archive: handle commits with an empty tree
[git/jnareb-git.git] / xdiff / xdiffi.c
blob1b7012a119ad3ea7e2ebe0aad80891529d4936da
1 /*
2 * LibXDiff by Davide Libenzi ( File Differential Library )
3 * Copyright (C) 2003 Davide Libenzi
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2.1 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Davide Libenzi <davidel@xmailserver.org>
23 #include "xinclude.h"
27 #define XDL_MAX_COST_MIN 256
28 #define XDL_HEUR_MIN_COST 256
29 #define XDL_LINE_MAX (long)((1UL << (CHAR_BIT * sizeof(long) - 1)) - 1)
30 #define XDL_SNAKE_CNT 20
31 #define XDL_K_HEUR 4
35 typedef struct s_xdpsplit {
36 long i1, i2;
37 int min_lo, min_hi;
38 } xdpsplit_t;
43 static long xdl_split(unsigned long const *ha1, long off1, long lim1,
44 unsigned long const *ha2, long off2, long lim2,
45 long *kvdf, long *kvdb, int need_min, xdpsplit_t *spl,
46 xdalgoenv_t *xenv);
47 static xdchange_t *xdl_add_change(xdchange_t *xscr, long i1, long i2, long chg1, long chg2);
54 * See "An O(ND) Difference Algorithm and its Variations", by Eugene Myers.
55 * Basically considers a "box" (off1, off2, lim1, lim2) and scan from both
56 * the forward diagonal starting from (off1, off2) and the backward diagonal
57 * starting from (lim1, lim2). If the K values on the same diagonal crosses
58 * returns the furthest point of reach. We might end up having to expensive
59 * cases using this algorithm is full, so a little bit of heuristic is needed
60 * to cut the search and to return a suboptimal point.
62 static long xdl_split(unsigned long const *ha1, long off1, long lim1,
63 unsigned long const *ha2, long off2, long lim2,
64 long *kvdf, long *kvdb, int need_min, xdpsplit_t *spl,
65 xdalgoenv_t *xenv) {
66 long dmin = off1 - lim2, dmax = lim1 - off2;
67 long fmid = off1 - off2, bmid = lim1 - lim2;
68 long odd = (fmid - bmid) & 1;
69 long fmin = fmid, fmax = fmid;
70 long bmin = bmid, bmax = bmid;
71 long ec, d, i1, i2, prev1, best, dd, v, k;
74 * Set initial diagonal values for both forward and backward path.
76 kvdf[fmid] = off1;
77 kvdb[bmid] = lim1;
79 for (ec = 1;; ec++) {
80 int got_snake = 0;
83 * We need to extent the diagonal "domain" by one. If the next
84 * values exits the box boundaries we need to change it in the
85 * opposite direction because (max - min) must be a power of two.
86 * Also we initialize the external K value to -1 so that we can
87 * avoid extra conditions check inside the core loop.
89 if (fmin > dmin)
90 kvdf[--fmin - 1] = -1;
91 else
92 ++fmin;
93 if (fmax < dmax)
94 kvdf[++fmax + 1] = -1;
95 else
96 --fmax;
98 for (d = fmax; d >= fmin; d -= 2) {
99 if (kvdf[d - 1] >= kvdf[d + 1])
100 i1 = kvdf[d - 1] + 1;
101 else
102 i1 = kvdf[d + 1];
103 prev1 = i1;
104 i2 = i1 - d;
105 for (; i1 < lim1 && i2 < lim2 && ha1[i1] == ha2[i2]; i1++, i2++);
106 if (i1 - prev1 > xenv->snake_cnt)
107 got_snake = 1;
108 kvdf[d] = i1;
109 if (odd && bmin <= d && d <= bmax && kvdb[d] <= i1) {
110 spl->i1 = i1;
111 spl->i2 = i2;
112 spl->min_lo = spl->min_hi = 1;
113 return ec;
118 * We need to extent the diagonal "domain" by one. If the next
119 * values exits the box boundaries we need to change it in the
120 * opposite direction because (max - min) must be a power of two.
