don't "domain block" address literals
[ghsmtp.git] / pcg_random.hpp
blob3f04d854e61baa262788dd206b96f13528332f24
1 /*
2 * PCG Random Number Generation for C++
4 * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
6 * Licensed under the Apache License, Version 2.0 (the "License");
7 * you may not use this file except in compliance with the License.
8 * You may obtain a copy of the License at
10 * http://www.apache.org/licenses/LICENSE-2.0
12 * Unless required by applicable law or agreed to in writing, software
13 * distributed under the License is distributed on an "AS IS" BASIS,
14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 * See the License for the specific language governing permissions and
16 * limitations under the License.
18 * For additional information about the PCG random number generation scheme,
19 * including its license and other licensing options, visit
21 * http://www.pcg-random.org
25 * This code provides the reference implementation of the PCG family of
26 * random number generators. The code is complex because it implements
28 * - several members of the PCG family, specifically members corresponding
29 * to the output functions:
30 * - XSH RR (good for 64-bit state, 32-bit output)
31 * - XSH RS (good for 64-bit state, 32-bit output)
32 * - XSL RR (good for 128-bit state, 64-bit output)
33 * - RXS M XS (statistically most powerful generator)
34 * - XSL RR RR (good for 128-bit state, 128-bit output)
35 * - and RXS, RXS M, XSH, XSL (mostly for testing)
36 * - at potentially *arbitrary* bit sizes
37 * - with four different techniques for random streams (MCG, one-stream
38 * LCG, settable-stream LCG, unique-stream LCG)
39 * - and the extended generation schemes allowing arbitrary periods
40 * - with all features of C++11 random number generation (and more),
41 * some of which are somewhat painful, including
42 * - initializing with a SeedSequence which writes 32-bit values
43 * to memory, even though the state of the generator may not
44 * use 32-bit values (it might use smaller or larger integers)
45 * - I/O for RNGs and a prescribed format, which needs to handle
46 * the issue that 8-bit and 128-bit integers don't have working
47 * I/O routines (e.g., normally 8-bit = char, not integer)
48 * - equality and inequality for RNGs
49 * - and a number of convenience typedefs to mask all the complexity
51 * The code employes a fairly heavy level of abstraction, and has to deal
52 * with various C++ minutia. If you're looking to learn about how the PCG
53 * scheme works, you're probably best of starting with one of the other
54 * codebases (see www.pcg-random.org). But if you're curious about the
55 * constants for the various output functions used in those other, simpler,
56 * codebases, this code shows how they are calculated.
58 * On the positive side, at least there are convenience typedefs so that you
59 * can say
61 * pcg32 myRNG;
63 * rather than:
65 * pcg_detail::engine<
66 * uint32_t, // Output Type
67 * uint64_t, // State Type
68 * pcg_detail::xsh_rr_mixin<uint32_t, uint64_t>, true, // Output Func
69 * pcg_detail::specific_stream<uint64_t>, // Stream Kind
70 * pcg_detail::default_multiplier<uint64_t> // LCG Mult
71 * > myRNG;
75 #ifndef PCG_RAND_HPP_INCLUDED
76 #define PCG_RAND_HPP_INCLUDED 1
78 #include <cinttypes>
79 #include <cstddef>
80 #include <cstdlib>
81 #include <cstring>
82 #include <cassert>
83 #include <limits>
84 #include <iostream>
85 #include <type_traits>
86 #include <utility>
87 #include <locale>
88 #include <new>
89 #include <stdexcept>
92 * The pcg_extras namespace contains some support code that is likley to
93 * be useful for a variety of RNGs, including:
94 * - 128-bit int support for platforms where it isn't available natively
95 * - bit twiddling operations
96 * - I/O of 128-bit and 8-bit integers
97 * - Handling the evilness of SeedSeq
98 * - Support for efficiently producing random numbers less than a given
99 * bound
102 #include "pcg_extras.hpp"
104 namespace pcg_detail {
106 using namespace pcg_extras;
109 * The LCG generators need some constants to function. This code lets you
110 * look up the constant by *type*. For example
112 * default_multiplier<uint32_t>::multiplier()
114 * gives you the default multipler for 32-bit integers. We use the name
115 * of the constant and not a generic word like value to allow these classes
116 * to be used as mixins.
119 template <typename T>
120 struct default_multiplier {
121 // Not defined for an arbitrary type
124 template <typename T>
125 struct default_increment {
126 // Not defined for an arbitrary type
129 #define PCG_DEFINE_CONSTANT(type, what, kind, constant) \
130 template <> \
131 struct what ## _ ## kind<type> { \
132 static constexpr type kind() { \
133 return constant; \
137 PCG_DEFINE_CONSTANT(uint8_t, default, multiplier, 141U)
138 PCG_DEFINE_CONSTANT(uint8_t, default, increment, 77U)
140 PCG_DEFINE_CONSTANT(uint16_t, default, multiplier, 12829U)
141 PCG_DEFINE_CONSTANT(uint16_t, default, increment, 47989U)
143 PCG_DEFINE_CONSTANT(uint32_t, default, multiplier, 747796405U)
144 PCG_DEFINE_CONSTANT(uint32_t, default, increment, 2891336453U)
146 PCG_DEFINE_CONSTANT(uint64_t, default, multiplier, 6364136223846793005ULL)
147 PCG_DEFINE_CONSTANT(uint64_t, default, increment, 1442695040888963407ULL)
149 PCG_DEFINE_CONSTANT(pcg128_t, default, multiplier,
150 PCG_128BIT_CONSTANT(2549297995355413924ULL,4865540595714422341ULL))
151 PCG_DEFINE_CONSTANT(pcg128_t, default, increment,
152 PCG_128BIT_CONSTANT(6364136223846793005ULL,1442695040888963407ULL))
156 * Each PCG generator is available in four variants, based on how it applies
157 * the additive constant for its underlying LCG; the variations are:
159 * single stream - all instances use the same fixed constant, thus
160 * the RNG always somewhere in same sequence
161 * mcg - adds zero, resulting in a single stream and reduced
162 * period
163 * specific stream - the constant can be changed at any time, selecting
164 * a different random sequence
165 * unique stream - the constant is based on the memory addresss of the
166 * object, thus every RNG has its own unique sequence
168 * This variation is provided though mixin classes which define a function
169 * value called increment() that returns the nesessary additive constant.
175 * unique stream
179 template <typename itype>
180 class unique_stream {
181 protected:
182 static constexpr bool is_mcg = false;
184 // Is never called, but is provided for symmetry with specific_stream
185 void set_stream(...)
187 abort();
190 public:
191 typedef itype state_type;
193 constexpr itype increment() const {
194 return itype(reinterpret_cast<unsigned long>(this) | 1);
197 constexpr itype stream() const
199 return increment() >> 1;
202 static constexpr bool can_specify_stream = false;
204 static constexpr size_t streams_pow2()
206 return (sizeof(itype) < sizeof(size_t) ? sizeof(itype)
207 : sizeof(size_t))*8 - 1u;
210 protected:
211 constexpr unique_stream() = default;
216 * no stream (mcg)
219 template <typename itype>
220 class no_stream {
221 protected:
222 static constexpr bool is_mcg = true;
224 // Is never called, but is provided for symmetry with specific_stream
225 void set_stream(...)
227 abort();
230 public:
231 typedef itype state_type;
233 static constexpr itype increment() {
234 return 0;
237 static constexpr bool can_specify_stream = false;
239 static constexpr size_t streams_pow2()
241 return 0u;
244 protected:
245 constexpr no_stream() = default;
250 * single stream/sequence (oneseq)
253 template <typename itype>
254 class oneseq_stream : public default_increment<itype> {
255 protected:
256 static constexpr bool is_mcg = false;
258 // Is never called, but is provided for symmetry with specific_stream
259 void set_stream(...)
261 abort();
264 public:
265 typedef itype state_type;
267 static constexpr itype stream()
269 return default_increment<itype>::increment() >> 1;
272 static constexpr bool can_specify_stream = false;
274 static constexpr size_t streams_pow2()
276 return 0u;
279 protected:
280 constexpr oneseq_stream() = default;
285 * specific stream
288 template <typename itype>
289 class specific_stream {
290 protected:
291 static constexpr bool is_mcg = false;
293 itype inc_ = default_increment<itype>::increment();
295 public:
296 typedef itype state_type;
297 typedef itype stream_state;
299 constexpr itype increment() const {
300 return inc_;
303 itype stream()
305 return inc_ >> 1;
308 void set_stream(itype specific_seq)
310 inc_ = (specific_seq << 1) | 1;
313 static constexpr bool can_specify_stream = true;
315 static constexpr size_t streams_pow2()
317 return (sizeof(itype)*8) - 1u;
320 protected:
321 specific_stream() = default;
323 specific_stream(itype specific_seq)
324 : inc_((specific_seq << 1) | itype(1U))
326 // Nothing (else) to do.
