1 /* vi: set sw=4 ts=4: */
3 * Gzip implementation for busybox
5 * Based on GNU gzip Copyright (C) 1992-1993 Jean-loup Gailly.
7 * Originally adjusted for busybox by Charles P. Wright <cpw@unix.asb.com>
8 * "this is a stripped down version of gzip I put into busybox, it does
9 * only standard in to standard out with -9 compression. It also requires
10 * the zcat module for some important functions."
12 * Adjusted further by Erik Andersen <andersen@codepoet.org> to support
13 * files as well as stdin/stdout, and to generally behave itself wrt
14 * command line handling.
16 * Licensed under GPLv2 or later, see file LICENSE in this tarball for details.
19 /* big objects in bss:
21 * 00000074 b base_length
22 * 00000078 b base_dist
23 * 00000078 b static_dtree
25 * 000000f4 b dyn_dtree
26 * 00000100 b length_code
27 * 00000200 b dist_code
31 * 00000480 b static_ltree
32 * 000008f4 b dyn_ltree
35 /* TODO: full support for -v for DESKTOP
36 * "/usr/bin/gzip -v a bogus aa" should say:
37 a: 85.1% -- replaced with a.gz
38 gzip: bogus: No such file or directory
39 aa: 85.1% -- replaced with aa.gz
45 /* ===========================================================================
48 /* Diagnostic functions */
50 # define Assert(cond,msg) { if (!(cond)) bb_error_msg(msg); }
51 # define Trace(x) fprintf x
52 # define Tracev(x) {if (verbose) fprintf x ;}
53 # define Tracevv(x) {if (verbose > 1) fprintf x ;}
54 # define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
55 # define Tracecv(c,x) {if (verbose > 1 && (c)) fprintf x ;}
57 # define Assert(cond,msg)
66 /* ===========================================================================
72 # define INBUFSIZ 0x2000 /* input buffer size */
74 # define INBUFSIZ 0x8000 /* input buffer size */
80 # define OUTBUFSIZ 8192 /* output buffer size */
82 # define OUTBUFSIZ 16384 /* output buffer size */
88 # define DIST_BUFSIZE 0x2000 /* buffer for distances, see trees.c */
90 # define DIST_BUFSIZE 0x8000 /* buffer for distances, see trees.c */
95 #define ASCII_FLAG 0x01 /* bit 0 set: file probably ascii text */
96 #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
97 #define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
98 #define ORIG_NAME 0x08 /* bit 3 set: original file name present */
99 #define COMMENT 0x10 /* bit 4 set: file comment present */
100 #define RESERVED 0xC0 /* bit 6,7: reserved */
102 /* internal file attribute */
103 #define UNKNOWN 0xffff
108 # define WSIZE 0x8000 /* window size--must be a power of two, and */
109 #endif /* at least 32K for zip's deflate method */
112 #define MAX_MATCH 258
113 /* The minimum and maximum match lengths */
115 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
116 /* Minimum amount of lookahead, except at the end of the input file.
117 * See deflate.c for comments about the MIN_MATCH+1.
120 #define MAX_DIST (WSIZE-MIN_LOOKAHEAD)
121 /* In order to simplify the code, particularly on 16 bit machines, match
122 * distances are limited to MAX_DIST instead of WSIZE.
126 # define MAX_PATH_LEN 1024 /* max pathname length */
129 #define seekable() 0 /* force sequential output */
130 #define translate_eol 0 /* no option -a yet */
135 #define INIT_BITS 9 /* Initial number of bits per code */
137 #define BIT_MASK 0x1f /* Mask for 'number of compression bits' */
138 /* Mask 0x20 is reserved to mean a fourth header byte, and 0x40 is free.
139 * It's a pity that old uncompress does not check bit 0x20. That makes
140 * extension of the format actually undesirable because old compress
141 * would just crash on the new format instead of giving a meaningful
142 * error message. It does check the number of bits, but it's more
143 * helpful to say "unsupported format, get a new version" than
144 * "can only handle 16 bits".
148 # define MAX_SUFFIX MAX_EXT_CHARS
150 # define MAX_SUFFIX 30
154 /* ===========================================================================
155 * Compile with MEDIUM_MEM to reduce the memory requirements or
156 * with SMALL_MEM to use as little memory as possible. Use BIG_MEM if the
157 * entire input file can be held in memory (not possible on 16 bit systems).
158 * Warning: defining these symbols affects HASH_BITS (see below) and thus
159 * affects the compression ratio. The compressed output
160 * is still correct, and might even be smaller in some cases.
164 # define HASH_BITS 13 /* Number of bits used to hash strings */
167 # define HASH_BITS 14
170 # define HASH_BITS 15
171 /* For portability to 16 bit machines, do not use values above 15. */
174 #define HASH_SIZE (unsigned)(1<<HASH_BITS)
175 #define HASH_MASK (HASH_SIZE-1)
176 #define WMASK (WSIZE-1)
177 /* HASH_SIZE and WSIZE must be powers of two */
179 # define TOO_FAR 4096
181 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
184 /* ===========================================================================
185 * These types are not really 'char', 'short' and 'long'
188 typedef uint16_t ush
;
189 typedef uint32_t ulg
;
193 typedef unsigned IPos
;
194 /* A Pos is an index in the character window. We use short instead of int to
195 * save space in the various tables. IPos is used only for parameter passing.
199 WINDOW_SIZE
= 2 * WSIZE
,
200 /* window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the
201 * input file length plus MIN_LOOKAHEAD.
204 max_chain_length
= 4096,
205 /* To speed up deflation, hash chains are never searched beyond this length.
206 * A higher limit improves compression ratio but degrades the speed.
209 max_lazy_match
= 258,
210 /* Attempt to find a better match only when the current match is strictly
211 * smaller than this value. This mechanism is used only for compression
215 max_insert_length
= max_lazy_match
,
216 /* Insert new strings in the hash table only if the match length
217 * is not greater than this length. This saves time but degrades compression.
218 * max_insert_length is used only for compression levels <= 3.
222 /* Use a faster search when the previous match is longer than this */
224 /* Values for max_lazy_match, good_match and max_chain_length, depending on
225 * the desired pack level (0..9). The values given below have been tuned to
226 * exclude worst case performance for pathological files. Better values may be
227 * found for specific files.
230 nice_match
= 258, /* Stop searching when current match exceeds this */
231 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
232 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
242 /* window position at the beginning of the current output block. Gets
243 * negative when the window is moved backwards.
245 unsigned ins_h
; /* hash index of string to be inserted */
247 #define H_SHIFT ((HASH_BITS+MIN_MATCH-1) / MIN_MATCH)
248 /* Number of bits by which ins_h and del_h must be shifted at each
249 * input step. It must be such that after MIN_MATCH steps, the oldest
250 * byte no longer takes part in the hash key, that is:
251 * H_SHIFT * MIN_MATCH >= HASH_BITS
254 unsigned prev_length
;
256 /* Length of the best match at previous step. Matches not greater than this
257 * are discarded. This is used in the lazy match evaluation.
260 unsigned strstart
; /* start of string to insert */
261 unsigned match_start
; /* start of matching string */
262 unsigned lookahead
; /* number of valid bytes ahead in window */
264 /* ===========================================================================
266 #define DECLARE(type, array, size) \
268 #define ALLOC(type, array, size) \
269 array = xzalloc((size_t)(((size)+1L)/2) * 2*sizeof(type));
270 #define FREE(array) \
271 do { free(array); array = NULL; } while (0)
275 /* buffer for literals or lengths */
276 /* DECLARE(uch, l_buf, LIT_BUFSIZE); */
277 DECLARE(uch
, l_buf
, INBUFSIZ
);
279 DECLARE(ush
, d_buf
, DIST_BUFSIZE
);
280 DECLARE(uch
, outbuf
, OUTBUFSIZ
);
282 /* Sliding window. Input bytes are read into the second half of the window,
283 * and move to the first half later to keep a dictionary of at least WSIZE
284 * bytes. With this organization, matches are limited to a distance of
285 * WSIZE-MAX_MATCH bytes, but this ensures that IO is always
286 * performed with a length multiple of the block size. Also, it limits
287 * the window size to 64K, which is quite useful on MSDOS.
288 * To do: limit the window size to WSIZE+BSZ if SMALL_MEM (the code would
289 * be less efficient).
291 DECLARE(uch
, window
, 2L * WSIZE
);
293 /* Link to older string with same hash index. To limit the size of this
294 * array to 64K, this link is maintained only for the last 32K strings.