121 * Also we initialize the external K value to -1 so that we can
122 * avoid extra conditions check inside the core loop.
124 if (bmin > dmin)
125 kvdb[--bmin - 1] = XDL_LINE_MAX;
126 else
127 ++bmin;
128 if (bmax < dmax)
129 kvdb[++bmax + 1] = XDL_LINE_MAX;
130 else
131 --bmax;
133 for (d = bmax; d >= bmin; d -= 2) {
134 if (kvdb[d - 1] < kvdb[d + 1])
135 i1 = kvdb[d - 1];
136 else
137 i1 = kvdb[d + 1] - 1;
138 prev1 = i1;
139 i2 = i1 - d;
140 for (; i1 > off1 && i2 > off2 && ha1[i1 - 1] == ha2[i2 - 1]; i1--, i2--);
141 if (prev1 - i1 > xenv->snake_cnt)
142 got_snake = 1;
143 kvdb[d] = i1;
144 if (!odd && fmin <= d && d <= fmax && i1 <= kvdf[d]) {
145 spl->i1 = i1;
146 spl->i2 = i2;
147 spl->min_lo = spl->min_hi = 1;
148 return ec;
152 if (need_min)
153 continue;
156 * If the edit cost is above the heuristic trigger and if
157 * we got a good snake, we sample current diagonals to see
158 * if some of the, have reached an "interesting" path. Our
159 * measure is a function of the distance from the diagonal
160 * corner (i1 + i2) penalized with the distance from the
161 * mid diagonal itself. If this value is above the current
162 * edit cost times a magic factor (XDL_K_HEUR) we consider
163 * it interesting.
165 if (got_snake && ec > xenv->heur_min) {
166 for (best = 0, d = fmax; d >= fmin; d -= 2) {
167 dd = d > fmid ? d - fmid: fmid - d;
168 i1 = kvdf[d];
169 i2 = i1 - d;
170 v = (i1 - off1) + (i2 - off2) - dd;
172 if (v > XDL_K_HEUR * ec && v > best &&
173 off1 + xenv->snake_cnt <= i1 && i1 < lim1 &&
174 off2 + xenv->snake_cnt <= i2 && i2 < lim2) {
175 for (k = 1; ha1[i1 - k] == ha2[i2 - k]; k++)
176 if (k == xenv->snake_cnt) {
177 best = v;
178 spl->i1 = i1;
179 spl->i2 = i2;
180 break;
184 if (best > 0) {
185 spl->min_lo = 1;
186 spl->min_hi = 0;
187 return ec;
190 for (best = 0, d = bmax; d >= bmin; d -= 2) {
191 dd = d > bmid ? d - bmid: bmid - d;
192 i1 = kvdb[d];
193 i2 = i1 - d;
194 v = (lim1 - i1) + (lim2 - i2) - dd;
196 if (v > XDL_K_HEUR * ec && v > best &&
197 off1 < i1 && i1 <= lim1 - xenv->snake_cnt &&
198 off2 < i2 && i2 <= lim2 - xenv->snake_cnt) {
199 for (k = 0; ha1[i1 + k] == ha2[i2 + k]; k++)
200 if (k == xenv->snake_cnt - 1) {
201 best = v;
202 spl->i1 = i1;
203 spl->i2 = i2;
204 break;
208 if (best > 0) {
209 spl->min_lo = 0;
210 spl->min_hi = 1;
211 return ec;
216 * Enough is enough. We spent too much time here and now we collect
217 * the furthest reaching path using the (i1 + i2) measure.
