2 * LibXDiff by Davide Libenzi ( File Differential Library )
3 * Copyright (C) 2003 Davide Libenzi
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2.1 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Davide Libenzi <davidel@xmailserver.org>
27 #define XDL_MAX_COST_MIN 256
28 #define XDL_HEUR_MIN_COST 256
29 #define XDL_LINE_MAX (long)((1UL << (8 * sizeof(long) - 1)) - 1)
30 #define XDL_SNAKE_CNT 20
35 typedef struct s_xdpsplit
{
43 static long xdl_split(unsigned long const *ha1
, long off1
, long lim1
,
44 unsigned long const *ha2
, long off2
, long lim2
,
45 long *kvdf
, long *kvdb
, int need_min
, xdpsplit_t
*spl
,
47 static xdchange_t
*xdl_add_change(xdchange_t
*xscr
, long i1
, long i2
, long chg1
, long chg2
);
53 * See "An O(ND) Difference Algorithm and its Variations", by Eugene Myers.
54 * Basically considers a "box" (off1, off2, lim1, lim2) and scan from both
55 * the forward diagonal starting from (off1, off2) and the backward diagonal
56 * starting from (lim1, lim2). If the K values on the same diagonal crosses
57 * returns the furthest point of reach. We might end up having to expensive
58 * cases using this algorithm is full, so a little bit of heuristic is needed
59 * to cut the search and to return a suboptimal point.
61 static long xdl_split(unsigned long const *ha1
, long off1
, long lim1
,
62 unsigned long const *ha2
, long off2
, long lim2
,
63 long *kvdf
, long *kvdb
, int need_min
, xdpsplit_t
*spl
,
65 long dmin
= off1
- lim2
, dmax
= lim1
- off2
;
66 long fmid
= off1
- off2
, bmid
= lim1
- lim2
;
67 long odd
= (fmid
- bmid
) & 1;
68 long fmin
= fmid
, fmax
= fmid
;
69 long bmin
= bmid
, bmax
= bmid
;
70 long ec
, d
, i1
, i2
, prev1
, best
, dd
, v
, k
;
73 * Set initial diagonal values for both forward and backward path.
82 * We need to extent the diagonal "domain" by one. If the next
83 * values exits the box boundaries we need to change it in the
84 * opposite direction because (max - min) must be a power of two.
85 * Also we initialize the extenal K value to -1 so that we can
86 * avoid extra conditions check inside the core loop.
89 kvdf
[--fmin
- 1] = -1;
93 kvdf
[++fmax
+ 1] = -1;
97 for (d
= fmax
; d
>= fmin
; d
-= 2) {
98 if (kvdf
[d
- 1] >= kvdf
[d
+ 1])
104 for (; i1
< lim1
&& i2
< lim2
&& ha1
[i1
] == ha2
[i2
]; i1
++, i2
++);
105 if (i1
- prev1
> xenv
->snake_cnt
)
108 if (odd
&& bmin
<= d
&& d
<= bmax
&& kvdb
[d
] <= i1
) {
111 spl
->min_lo
= spl
->min_hi
= 1;
117 * We need to extent the diagonal "domain" by one. If the next
118 * values exits the box boundaries we need to change it in the
119 * opposite direction because (max - min) must be a power of two.
120 * Also we initialize the extenal K value to -1 so that we can
121 * avoid extra conditions check inside the core loop.