295 * An index in this array is thus a window index modulo 32K.
297 /* DECLARE(Pos, prev, WSIZE); */
298 DECLARE(ush
, prev
, 1L << BITS
);
300 /* Heads of the hash chains or 0. */
301 /* DECLARE(Pos, head, 1<<HASH_BITS); */
302 #define head (G1.prev + WSIZE) /* hash head (see deflate.c) */
304 /* number of input bytes */
305 ulg isize
; /* only 32 bits stored in .gz file */
307 /* bbox always use stdin/stdout */
308 #define ifd STDIN_FILENO /* input file descriptor */
309 #define ofd STDOUT_FILENO /* output file descriptor */
312 unsigned insize
; /* valid bytes in l_buf */
314 unsigned outcnt
; /* bytes in output buffer */
316 smallint eofile
; /* flag set at end of input file */
318 /* ===========================================================================
319 * Local data used by the "bit string" routines.
322 unsigned short bi_buf
;
324 /* Output buffer. bits are inserted starting at the bottom (least significant
329 #define BUF_SIZE (8 * sizeof(G1.bi_buf))
330 /* Number of bits used within bi_buf. (bi_buf might be implemented on
331 * more than 16 bits on some systems.)
336 /* Current input function. Set to mem_read for in-memory compression */
339 ulg bits_sent
; /* bit length of the compressed data */
342 uint32_t *crc_32_tab
;
343 uint32_t crc
; /* shift register contents */
346 #define G1 (*(ptr_to_globals - 1))
349 /* ===========================================================================
350 * Write the output buffer outbuf[0..outcnt-1] and update bytes_out.
351 * (used for the compressed data only)
353 static void flush_outbuf(void)
358 xwrite(ofd
, (char *) G1
.outbuf
, G1
.outcnt
);
363 /* ===========================================================================
365 /* put_8bit is used for the compressed output */
366 #define put_8bit(c) \
368 G1.outbuf[G1.outcnt++] = (c); \
369 if (G1.outcnt == OUTBUFSIZ) flush_outbuf(); \
372 /* Output a 16 bit value, lsb first */
373 static void put_16bit(ush w
)
375 if (G1
.outcnt
< OUTBUFSIZ
- 2) {
376 G1
.outbuf
[G1
.outcnt
++] = w
;
377 G1
.outbuf
[G1
.outcnt
++] = w
>> 8;
384 static void put_32bit(ulg n
)
390 /* ===========================================================================
391 * Clear input and output buffers
393 static void clear_bufs(void)
403 /* ===========================================================================
404 * Run a set of bytes through the crc shift register. If s is a NULL
405 * pointer, then initialize the crc shift register contents instead.
406 * Return the current crc in either case.
408 static uint32_t updcrc(uch
* s
, unsigned n
)
412 c
= G1
.crc_32_tab
[(uch
)(c
^ *s
++)] ^ (c
>> 8);
420 /* ===========================================================================
421 * Read a new buffer from the current input file, perform end-of-line
422 * translation, and update the crc and input file size.
423 * IN assertion: size >= 2 (for end-of-line translation)
425 static unsigned file_read(void *buf
, unsigned size
)
429 Assert(G1
.insize
== 0, "l_buf not empty");
431 len
= safe_read(ifd
, buf
, size
);
432 if (len
== (unsigned)(-1) || len
== 0)
441 /* ===========================================================================
442 * Send a value on a given number of bits.
443 * IN assertion: length <= 16 and value fits in length bits.
445 static void send_bits(int value
, int length
)
448 Tracev((stderr
, " l %2d v %4x ", length
, value
));
449 Assert(length
> 0 && length
<= 15, "invalid length");
450 G1
.bits_sent
+= length
;
452 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
453 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
454 * unused bits in value.
456 if (G1
.bi_valid
> (int) BUF_SIZE
- length
) {
457 G1
.bi_buf
|= (value
<< G1
.bi_valid
);
458 put_16bit(G1
.bi_buf
);
459 G1
.bi_buf
= (ush
) value
>> (BUF_SIZE
- G1
.bi_valid
);
460 G1
.bi_valid
+= length
- BUF_SIZE
;
462 G1
.bi_buf
|= value
<< G1
.bi_valid
;
463 G1
.bi_valid
+= length
;
468 /* ===========================================================================
469 * Reverse the first len bits of a code, using straightforward code (a faster
470 * method would use a table)
471 * IN assertion: 1 <= len <= 15
473 static unsigned bi_reverse(unsigned code
, int len
)
479 if (--len
<= 0) return res
;
486 /* ===========================================================================
487 * Write out any remaining bits in an incomplete byte.
489 static void bi_windup(void)
491 if (G1
.bi_valid
> 8) {
492 put_16bit(G1
.bi_buf
);
493 } else if (G1
.bi_valid
> 0) {
499 G1
.bits_sent
= (G1
.bits_sent
+ 7) & ~7;
504 /* ===========================================================================
505 * Copy a stored block to the zip file, storing first the length and its
506 * one's complement if requested.
508 static void copy_block(char *buf
, unsigned len
, int header
)
510 bi_windup(); /* align on byte boundary */
516 G1
.bits_sent
+= 2 * 16;
520 G1
.bits_sent
+= (ulg
) len
<< 3;
528 /* ===========================================================================
529 * Fill the window when the lookahead becomes insufficient.
530 * Updates strstart and lookahead, and sets eofile if end of input file.
531 * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
532 * OUT assertions: at least one byte has been read, or eofile is set;
533 * file reads are performed for at least two bytes (required for the
534 * translate_eol option).
536 static void fill_window(void)
539 unsigned more
= WINDOW_SIZE
- G1
.lookahead
- G1
.strstart
;
540 /* Amount of free space at the end of the window. */
542 /* If the window is almost full and there is insufficient lookahead,
543 * move the upper half to the lower one to make room in the upper half.
545 if (more
== (unsigned) -1) {
546 /* Very unlikely, but possible on 16 bit machine if strstart == 0
547 * and lookahead == 1 (input done one byte at time)
550 } else if (G1
.strstart
>= WSIZE
+ MAX_DIST
) {
551 /* By the IN assertion, the window is not empty so we can't confuse
552 * more == 0 with more == 64K on a 16 bit machine.
554 Assert(WINDOW_SIZE
== 2 * WSIZE
, "no sliding with BIG_MEM");
556 memcpy(G1
.window
, G1
.window
+ WSIZE
, WSIZE
);
557 G1
.match_start
-= WSIZE
;
558 G1
.strstart
-= WSIZE
; /* we now have strstart >= MAX_DIST: */
560 G1
.block_start
-= WSIZE
;
562 for (n
= 0; n
< HASH_SIZE
; n
++) {
564 head
[n
] = (Pos
) (m
>= WSIZE
? m
- WSIZE
: 0);
566 for (n
= 0; n
< WSIZE
; n
++) {
568 G1
.prev
[n
] = (Pos
) (m
>= WSIZE
? m
- WSIZE
: 0);
569 /* If n is not on any hash chain, prev[n] is garbage but
570 * its value will never be used.
575 /* At this point, more >= 2 */
577 n
= file_read(G1
.window
+ G1
.strstart
+ G1
.lookahead
, more
);
578 if (n
== 0 || n
== (unsigned) -1) {
587 /* ===========================================================================
588 * Set match_start to the longest match starting at the given string and
589 * return its length. Matches shorter or equal to prev_length are discarded,
590 * in which case the result is equal to prev_length and match_start is
592 * IN assertions: cur_match is the head of the hash chain for the current
593 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
596 /* For MSDOS, OS/2 and 386 Unix, an optimized version is in match.asm or
597 * match.s. The code is functionally equivalent, so you can use the C version
600 static int longest_match(IPos cur_match
)
602 unsigned chain_length
= max_chain_length
; /* max hash chain length */
603 uch
*scan
= G1
.window
+ G1
.strstart
; /* current string */
604 uch
*match
; /* matched string */
605 int len
; /* length of current match */
606 int best_len
= G1
.prev_length
; /* best match length so far */
607 IPos limit
= G1
.strstart
> (IPos
) MAX_DIST
? G1
.strstart
- (IPos
) MAX_DIST
: 0;
608 /* Stop when cur_match becomes <= limit. To simplify the code,
609 * we prevent matches with the string of window index 0.
612 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
613 * It is easy to get rid of this optimization if necessary.