332 * This is where it all comes together. This function joins together three
333 * mixin classes which define
334 * - the LCG additive constant (the stream)
335 * - the LCG multiplier
336 * - the output function
337 * in addition, we specify the type of the LCG state, and the result type,
338 * and whether to use the pre-advance version of the state for the output
339 * (increasing instruction-level parallelism) or the post-advance version
340 * (reducing register pressure).
342 * Given the high level of parameterization, the code has to use some
343 * template-metaprogramming tricks to handle some of the suble variations
344 * involved.
347 template <typename xtype, typename itype,
348 typename output_mixin,
349 bool output_previous = true,
350 typename stream_mixin = oneseq_stream<itype>,
351 typename multiplier_mixin = default_multiplier<itype> >
352 class engine : protected output_mixin,
353 public stream_mixin,
354 protected multiplier_mixin {
355 protected:
356 itype state_;
358 struct can_specify_stream_tag {};
359 struct no_specifiable_stream_tag {};
361 using stream_mixin::increment;
362 using multiplier_mixin::multiplier;
364 public:
365 typedef xtype result_type;
366 typedef itype state_type;
368 static constexpr size_t period_pow2()
370 return sizeof(state_type)*8 - 2*stream_mixin::is_mcg;
373 // It would be nice to use std::numeric_limits for these, but
374 // we can't be sure that it'd be defined for the 128-bit types.
376 static constexpr result_type min()
378 return result_type(0UL);
381 static constexpr result_type max()
383 return ~result_type(0UL);
386 protected:
387 itype bump(itype state)
389 return state * multiplier() + increment();
392 itype base_generate()
394 return state_ = bump(state_);
397 itype base_generate0()
399 itype old_state = state_;
400 state_ = bump(state_);
401 return old_state;
404 public:
405 result_type operator()()
407 if (output_previous)
408 return this->output(base_generate0());
409 else
410 return this->output(base_generate());
413 result_type operator()(result_type upper_bound)
415 return bounded_rand(*this, upper_bound);
418 protected:
419 static itype advance(itype state, itype delta,
420 itype cur_mult, itype cur_plus);
422 static itype distance(itype cur_state, itype newstate, itype cur_mult,
423 itype cur_plus, itype mask = ~itype(0U));
425 itype distance(itype newstate, itype mask = ~itype(0U)) const
427 return distance(state_, newstate, multiplier(), increment(), mask);
430 public:
431 void advance(itype delta)
433 state_ = advance(state_, delta, this->multiplier(), this->increment());
436 void backstep(itype delta)
438 advance(-delta);
441 void discard(itype delta)
443 advance(delta);
446 bool wrapped()
448 if (stream_mixin::is_mcg) {
449 // For MCGs, the low order two bits never change. In this
450 // implementation, we keep them fixed at 3 to make this test
451 // easier.
452 return state_ == 3;
453 } else {
454 return state_ == 0;
458 engine(itype state = itype(0xcafef00dd15ea5e5ULL))
459 : state_(this->is_mcg ? state|state_type(3U)
460 : bump(state + this->increment()))
462 // Nothing else to do.
465 // This function may or may not exist. It thus has to be a template
466 // to use SFINAE; users don't have to worry about its template-ness.
468 template <typename sm = stream_mixin>
469 engine(itype state, typename sm::stream_state stream_seed)
470 : stream_mixin(stream_seed),
471 state_(this->is_mcg ? state|state_type(3U)
472 : bump(state + this->increment()))
474 // Nothing else to do.
477 template<typename SeedSeq>
478 engine(SeedSeq&& seedSeq, typename std::enable_if<
479 !stream_mixin::can_specify_stream
480 && !std::is_convertible<SeedSeq, itype>::value
481 && !std::is_convertible<SeedSeq, engine>::value,
482 no_specifiable_stream_tag>::type = {})
483 : engine(generate_one<itype>(std::forward<SeedSeq>(seedSeq)))
485 // Nothing else to do.
488 template<typename SeedSeq>
489 engine(SeedSeq&& seedSeq, typename std::enable_if<
490 stream_mixin::can_specify_stream
491 && !std::is_convertible<SeedSeq, itype>::value
492 && !std::is_convertible<SeedSeq, engine>::value,
493 can_specify_stream_tag>::type = {})
494 : engine(generate_one<itype,1,2>(seedSeq),
495 generate_one<itype,0,2>(seedSeq))
497 // Nothing else to do.
501 template<typename... Args>
502 void seed(Args&&... args)
504 new (this) engine(std::forward<Args>(args)...);
507 template <typename xtype1, typename itype1,
508 typename output_mixin1, bool output_previous1,
509 typename stream_mixin_lhs, typename multiplier_mixin_lhs,
510 typename stream_mixin_rhs, typename multiplier_mixin_rhs>
511 friend bool operator==(const engine<xtype1,itype1,
512 output_mixin1,output_previous1,
513 stream_mixin_lhs, multiplier_mixin_lhs>&,
514 const engine<xtype1,itype1,
515 output_mixin1,output_previous1,
516 stream_mixin_rhs, multiplier_mixin_rhs>&);
518 template <typename xtype1, typename itype1,
519 typename output_mixin1, bool output_previous1,
520 typename stream_mixin_lhs, typename multiplier_mixin_lhs,
521 typename stream_mixin_rhs, typename multiplier_mixin_rhs>
522 friend itype1 operator-(const engine<xtype1,itype1,
523 output_mixin1,output_previous1,
524 stream_mixin_lhs, multiplier_mixin_lhs>&,
525 const engine<xtype1,itype1,
526 output_mixin1,output_previous1,
527 stream_mixin_rhs, multiplier_mixin_rhs>&);
529 template <typename CharT, typename Traits,
530 typename xtype1, typename itype1,
531 typename output_mixin1, bool output_previous1,
532 typename stream_mixin1, typename multiplier_mixin1>
533 friend std::basic_ostream<CharT,Traits>&
534 operator<<(std::basic_ostream<CharT,Traits>& out,
535 const engine<xtype1,itype1,
536 output_mixin1,output_previous1,
537 stream_mixin1, multiplier_mixin1>&);
539 template <typename CharT, typename Traits,
540 typename xtype1, typename itype1,
541 typename output_mixin1, bool output_previous1,
542 typename stream_mixin1, typename multiplier_mixin1>
543 friend std::basic_istream<CharT,Traits>&
544 operator>>(std::basic_istream<CharT,Traits>& in,
545 engine<xtype1, itype1,
546 output_mixin1, output_previous1,
547 stream_mixin1, multiplier_mixin1>& rng);
550 template <typename CharT, typename Traits,
551 typename xtype, typename itype,
552 typename output_mixin, bool output_previous,
553 typename stream_mixin, typename multiplier_mixin>
554 std::basic_ostream<CharT,Traits>&
555 operator<<(std::basic_ostream<CharT,Traits>& out,
556 const engine<xtype,itype,
557 output_mixin,output_previous,
558 stream_mixin, multiplier_mixin>& rng)
560 auto orig_flags = out.flags(std::ios_base::dec | std::ios_base::left);
561 auto space = out.widen(' ');
562 auto orig_fill = out.fill();
564 out << rng.multiplier() << space
565 << rng.increment() << space
566 << rng.state_;
568 out.flags(orig_flags);
569 out.fill(orig_fill);
570 return out;
574 template <typename CharT, typename Traits,
575 typename xtype, typename itype,
576 typename output_mixin, bool output_previous,
577 typename stream_mixin, typename multiplier_mixin>
578 std::basic_istream<CharT,Traits>&
579 operator>>(std::basic_istream<CharT,Traits>& in,
580 engine<xtype,itype,
581 output_mixin,output_previous,
582 stream_mixin, multiplier_mixin>& rng)
584 auto orig_flags = in.flags(std::ios_base::dec | std::ios_base::skipws);
586 itype multiplier, increment, state;
587 in >> multiplier >> increment >> state;
589 if (!in.fail()) {
590 bool good = true;
591 if (multiplier != rng.multiplier()) {
592 good = false;
593 } else if (rng.can_specify_stream) {
594 rng.set_stream(increment >> 1);
595 } else if (increment != rng.increment()) {
596 good = false;
598 if (good) {
599 rng.state_ = state;
600 } else {
601 in.clear(std::ios::failbit);
605 in.flags(orig_flags);
606 return in;
610 template <typename xtype, typename itype,
611 typename output_mixin, bool output_previous,
612 typename stream_mixin, typename multiplier_mixin>
613 itype engine<xtype,itype,output_mixin,output_previous,stream_mixin,
614 multiplier_mixin>::advance(
615 itype state, itype delta, itype cur_mult, itype cur_plus)
617 // The method used here is based on Brown, "Random Number Generation
618 // with Arbitrary Stride,", Transactions of the American Nuclear
619 // Society (Nov. 1994). The algorithm is very similar to fast
620 // exponentiation.