124 kvdb
[--bmin
- 1] = XDL_LINE_MAX
;
128 kvdb
[++bmax
+ 1] = XDL_LINE_MAX
;
132 for (d
= bmax
; d
>= bmin
; d
-= 2) {
133 if (kvdb
[d
- 1] < kvdb
[d
+ 1])
136 i1
= kvdb
[d
+ 1] - 1;
139 for (; i1
> off1
&& i2
> off2
&& ha1
[i1
- 1] == ha2
[i2
- 1]; i1
--, i2
--);
140 if (prev1
- i1
> xenv
->snake_cnt
)
143 if (!odd
&& fmin
<= d
&& d
<= fmax
&& i1
<= kvdf
[d
]) {
146 spl
->min_lo
= spl
->min_hi
= 1;
155 * If the edit cost is above the heuristic trigger and if
156 * we got a good snake, we sample current diagonals to see
157 * if some of the, have reached an "interesting" path. Our
158 * measure is a function of the distance from the diagonal
159 * corner (i1 + i2) penalized with the distance from the
160 * mid diagonal itself. If this value is above the current
161 * edit cost times a magic factor (XDL_K_HEUR) we consider
164 if (got_snake
&& ec
> xenv
->heur_min
) {
165 for (best
= 0, d
= fmax
; d
>= fmin
; d
-= 2) {
166 dd
= d
> fmid
? d
- fmid
: fmid
- d
;
169 v
= (i1
- off1
) + (i2
- off2
) - dd
;
171 if (v
> XDL_K_HEUR
* ec
&& v
> best
&&
172 off1
+ xenv
->snake_cnt
<= i1
&& i1
< lim1
&&
173 off2
+ xenv
->snake_cnt
<= i2
&& i2
< lim2
) {
174 for (k
= 1; ha1
[i1
- k
] == ha2
[i2
- k
]; k
++)
175 if (k
== xenv
->snake_cnt
) {
189 for (best
= 0, d
= bmax
; d
>= bmin
; d
-= 2) {
190 dd
= d
> bmid
? d
- bmid
: bmid
- d
;
193 v
= (lim1
- i1
) + (lim2
- i2
) - dd
;
195 if (v
> XDL_K_HEUR
* ec
&& v
> best
&&
196 off1
< i1
&& i1
<= lim1
- xenv
->snake_cnt
&&
197 off2
< i2
&& i2
<= lim2
- xenv
->snake_cnt
) {
198 for (k
= 0; ha1
[i1
+ k
] == ha2
[i2
+ k
]; k
++)
199 if (k
== xenv
->snake_cnt
- 1) {
215 * Enough is enough. We spent too much time here and now we collect
216 * the furthest reaching path using the (i1 + i2) measure.
218 if (ec
>= xenv
->mxcost
) {
219 long fbest
, fbest1
, bbest
, bbest1
;
222 for (d
= fmax
; d
>= fmin
; d
-= 2) {
223 i1
= XDL_MIN(kvdf
[d
], lim1
);
226 i1
= lim2
+ d
, i2
= lim2
;
227 if (fbest
< i1
+ i2
) {
233 bbest
= XDL_LINE_MAX
;
234 for (d
= bmax
; d
>= bmin
; d
-= 2) {
235 i1
= XDL_MAX(off1
, kvdb
[d
]);
238 i1
= off2
+ d
, i2
= off2
;
239 if (i1
+ i2
< bbest
) {
245 if ((lim1
+ lim2
) - bbest
< fbest
- (off1
+ off2
)) {
247 spl
->i2
= fbest
- fbest1
;
252 spl
->i2
= bbest
- bbest1
;
265 * Rule: "Divide et Impera". Recursively split the box in sub-boxes by calling
266 * the box splitting function. Note that the real job (marking changed lines)
267 * is done in the two boundary reaching checks.
269 int xdl_recs_cmp(diffdata_t
*dd1
, long off1
, long lim1
,
270 diffdata_t
*dd2
, long off2
, long lim2
,
271 long *kvdf
, long *kvdb
, int need_min
, xdalgoenv_t
*xenv
) {
272 unsigned long const *ha1
= dd1
->ha
, *ha2
= dd2
->ha
;
275 * Shrink the box by walking through each diagonal snake (SW and NE).
277 for (; off1
< lim1
&& off2
< lim2
&& ha1
[off1
] == ha2
[off2
]; off1
++, off2
++);
278 for (; off1
< lim1
&& off2
< lim2
&& ha1
[lim1
- 1] == ha2
[lim2
- 1]; lim1
--, lim2
--);
281 * If one dimension is empty, then all records on the other one must
282 * be obviously changed.