615 #if HASH_BITS < 8 || MAX_MATCH != 258
616 # error Code too clever
618 uch
*strend
= G1
.window
+ G1
.strstart
+ MAX_MATCH
;
619 uch scan_end1
= scan
[best_len
- 1];
620 uch scan_end
= scan
[best_len
];
622 /* Do not waste too much time if we already have a good match: */
623 if (G1
.prev_length
>= good_match
) {
626 Assert(G1
.strstart
<= WINDOW_SIZE
- MIN_LOOKAHEAD
, "insufficient lookahead");
629 Assert(cur_match
< G1
.strstart
, "no future");
630 match
= G1
.window
+ cur_match
;
632 /* Skip to next match if the match length cannot increase
633 * or if the match length is less than 2:
635 if (match
[best_len
] != scan_end
||
636 match
[best_len
- 1] != scan_end1
||
637 *match
!= *scan
|| *++match
!= scan
[1])
640 /* The check at best_len-1 can be removed because it will be made
641 * again later. (This heuristic is not always a win.)
642 * It is not necessary to compare scan[2] and match[2] since they
643 * are always equal when the other bytes match, given that
644 * the hash keys are equal and that HASH_BITS >= 8.
648 /* We check for insufficient lookahead only every 8th comparison;
649 * the 256th check will be made at strstart+258.
652 } while (*++scan
== *++match
&& *++scan
== *++match
&&
653 *++scan
== *++match
&& *++scan
== *++match
&&
654 *++scan
== *++match
&& *++scan
== *++match
&&
655 *++scan
== *++match
&& *++scan
== *++match
&& scan
< strend
);
657 len
= MAX_MATCH
- (int) (strend
- scan
);
658 scan
= strend
- MAX_MATCH
;
660 if (len
> best_len
) {
661 G1
.match_start
= cur_match
;
663 if (len
>= nice_match
)
665 scan_end1
= scan
[best_len
- 1];
666 scan_end
= scan
[best_len
];
668 } while ((cur_match
= G1
.prev
[cur_match
& WMASK
]) > limit
669 && --chain_length
!= 0);
676 /* ===========================================================================
677 * Check that the match at match_start is indeed a match.
679 static void check_match(IPos start
, IPos match
, int length
)
681 /* check that the match is indeed a match */
682 if (memcmp(G1
.window
+ match
, G1
.window
+ start
, length
) != 0) {
683 bb_error_msg(" start %d, match %d, length %d", start
, match
, length
);
684 bb_error_msg("invalid match");
687 bb_error_msg("\\[%d,%d]", start
- match
, length
);
689 putc(G1
.window
[start
++], stderr
);
690 } while (--length
!= 0);
694 # define check_match(start, match, length) ((void)0)
698 /* trees.c -- output deflated data using Huffman coding
699 * Copyright (C) 1992-1993 Jean-loup Gailly
700 * This is free software; you can redistribute it and/or modify it under the
701 * terms of the GNU General Public License, see the file COPYING.
705 * Encode various sets of source values using variable-length
709 * The PKZIP "deflation" process uses several Huffman trees. The more
710 * common source values are represented by shorter bit sequences.
712 * Each code tree is stored in the ZIP file in a compressed form
713 * which is itself a Huffman encoding of the lengths of
714 * all the code strings (in ascending order by source values).
715 * The actual code strings are reconstructed from the lengths in
716 * the UNZIP process, as described in the "application note"
717 * (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
721 * Data Compression: Techniques and Applications, pp. 53-55.
722 * Lifetime Learning Publications, 1985. ISBN 0-534-03418-7.
725 * Data Compression: Methods and Theory, pp. 49-50.
726 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
730 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
734 * Allocate the match buffer, initialize the various tables [and save
735 * the location of the internal file attribute (ascii/binary) and
736 * method (DEFLATE/STORE) -- deleted in bbox]
738 * void ct_tally(int dist, int lc);
739 * Save the match info and tally the frequency counts.
741 * ulg flush_block(char *buf, ulg stored_len, int eof)
742 * Determine the best encoding for the current block: dynamic trees,
743 * static trees or store, and output the encoded block to the zip
744 * file. Returns the total compressed length for the file so far.
748 /* All codes must not exceed MAX_BITS bits */
750 #define MAX_BL_BITS 7
751 /* Bit length codes must not exceed MAX_BL_BITS bits */
753 #define LENGTH_CODES 29
754 /* number of length codes, not counting the special END_BLOCK code */
757 /* number of literal bytes 0..255 */
759 #define END_BLOCK 256
760 /* end of block literal code */
762 #define L_CODES (LITERALS+1+LENGTH_CODES)
763 /* number of Literal or Length codes, including the END_BLOCK code */
766 /* number of distance codes */
769 /* number of codes used to transfer the bit lengths */
771 typedef uch extra_bits_t
;
773 /* extra bits for each length code */
774 static const extra_bits_t extra_lbits
[LENGTH_CODES
]= {
775 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4,
779 /* extra bits for each distance code */
780 static const extra_bits_t extra_dbits
[D_CODES
] = {
781 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,
782 10, 10, 11, 11, 12, 12, 13, 13
785 /* extra bits for each bit length code */
786 static const extra_bits_t extra_blbits
[BL_CODES
] = {
787 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7 };
789 /* number of codes at each bit length for an optimal tree */
790 static const uch bl_order
[BL_CODES
] = {
791 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
793 #define STORED_BLOCK 0
794 #define STATIC_TREES 1
796 /* The three kinds of block type */
800 # define LIT_BUFSIZE 0x2000
803 # define LIT_BUFSIZE 0x4000
805 # define LIT_BUFSIZE 0x8000
810 # define DIST_BUFSIZE LIT_BUFSIZE
812 /* Sizes of match buffers for literals/lengths and distances. There are
813 * 4 reasons for limiting LIT_BUFSIZE to 64K:
814 * - frequencies can be kept in 16 bit counters
815 * - if compression is not successful for the first block, all input data is
816 * still in the window so we can still emit a stored block even when input
817 * comes from standard input. (This can also be done for all blocks if
818 * LIT_BUFSIZE is not greater than 32K.)
819 * - if compression is not successful for a file smaller than 64K, we can
820 * even emit a stored file instead of a stored block (saving 5 bytes).
821 * - creating new Huffman trees less frequently may not provide fast
822 * adaptation to changes in the input data statistics. (Take for
823 * example a binary file with poorly compressible code followed by
824 * a highly compressible string table.) Smaller buffer sizes give
825 * fast adaptation but have of course the overhead of transmitting trees
827 * - I can't count above 4
828 * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
829 * memory at the expense of compression). Some optimizations would be possible
830 * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
833 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
835 /* repeat a zero length 3-10 times (3 bits of repeat count) */
836 #define REPZ_11_138 18
837 /* repeat a zero length 11-138 times (7 bits of repeat count) */
839 /* ===========================================================================
841 /* Data structure describing a single value and its code string. */
842 typedef struct ct_data
{
844 ush freq
; /* frequency count */
845 ush code
; /* bit string */
848 ush dad
; /* father node in Huffman tree */
849 ush len
; /* length of bit string */
858 #define HEAP_SIZE (2*L_CODES + 1)
859 /* maximum heap size */
861 typedef struct tree_desc
{
862 ct_data
*dyn_tree
; /* the dynamic tree */
863 ct_data
*static_tree
; /* corresponding static tree or NULL */
864 const extra_bits_t
*extra_bits
; /* extra bits for each code or NULL */
865 int extra_base
; /* base index for extra_bits */
866 int elems
; /* max number of elements in the tree */
867 int max_length
; /* max bit length for the codes */
868 int max_code
; /* largest code with non zero frequency */
873 ush heap
[HEAP_SIZE
]; /* heap used to build the Huffman trees */
874 int heap_len
; /* number of elements in the heap */
875 int heap_max
; /* element of largest frequency */
877 /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
878 * The same heap array is used to build all trees.
881 ct_data dyn_ltree
[HEAP_SIZE
]; /* literal and length tree */
882 ct_data dyn_dtree
[2 * D_CODES
+ 1]; /* distance tree */
884 ct_data static_ltree
[L_CODES
+ 2];
886 /* The static literal tree. Since the bit lengths are imposed, there is no
887 * need for the L_CODES extra codes used during heap construction. However
888 * The codes 286 and 287 are needed to build a canonical tree (see ct_init
892 ct_data static_dtree
[D_CODES
];
894 /* The static distance tree. (Actually a trivial tree since all codes use
898 ct_data bl_tree
[2 * BL_CODES
+ 1];
900 /* Huffman tree for the bit lengths */
906 ush bl_count
[MAX_BITS
+ 1];
908 /* The lengths of the bit length codes are sent in order of decreasing
909 * probability, to avoid transmitting the lengths for unused bit length codes.