622 // Even though delta is an unsigned integer, we can pass a
623 // signed integer to go backwards, it just goes "the long way round".
625 constexpr itype ZERO = 0u; // itype may be a non-trivial types, so
626 constexpr itype ONE = 1u; // we define some ugly constants.
627 itype acc_mult = 1;
628 itype acc_plus = 0;
629 while (delta > ZERO) {
630 if (delta & ONE) {
631 acc_mult *= cur_mult;
632 acc_plus = acc_plus*cur_mult + cur_plus;
634 cur_plus = (cur_mult+ONE)*cur_plus;
635 cur_mult *= cur_mult;
636 delta >>= 1;
638 return acc_mult * state + acc_plus;
641 template <typename xtype, typename itype,
642 typename output_mixin, bool output_previous,
643 typename stream_mixin, typename multiplier_mixin>
644 itype engine<xtype,itype,output_mixin,output_previous,stream_mixin,
645 multiplier_mixin>::distance(
646 itype cur_state, itype newstate, itype cur_mult, itype cur_plus, itype mask)
648 constexpr itype ONE = 1u; // itype could be weird, so use constant
649 itype the_bit = stream_mixin::is_mcg ? itype(4u) : itype(1u);
650 itype distance = 0u;
651 while ((cur_state & mask) != (newstate & mask)) {
652 if ((cur_state & the_bit) != (newstate & the_bit)) {
653 cur_state = cur_state * cur_mult + cur_plus;
654 distance |= the_bit;
656 assert((cur_state & the_bit) == (newstate & the_bit));
657 the_bit <<= 1;
658 cur_plus = (cur_mult+ONE)*cur_plus;
659 cur_mult *= cur_mult;
661 return stream_mixin::is_mcg ? distance >> 2 : distance;
664 template <typename xtype, typename itype,
665 typename output_mixin, bool output_previous,
666 typename stream_mixin_lhs, typename multiplier_mixin_lhs,
667 typename stream_mixin_rhs, typename multiplier_mixin_rhs>
668 itype operator-(const engine<xtype,itype,
669 output_mixin,output_previous,
670 stream_mixin_lhs, multiplier_mixin_lhs>& lhs,
671 const engine<xtype,itype,
672 output_mixin,output_previous,
673 stream_mixin_rhs, multiplier_mixin_rhs>& rhs)
675 if (lhs.multiplier() != rhs.multiplier()
676 || lhs.increment() != rhs.increment())
677 throw std::logic_error("incomparable generators");
678 return rhs.distance(lhs.state_);
682 template <typename xtype, typename itype,
683 typename output_mixin, bool output_previous,
684 typename stream_mixin_lhs, typename multiplier_mixin_lhs,
685 typename stream_mixin_rhs, typename multiplier_mixin_rhs>
686 bool operator==(const engine<xtype,itype,
687 output_mixin,output_previous,
688 stream_mixin_lhs, multiplier_mixin_lhs>& lhs,
689 const engine<xtype,itype,
690 output_mixin,output_previous,
691 stream_mixin_rhs, multiplier_mixin_rhs>& rhs)
693 return (lhs.multiplier() == rhs.multiplier())
694 && (lhs.increment() == rhs.increment())
695 && (lhs.state_ == rhs.state_);
698 template <typename xtype, typename itype,
699 typename output_mixin, bool output_previous,
700 typename stream_mixin_lhs, typename multiplier_mixin_lhs,
701 typename stream_mixin_rhs, typename multiplier_mixin_rhs>
702 inline bool operator!=(const engine<xtype,itype,
703 output_mixin,output_previous,
704 stream_mixin_lhs, multiplier_mixin_lhs>& lhs,
705 const engine<xtype,itype,
706 output_mixin,output_previous,
707 stream_mixin_rhs, multiplier_mixin_rhs>& rhs)
709 return !operator==(lhs,rhs);
713 template <typename xtype, typename itype,
714 template<typename XT,typename IT> class output_mixin,
715 bool output_previous = (sizeof(itype) <= 8)>
716 using oneseq_base = engine<xtype, itype,
717 output_mixin<xtype, itype>, output_previous,
718 oneseq_stream<itype> >;
720 template <typename xtype, typename itype,
721 template<typename XT,typename IT> class output_mixin,
722 bool output_previous = (sizeof(itype) <= 8)>
723 using unique_base = engine<xtype, itype,
724 output_mixin<xtype, itype>, output_previous,
725 unique_stream<itype> >;
727 template <typename xtype, typename itype,
728 template<typename XT,typename IT> class output_mixin,
729 bool output_previous = (sizeof(itype) <= 8)>
730 using setseq_base = engine<xtype, itype,
731 output_mixin<xtype, itype>, output_previous,
732 specific_stream<itype> >;
734 template <typename xtype, typename itype,
735 template<typename XT,typename IT> class output_mixin,
736 bool output_previous = (sizeof(itype) <= 8)>
737 using mcg_base = engine<xtype, itype,
738 output_mixin<xtype, itype>, output_previous,
739 no_stream<itype> >;
742 * OUTPUT FUNCTIONS.
744 * These are the core of the PCG generation scheme. They specify how to
745 * turn the base LCG's internal state into the output value of the final
746 * generator.
748 * They're implemented as mixin classes.
750 * All of the classes have code that is written to allow it to be applied
751 * at *arbitrary* bit sizes, although in practice they'll only be used at
752 * standard sizes supported by C++.
756 * XSH RS -- high xorshift, followed by a random shift
758 * Fast. A good performer.
761 template <typename xtype, typename itype>
762 struct xsh_rs_mixin {
763 static xtype output(itype internal)
765 constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8);
766 constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype) * 8);
767 constexpr bitcount_t sparebits = bits - xtypebits;
768 constexpr bitcount_t opbits =
769 sparebits-5 >= 64 ? 5
770 : sparebits-4 >= 32 ? 4
771 : sparebits-3 >= 16 ? 3
772 : sparebits-2 >= 4 ? 2
773 : sparebits-1 >= 1 ? 1
774 : 0;
775 constexpr bitcount_t mask = (1 << opbits) - 1;
776 constexpr bitcount_t maxrandshift = mask;
777 constexpr bitcount_t topspare = opbits;
778 constexpr bitcount_t bottomspare = sparebits - topspare;
779 constexpr bitcount_t xshift = topspare + (xtypebits+maxrandshift)/2;
780 bitcount_t rshift =
781 opbits ? bitcount_t(internal >> (bits - opbits)) & mask : 0;
782 internal ^= internal >> xshift;
783 xtype result = xtype(internal >> (bottomspare - maxrandshift + rshift));
784 return result;
789 * XSH RR -- high xorshift, followed by a random rotate
791 * Fast. A good performer. Slightly better statistically than XSH RS.