219 if (ec >= xenv->mxcost) {
220 long fbest, fbest1, bbest, bbest1;
222 fbest = fbest1 = -1;
223 for (d = fmax; d >= fmin; d -= 2) {
224 i1 = XDL_MIN(kvdf[d], lim1);
225 i2 = i1 - d;
226 if (lim2 < i2)
227 i1 = lim2 + d, i2 = lim2;
228 if (fbest < i1 + i2) {
229 fbest = i1 + i2;
230 fbest1 = i1;
234 bbest = bbest1 = XDL_LINE_MAX;
235 for (d = bmax; d >= bmin; d -= 2) {
236 i1 = XDL_MAX(off1, kvdb[d]);
237 i2 = i1 - d;
238 if (i2 < off2)
239 i1 = off2 + d, i2 = off2;
240 if (i1 + i2 < bbest) {
241 bbest = i1 + i2;
242 bbest1 = i1;
246 if ((lim1 + lim2) - bbest < fbest - (off1 + off2)) {
247 spl->i1 = fbest1;
248 spl->i2 = fbest - fbest1;
249 spl->min_lo = 1;
250 spl->min_hi = 0;
251 } else {
252 spl->i1 = bbest1;
253 spl->i2 = bbest - bbest1;
254 spl->min_lo = 0;
255 spl->min_hi = 1;
257 return ec;
264 * Rule: "Divide et Impera". Recursively split the box in sub-boxes by calling
265 * the box splitting function. Note that the real job (marking changed lines)
266 * is done in the two boundary reaching checks.
268 int xdl_recs_cmp(diffdata_t *dd1, long off1, long lim1,
269 diffdata_t *dd2, long off2, long lim2,
270 long *kvdf, long *kvdb, int need_min, xdalgoenv_t *xenv) {
271 unsigned long const *ha1 = dd1->ha, *ha2 = dd2->ha;
274 * Shrink the box by walking through each diagonal snake (SW and NE).
276 for (; off1 < lim1 && off2 < lim2 && ha1[off1] == ha2[off2]; off1++, off2++);
277 for (; off1 < lim1 && off2 < lim2 && ha1[lim1 - 1] == ha2[lim2 - 1]; lim1--, lim2--);
280 * If one dimension is empty, then all records on the other one must
281 * be obviously changed.
283 if (off1 == lim1) {
284 char *rchg2 = dd2->rchg;
285 long *rindex2 = dd2->rindex;
287 for (; off2 < lim2; off2++)
288 rchg2[rindex2[off2]] = 1;
289 } else if (off2 == lim2) {
290 char *rchg1 = dd1->rchg;
291 long *rindex1 = dd1->rindex;
293 for (; off1 < lim1; off1++)
294 rchg1[rindex1[off1]] = 1;
295 } else {
296 xdpsplit_t spl;
297 spl.i1 = spl.i2 = 0;
300 * Divide ...
302 if (xdl_split(ha1, off1, lim1, ha2, off2, lim2, kvdf, kvdb,
303 need_min, &spl, xenv) < 0) {
305 return -1;
309 * ... et Impera.
311 if (xdl_recs_cmp(dd1, off1, spl.i1, dd2, off2, spl.i2,
312 kvdf, kvdb, spl.min_lo, xenv) < 0 ||
313 xdl_recs_cmp(dd1, spl.i1, lim1, dd2, spl.i2, lim2,
314 kvdf, kvdb, spl.min_hi, xenv) < 0) {
316 return -1;
320 return 0;
324 int xdl_do_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp,
325 xdfenv_t *xe) {
326 long ndiags;
327 long *kvd, *kvdf, *kvdb;
328 xdalgoenv_t xenv;
329 diffdata_t dd1, dd2;
331 if (XDF_DIFF_ALG(xpp->flags) == XDF_PATIENCE_DIFF)
332 return xdl_do_patience_diff(mf1, mf2, xpp, xe);
334 if (XDF_DIFF_ALG(xpp->flags) == XDF_HISTOGRAM_DIFF)
335 return xdl_do_histogram_diff(mf1, mf2, xpp, xe);
337 if (xdl_prepare_env(mf1, mf2, xpp, xe) < 0) {
339 return -1;
343 * Allocate and setup K vectors to be used by the differential algorithm.
344 * One is to store the forward path and one to store the backward path.