285 char *rchg2
= dd2
->rchg
;
286 long *rindex2
= dd2
->rindex
;
288 for (; off2
< lim2
; off2
++)
289 rchg2
[rindex2
[off2
]] = 1;
290 } else if (off2
== lim2
) {
291 char *rchg1
= dd1
->rchg
;
292 long *rindex1
= dd1
->rindex
;
294 for (; off1
< lim1
; off1
++)
295 rchg1
[rindex1
[off1
]] = 1;
303 if ((ec
= xdl_split(ha1
, off1
, lim1
, ha2
, off2
, lim2
, kvdf
, kvdb
,
304 need_min
, &spl
, xenv
)) < 0) {
312 if (xdl_recs_cmp(dd1
, off1
, spl
.i1
, dd2
, off2
, spl
.i2
,
313 kvdf
, kvdb
, spl
.min_lo
, xenv
) < 0 ||
314 xdl_recs_cmp(dd1
, spl
.i1
, lim1
, dd2
, spl
.i2
, lim2
,
315 kvdf
, kvdb
, spl
.min_hi
, xenv
) < 0) {
325 int xdl_do_diff(mmfile_t
*mf1
, mmfile_t
*mf2
, xpparam_t
const *xpp
,
328 long *kvd
, *kvdf
, *kvdb
;
332 if (xdl_prepare_env(mf1
, mf2
, xpp
, xe
) < 0) {
338 * Allocate and setup K vectors to be used by the differential algorithm.
339 * One is to store the forward path and one to store the backward path.
341 ndiags
= xe
->xdf1
.nreff
+ xe
->xdf2
.nreff
+ 3;
342 if (!(kvd
= (long *) xdl_malloc((2 * ndiags
+ 2) * sizeof(long)))) {
348 kvdb
= kvdf
+ ndiags
;
349 kvdf
+= xe
->xdf2
.nreff
+ 1;
350 kvdb
+= xe
->xdf2
.nreff
+ 1;
352 xenv
.mxcost
= xdl_bogosqrt(ndiags
);
353 if (xenv
.mxcost
< XDL_MAX_COST_MIN
)
354 xenv
.mxcost
= XDL_MAX_COST_MIN
;
355 xenv
.snake_cnt
= XDL_SNAKE_CNT
;
356 xenv
.heur_min
= XDL_HEUR_MIN_COST
;
358 dd1
.nrec
= xe
->xdf1
.nreff
;
359 dd1
.ha
= xe
->xdf1
.ha
;
360 dd1
.rchg
= xe
->xdf1
.rchg
;
361 dd1
.rindex
= xe
->xdf1
.rindex
;
362 dd2
.nrec
= xe
->xdf2
.nreff
;
363 dd2
.ha
= xe
->xdf2
.ha
;
364 dd2
.rchg
= xe
->xdf2
.rchg
;
365 dd2
.rindex
= xe
->xdf2
.rindex
;
367 if (xdl_recs_cmp(&dd1
, 0, dd1
.nrec
, &dd2
, 0, dd2
.nrec
,
368 kvdf
, kvdb
, (xpp
->flags
& XDF_NEED_MINIMAL
) != 0, &xenv
) < 0) {
381 static xdchange_t
*xdl_add_change(xdchange_t
*xscr
, long i1
, long i2
, long chg1
, long chg2
) {
384 if (!(xch
= (xdchange_t
*) xdl_malloc(sizeof(xdchange_t
))))
397 int xdl_build_script(xdfenv_t
*xe
, xdchange_t
**xscr
) {
398 xdchange_t
*cscr
= NULL
, *xch
;
399 char *rchg1
= xe
->xdf1
.rchg
, *rchg2
= xe
->xdf2
.rchg
;
403 * Trivial. Collects "groups" of changes and creates an edit script.
405 for (i1
= xe
->xdf1
.nrec
, i2
= xe
->xdf2
.nrec
; i1
>= 0 || i2
>= 0; i1
--, i2
--)
406 if (rchg1
[i1
- 1] || rchg2
[i2
- 1]) {
407 for (l1
= i1
; rchg1
[i1
- 1]; i1
--);
408 for (l2
= i2
; rchg2
[i2
- 1]; i2
--);
410 if (!(xch
= xdl_add_change(cscr
, i1
, i2
, l1
- i1
, l2
- i2
))) {
411 xdl_free_script(cscr
);
423 void xdl_free_script(xdchange_t
*xscr
) {
426 while ((xch
= xscr
) != NULL
) {
433 int xdl_diff(mmfile_t
*mf1
, mmfile_t
*mf2
, xpparam_t
const *xpp
,
434 xdemitconf_t
const *xecfg
, xdemitcb_t
*ecb
) {
438 if (xdl_do_diff(mf1
, mf2
, xpp
, &xe
) < 0) {
443 if (xdl_build_script(&xe
, &xscr
) < 0) {
450 if (xdl_emit_diff(&xe
, xscr
, ecb
, xecfg
) < 0) {
452 xdl_free_script(xscr
);
457 xdl_free_script(xscr
);