794 template <typename xtype, typename itype>
795 struct xsh_rr_mixin {
796 static xtype output(itype internal)
798 constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8);
799 constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype)*8);
800 constexpr bitcount_t sparebits = bits - xtypebits;
801 constexpr bitcount_t wantedopbits =
802 xtypebits >= 128 ? 7
803 : xtypebits >= 64 ? 6
804 : xtypebits >= 32 ? 5
805 : xtypebits >= 16 ? 4
806 : 3;
807 constexpr bitcount_t opbits =
808 sparebits >= wantedopbits ? wantedopbits
809 : sparebits;
810 constexpr bitcount_t amplifier = wantedopbits - opbits;
811 constexpr bitcount_t mask = (1 << opbits) - 1;
812 constexpr bitcount_t topspare = opbits;
813 constexpr bitcount_t bottomspare = sparebits - topspare;
814 constexpr bitcount_t xshift = (topspare + xtypebits)/2;
815 bitcount_t rot = opbits ? bitcount_t(internal >> (bits - opbits)) & mask
816 : 0;
817 bitcount_t amprot = (rot << amplifier) & mask;
818 internal ^= internal >> xshift;
819 xtype result = xtype(internal >> bottomspare);
820 result = rotr(result, amprot);
821 return result;
826 * RXS -- random xorshift
829 template <typename xtype, typename itype>
830 struct rxs_mixin {
831 static xtype output_rxs(itype internal)
833 constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8);
834 constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype)*8);
835 constexpr bitcount_t shift = bits - xtypebits;
836 constexpr bitcount_t extrashift = (xtypebits - shift)/2;
837 bitcount_t rshift = shift > 64+8 ? (internal >> (bits - 6)) & 63
838 : shift > 32+4 ? (internal >> (bits - 5)) & 31
839 : shift > 16+2 ? (internal >> (bits - 4)) & 15
840 : shift > 8+1 ? (internal >> (bits - 3)) & 7
841 : shift > 4+1 ? (internal >> (bits - 2)) & 3
842 : shift > 2+1 ? (internal >> (bits - 1)) & 1
843 : 0;
844 internal ^= internal >> (shift + extrashift - rshift);
845 xtype result = internal >> rshift;
846 return result;
851 * RXS M XS -- random xorshift, mcg multiply, fixed xorshift
853 * The most statistically powerful generator, but all those steps
854 * make it slower than some of the others. We give it the rottenest jobs.
856 * Because it's usually used in contexts where the state type and the
857 * result type are the same, it is a permutation and is thus invertable.
858 * We thus provide a function to invert it. This function is used to
859 * for the "inside out" generator used by the extended generator.
862 /* Defined type-based concepts for the multiplication step. They're actually
863 * all derived by truncating the 128-bit, which was computed to be a good
864 * "universal" constant.
867 template <typename T>
868 struct mcg_multiplier {
869 // Not defined for an arbitrary type
872 template <typename T>
873 struct mcg_unmultiplier {
874 // Not defined for an arbitrary type
877 PCG_DEFINE_CONSTANT(uint8_t, mcg, multiplier, 217U)
878 PCG_DEFINE_CONSTANT(uint8_t, mcg, unmultiplier, 105U)
880 PCG_DEFINE_CONSTANT(uint16_t, mcg, multiplier, 62169U)
881 PCG_DEFINE_CONSTANT(uint16_t, mcg, unmultiplier, 28009U)
883 PCG_DEFINE_CONSTANT(uint32_t, mcg, multiplier, 277803737U)
884 PCG_DEFINE_CONSTANT(uint32_t, mcg, unmultiplier, 2897767785U)
886 PCG_DEFINE_CONSTANT(uint64_t, mcg, multiplier, 12605985483714917081ULL)
887 PCG_DEFINE_CONSTANT(uint64_t, mcg, unmultiplier, 15009553638781119849ULL)
889 PCG_DEFINE_CONSTANT(pcg128_t, mcg, multiplier,
890 PCG_128BIT_CONSTANT(17766728186571221404ULL, 12605985483714917081ULL))
891 PCG_DEFINE_CONSTANT(pcg128_t, mcg, unmultiplier,
892 PCG_128BIT_CONSTANT(14422606686972528997ULL, 15009553638781119849ULL))
895 template <typename xtype, typename itype>
896 struct rxs_m_xs_mixin {
897 static xtype output(itype internal)
899 constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype) * 8);
900 constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8);
901 constexpr bitcount_t opbits = xtypebits >= 128 ? 6
902 : xtypebits >= 64 ? 5
903 : xtypebits >= 32 ? 4
904 : xtypebits >= 16 ? 3
905 : 2;
906 constexpr bitcount_t shift = bits - xtypebits;
907 constexpr bitcount_t mask = (1 << opbits) - 1;
908 bitcount_t rshift =
909 opbits ? bitcount_t(internal >> (bits - opbits)) & mask : 0;
910 internal ^= internal >> (opbits + rshift);
911 internal *= mcg_multiplier<itype>::multiplier();
912 xtype result = internal >> shift;
913 result ^= result >> ((2U*xtypebits+2U)/3U);
914 return result;
917 static itype unoutput(itype internal)
919 constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8);
920 constexpr bitcount_t opbits = bits >= 128 ? 6
921 : bits >= 64 ? 5
922 : bits >= 32 ? 4
923 : bits >= 16 ? 3
924 : 2;
925 constexpr bitcount_t mask = (1 << opbits) - 1;
927 internal = unxorshift(internal, bits, (2U*bits+2U)/3U);
929 internal *= mcg_unmultiplier<itype>::unmultiplier();
931 bitcount_t rshift = opbits ? (internal >> (bits - opbits)) & mask : 0;
932 internal = unxorshift(internal, bits, opbits + rshift);
934 return internal;
940 * RXS M -- random xorshift, mcg multiply
943 template <typename xtype, typename itype>
944 struct rxs_m_mixin {
945 static xtype output(itype internal)
947 constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype) * 8);
948 constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8);
949 constexpr bitcount_t opbits = xtypebits >= 128 ? 6
950 : xtypebits >= 64 ? 5
951 : xtypebits >= 32 ? 4
952 : xtypebits >= 16 ? 3
953 : 2;
954 constexpr bitcount_t shift = bits - xtypebits;
955 constexpr bitcount_t mask = (1 << opbits) - 1;
956 bitcount_t rshift = opbits ? (internal >> (bits - opbits)) & mask : 0;
957 internal ^= internal >> (opbits + rshift);
958 internal *= mcg_multiplier<itype>::multiplier();
959 xtype result = internal >> shift;
960 return result;
965 * XSL RR -- fixed xorshift (to low bits), random rotate
967 * Useful for 128-bit types that are split across two CPU registers.
970 template <typename xtype, typename itype>
971 struct xsl_rr_mixin {
972 static xtype output(itype internal)
974 constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype) * 8);
975 constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8);
976 constexpr bitcount_t sparebits = bits - xtypebits;
977 constexpr bitcount_t wantedopbits = xtypebits >= 128 ? 7
978 : xtypebits >= 64 ? 6
979 : xtypebits >= 32 ? 5
980 : xtypebits >= 16 ? 4
981 : 3;
982 constexpr bitcount_t opbits = sparebits >= wantedopbits ? wantedopbits
983 : sparebits;
984 constexpr bitcount_t amplifier = wantedopbits - opbits;
985 constexpr bitcount_t mask = (1 << opbits) - 1;
986 constexpr bitcount_t topspare = sparebits;
987 constexpr bitcount_t bottomspare = sparebits - topspare;
988 constexpr bitcount_t xshift = (topspare + xtypebits) / 2;
990 bitcount_t rot =
991 opbits ? bitcount_t(internal >> (bits - opbits)) & mask : 0;
992 bitcount_t amprot = (rot << amplifier) & mask;
993 internal ^= internal >> xshift;
994 xtype result = xtype(internal >> bottomspare);
995 result = rotr(result, amprot);
996 return result;
1002 * XSL RR RR -- fixed xorshift (to low bits), random rotate (both parts)
1004 * Useful for 128-bit types that are split across two CPU registers.
1005 * If you really want an invertable 128-bit RNG, I guess this is the one.
1008 template <typename T> struct halfsize_trait {};
1009 template <> struct halfsize_trait<pcg128_t> { typedef uint64_t type; };
1010 template <> struct halfsize_trait<uint64_t> { typedef uint32_t type; };
1011 template <> struct halfsize_trait<uint32_t> { typedef uint16_t type; };
1012 template <> struct halfsize_trait<uint16_t> { typedef uint8_t type; };
1014 template <typename xtype, typename itype>
1015 struct xsl_rr_rr_mixin {
1016 typedef typename halfsize_trait<itype>::type htype;
1018 static itype output(itype internal)
1020 constexpr bitcount_t htypebits = bitcount_t(sizeof(htype) * 8);
1021 constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8);
1022 constexpr bitcount_t sparebits = bits - htypebits;
1023 constexpr bitcount_t wantedopbits = htypebits >= 128 ? 7
1024 : htypebits >= 64 ? 6
1025 : htypebits >= 32 ? 5
1026 : htypebits >= 16 ? 4
1027 : 3;
1028 constexpr bitcount_t opbits = sparebits >= wantedopbits ? wantedopbits
1029 : sparebits;
1030 constexpr bitcount_t amplifier = wantedopbits - opbits;
1031 constexpr bitcount_t mask = (1 << opbits) - 1;
1032 constexpr bitcount_t topspare = sparebits;
1033 constexpr bitcount_t xshift = (topspare + htypebits) / 2;
1035 bitcount_t rot =
1036 opbits ? bitcount_t(internal >> (bits - opbits)) & mask : 0;
1037 bitcount_t amprot = (rot << amplifier) & mask;
1038 internal ^= internal >> xshift;
1039 htype lowbits = htype(internal);
1040 lowbits = rotr(lowbits, amprot);
1041 htype highbits = htype(internal >> topspare);
1042 bitcount_t rot2 = lowbits & mask;
1043 bitcount_t amprot2 = (rot2 << amplifier) & mask;
1044 highbits = rotr(highbits, amprot2);
1045 return (itype(highbits) << topspare) ^ itype(lowbits);
1051 * XSH -- fixed xorshift (to high bits)
1053 * You shouldn't use this at 64-bits or less.
