SEGMENT (e1)->v1;
836 *v3 = GTS_SEGMENT (e2)->v2;
838 else {
839 *v1 = GTS_SEGMENT (e1)->v2;
840 *v2 = GTS_SEGMENT (e1)->v1;
841 *v3 = GTS_SEGMENT (e2)->v1;
846 * gts_triangle_circumcircle_center:
847 * @t: a #GtsTriangle.
848 * @point_class: a #GtsPointClass.
850 * Returns: a new #GtsPoint, center of the circumscribing circle of @t or
851 * %NULL if the circumscribing circle is not defined.
853 GtsPoint * gts_triangle_circumcircle_center (GtsTriangle * t,
854 GtsPointClass * point_class)
856 GtsVertex * v1, * v2, * v3;
857 gdouble xa, ya, xb, yb, xc, yc;
858 gdouble xd, yd, xe, ye;
859 gdouble xad, yad, xae, yae;
860 gdouble det;
862 g_return_val_if_fail (t != NULL, NULL);
863 g_return_val_if_fail (point_class != NULL, NULL);
865 gts_triangle_vertices (t, &v1, &v2, &v3);
867 xa = GTS_POINT (v1)->x; ya = GTS_POINT (v1)->y;
868 xb = GTS_POINT (v2)->x; yb = GTS_POINT (v2)->y;
869 xc = GTS_POINT (v3)->x; yc = GTS_POINT (v3)->y;
870 xd = (xa + xb)/2.; yd = (ya + yb)/2.;
871 xe = (xa + xc)/2.; ye = (ya + yc)/2.;
872 xad = xd - xa; yad = yd - ya;
873 xae = xe - xa; yae = ye - ya;
874 det = xad*yae - xae*yad;
875 if (det == 0.)
876 return NULL;
877 return gts_point_new (point_class,
878 (yae*yad*(yd - ye) + xad*yae*xd - xae*yad*xe)/det,
879 -(xae*xad*(xd - xe) + yad*xae*yd - yae*xad*ye)/det,
880 0.);
883 /* square of the maximum area ratio admissible */
884 #define AREA_RATIO_MAX2 1e8
886 static gboolean points_are_folded (GtsPoint * A,
887 GtsPoint * B,
888 GtsPoint * C,
889 GtsPoint * D,
890 gdouble max)
892 GtsVector AB, AC, AD;
893 GtsVector n1, n2;
894 gdouble nn1, nn2, n1n2;
896 gts_vector_init (AB, A, B);
897 gts_vector_init (AC, A, C);
898 gts_vector_init (AD, A, D);
899 gts_vector_cross (n1, AB, AC);
900 gts_vector_cross (n2, AD, AB);
902 nn1 = gts_vector_scalar (n1, n1);
903 nn2 = gts_vector_scalar (n2, n2);
904 if (nn1 >= AREA_RATIO_MAX2*nn2 || nn2 >= AREA_RATIO_MAX2*nn1)
905 return TRUE;
906 n1n2 = gts_vector_scalar (n1, n2);
907 if (n1n2 > 0.)
908 return FALSE;
909 if (n1n2*n1n2/(nn1*nn2) > max)
910 return TRUE;
911 return FALSE;
914 static GtsVertex * triangle_use_vertices (GtsTriangle * t,
915 GtsVertex * A,
916 GtsVertex * B)
918 GtsVertex
919 * v1 = GTS_SEGMENT (t->e1)->v1,
920 * v2 = GTS_SEGMENT (t->e1)->v2,
921 * v3 = gts_triangle_vertex (t);
923 if (v1 == A) {
924 if (v2 == B)
925 return v3;
926 g_assert (v3 == B);
927 return v2;
929 if (v2 == A) {
930 if (v1 == B)
931 return v3;
932 g_assert (v3 == B);
933 return v1;
935 if (v3 == A) {
936 if (v1 == B)
937 return v2;
938 g_assert (v2 == B);
939 return v1;
941 g_assert_not_reached ();
942 return NULL;
946 * gts_triangles_are_folded:
947 * @triangles: a list of #GtsTriangle.
948 * @A: a #GtsVertex.
949 * @B: another #GtsVertex.
950 * @max: the maximum value of the square of the cosine of the angle between
951 * two triangles.
953 * Given a list of triangles sharing @A and @B as vertices, checks if any
954 * two triangles in the list make an angle larger than a given value defined
955 * by @max.
957 * Returns: %TRUE if any pair of triangles in @triangles makes an angle larger
958 * than the maximum value, %FALSE otherwise.