912 uch depth
[2 * L_CODES
+ 1];
914 /* Depth of each subtree used as tie breaker for trees of equal frequency */
916 uch length_code
[MAX_MATCH
- MIN_MATCH
+ 1];
918 /* length code for each normalized match length (0 == MIN_MATCH) */
922 /* distance codes. The first 256 values correspond to the distances
923 * 3 .. 258, the last 256 values correspond to the top 8 bits of
924 * the 15 bit distances.
927 int base_length
[LENGTH_CODES
];
929 /* First normalized length for each code (0 = MIN_MATCH) */
931 int base_dist
[D_CODES
];
933 /* First normalized distance for each code (0 = distance of 1) */
935 uch flag_buf
[LIT_BUFSIZE
/ 8];
937 /* flag_buf is a bit array distinguishing literals from lengths in
938 * l_buf, thus indicating the presence or absence of a distance.
941 unsigned last_lit
; /* running index in l_buf */
942 unsigned last_dist
; /* running index in d_buf */
943 unsigned last_flags
; /* running index in flag_buf */
944 uch flags
; /* current flags not yet saved in flag_buf */
945 uch flag_bit
; /* current bit used in flags */
947 /* bits are filled in flags starting at bit 0 (least significant).
948 * Note: these flags are overkill in the current code since we don't
949 * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
952 ulg opt_len
; /* bit length of current block with optimal trees */
953 ulg static_len
; /* bit length of current block with static trees */
955 ulg compressed_len
; /* total bit length of compressed file */
958 #define G2ptr ((struct globals2*)(ptr_to_globals))
962 /* ===========================================================================
964 static void gen_codes(ct_data
* tree
, int max_code
);
965 static void build_tree(tree_desc
* desc
);
966 static void scan_tree(ct_data
* tree
, int max_code
);
967 static void send_tree(ct_data
* tree
, int max_code
);
968 static int build_bl_tree(void);
969 static void send_all_trees(int lcodes
, int dcodes
, int blcodes
);
970 static void compress_block(ct_data
* ltree
, ct_data
* dtree
);
974 /* Send a code of the given tree. c and tree must not have side effects */
975 # define SEND_CODE(c, tree) send_bits(tree[c].Code, tree[c].Len)
977 # define SEND_CODE(c, tree) \
979 if (verbose > 1) bb_error_msg("\ncd %3d ",(c)); \
980 send_bits(tree[c].Code, tree[c].Len); \
984 #define D_CODE(dist) \
985 ((dist) < 256 ? G2.dist_code[dist] : G2.dist_code[256 + ((dist)>>7)])
986 /* Mapping from a distance to a distance code. dist is the distance - 1 and
987 * must not have side effects. dist_code[256] and dist_code[257] are never
989 * The arguments must not have side effects.
993 /* ===========================================================================
994 * Initialize a new block.
996 static void init_block(void)
998 int n
; /* iterates over tree elements */
1000 /* Initialize the trees. */
1001 for (n
= 0; n
< L_CODES
; n
++)
1002 G2
.dyn_ltree
[n
].Freq
= 0;
1003 for (n
= 0; n
< D_CODES
; n
++)
1004 G2
.dyn_dtree
[n
].Freq
= 0;
1005 for (n
= 0; n
< BL_CODES
; n
++)
1006 G2
.bl_tree
[n
].Freq
= 0;
1008 G2
.dyn_ltree
[END_BLOCK
].Freq
= 1;
1009 G2
.opt_len
= G2
.static_len
= 0;
1010 G2
.last_lit
= G2
.last_dist
= G2
.last_flags
= 0;
1016 /* ===========================================================================
1017 * Restore the heap property by moving down the tree starting at node k,
1018 * exchanging a node with the smallest of its two sons if necessary, stopping
1019 * when the heap property is re-established (each father smaller than its
1023 /* Compares to subtrees, using the tree depth as tie breaker when
1024 * the subtrees have equal frequency. This minimizes the worst case length. */
1025 #define SMALLER(tree, n, m) \
1026 (tree[n].Freq < tree[m].Freq \
1027 || (tree[n].Freq == tree[m].Freq && G2.depth[n] <= G2.depth[m]))
1029 static void pqdownheap(ct_data
* tree
, int k
)
1032 int j
= k
<< 1; /* left son of k */
1034 while (j
<= G2
.heap_len
) {
1035 /* Set j to the smallest of the two sons: */
1036 if (j
< G2
.heap_len
&& SMALLER(tree
, G2
.heap
[j
+ 1], G2
.heap
[j
]))
1039 /* Exit if v is smaller than both sons */
1040 if (SMALLER(tree
, v
, G2
.heap
[j
]))
1043 /* Exchange v with the smallest son */
1044 G2
.heap
[k
] = G2
.heap
[j
];
1047 /* And continue down the tree, setting j to the left son of k */
1054 /* ===========================================================================
1055 * Compute the optimal bit lengths for a tree and update the total bit length
1056 * for the current block.
1057 * IN assertion: the fields freq and dad are set, heap[heap_max] and
1058 * above are the tree nodes sorted by increasing frequency.
1059 * OUT assertions: the field len is set to the optimal bit length, the
1060 * array bl_count contains the frequencies for each bit length.
1061 * The length opt_len is updated; static_len is also updated if stree is
1064 static void gen_bitlen(tree_desc
* desc
)
1066 ct_data
*tree
= desc
->dyn_tree
;
1067 const extra_bits_t
*extra
= desc
->extra_bits
;
1068 int base
= desc
->extra_base
;
1069 int max_code
= desc
->max_code
;
1070 int max_length
= desc
->max_length
;
1071 ct_data
*stree
= desc
->static_tree
;
1072 int h
; /* heap index */
1073 int n
, m
; /* iterate over the tree elements */
1074 int bits
; /* bit length */
1075 int xbits
; /* extra bits */
1076 ush f
; /* frequency */
1077 int overflow
= 0; /* number of elements with bit length too large */
1079 for (bits
= 0; bits
<= MAX_BITS
; bits
++)
1080 G2
.bl_count
[bits
] = 0;
1082 /* In a first pass, compute the optimal bit lengths (which may
1083 * overflow in the case of the bit length tree).
1085 tree
[G2
.heap
[G2
.heap_max
]].Len
= 0; /* root of the heap */
1087 for (h
= G2
.heap_max
+ 1; h
< HEAP_SIZE
; h
++) {
1089 bits
= tree
[tree
[n
].Dad
].Len
+ 1;
1090 if (bits
> max_length
) {
1094 tree
[n
].Len
= (ush
) bits
;
1095 /* We overwrite tree[n].Dad which is no longer needed */
1098 continue; /* not a leaf node */
1100 G2
.bl_count
[bits
]++;
1103 xbits
= extra
[n
- base
];
1105 G2
.opt_len
+= (ulg
) f
*(bits
+ xbits
);
1108 G2
.static_len
+= (ulg
) f
* (stree
[n
].Len
+ xbits
);
1113 Trace((stderr
, "\nbit length overflow\n"));
1114 /* This happens for example on obj2 and pic of the Calgary corpus */
1116 /* Find the first bit length which could increase: */
1118 bits
= max_length
- 1;
1119 while (G2
.bl_count
[bits
] == 0)
1121 G2
.bl_count
[bits
]--; /* move one leaf down the tree */
1122 G2
.bl_count
[bits
+ 1] += 2; /* move one overflow item as its brother */
1123 G2
.bl_count
[max_length
]--;
1124 /* The brother of the overflow item also moves one step up,
1125 * but this does not affect bl_count[max_length]
1128 } while (overflow
> 0);
1130 /* Now recompute all bit lengths, scanning in increasing frequency.
1131 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1132 * lengths instead of fixing only the wrong ones. This idea is taken
1133 * from 'ar' written by Haruhiko Okumura.)
1135 for (bits
= max_length
; bits
!= 0; bits
--) {
1136 n
= G2
.bl_count
[bits
];
1141 if (tree
[m
].Len
!= (unsigned) bits
) {
1142 Trace((stderr
, "code %d bits %d->%d\n", m
, tree
[m
].Len
, bits
));
1143 G2
.opt_len
+= ((int32_t) bits
- tree
[m
].Len
) * tree
[m
].Freq
;
1152 /* ===========================================================================
1153 * Generate the codes for a given tree and bit counts (which need not be
1155 * IN assertion: the array bl_count contains the bit length statistics for
1156 * the given tree and the field len is set for all tree elements.