1056 template <typename xtype, typename itype>
1057 struct xsh_mixin {
1058 static xtype output(itype internal)
1060 constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype) * 8);
1061 constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8);
1062 constexpr bitcount_t sparebits = bits - xtypebits;
1063 constexpr bitcount_t topspare = 0;
1064 constexpr bitcount_t bottomspare = sparebits - topspare;
1065 constexpr bitcount_t xshift = (topspare + xtypebits) / 2;
1067 internal ^= internal >> xshift;
1068 xtype result = internal >> bottomspare;
1069 return result;
1074 * XSL -- fixed xorshift (to low bits)
1076 * You shouldn't use this at 64-bits or less.
1079 template <typename xtype, typename itype>
1080 struct xsl_mixin {
1081 inline xtype output(itype internal)
1083 constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype) * 8);
1084 constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8);
1085 constexpr bitcount_t sparebits = bits - xtypebits;
1086 constexpr bitcount_t topspare = sparebits;
1087 constexpr bitcount_t bottomspare = sparebits - topspare;
1088 constexpr bitcount_t xshift = (topspare + xtypebits) / 2;
1090 internal ^= internal >> xshift;
1091 xtype result = internal >> bottomspare;
1092 return result;
1096 /* ---- End of Output Functions ---- */
1099 template <typename baseclass>
1100 struct inside_out : private baseclass {
1101 inside_out() = delete;
1103 typedef typename baseclass::result_type result_type;
1104 typedef typename baseclass::state_type state_type;
1105 static_assert(sizeof(result_type) == sizeof(state_type),
1106 "Require a RNG whose output function is a permutation");
1108 static bool external_step(result_type& randval, size_t i)
1110 state_type state = baseclass::unoutput(randval);
1111 state = state * baseclass::multiplier() + baseclass::increment()
1112 + state_type(i*2);
1113 result_type result = baseclass::output(state);
1114 randval = result;
1115 state_type zero =
1116 baseclass::is_mcg ? state & state_type(3U) : state_type(0U);
1117 return result == zero;
1120 static bool external_advance(result_type& randval, size_t i,
1121 result_type delta, bool forwards = true)
1123 state_type state = baseclass::unoutput(randval);
1124 state_type mult = baseclass::multiplier();
1125 state_type inc = baseclass::increment() + state_type(i*2);
1126 state_type zero =
1127 baseclass::is_mcg ? state & state_type(3U) : state_type(0U);
1128 state_type dist_to_zero = baseclass::distance(state, zero, mult, inc);
1129 bool crosses_zero =
1130 forwards ? dist_to_zero <= delta
1131 : (-dist_to_zero) <= delta;
1132 if (!forwards)
1133 delta = -delta;
1134 state = baseclass::advance(state, delta, mult, inc);
1135 randval = baseclass::output(state);
1136 return crosses_zero;
1141 template <bitcount_t table_pow2, bitcount_t advance_pow2, typename baseclass, typename extvalclass, bool kdd = true>
1142 class extended : public baseclass {
1143 public:
1144 typedef typename baseclass::state_type state_type;
1145 typedef typename baseclass::result_type result_type;
1146 typedef inside_out<extvalclass> insideout;
1148 private:
1149 static constexpr bitcount_t rtypebits = sizeof(result_type)*8;
1150 static constexpr bitcount_t stypebits = sizeof(state_type)*8;
1152 static constexpr bitcount_t tick_limit_pow2 = 64U;
1154 static constexpr size_t table_size = 1UL << table_pow2;
1155 static constexpr size_t table_shift = stypebits - table_pow2;
1156 static constexpr state_type table_mask =
1157 (state_type(1U) << table_pow2) - state_type(1U);
1159 static constexpr bool may_tick =
1160 (advance_pow2 < stypebits) && (advance_pow2 < tick_limit_pow2);
1161 static constexpr size_t tick_shift = stypebits - advance_pow2;
1162 static constexpr state_type tick_mask =
1163 may_tick ? state_type(
1164 (uint64_t(1) << (advance_pow2*may_tick)) - 1)
1165 // ^-- stupidity to appease GCC warnings
1166 : ~state_type(0U);
1168 static constexpr bool may_tock = stypebits < tick_limit_pow2;
1170 result_type data_[table_size];
1172 PCG_NOINLINE void advance_table();
1174 PCG_NOINLINE void advance_table(state_type delta, bool isForwards = true);
1176 result_type& get_extended_value()
1178 state_type state = this->state_;
1179 if (kdd && baseclass::is_mcg) {
1180 // The low order bits of an MCG are constant, so drop them.
1181 state >>= 2;
1183 size_t index = kdd ? state & table_mask
1184 : state >> table_shift;
1186 if (may_tick) {
1187 bool tick = kdd ? (state & tick_mask) == state_type(0u)
1188 : (state >> tick_shift) == state_type(0u);
1189 if (tick)
1190 advance_table();
1192 if (may_tock) {
1193 bool tock = state == state_type(0u);
1194 if (tock)
1195 advance_table();
1197 return data_[index];
1200 public:
1201 static constexpr size_t period_pow2()
1203 return baseclass::period_pow2() + table_size*extvalclass::period_pow2();
1206 __attribute__((always_inline)) result_type operator()()
1208 result_type rhs = get_extended_value();
1209 result_type lhs = this->baseclass::operator()();
1210 return lhs ^ rhs;
1213 result_type operator()(result_type upper_bound)
1215 return bounded_rand(*this, upper_bound);
1218 void set(result_type wanted)
1220 result_type& rhs = get_extended_value();
1221 result_type lhs = this->baseclass::operator()();
1222 rhs = lhs ^ wanted;
1225 void advance(state_type distance, bool forwards = true);
1227 void backstep(state_type distance)
1229 advance(distance, false);
1232 extended(const result_type* data)
1233 : baseclass()
1235 datainit(data);
1238 extended(const result_type* data, state_type seed)
1239 : baseclass(seed)
1241 datainit(data);
1244 // This function may or may not exist. It thus has to be a template
1245 // to use SFINAE; users don't have to worry about its template-ness.
1247 template <typename bc = baseclass>
1248 extended(const result_type* data, state_type seed,
1249 typename bc::stream_state stream_seed)
1250 : baseclass(seed, stream_seed)
1252 datainit(data);
1255 extended()
1256 : baseclass()
1258 selfinit();
1261 extended(state_type seed)
1262 : baseclass(seed)
1264 selfinit();
1267 // This function may or may not exist. It thus has to be a template
1268 // to use SFINAE; users don't have to worry about its template-ness.