346 ndiags = xe->xdf1.nreff + xe->xdf2.nreff + 3;
347 if (!(kvd = (long *) xdl_malloc((2 * ndiags + 2) * sizeof(long)))) {
349 xdl_free_env(xe);
350 return -1;
352 kvdf = kvd;
353 kvdb = kvdf + ndiags;
354 kvdf += xe->xdf2.nreff + 1;
355 kvdb += xe->xdf2.nreff + 1;
357 xenv.mxcost = xdl_bogosqrt(ndiags);
358 if (xenv.mxcost < XDL_MAX_COST_MIN)
359 xenv.mxcost = XDL_MAX_COST_MIN;
360 xenv.snake_cnt = XDL_SNAKE_CNT;
361 xenv.heur_min = XDL_HEUR_MIN_COST;
363 dd1.nrec = xe->xdf1.nreff;
364 dd1.ha = xe->xdf1.ha;
365 dd1.rchg = xe->xdf1.rchg;
366 dd1.rindex = xe->xdf1.rindex;
367 dd2.nrec = xe->xdf2.nreff;
368 dd2.ha = xe->xdf2.ha;
369 dd2.rchg = xe->xdf2.rchg;
370 dd2.rindex = xe->xdf2.rindex;
372 if (xdl_recs_cmp(&dd1, 0, dd1.nrec, &dd2, 0, dd2.nrec,
373 kvdf, kvdb, (xpp->flags & XDF_NEED_MINIMAL) != 0, &xenv) < 0) {
375 xdl_free(kvd);
376 xdl_free_env(xe);
377 return -1;
380 xdl_free(kvd);
382 return 0;
386 static xdchange_t *xdl_add_change(xdchange_t *xscr, long i1, long i2, long chg1, long chg2) {
387 xdchange_t *xch;
389 if (!(xch = (xdchange_t *) xdl_malloc(sizeof(xdchange_t))))
390 return NULL;
392 xch->next = xscr;
393 xch->i1 = i1;
394 xch->i2 = i2;
395 xch->chg1 = chg1;
396 xch->chg2 = chg2;
398 return xch;
402 int xdl_change_compact(xdfile_t *xdf, xdfile_t *xdfo, long flags) {
403 long ix, ixo, ixs, ixref, grpsiz, nrec = xdf->nrec;
404 char *rchg = xdf->rchg, *rchgo = xdfo->rchg;
405 xrecord_t **recs = xdf->recs;
408 * This is the same of what GNU diff does. Move back and forward
409 * change groups for a consistent and pretty diff output. This also
410 * helps in finding joinable change groups and reduce the diff size.
412 for (ix = ixo = 0;;) {
414 * Find the first changed line in the to-be-compacted file.
415 * We need to keep track of both indexes, so if we find a
416 * changed lines group on the other file, while scanning the
417 * to-be-compacted file, we need to skip it properly. Note
418 * that loops that are testing for changed lines on rchg* do
419 * not need index bounding since the array is prepared with
420 * a zero at position -1 and N.
422 for (; ix < nrec && !rchg[ix]; ix++)
423 while (rchgo[ixo++]);
424 if (ix == nrec)
425 break;
428 * Record the start of a changed-group in the to-be-compacted file
429 * and find the end of it, on both to-be-compacted and other file
430 * indexes (ix and ixo).
432 ixs = ix;
433 for (ix++; rchg[ix]; ix++);
434 for (; rchgo[ixo]; ixo++);
436 do {
437 grpsiz = ix - ixs;
440 * If the line before the current change group, is equal to
441 * the last line of the current change group, shift backward
442 * the group.
444 while (ixs > 0 && recs[ixs - 1]->ha == recs[ix - 1]->ha &&
445 xdl_recmatch(recs[ixs - 1]->ptr, recs[ixs - 1]->size, recs[ix - 1]->ptr, recs[ix - 1]->size, flags)) {
446 rchg[--ixs] = 1;
447 rchg[--ix] = 0;
450 * This change might have joined two change groups,
451 * so we try to take this scenario in account by moving
452 * the start index accordingly (and so the other-file
453 * end-of-group index).
455 for (; rchg[ixs - 1]; ixs--);
456 while (rchgo[--ixo]);
460 * Record the end-of-group position in case we are matched
461 * with a group of changes in the other file (that is, the
462 * change record before the end-of-group index in the other
463 * file is set).