1157 * OUT assertion: the field code is set for all tree elements of non
1160 static void gen_codes(ct_data
* tree
, int max_code
)
1162 ush next_code
[MAX_BITS
+ 1]; /* next code value for each bit length */
1163 ush code
= 0; /* running code value */
1164 int bits
; /* bit index */
1165 int n
; /* code index */
1167 /* The distribution counts are first used to generate the code values
1168 * without bit reversal.
1170 for (bits
= 1; bits
<= MAX_BITS
; bits
++) {
1171 next_code
[bits
] = code
= (code
+ G2
.bl_count
[bits
- 1]) << 1;
1173 /* Check that the bit counts in bl_count are consistent. The last code
1176 Assert(code
+ G2
.bl_count
[MAX_BITS
] - 1 == (1 << MAX_BITS
) - 1,
1177 "inconsistent bit counts");
1178 Tracev((stderr
, "\ngen_codes: max_code %d ", max_code
));
1180 for (n
= 0; n
<= max_code
; n
++) {
1181 int len
= tree
[n
].Len
;
1185 /* Now reverse the bits */
1186 tree
[n
].Code
= bi_reverse(next_code
[len
]++, len
);
1188 Tracec(tree
!= G2
.static_ltree
,
1189 (stderr
, "\nn %3d %c l %2d c %4x (%x) ", n
,
1190 (isgraph(n
) ? n
: ' '), len
, tree
[n
].Code
,
1191 next_code
[len
] - 1));
1196 /* ===========================================================================
1197 * Construct one Huffman tree and assigns the code bit strings and lengths.
1198 * Update the total bit length for the current block.
1199 * IN assertion: the field freq is set for all tree elements.
1200 * OUT assertions: the fields len and code are set to the optimal bit length
1201 * and corresponding code. The length opt_len is updated; static_len is
1202 * also updated if stree is not null. The field max_code is set.
1205 /* Remove the smallest element from the heap and recreate the heap with
1206 * one less element. Updates heap and heap_len. */
1209 /* Index within the heap array of least frequent node in the Huffman tree */
1211 #define PQREMOVE(tree, top) \
1213 top = G2.heap[SMALLEST]; \
1214 G2.heap[SMALLEST] = G2.heap[G2.heap_len--]; \
1215 pqdownheap(tree, SMALLEST); \
1218 static void build_tree(tree_desc
* desc
)
1220 ct_data
*tree
= desc
->dyn_tree
;
1221 ct_data
*stree
= desc
->static_tree
;
1222 int elems
= desc
->elems
;
1223 int n
, m
; /* iterate over heap elements */
1224 int max_code
= -1; /* largest code with non zero frequency */
1225 int node
= elems
; /* next internal node of the tree */
1227 /* Construct the initial heap, with least frequent element in
1228 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
1229 * heap[0] is not used.
1232 G2
.heap_max
= HEAP_SIZE
;
1234 for (n
= 0; n
< elems
; n
++) {
1235 if (tree
[n
].Freq
!= 0) {
1236 G2
.heap
[++G2
.heap_len
] = max_code
= n
;
1243 /* The pkzip format requires that at least one distance code exists,
1244 * and that at least one bit should be sent even if there is only one
1245 * possible code. So to avoid special checks later on we force at least
1246 * two codes of non zero frequency.
1248 while (G2
.heap_len
< 2) {
1249 int new = G2
.heap
[++G2
.heap_len
] = (max_code
< 2 ? ++max_code
: 0);
1255 G2
.static_len
-= stree
[new].Len
;
1256 /* new is 0 or 1 so it does not have extra bits */
1258 desc
->max_code
= max_code
;
1260 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
1261 * establish sub-heaps of increasing lengths:
1263 for (n
= G2
.heap_len
/ 2; n
>= 1; n
--)
1264 pqdownheap(tree
, n
);
1266 /* Construct the Huffman tree by repeatedly combining the least two
1270 PQREMOVE(tree
, n
); /* n = node of least frequency */
1271 m
= G2
.heap
[SMALLEST
]; /* m = node of next least frequency */
1273 G2
.heap
[--G2
.heap_max
] = n
; /* keep the nodes sorted by frequency */
1274 G2
.heap
[--G2
.heap_max
] = m
;
1276 /* Create a new node father of n and m */
1277 tree
[node
].Freq
= tree
[n
].Freq
+ tree
[m
].Freq
;
1278 G2
.depth
[node
] = MAX(G2
.depth
[n
], G2
.depth
[m
]) + 1;
1279 tree
[n
].Dad
= tree
[m
].Dad
= (ush
) node
;
1281 if (tree
== G2
.bl_tree
) {
1282 bb_error_msg("\nnode %d(%d), sons %d(%d) %d(%d)",
1283 node
, tree
[node
].Freq
, n
, tree
[n
].Freq
, m
, tree
[m
].Freq
);
1286 /* and insert the new node in the heap */
1287 G2
.heap
[SMALLEST
] = node
++;
1288 pqdownheap(tree
, SMALLEST
);
1290 } while (G2
.heap_len
>= 2);
1292 G2
.heap
[--G2
.heap_max
] = G2
.heap
[SMALLEST
];
1294 /* At this point, the fields freq and dad are set. We can now
1295 * generate the bit lengths.
1297 gen_bitlen((tree_desc
*) desc
);
1299 /* The field len is now set, we can generate the bit codes */
1300 gen_codes((ct_data
*) tree
, max_code
);
1304 /* ===========================================================================
1305 * Scan a literal or distance tree to determine the frequencies of the codes
1306 * in the bit length tree. Updates opt_len to take into account the repeat
1307 * counts. (The contribution of the bit length codes will be added later
1308 * during the construction of bl_tree.)
1310 static void scan_tree(ct_data
* tree
, int max_code
)
1312 int n
; /* iterates over all tree elements */
1313 int prevlen
= -1; /* last emitted length */
1314 int curlen
; /* length of current code */
1315 int nextlen
= tree
[0].Len
; /* length of next code */
1316 int count
= 0; /* repeat count of the current code */
1317 int max_count
= 7; /* max repeat count */
1318 int min_count
= 4; /* min repeat count */
1324 tree
[max_code
+ 1].Len
= 0xffff; /* guard */
1326 for (n
= 0; n
<= max_code
; n
++) {
1328 nextlen
= tree
[n
+ 1].Len
;
1329 if (++count
< max_count
&& curlen
== nextlen
)
1332 if (count
< min_count
) {
1333 G2
.bl_tree
[curlen
].Freq
+= count
;
1334 } else if (curlen
!= 0) {
1335 if (curlen
!= prevlen
)
1336 G2
.bl_tree
[curlen
].Freq
++;
1337 G2
.bl_tree
[REP_3_6
].Freq
++;
1338 } else if (count
<= 10) {
1339 G2
.bl_tree
[REPZ_3_10
].Freq
++;
1341 G2
.bl_tree
[REPZ_11_138
].Freq
++;
1351 } else if (curlen
== nextlen
) {
1359 /* ===========================================================================
1360 * Send a literal or distance tree in compressed form, using the codes in
1363 static void send_tree(ct_data
* tree
, int max_code
)
1365 int n
; /* iterates over all tree elements */
1366 int prevlen
= -1; /* last emitted length */
1367 int curlen
; /* length of current code */
1368 int nextlen
= tree
[0].Len
; /* length of next code */
1369 int count
= 0; /* repeat count of the current code */
1370 int max_count
= 7; /* max repeat count */
1371 int min_count
= 4; /* min repeat count */
1373 /* tree[max_code+1].Len = -1; *//* guard already set */
1375 max_count
= 138, min_count
= 3;
1377 for (n
= 0; n
<= max_code
; n
++) {
1379 nextlen
= tree
[n
+ 1].Len
;
1380 if (++count
< max_count
&& curlen
== nextlen
) {
1382 } else if (count
< min_count
) {
1384 SEND_CODE(curlen
, G2
.bl_tree
);
1386 } else if (curlen
!= 0) {
1387 if (curlen
!= prevlen
) {
1388 SEND_CODE(curlen
, G2
.bl_tree
);
1391 Assert(count
>= 3 && count
<= 6, " 3_6?");
1392 SEND_CODE(REP_3_6
, G2
.bl_tree
);
1393 send_bits(count
- 3, 2);
1394 } else if (count
<= 10) {
1395 SEND_CODE(REPZ_3_10
, G2
.bl_tree
);
1396 send_bits(count
- 3, 3);
1398 SEND_CODE(REPZ_11_138
, G2
.bl_tree
);
1399 send_bits(count
- 11, 7);
1406 } else if (curlen
== nextlen
) {
1417 /* ===========================================================================
1418 * Construct the Huffman tree for the bit lengths and return the index in
1419 * bl_order of the last bit length code to send.