1270 template <typename bc = baseclass>
1271 extended(state_type seed, typename bc::stream_state stream_seed)
1272 : baseclass(seed, stream_seed)
1274 selfinit();
1277 private:
1278 void selfinit();
1279 void datainit(const result_type* data);
1281 public:
1283 template<typename SeedSeq, typename = typename std::enable_if<
1284 !std::is_convertible<SeedSeq, result_type>::value
1285 && !std::is_convertible<SeedSeq, extended>::value>::type>
1286 extended(SeedSeq&& seedSeq)
1287 : baseclass(seedSeq)
1289 generate_to<table_size>(seedSeq, data_);
1292 template<typename... Args>
1293 void seed(Args&&... args)
1295 new (this) extended(std::forward<Args>(args)...);
1298 template <bitcount_t table_pow2_, bitcount_t advance_pow2_,
1299 typename baseclass_, typename extvalclass_, bool kdd_>
1300 friend bool operator==(const extended<table_pow2_, advance_pow2_,
1301 baseclass_, extvalclass_, kdd_>&,
1302 const extended<table_pow2_, advance_pow2_,
1303 baseclass_, extvalclass_, kdd_>&);
1305 template <typename CharT, typename Traits,
1306 bitcount_t table_pow2_, bitcount_t advance_pow2_,
1307 typename baseclass_, typename extvalclass_, bool kdd_>
1308 friend std::basic_ostream<CharT,Traits>&
1309 operator<<(std::basic_ostream<CharT,Traits>& out,
1310 const extended<table_pow2_, advance_pow2_,
1311 baseclass_, extvalclass_, kdd_>&);
1313 template <typename CharT, typename Traits,
1314 bitcount_t table_pow2_, bitcount_t advance_pow2_,
1315 typename baseclass_, typename extvalclass_, bool kdd_>
1316 friend std::basic_istream<CharT,Traits>&
1317 operator>>(std::basic_istream<CharT,Traits>& in,
1318 extended<table_pow2_, advance_pow2_,
1319 baseclass_, extvalclass_, kdd_>&);
1324 template <bitcount_t table_pow2, bitcount_t advance_pow2,
1325 typename baseclass, typename extvalclass, bool kdd>
1326 void extended<table_pow2,advance_pow2,baseclass,extvalclass,kdd>::datainit(
1327 const result_type* data)
1329 for (size_t i = 0; i < table_size; ++i)
1330 data_[i] = data[i];
1333 template <bitcount_t table_pow2, bitcount_t advance_pow2,
1334 typename baseclass, typename extvalclass, bool kdd>
1335 void extended<table_pow2,advance_pow2,baseclass,extvalclass,kdd>::selfinit()
1337 // We need to fill the extended table with something, and we have
1338 // very little provided data, so we use the base generator to
1339 // produce values. Although not ideal (use a seed sequence, folks!),
1340 // unexpected correlations are mitigated by
1341 // - using XOR differences rather than the number directly
1342 // - the way the table is accessed, its values *won't* be accessed
1343 // in the same order the were written.
1344 // - any strange correlations would only be apparent if we
1345 // were to backstep the generator so that the base generator
1346 // was generating the same values again
1347 result_type xdiff = baseclass::operator()() - baseclass::operator()();
1348 for (size_t i = 0; i < table_size; ++i) {
1349 data_[i] = baseclass::operator()() ^ xdiff;
1353 template <bitcount_t table_pow2, bitcount_t advance_pow2,
1354 typename baseclass, typename extvalclass, bool kdd>
1355 bool operator==(const extended<table_pow2, advance_pow2,
1356 baseclass, extvalclass, kdd>& lhs,
1357 const extended<table_pow2, advance_pow2,
1358 baseclass, extvalclass, kdd>& rhs)
1360 auto& base_lhs = static_cast<const baseclass&>(lhs);
1361 auto& base_rhs = static_cast<const baseclass&>(rhs);
1362 return base_lhs == base_rhs
1363 && !memcmp((void*) lhs.data_, (void*) rhs.data_, sizeof(lhs.data_));
1366 template <bitcount_t table_pow2, bitcount_t advance_pow2,
1367 typename baseclass, typename extvalclass, bool kdd>
1368 inline bool operator!=(const extended<table_pow2, advance_pow2,
1369 baseclass, extvalclass, kdd>& lhs,
1370 const extended<table_pow2, advance_pow2,
1371 baseclass, extvalclass, kdd>& rhs)
1373 return lhs != rhs;
1376 template <typename CharT, typename Traits,
1377 bitcount_t table_pow2, bitcount_t advance_pow2,
1378 typename baseclass, typename extvalclass, bool kdd>
1379 std::basic_ostream<CharT,Traits>&
1380 operator<<(std::basic_ostream<CharT,Traits>& out,
1381 const extended<table_pow2, advance_pow2,
1382 baseclass, extvalclass, kdd>& rng)
1384 auto orig_flags = out.flags(std::ios_base::dec | std::ios_base::left);
1385 auto space = out.widen(' ');
1386 auto orig_fill = out.fill();
1388 out << rng.multiplier() << space
1389 << rng.increment() << space
1390 << rng.state_;
1392 for (const auto& datum : rng.data_)
1393 out << space << datum;
1395 out.flags(orig_flags);
1396 out.fill(orig_fill);
1397 return out;
1400 template <typename CharT, typename Traits,
1401 bitcount_t table_pow2, bitcount_t advance_pow2,
1402 typename baseclass, typename extvalclass, bool kdd>
1403 std::basic_istream<CharT,Traits>&
1404 operator>>(std::basic_istream<CharT,Traits>& in,
1405 extended<table_pow2, advance_pow2,
1406 baseclass, extvalclass, kdd>& rng)
1408 extended<table_pow2, advance_pow2, baseclass, extvalclass> new_rng;
1409 auto& base_rng = static_cast<baseclass&>(new_rng);
1410 in >> base_rng;
1412 if (in.fail())
1413 return in;
1415 auto orig_flags = in.flags(std::ios_base::dec | std::ios_base::skipws);
1417 for (auto& datum : new_rng.data_) {
1418 in >> datum;
1419 if (in.fail())
1420 goto bail;
1423 rng = new_rng;
1425 bail:
1426 in.flags(orig_flags);
1427 return in;
1432 template <bitcount_t table_pow2, bitcount_t advance_pow2,
1433 typename baseclass, typename extvalclass, bool kdd>
1434 void
1435 extended<table_pow2,advance_pow2,baseclass,extvalclass,kdd>::advance_table()
1437 bool carry = false;
1438 for (size_t i = 0; i < table_size; ++i) {
1439 if (carry) {
1440 carry = insideout::external_step(data_[i],i+1);
1442 bool carry2 = insideout::external_step(data_[i],i+1);
1443 carry = carry || carry2;
1447 template <bitcount_t table_pow2, bitcount_t advance_pow2,
1448 typename baseclass, typename extvalclass, bool kdd>
1449 void
1450 extended<table_pow2,advance_pow2,baseclass,extvalclass,kdd>::advance_table(
1451 state_type delta, bool isForwards)
1453 typedef typename baseclass::state_type base_state_t;
1454 typedef typename extvalclass::state_type ext_state_t;
1455 constexpr bitcount_t basebits = sizeof(base_state_t)*8;
1456 constexpr bitcount_t extbits = sizeof(ext_state_t)*8;
1457 static_assert(basebits <= extbits || advance_pow2 > 0,
1458 "Current implementation might overflow its carry");
1460 base_state_t carry = 0;
1461 for (size_t i = 0; i < table_size; ++i) {
1462 base_state_t total_delta = carry + delta;
1463 ext_state_t trunc_delta = ext_state_t(total_delta);
1464 if (basebits > extbits) {
1465 carry = total_delta >> extbits;
1466 } else {
1467 carry = 0;
1469 carry +=
1470 insideout::external_advance(data_[i],i+1, trunc_delta, isForwards);
