1 % CAP theorem (Gilbert and Lynch's formulation of Brewer's Conjecture)
4 % http://creativecommons.org/publicdomain/zero/1.0
6 % A replica of a stone inscribed by Thomas Child at Gilgal Sculpture Garden.
8 \documentclass{article
}
9 \usepackage[landscape,margin=
2cm
]{geometry
}
10 \DeclareFontFamily{OT1
}{gilgal
}{}
11 \DeclareFontShape{OT1
}{gilgal
}{m
}{sc
}{<-> gilgal
}{}
12 \DeclareFontShape{OT1
}{cmr
}{m
}{n
}{<
17-> cmr17
}{}
13 \DeclareFontShape{TS1
}{cmr
}{m
}{n
}{<
10-> cmr10
}{}
14 \DeclareEncodingSubset{TS1
}{cmr
}{0}
15 \pagenumbering{gobble
}
21 {\fontsize{72}{76}\usefont{OT1
}{cmr
}{m
}{n
}I
}%
22 {\fontsize{37}{40}\usefont{OT1
}{gilgal
}{m
}{sc
}t is impossible \\
23 in the asynchronous network model \\
24 to implement a read/write data object \\
25 that guarantees the following properties:
\par}
28 {\fontsize{37}{40}\usefont{OT1
}{gilgal
}{m
}{sc
}
29 \hspace*
{4.5em
}{\fontsize{120}{40}\usefont{OT1
}{gilgal
}{m
}{sc
}\raisebox{9.5pt
}{.
}}\,Availability \\
30 \hspace*
{4.5em
}{\fontsize{120}{40}\usefont{OT1
}{gilgal
}{m
}{sc
}\raisebox{9.5pt
}{.
}}\,Atomic consistency
33 {\fontsize{37}{40}\usefont{OT1
}{gilgal
}{m
}{sc
}in all fair executions \\
\par}
34 {\fontsize{28}{40}\usefont{OT1
}{gilgal
}{m
}{sc
}(including those
35 in which messages are lost).
\par}