1421 static int build_bl_tree(void)
1423 int max_blindex
; /* index of last bit length code of non zero freq */
1425 /* Determine the bit length frequencies for literal and distance trees */
1426 scan_tree(G2
.dyn_ltree
, G2
.l_desc
.max_code
);
1427 scan_tree(G2
.dyn_dtree
, G2
.d_desc
.max_code
);
1429 /* Build the bit length tree: */
1430 build_tree(&G2
.bl_desc
);
1431 /* opt_len now includes the length of the tree representations, except
1432 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
1435 /* Determine the number of bit length codes to send. The pkzip format
1436 * requires that at least 4 bit length codes be sent. (appnote.txt says
1437 * 3 but the actual value used is 4.)
1439 for (max_blindex
= BL_CODES
- 1; max_blindex
>= 3; max_blindex
--) {
1440 if (G2
.bl_tree
[bl_order
[max_blindex
]].Len
!= 0)
1443 /* Update opt_len to include the bit length tree and counts */
1444 G2
.opt_len
+= 3 * (max_blindex
+ 1) + 5 + 5 + 4;
1445 Tracev((stderr
, "\ndyn trees: dyn %ld, stat %ld", G2
.opt_len
, G2
.static_len
));
1451 /* ===========================================================================
1452 * Send the header for a block using dynamic Huffman trees: the counts, the
1453 * lengths of the bit length codes, the literal tree and the distance tree.
1454 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
1456 static void send_all_trees(int lcodes
, int dcodes
, int blcodes
)
1458 int rank
; /* index in bl_order */
1460 Assert(lcodes
>= 257 && dcodes
>= 1 && blcodes
>= 4, "not enough codes");
1461 Assert(lcodes
<= L_CODES
&& dcodes
<= D_CODES
1462 && blcodes
<= BL_CODES
, "too many codes");
1463 Tracev((stderr
, "\nbl counts: "));
1464 send_bits(lcodes
- 257, 5); /* not +255 as stated in appnote.txt */
1465 send_bits(dcodes
- 1, 5);
1466 send_bits(blcodes
- 4, 4); /* not -3 as stated in appnote.txt */
1467 for (rank
= 0; rank
< blcodes
; rank
++) {
1468 Tracev((stderr
, "\nbl code %2d ", bl_order
[rank
]));
1469 send_bits(G2
.bl_tree
[bl_order
[rank
]].Len
, 3);
1471 Tracev((stderr
, "\nbl tree: sent %ld", G1
.bits_sent
));
1473 send_tree((ct_data
*) G2
.dyn_ltree
, lcodes
- 1); /* send the literal tree */
1474 Tracev((stderr
, "\nlit tree: sent %ld", G1
.bits_sent
));
1476 send_tree((ct_data
*) G2
.dyn_dtree
, dcodes
- 1); /* send the distance tree */
1477 Tracev((stderr
, "\ndist tree: sent %ld", G1
.bits_sent
));
1481 /* ===========================================================================
1482 * Save the match info and tally the frequency counts. Return true if
1483 * the current block must be flushed.
1485 static int ct_tally(int dist
, int lc
)
1487 G1
.l_buf
[G2
.last_lit
++] = lc
;
1489 /* lc is the unmatched char */
1490 G2
.dyn_ltree
[lc
].Freq
++;
1492 /* Here, lc is the match length - MIN_MATCH */
1493 dist
--; /* dist = match distance - 1 */
1494 Assert((ush
) dist
< (ush
) MAX_DIST
1495 && (ush
) lc
<= (ush
) (MAX_MATCH
- MIN_MATCH
)
1496 && (ush
) D_CODE(dist
) < (ush
) D_CODES
, "ct_tally: bad match"
1499 G2
.dyn_ltree
[G2
.length_code
[lc
] + LITERALS
+ 1].Freq
++;
1500 G2
.dyn_dtree
[D_CODE(dist
)].Freq
++;
1502 G1
.d_buf
[G2
.last_dist
++] = dist
;
1503 G2
.flags
|= G2
.flag_bit
;
1507 /* Output the flags if they fill a byte: */
1508 if ((G2
.last_lit
& 7) == 0) {
1509 G2
.flag_buf
[G2
.last_flags
++] = G2
.flags
;
1513 /* Try to guess if it is profitable to stop the current block here */
1514 if ((G2
.last_lit
& 0xfff) == 0) {
1515 /* Compute an upper bound for the compressed length */
1516 ulg out_length
= G2
.last_lit
* 8L;
1517 ulg in_length
= (ulg
) G1
.strstart
- G1
.block_start
;
1520 for (dcode
= 0; dcode
< D_CODES
; dcode
++) {
1521 out_length
+= G2
.dyn_dtree
[dcode
].Freq
* (5L + extra_dbits
[dcode
]);
1525 "\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
1526 G2
.last_lit
, G2
.last_dist
, in_length
, out_length
,
1527 100L - out_length
* 100L / in_length
));
1528 if (G2
.last_dist
< G2
.last_lit
/ 2 && out_length
< in_length
/ 2)
1531 return (G2
.last_lit
== LIT_BUFSIZE
- 1 || G2
.last_dist
== DIST_BUFSIZE
);
1532 /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
1533 * on 16 bit machines and because stored blocks are restricted to
1538 /* ===========================================================================
1539 * Send the block data compressed using the given Huffman trees
1541 static void compress_block(ct_data
* ltree
, ct_data
* dtree
)
1543 unsigned dist
; /* distance of matched string */
1544 int lc
; /* match length or unmatched char (if dist == 0) */
1545 unsigned lx
= 0; /* running index in l_buf */
1546 unsigned dx
= 0; /* running index in d_buf */
1547 unsigned fx
= 0; /* running index in flag_buf */
1548 uch flag
= 0; /* current flags */
1549 unsigned code
; /* the code to send */
1550 int extra
; /* number of extra bits to send */
1552 if (G2
.last_lit
!= 0) do {
1554 flag
= G2
.flag_buf
[fx
++];
1555 lc
= G1
.l_buf
[lx
++];
1556 if ((flag
& 1) == 0) {
1557 SEND_CODE(lc
, ltree
); /* send a literal byte */
1558 Tracecv(isgraph(lc
), (stderr
, " '%c' ", lc
));
1560 /* Here, lc is the match length - MIN_MATCH */
1561 code
= G2
.length_code
[lc
];
1562 SEND_CODE(code
+ LITERALS
+ 1, ltree
); /* send the length code */
1563 extra
= extra_lbits
[code
];
1565 lc
-= G2
.base_length
[code
];
1566 send_bits(lc
, extra
); /* send the extra length bits */
1568 dist
= G1
.d_buf
[dx
++];
1569 /* Here, dist is the match distance - 1 */
1570 code
= D_CODE(dist
);
1571 Assert(code
< D_CODES
, "bad d_code");
1573 SEND_CODE(code
, dtree
); /* send the distance code */
1574 extra
= extra_dbits
[code
];
1576 dist
-= G2
.base_dist
[code
];
1577 send_bits(dist
, extra
); /* send the extra distance bits */
1579 } /* literal or match pair ? */
1581 } while (lx
< G2
.last_lit
);
1583 SEND_CODE(END_BLOCK
, ltree
);
1587 /* ===========================================================================
1588 * Determine the best encoding for the current block: dynamic trees, static
1589 * trees or store, and output the encoded block to the zip file. This function
1590 * returns the total compressed length for the file so far.
1592 static ulg
flush_block(char *buf
, ulg stored_len
, int eof
)
1594 ulg opt_lenb
, static_lenb
; /* opt_len and static_len in bytes */
1595 int max_blindex
; /* index of last bit length code of non zero freq */
1597 G2
.flag_buf
[G2
.last_flags
] = G2
.flags
; /* Save the flags for the last 8 items */
1599 /* Construct the literal and distance trees */
1600 build_tree(&G2
.l_desc
);
1601 Tracev((stderr
, "\nlit data: dyn %ld, stat %ld", G2
.opt_len
, G2
.static_len
));
1603 build_tree(&G2
.d_desc
);
1604 Tracev((stderr
, "\ndist data: dyn %ld, stat %ld", G2
.opt_len
, G2
.static_len
));
1605 /* At this point, opt_len and static_len are the total bit lengths of
1606 * the compressed block data, excluding the tree representations.