1474 template <bitcount_t table_pow2, bitcount_t advance_pow2,
1475 typename baseclass, typename extvalclass, bool kdd>
1476 void extended<table_pow2,advance_pow2,baseclass,extvalclass,kdd>::advance(
1477 state_type distance, bool forwards)
1479 static_assert(kdd,
1480 "Efficient advance is too hard for non-kdd extension. "
1481 "For a weak advance, cast to base class");
1482 state_type zero =
1483 baseclass::is_mcg ? this->state_ & state_type(3U) : state_type(0U);
1484 if (may_tick) {
1485 state_type ticks = distance >> (advance_pow2*may_tick);
1486 // ^-- stupidity to appease GCC
1487 // warnings
1488 state_type adv_mask =
1489 baseclass::is_mcg ? tick_mask << 2 : tick_mask;
1490 state_type next_advance_distance = this->distance(zero, adv_mask);
1491 if (!forwards)
1492 next_advance_distance = (-next_advance_distance) & tick_mask;
1493 if (next_advance_distance < (distance & tick_mask)) {
1494 ++ticks;
1496 if (ticks)
1497 advance_table(ticks, forwards);
1499 if (forwards) {
1500 if (may_tock && this->distance(zero) <= distance)
1501 advance_table();
1502 baseclass::advance(distance);
1503 } else {
1504 if (may_tock && -(this->distance(zero)) <= distance)
1505 advance_table(state_type(1U), false);
1506 baseclass::advance(-distance);
1510 } // namespace pcg_detail
1512 namespace pcg_engines {
1514 using namespace pcg_detail;
1516 /* Predefined types for XSH RS */
1518 typedef oneseq_base<uint8_t, uint16_t, xsh_rs_mixin> oneseq_xsh_rs_16_8;
1519 typedef oneseq_base<uint16_t, uint32_t, xsh_rs_mixin> oneseq_xsh_rs_32_16;
1520 typedef oneseq_base<uint32_t, uint64_t, xsh_rs_mixin> oneseq_xsh_rs_64_32;
1521 typedef oneseq_base<uint64_t, pcg128_t, xsh_rs_mixin> oneseq_xsh_rs_128_64;
1523 typedef unique_base<uint8_t, uint16_t, xsh_rs_mixin> unique_xsh_rs_16_8;
1524 typedef unique_base<uint16_t, uint32_t, xsh_rs_mixin> unique_xsh_rs_32_16;
1525 typedef unique_base<uint32_t, uint64_t, xsh_rs_mixin> unique_xsh_rs_64_32;
1526 typedef unique_base<uint64_t, pcg128_t, xsh_rs_mixin> unique_xsh_rs_128_64;
1528 typedef setseq_base<uint8_t, uint16_t, xsh_rs_mixin> setseq_xsh_rs_16_8;
1529 typedef setseq_base<uint16_t, uint32_t, xsh_rs_mixin> setseq_xsh_rs_32_16;
1530 typedef setseq_base<uint32_t, uint64_t, xsh_rs_mixin> setseq_xsh_rs_64_32;
1531 typedef setseq_base<uint64_t, pcg128_t, xsh_rs_mixin> setseq_xsh_rs_128_64;
1533 typedef mcg_base<uint8_t, uint16_t, xsh_rs_mixin> mcg_xsh_rs_16_8;
1534 typedef mcg_base<uint16_t, uint32_t, xsh_rs_mixin> mcg_xsh_rs_32_16;
1535 typedef mcg_base<uint32_t, uint64_t, xsh_rs_mixin> mcg_xsh_rs_64_32;
1536 typedef mcg_base<uint64_t, pcg128_t, xsh_rs_mixin> mcg_xsh_rs_128_64;
1538 /* Predefined types for XSH RR */
1540 typedef oneseq_base<uint8_t, uint16_t, xsh_rr_mixin> oneseq_xsh_rr_16_8;
1541 typedef oneseq_base<uint16_t, uint32_t, xsh_rr_mixin> oneseq_xsh_rr_32_16;
1542 typedef oneseq_base<uint32_t, uint64_t, xsh_rr_mixin> oneseq_xsh_rr_64_32;
1543 typedef oneseq_base<uint64_t, pcg128_t, xsh_rr_mixin> oneseq_xsh_rr_128_64;
1545 typedef unique_base<uint8_t, uint16_t, xsh_rr_mixin> unique_xsh_rr_16_8;
1546 typedef unique_base<uint16_t, uint32_t, xsh_rr_mixin> unique_xsh_rr_32_16;
1547 typedef unique_base<uint32_t, uint64_t, xsh_rr_mixin> unique_xsh_rr_64_32;
1548 typedef unique_base<uint64_t, pcg128_t, xsh_rr_mixin> unique_xsh_rr_128_64;
1550 typedef setseq_base<uint8_t, uint16_t, xsh_rr_mixin> setseq_xsh_rr_16_8;
1551 typedef setseq_base<uint16_t, uint32_t, xsh_rr_mixin> setseq_xsh_rr_32_16;
1552 typedef setseq_base<uint32_t, uint64_t, xsh_rr_mixin> setseq_xsh_rr_64_32;
1553 typedef setseq_base<uint64_t, pcg128_t, xsh_rr_mixin> setseq_xsh_rr_128_64;
1555 typedef mcg_base<uint8_t, uint16_t, xsh_rr_mixin> mcg_xsh_rr_16_8;
1556 typedef mcg_base<uint16_t, uint32_t, xsh_rr_mixin> mcg_xsh_rr_32_16;
1557 typedef mcg_base<uint32_t, uint64_t, xsh_rr_mixin> mcg_xsh_rr_64_32;
1558 typedef mcg_base<uint64_t, pcg128_t, xsh_rr_mixin> mcg_xsh_rr_128_64;
1561 /* Predefined types for RXS M XS */
1563 typedef oneseq_base<uint8_t, uint8_t, rxs_m_xs_mixin> oneseq_rxs_m_xs_8_8;
1564 typedef oneseq_base<uint16_t, uint16_t, rxs_m_xs_mixin> oneseq_rxs_m_xs_16_16;
1565 typedef oneseq_base<uint32_t, uint32_t, rxs_m_xs_mixin> oneseq_rxs_m_xs_32_32;
1566 typedef oneseq_base<uint64_t, uint64_t, rxs_m_xs_mixin> oneseq_rxs_m_xs_64_64;
1567 typedef oneseq_base<pcg128_t, pcg128_t, rxs_m_xs_mixin> oneseq_rxs_m_xs_128_128;
1569 typedef unique_base<uint8_t, uint8_t, rxs_m_xs_mixin> unique_rxs_m_xs_8_8;
1570 typedef unique_base<uint16_t, uint16_t, rxs_m_xs_mixin> unique_rxs_m_xs_16_16;
1571 typedef unique_base<uint32_t, uint32_t, rxs_m_xs_mixin> unique_rxs_m_xs_32_32;
1572 typedef unique_base<uint64_t, uint64_t, rxs_m_xs_mixin> unique_rxs_m_xs_64_64;
1573 typedef unique_base<pcg128_t, pcg128_t, rxs_m_xs_mixin> unique_rxs_m_xs_128_128;
1575 typedef setseq_base<uint8_t, uint8_t, rxs_m_xs_mixin> setseq_rxs_m_xs_8_8;
1576 typedef setseq_base<uint16_t, uint16_t, rxs_m_xs_mixin> setseq_rxs_m_xs_16_16;
1577 typedef setseq_base<uint32_t, uint32_t, rxs_m_xs_mixin> setseq_rxs_m_xs_32_32;
1578 typedef setseq_base<uint64_t, uint64_t, rxs_m_xs_mixin> setseq_rxs_m_xs_64_64;
1579 typedef setseq_base<pcg128_t, pcg128_t, rxs_m_xs_mixin> setseq_rxs_m_xs_128_128;
1581 // MCG versions don't make sense here, so aren't defined.
1583 /* Predefined types for XSL RR (only defined for "large" types) */
1585 typedef oneseq_base<uint32_t, uint64_t, xsl_rr_mixin> oneseq_xsl_rr_64_32;
1586 typedef oneseq_base<uint64_t, pcg128_t, xsl_rr_mixin> oneseq_xsl_rr_128_64;
1588 typedef unique_base<uint32_t, uint64_t, xsl_rr_mixin> unique_xsl_rr_64_32;
1589 typedef unique_base<uint64_t, pcg128_t, xsl_rr_mixin> unique_xsl_rr_128_64;
1591 typedef setseq_base<uint32_t, uint64_t, xsl_rr_mixin> setseq_xsl_rr_64_32;
1592 typedef setseq_base<uint64_t, pcg128_t, xsl_rr_mixin> setseq_xsl_rr_128_64;
1594 typedef mcg_base<uint32_t, uint64_t, xsl_rr_mixin> mcg_xsl_rr_64_32;
1595 typedef mcg_base<uint64_t, pcg128_t, xsl_rr_mixin> mcg_xsl_rr_128_64;
1598 /* Predefined types for XSL RR RR (only defined for "large" types) */
1600 typedef oneseq_base<uint64_t, uint64_t, xsl_rr_rr_mixin>
1601 oneseq_xsl_rr_rr_64_64;
1602 typedef oneseq_base<pcg128_t, pcg128_t, xsl_rr_rr_mixin>
1603 oneseq_xsl_rr_rr_128_128;
1605 typedef unique_base<uint64_t, uint64_t, xsl_rr_rr_mixin>
1606 unique_xsl_rr_rr_64_64;
1607 typedef unique_base<pcg128_t, pcg128_t, xsl_rr_rr_mixin>
1608 unique_xsl_rr_rr_128_128;
1610 typedef setseq_base<uint64_t, uint64_t, xsl_rr_rr_mixin>
1611 setseq_xsl_rr_rr_64_64;
1612 typedef setseq_base<pcg128_t, pcg128_t, xsl_rr_rr_mixin>
1613 setseq_xsl_rr_rr_128_128;
1615 // MCG versions don't make sense here, so aren't defined.