465 ixref = rchgo[ixo - 1] ? ix: nrec;
468 * If the first line of the current change group, is equal to
469 * the line next of the current change group, shift forward
470 * the group.
472 while (ix < nrec && recs[ixs]->ha == recs[ix]->ha &&
473 xdl_recmatch(recs[ixs]->ptr, recs[ixs]->size, recs[ix]->ptr, recs[ix]->size, flags)) {
474 rchg[ixs++] = 0;
475 rchg[ix++] = 1;
478 * This change might have joined two change groups,
479 * so we try to take this scenario in account by moving
480 * the start index accordingly (and so the other-file
481 * end-of-group index). Keep tracking the reference
482 * index in case we are shifting together with a
483 * corresponding group of changes in the other file.
485 for (; rchg[ix]; ix++);
486 while (rchgo[++ixo])
487 ixref = ix;
489 } while (grpsiz != ix - ixs);
492 * Try to move back the possibly merged group of changes, to match
493 * the recorded postion in the other file.
495 while (ixref < ix) {
496 rchg[--ixs] = 1;
497 rchg[--ix] = 0;
498 while (rchgo[--ixo]);
502 return 0;
506 int xdl_build_script(xdfenv_t *xe, xdchange_t **xscr) {
507 xdchange_t *cscr = NULL, *xch;
508 char *rchg1 = xe->xdf1.rchg, *rchg2 = xe->xdf2.rchg;
509 long i1, i2, l1, l2;
512 * Trivial. Collects "groups" of changes and creates an edit script.
514 for (i1 = xe->xdf1.nrec, i2 = xe->xdf2.nrec; i1 >= 0 || i2 >= 0; i1--, i2--)
515 if (rchg1[i1 - 1] || rchg2[i2 - 1]) {
516 for (l1 = i1; rchg1[i1 - 1]; i1--);
517 for (l2 = i2; rchg2[i2 - 1]; i2--);
519 if (!(xch = xdl_add_change(cscr, i1, i2, l1 - i1, l2 - i2))) {
520 xdl_free_script(cscr);
521 return -1;
523 cscr = xch;
526 *xscr = cscr;
528 return 0;
532 void xdl_free_script(xdchange_t *xscr) {
533 xdchange_t *xch;
535 while ((xch = xscr) != NULL) {
536 xscr = xscr->next;
537 xdl_free(xch);
541 static int xdl_call_hunk_func(xdfenv_t *xe, xdchange_t *xscr, xdemitcb_t *ecb,
542 xdemitconf_t const *xecfg)
544 xdchange_t *xch, *xche;
546 for (xch = xscr; xch; xch = xche->next) {
547 xche = xdl_get_hunk(xch, xecfg);
548 if (xecfg->hunk_func(xch->i1, xche->i1 + xche->chg1 - xch->i1,
549 xch->i2, xche->i2 + xche->chg2 - xch->i2,
550 ecb->priv) < 0)
551 return -1;
553 return 0;
556 int xdl_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp,
557 xdemitconf_t const *xecfg, xdemitcb_t *ecb) {
558 xdchange_t *xscr;
559 xdfenv_t xe;
560 emit_func_t ef = xecfg->hunk_func ? xdl_call_hunk_func : xdl_emit_diff;
562 if (xdl_do_diff(mf1, mf2, xpp, &xe) < 0) {
564 return -1;
566 if (xdl_change_compact(&xe.xdf1, &xe.xdf2, xpp->flags) < 0 ||
567 xdl_change_compact(&xe.xdf2, &xe.xdf1, xpp->flags) < 0 ||
568 xdl_build_script(&xe, &xscr) < 0) {
570 xdl_free_env(&xe);
571 return -1;
573 if (xscr) {
574 if (ef(&xe, xscr, ecb, xecfg) < 0) {
576 xdl_free_script(xscr);
577 xdl_free_env(&xe);
578 return -1;
580 xdl_free_script(xscr);
582 xdl_free_env(&xe);
584 return 0;