1609 /* Build the bit length tree for the above two trees, and get the index
1610 * in bl_order of the last bit length code to send.
1612 max_blindex
= build_bl_tree();
1614 /* Determine the best encoding. Compute first the block length in bytes */
1615 opt_lenb
= (G2
.opt_len
+ 3 + 7) >> 3;
1616 static_lenb
= (G2
.static_len
+ 3 + 7) >> 3;
1619 "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
1620 opt_lenb
, G2
.opt_len
, static_lenb
, G2
.static_len
, stored_len
,
1621 G2
.last_lit
, G2
.last_dist
));
1623 if (static_lenb
<= opt_lenb
)
1624 opt_lenb
= static_lenb
;
1626 /* If compression failed and this is the first and last block,
1627 * and if the zip file can be seeked (to rewrite the local header),
1628 * the whole file is transformed into a stored file:
1630 if (stored_len
<= opt_lenb
&& eof
&& G2
.compressed_len
== 0L && seekable()) {
1631 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
1633 bb_error_msg("block vanished");
1635 copy_block(buf
, (unsigned) stored_len
, 0); /* without header */
1636 G2
.compressed_len
= stored_len
<< 3;
1638 } else if (stored_len
+ 4 <= opt_lenb
&& buf
!= NULL
) {
1639 /* 4: two words for the lengths */
1640 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1641 * Otherwise we can't have processed more than WSIZE input bytes since
1642 * the last block flush, because compression would have been
1643 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1644 * transform a block into a stored block.
1646 send_bits((STORED_BLOCK
<< 1) + eof
, 3); /* send block type */
1647 G2
.compressed_len
= (G2
.compressed_len
+ 3 + 7) & ~7L;
1648 G2
.compressed_len
+= (stored_len
+ 4) << 3;
1650 copy_block(buf
, (unsigned) stored_len
, 1); /* with header */
1652 } else if (static_lenb
== opt_lenb
) {
1653 send_bits((STATIC_TREES
<< 1) + eof
, 3);
1654 compress_block((ct_data
*) G2
.static_ltree
, (ct_data
*) G2
.static_dtree
);
1655 G2
.compressed_len
+= 3 + G2
.static_len
;
1657 send_bits((DYN_TREES
<< 1) + eof
, 3);
1658 send_all_trees(G2
.l_desc
.max_code
+ 1, G2
.d_desc
.max_code
+ 1,
1660 compress_block((ct_data
*) G2
.dyn_ltree
, (ct_data
*) G2
.dyn_dtree
);
1661 G2
.compressed_len
+= 3 + G2
.opt_len
;
1663 Assert(G2
.compressed_len
== G1
.bits_sent
, "bad compressed size");
1668 G2
.compressed_len
+= 7; /* align on byte boundary */
1670 Tracev((stderr
, "\ncomprlen %lu(%lu) ", G2
.compressed_len
>> 3,
1671 G2
.compressed_len
- 7 * eof
));
1673 return G2
.compressed_len
>> 3;
1677 /* ===========================================================================
1678 * Update a hash value with the given input byte
1679 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
1680 * input characters, so that a running hash key can be computed from the
1681 * previous key instead of complete recalculation each time.
1683 #define UPDATE_HASH(h, c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK)
1686 /* ===========================================================================
1687 * Same as above, but achieves better compression. We use a lazy
1688 * evaluation for matches: a match is finally adopted only if there is
1689 * no better match at the next window position.
1691 * Processes a new input file and return its compressed length. Sets
1692 * the compressed length, crc, deflate flags and internal file
1696 /* Flush the current block, with given end-of-file flag.
1697 * IN assertion: strstart is set to the end of the current match. */
1698 #define FLUSH_BLOCK(eof) \
1700 G1.block_start >= 0L \
1701 ? (char*)&G1.window[(unsigned)G1.block_start] \
1703 (ulg)G1.strstart - G1.block_start, \
1707 /* Insert string s in the dictionary and set match_head to the previous head
1708 * of the hash chain (the most recent string with same hash key). Return
1709 * the previous length of the hash chain.
1710 * IN assertion: all calls to to INSERT_STRING are made with consecutive
1711 * input characters and the first MIN_MATCH bytes of s are valid
1712 * (except for the last MIN_MATCH-1 bytes of the input file). */
1713 #define INSERT_STRING(s, match_head) \
1715 UPDATE_HASH(G1.ins_h, G1.window[(s) + MIN_MATCH-1]); \
1716 G1.prev[(s) & WMASK] = match_head = head[G1.ins_h]; \
1717 head[G1.ins_h] = (s); \
1720 static ulg
deflate(void)
1722 IPos hash_head
; /* head of hash chain */
1723 IPos prev_match
; /* previous match */
1724 int flush
; /* set if current block must be flushed */
1725 int match_available
= 0; /* set if previous match exists */
1726 unsigned match_length
= MIN_MATCH
- 1; /* length of best match */
1728 /* Process the input block. */
1729 while (G1
.lookahead
!= 0) {
1730 /* Insert the string window[strstart .. strstart+2] in the
1731 * dictionary, and set hash_head to the head of the hash chain:
1733 INSERT_STRING(G1
.strstart
, hash_head
);
1735 /* Find the longest match, discarding those <= prev_length.
1737 G1
.prev_length
= match_length
;
1738 prev_match
= G1
.match_start
;
1739 match_length
= MIN_MATCH
- 1;
1741 if (hash_head
!= 0 && G1
.prev_length
< max_lazy_match
1742 && G1
.strstart
- hash_head
<= MAX_DIST
1744 /* To simplify the code, we prevent matches with the string
1745 * of window index 0 (in particular we have to avoid a match
1746 * of the string with itself at the start of the input file).
1748 match_length
= longest_match(hash_head
);
1749 /* longest_match() sets match_start */
1750 if (match_length
> G1
.lookahead
)
1751 match_length
= G1
.lookahead
;
1753 /* Ignore a length 3 match if it is too distant: */
1754 if (match_length
== MIN_MATCH
&& G1
.strstart
- G1
.match_start
> TOO_FAR
) {
1755 /* If prev_match is also MIN_MATCH, G1.match_start is garbage
1756 * but we will ignore the current match anyway.
1761 /* If there was a match at the previous step and the current
1762 * match is not better, output the previous match:
1764 if (G1
.prev_length
>= MIN_MATCH
&& match_length
<= G1
.prev_length
) {
1765 check_match(G1
.strstart
- 1, prev_match
, G1
.prev_length
);
1766 flush
= ct_tally(G1
.strstart
- 1 - prev_match
, G1
.prev_length
- MIN_MATCH
);
1768 /* Insert in hash table all strings up to the end of the match.
1769 * strstart-1 and strstart are already inserted.
1771 G1
.lookahead
-= G1
.prev_length
- 1;
1772 G1
.prev_length
-= 2;
1775 INSERT_STRING(G1
.strstart
, hash_head
);
1776 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1777 * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
1778 * these bytes are garbage, but it does not matter since the
1779 * next lookahead bytes will always be emitted as literals.
1781 } while (--G1
.prev_length
!= 0);
1782 match_available
= 0;
1783 match_length
= MIN_MATCH
- 1;
1787 G1
.block_start
= G1
.strstart
;
1789 } else if (match_available
) {
1790 /* If there was no match at the previous position, output a
1791 * single literal. If there was a match but the current match
1792 * is longer, truncate the previous match to a single literal.
1794 Tracevv((stderr
, "%c", G1
.window
[G1
.strstart
- 1]));
1795 if (ct_tally(0, G1
.window
[G1
.strstart
- 1])) {
1797 G1
.block_start
= G1
.strstart
;
1802 /* There is no previous match to compare with, wait for
1803 * the next step to decide.
1805 match_available
= 1;
1809 Assert(G1
.strstart
<= G1
.isize
&& lookahead
<= G1
.isize
, "a bit too far");
1811 /* Make sure that we always have enough lookahead, except
1812 * at the end of the input file. We need MAX_MATCH bytes
1813 * for the next match, plus MIN_MATCH bytes to insert the
1814 * string following the next match.
1816 while (G1
.lookahead
< MIN_LOOKAHEAD
&& !G1
.eofile
)
1819 if (match_available
)
1820 ct_tally(0, G1
.window
[G1
.strstart
- 1]);
1822 return FLUSH_BLOCK(1); /* eof */
1826 /* ===========================================================================
1827 * Initialize the bit string routines.