1617 /* Extended generators */
1619 template <bitcount_t table_pow2, bitcount_t advance_pow2,
1620 typename BaseRNG, bool kdd = true>
1621 using ext_std8 = extended<table_pow2, advance_pow2, BaseRNG,
1622 oneseq_rxs_m_xs_8_8, kdd>;
1624 template <bitcount_t table_pow2, bitcount_t advance_pow2,
1625 typename BaseRNG, bool kdd = true>
1626 using ext_std16 = extended<table_pow2, advance_pow2, BaseRNG,
1627 oneseq_rxs_m_xs_16_16, kdd>;
1629 template <bitcount_t table_pow2, bitcount_t advance_pow2,
1630 typename BaseRNG, bool kdd = true>
1631 using ext_std32 = extended<table_pow2, advance_pow2, BaseRNG,
1632 oneseq_rxs_m_xs_32_32, kdd>;
1634 template <bitcount_t table_pow2, bitcount_t advance_pow2,
1635 typename BaseRNG, bool kdd = true>
1636 using ext_std64 = extended<table_pow2, advance_pow2, BaseRNG,
1637 oneseq_rxs_m_xs_64_64, kdd>;
1640 template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true>
1641 using ext_oneseq_rxs_m_xs_32_32 =
1642 ext_std32<table_pow2, advance_pow2, oneseq_rxs_m_xs_32_32, kdd>;
1644 template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true>
1645 using ext_mcg_xsh_rs_64_32 =
1646 ext_std32<table_pow2, advance_pow2, mcg_xsh_rs_64_32, kdd>;
1648 template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true>
1649 using ext_oneseq_xsh_rs_64_32 =
1650 ext_std32<table_pow2, advance_pow2, oneseq_xsh_rs_64_32, kdd>;
1652 template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true>
1653 using ext_setseq_xsh_rr_64_32 =
1654 ext_std32<table_pow2, advance_pow2, setseq_xsh_rr_64_32, kdd>;
1656 template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true>
1657 using ext_mcg_xsl_rr_128_64 =
1658 ext_std64<table_pow2, advance_pow2, mcg_xsl_rr_128_64, kdd>;
1660 template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true>
1661 using ext_oneseq_xsl_rr_128_64 =
1662 ext_std64<table_pow2, advance_pow2, oneseq_xsl_rr_128_64, kdd>;
1664 template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true>
1665 using ext_setseq_xsl_rr_128_64 =
1666 ext_std64<table_pow2, advance_pow2, setseq_xsl_rr_128_64, kdd>;
1668 } // namespace pcg_engines
1670 typedef pcg_engines::setseq_xsh_rr_64_32 pcg32;
1671 typedef pcg_engines::oneseq_xsh_rr_64_32 pcg32_oneseq;
1672 typedef pcg_engines::unique_xsh_rr_64_32 pcg32_unique;
1673 typedef pcg_engines::mcg_xsh_rs_64_32 pcg32_fast;
1675 typedef pcg_engines::setseq_xsl_rr_128_64 pcg64;
1676 typedef pcg_engines::oneseq_xsl_rr_128_64 pcg64_oneseq;
1677 typedef pcg_engines::unique_xsl_rr_128_64 pcg64_unique;
1678 typedef pcg_engines::mcg_xsl_rr_128_64 pcg64_fast;
1680 typedef pcg_engines::setseq_rxs_m_xs_8_8 pcg8_once_insecure;
1681 typedef pcg_engines::setseq_rxs_m_xs_16_16 pcg16_once_insecure;
1682 typedef pcg_engines::setseq_rxs_m_xs_32_32 pcg32_once_insecure;
1683 typedef pcg_engines::setseq_rxs_m_xs_64_64 pcg64_once_insecure;
1684 typedef pcg_engines::setseq_xsl_rr_rr_128_128 pcg128_once_insecure;
1686 typedef pcg_engines::oneseq_rxs_m_xs_8_8 pcg8_oneseq_once_insecure;
1687 typedef pcg_engines::oneseq_rxs_m_xs_16_16 pcg16_oneseq_once_insecure;
1688 typedef pcg_engines::oneseq_rxs_m_xs_32_32 pcg32_oneseq_once_insecure;
1689 typedef pcg_engines::oneseq_rxs_m_xs_64_64 pcg64_oneseq_once_insecure;
1690 typedef pcg_engines::oneseq_xsl_rr_rr_128_128 pcg128_oneseq_once_insecure;
1693 // These two extended RNGs provide two-dimensionally equidistributed
1694 // 32-bit generators. pcg32_k2_fast occupies the same space as pcg64,
1695 // and can be called twice to generate 64 bits, but does not required
1696 // 128-bit math; on 32-bit systems, it's faster than pcg64 as well.
1698 typedef pcg_engines::ext_setseq_xsh_rr_64_32<6,16,true> pcg32_k2;
1699 typedef pcg_engines::ext_oneseq_xsh_rs_64_32<6,32,true> pcg32_k2_fast;
1701 // These eight extended RNGs have about as much state as arc4random
1703 // - the k variants are k-dimensionally equidistributed
1704 // - the c variants offer better crypographic security
1706 // (just how good the cryptographic security is is an open question)
1708 typedef pcg_engines::ext_setseq_xsh_rr_64_32<6,16,true> pcg32_k64;
1709 typedef pcg_engines::ext_mcg_xsh_rs_64_32<6,32,true> pcg32_k64_oneseq;
1710 typedef pcg_engines::ext_oneseq_xsh_rs_64_32<6,32,true> pcg32_k64_fast;
1712 typedef pcg_engines::ext_setseq_xsh_rr_64_32<6,16,false> pcg32_c64;
1713 typedef pcg_engines::ext_oneseq_xsh_rs_64_32<6,32,false> pcg32_c64_oneseq;
1714 typedef pcg_engines::ext_mcg_xsh_rs_64_32<6,32,false> pcg32_c64_fast;
1716 typedef pcg_engines::ext_setseq_xsl_rr_128_64<5,16,true> pcg64_k32;
1717 typedef pcg_engines::ext_oneseq_xsl_rr_128_64<5,128,true> pcg64_k32_oneseq;
1718 typedef pcg_engines::ext_mcg_xsl_rr_128_64<5,128,true> pcg64_k32_fast;
1720 typedef pcg_engines::ext_setseq_xsl_rr_128_64<5,16,false> pcg64_c32;
1721 typedef pcg_engines::ext_oneseq_xsl_rr_128_64<5,128,false> pcg64_c32_oneseq;
1722 typedef pcg_engines::ext_mcg_xsl_rr_128_64<5,128,false> pcg64_c32_fast;
1724 // These eight extended RNGs have more state than the Mersenne twister
1726 // - the k variants are k-dimensionally equidistributed
1727 // - the c variants offer better crypographic security
1729 // (just how good the cryptographic security is is an open question)
1731 typedef pcg_engines::ext_setseq_xsh_rr_64_32<10,16,true> pcg32_k1024;
1732 typedef pcg_engines::ext_oneseq_xsh_rs_64_32<10,32,true> pcg32_k1024_fast;
1734 typedef pcg_engines::ext_setseq_xsh_rr_64_32<10,16,false> pcg32_c1024;
1735 typedef pcg_engines::ext_oneseq_xsh_rs_64_32<10,32,false> pcg32_c1024_fast;
1737 typedef pcg_engines::ext_setseq_xsl_rr_128_64<10,16,true> pcg64_k1024;
1738 typedef pcg_engines::ext_oneseq_xsl_rr_128_64<10,128,true> pcg64_k1024_fast;
1740 typedef pcg_engines::ext_setseq_xsl_rr_128_64<10,16,false> pcg64_c1024;
1741 typedef pcg_engines::ext_oneseq_xsl_rr_128_64<10,128,false> pcg64_c1024_fast;
1743 // These generators have an insanely huge period (2^524352), and is suitable
1744 // for silly party tricks, such as dumping out 64 KB ZIP files at an arbitrary
1745 // point in the future. [Actually, over the full period of the generator, it
1746 // will produce every 64 KB ZIP file 2^64 times!]
1748 typedef pcg_engines::ext_setseq_xsh_rr_64_32<14,16,true> pcg32_k16384;
1749 typedef pcg_engines::ext_oneseq_xsh_rs_64_32<14,32,true> pcg32_k16384_fast;
1751 #endif // PCG_RAND_HPP_INCLUDED