960 gboolean gts_triangles_are_folded (GSList * triangles,
961 GtsVertex * A, GtsVertex * B,
962 gdouble max)
964 GSList * i;
966 g_return_val_if_fail (A != NULL, TRUE);
967 g_return_val_if_fail (B != NULL, TRUE);
969 i = triangles;
970 while (i) {
971 GtsVertex * C = triangle_use_vertices (i->data, A, B);
972 GSList * j = i->next;
973 while (j) {
974 GtsVertex * D = triangle_use_vertices (j->data, A, B);
975 if (points_are_folded (GTS_POINT (A),
976 GTS_POINT (B),
977 GTS_POINT (C),
978 GTS_POINT (D),
979 max))
980 return TRUE;
981 j = j->next;
983 i = i->next;
985 return FALSE;
989 * gts_triangle_is_stabbed:
990 * @t: a #GtsTriangle.
991 * @p: a #GtsPoint.
992 * @orientation: a pointer or %NULL.
994 * Returns: one of the vertices of @t, one of the edges of @t or @t if
995 * any of these are stabbed by the ray starting at @p (included) and
996 * ending at (@p->x, @p->y, +infty), %NULL otherwise. If the ray is
997 * contained in the plane of the triangle %NULL is also returned. If
998 * @orientation is not %NULL, it is set to the value of the
999 * orientation of @p relative to @t (as given by
1000 * gts_point_orientation_3d()).
1002 GtsObject * gts_triangle_is_stabbed (GtsTriangle * t,
1003 GtsPoint * p,
1004 gdouble * orientation)
1006 GtsVertex * v1, * v2, * v3, * inverted = NULL;
1007 GtsEdge * e1, * e2, * e3, * tmp;
1008 gdouble o, o1, o2, o3;
1010 g_return_val_if_fail (t != NULL, NULL);
1011 g_return_val_if_fail (p != NULL, NULL);
1013 gts_triangle_vertices_edges (t, NULL, &v1, &v2, &v3, &e1, &e2, &e3);
1014 o = gts_point_orientation (GTS_POINT (v1), GTS_POINT (v2), GTS_POINT (v3));
1015 if (o == 0.)
1016 return NULL;
1017 if (o < 0.) {
1018 inverted = v1;
1019 v1 = v2;
1020 v2 = inverted;
1021 tmp = e2;
1022 e2 = e3;
1023 e3 = tmp;
1025 o = gts_point_orientation_3d (GTS_POINT (v1),
1026 GTS_POINT (v2),
1027 GTS_POINT (v3),
1029 if (o < 0.)
1030 return NULL;
1031 o1 = gts_point_orientation (GTS_POINT (v1), GTS_POINT (v2), p);
1032 if (o1 < 0.)
1033 return NULL;
1034 o2 = gts_point_orientation (GTS_POINT (v2), GTS_POINT (v3), p);
1035 if (o2 < 0.)
1036 return NULL;
1037 o3 = gts_point_orientation (GTS_POINT (v3), GTS_POINT (v1), p);
1038 if (o3 < 0.)
1039 return NULL;
1040 if (orientation) *orientation = inverted ? -o : o;
1041 if (o1 == 0.) {
1042 if (o2 == 0.)
1043 return GTS_OBJECT (v2);
1044 if (o3 == 0.)
1045 return GTS_OBJECT (v1);
1046 return GTS_OBJECT (e1);
1048 if (o2 == 0.) {
1049 if (o3 == 0.)
1050 return GTS_OBJECT (v3);
1051 return GTS_OBJECT (e2);
1053 if (o3 == 0.)
1054 return GTS_OBJECT (e3);
1055 return GTS_OBJECT (t);
1059 * gts_triangle_interpolate_height:
1060 * @t: a #GtsTriangle.
1061 * @p: a #GtsPoint.
1063 * Fills the z-coordinate of point @p belonging to the plane
1064 * projection of triangle @t with the linearly interpolated value of
1065 * the z-coordinates of the vertices of @t.
1067 void gts_triangle_interpolate_height (GtsTriangle * t, GtsPoint * p)
1069 GtsPoint * p1, * p2, * p3;
1070 gdouble x1, x2, y1, y2, det;
1072 g_return_if_fail (t != NULL);
1073 g_return_if_fail (p != NULL);
1075 p1 = GTS_POINT (GTS_SEGMENT (t->e1)->v1);
1076 p2 = GTS_POINT (GTS_SEGMENT (t->e1)->v2);
1077 p3 = GTS_POINT (gts_triangle_vertex (t));
1079 x1 = p2->x - p1->x;
1080 y1 = p2->y - p1->y;
1081 x2 = p3->x - p1->x;
1082 y2 = p3->y - p1->y;
1083 det = x1*y2 - x2*y1;
1084 if (det == 0.)
1085 p->z = (p1->z + p2->z + p3->z)/3.;
1086 else {
1087 gdouble x = p->x - p1->x;
1088 gdouble y = p->y - p1->y;
1089 gdouble a = (x*y2 - y*x2)/det;
1090 gdouble b = (y*x1 - x*y1)/det;
1092 p->z = (1. - a - b)*p1->z + a*p2->z + b*p3->z;