1829 static void bi_init(void)
1839 /* ===========================================================================
1840 * Initialize the "longest match" routines for a new file
1842 static void lm_init(ush
* flagsp
)
1846 /* Initialize the hash table. */
1847 memset(head
, 0, HASH_SIZE
* sizeof(*head
));
1848 /* prev will be initialized on the fly */
1850 /* speed options for the general purpose bit flag */
1851 *flagsp
|= 2; /* FAST 4, SLOW 2 */
1852 /* ??? reduce max_chain_length for binary files */
1855 G1
.block_start
= 0L;
1857 G1
.lookahead
= file_read(G1
.window
,
1858 sizeof(int) <= 2 ? (unsigned) WSIZE
: 2 * WSIZE
);
1860 if (G1
.lookahead
== 0 || G1
.lookahead
== (unsigned) -1) {
1866 /* Make sure that we always have enough lookahead. This is important
1867 * if input comes from a device such as a tty.
1869 while (G1
.lookahead
< MIN_LOOKAHEAD
&& !G1
.eofile
)
1873 for (j
= 0; j
< MIN_MATCH
- 1; j
++)
1874 UPDATE_HASH(G1
.ins_h
, G1
.window
[j
]);
1875 /* If lookahead < MIN_MATCH, ins_h is garbage, but this is
1876 * not important since only literal bytes will be emitted.
1881 /* ===========================================================================
1882 * Allocate the match buffer, initialize the various tables and save the
1883 * location of the internal file attribute (ascii/binary) and method
1885 * One callsite in zip()
1887 static void ct_init(void)
1889 int n
; /* iterates over tree elements */
1890 int length
; /* length value */
1891 int code
; /* code value */
1892 int dist
; /* distance index */
1894 G2
.compressed_len
= 0L;
1897 if (G2
.static_dtree
[0].Len
!= 0)
1898 return; /* ct_init already called */
1901 /* Initialize the mapping length (0..255) -> length code (0..28) */
1903 for (code
= 0; code
< LENGTH_CODES
- 1; code
++) {
1904 G2
.base_length
[code
] = length
;
1905 for (n
= 0; n
< (1 << extra_lbits
[code
]); n
++) {
1906 G2
.length_code
[length
++] = code
;
1909 Assert(length
== 256, "ct_init: length != 256");
1910 /* Note that the length 255 (match length 258) can be represented
1911 * in two different ways: code 284 + 5 bits or code 285, so we
1912 * overwrite length_code[255] to use the best encoding:
1914 G2
.length_code
[length
- 1] = code
;
1916 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
1918 for (code
= 0; code
< 16; code
++) {
1919 G2
.base_dist
[code
] = dist
;
1920 for (n
= 0; n
< (1 << extra_dbits
[code
]); n
++) {
1921 G2
.dist_code
[dist
++] = code
;
1924 Assert(dist
== 256, "ct_init: dist != 256");
1925 dist
>>= 7; /* from now on, all distances are divided by 128 */
1926 for (; code
< D_CODES
; code
++) {
1927 G2
.base_dist
[code
] = dist
<< 7;
1928 for (n
= 0; n
< (1 << (extra_dbits
[code
] - 7)); n
++) {
1929 G2
.dist_code
[256 + dist
++] = code
;
1932 Assert(dist
== 256, "ct_init: 256+dist != 512");
1934 /* Construct the codes of the static literal tree */
1935 /* already zeroed - it's in bss
1936 for (n = 0; n <= MAX_BITS; n++)
1937 G2.bl_count[n] = 0; */
1941 G2
.static_ltree
[n
++].Len
= 8;
1945 G2
.static_ltree
[n
++].Len
= 9;
1949 G2
.static_ltree
[n
++].Len
= 7;
1953 G2
.static_ltree
[n
++].Len
= 8;
1956 /* Codes 286 and 287 do not exist, but we must include them in the
1957 * tree construction to get a canonical Huffman tree (longest code
1960 gen_codes((ct_data
*) G2
.static_ltree
, L_CODES
+ 1);
1962 /* The static distance tree is trivial: */
1963 for (n
= 0; n
< D_CODES
; n
++) {
1964 G2
.static_dtree
[n
].Len
= 5;
1965 G2
.static_dtree
[n
].Code
= bi_reverse(n
, 5);
1968 /* Initialize the first block of the first file: */
1973 /* ===========================================================================
1974 * Deflate in to out.
1975 * IN assertions: the input and output buffers are cleared.
1978 static void zip(ulg time_stamp
)
1980 ush deflate_flags
= 0; /* pkzip -es, -en or -ex equivalent */
1984 /* Write the header to the gzip file. See algorithm.doc for the format */
1985 /* magic header for gzip files: 1F 8B */
1986 /* compression method: 8 (DEFLATED) */
1987 /* general flags: 0 */
1988 put_32bit(0x00088b1f);
1989 put_32bit(time_stamp
);
1991 /* Write deflated file to zip file */
1996 lm_init(&deflate_flags
);
1998 put_8bit(deflate_flags
); /* extra flags */
1999 put_8bit(3); /* OS identifier = 3 (Unix) */
2003 /* Write the crc and uncompressed size */
2005 put_32bit(G1
.isize
);
2011 /* ======================================================================== */
2013 char* make_new_name_gzip(char *filename
)
2015 return xasprintf("%s.gz", filename
);
2019 USE_DESKTOP(long long) int pack_gzip(void)
2025 fstat(STDIN_FILENO
, &s
);
2030 int gzip_main(int argc
, char **argv
);
2031 int gzip_main(int argc
, char **argv
)
2035 /* Must match bbunzip's constants OPT_STDOUT, OPT_FORCE! */
2036 opt
= getopt32(argc
, argv
, "cfv" USE_GUNZIP("d") "q123456789" );
2037 option_mask32
&= 0x7; /* Clear -d, ignore -q, -0..9 */
2038 //if (opt & 0x1) // -c
2039 //if (opt & 0x2) // -f
2040 //if (opt & 0x4) // -v
2041 #if ENABLE_GUNZIP /* gunzip_main may not be visible... */
2042 if (opt
& 0x8) { // -d
2043 return gunzip_main(argc
, argv
);
2048 PTR_TO_GLOBALS
= xzalloc(sizeof(struct globals
) + sizeof(struct globals2
))
2049 + sizeof(struct globals
);
2050 G2
.l_desc
.dyn_tree
= G2
.dyn_ltree
;
2051 G2
.l_desc
.static_tree
= G2
.static_ltree
;
2052 G2
.l_desc
.extra_bits
= extra_lbits
;
2053 G2
.l_desc
.extra_base
= LITERALS
+ 1;
2054 G2
.l_desc
.elems
= L_CODES
;
2055 G2
.l_desc
.max_length
= MAX_BITS
;
2056 //G2.l_desc.max_code = 0;
2058 G2
.d_desc
.dyn_tree
= G2
.dyn_dtree
;
2059 G2
.d_desc
.static_tree
= G2
.static_dtree
;
2060 G2
.d_desc
.extra_bits
= extra_dbits
;
2061 //G2.d_desc.extra_base = 0;
2062 G2
.d_desc
.elems
= D_CODES
;
2063 G2
.d_desc
.max_length
= MAX_BITS
;
2064 //G2.d_desc.max_code = 0;
2066 G2
.bl_desc
.dyn_tree
= G2
.bl_tree
;
2067 //G2.bl_desc.static_tree = NULL;
2068 G2
.bl_desc
.extra_bits
= extra_blbits
,
2069 //G2.bl_desc.extra_base = 0;
2070 G2
.bl_desc
.elems
= BL_CODES
;
2071 G2
.bl_desc
.max_length
= MAX_BL_BITS
;
2072 //G2.bl_desc.max_code = 0;
2074 /* Allocate all global buffers (for DYN_ALLOC option) */
2075 ALLOC(uch
, G1
.l_buf
, INBUFSIZ
);
2076 ALLOC(uch
, G1
.outbuf
, OUTBUFSIZ
);
2077 ALLOC(ush
, G1
.d_buf
, DIST_BUFSIZE
);
2078 ALLOC(uch
, G1
.window
, 2L * WSIZE
);
2079 ALLOC(ush
, G1
.prev
, 1L << BITS
);
2081 /* Initialise the CRC32 table */
2082 G1
.crc_32_tab
= crc32_filltable(NULL
, 0);
2084 return bbunpack(argv
, make_new_name_gzip
, pack_gzip
);