Use GTestDBus in all GDBus unit tests
[glib.git] / glib / gvariant.c
blob3526f12f1855ab394d232c8e30943c8635ea1325
1 /*
2 * Copyright © 2007, 2008 Ryan Lortie
3 * Copyright © 2010 Codethink Limited
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the licence, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the
17 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
18 * Boston, MA 02111-1307, USA.
20 * Author: Ryan Lortie <desrt@desrt.ca>
23 /* Prologue {{{1 */
25 #include "config.h"
27 #include <glib/gvariant-serialiser.h>
28 #include "gvariant-internal.h"
29 #include <glib/gvariant-core.h>
30 #include <glib/gtestutils.h>
31 #include <glib/gstrfuncs.h>
32 #include <glib/gslice.h>
33 #include <glib/ghash.h>
34 #include <glib/gmem.h>
36 #include <string.h>
39 /**
40 * SECTION:gvariant
41 * @title: GVariant
42 * @short_description: strongly typed value datatype
43 * @see_also: GVariantType
45 * #GVariant is a variant datatype; it stores a value along with
46 * information about the type of that value. The range of possible
47 * values is determined by the type. The type system used by #GVariant
48 * is #GVariantType.
50 * #GVariant instances always have a type and a value (which are given
51 * at construction time). The type and value of a #GVariant instance
52 * can never change other than by the #GVariant itself being
53 * destroyed. A #GVariant cannot contain a pointer.
55 * #GVariant is reference counted using g_variant_ref() and
56 * g_variant_unref(). #GVariant also has floating reference counts --
57 * see g_variant_ref_sink().
59 * #GVariant is completely threadsafe. A #GVariant instance can be
60 * concurrently accessed in any way from any number of threads without
61 * problems.
63 * #GVariant is heavily optimised for dealing with data in serialised
64 * form. It works particularly well with data located in memory-mapped
65 * files. It can perform nearly all deserialisation operations in a
66 * small constant time, usually touching only a single memory page.
67 * Serialised #GVariant data can also be sent over the network.
69 * #GVariant is largely compatible with D-Bus. Almost all types of
70 * #GVariant instances can be sent over D-Bus. See #GVariantType for
71 * exceptions. (However, #GVariant's serialisation format is not the same
72 * as the serialisation format of a D-Bus message body: use #GDBusMessage,
73 * in the gio library, for those.)
75 * For space-efficiency, the #GVariant serialisation format does not
76 * automatically include the variant's type or endianness, which must
77 * either be implied from context (such as knowledge that a particular
78 * file format always contains a little-endian %G_VARIANT_TYPE_VARIANT)
79 * or supplied out-of-band (for instance, a type and/or endianness
80 * indicator could be placed at the beginning of a file, network message
81 * or network stream).
83 * A #GVariant's size is limited mainly by any lower level operating
84 * system constraints, such as the number of bits in #gsize. For
85 * example, it is reasonable to have a 2GB file mapped into memory
86 * with #GMappedFile, and call g_variant_new_from_data() on it.
88 * For convenience to C programmers, #GVariant features powerful
89 * varargs-based value construction and destruction. This feature is
90 * designed to be embedded in other libraries.
92 * There is a Python-inspired text language for describing #GVariant
93 * values. #GVariant includes a printer for this language and a parser
94 * with type inferencing.
96 * <refsect2>
97 * <title>Memory Use</title>
98 * <para>
99 * #GVariant tries to be quite efficient with respect to memory use.
100 * This section gives a rough idea of how much memory is used by the
101 * current implementation. The information here is subject to change
102 * in the future.
103 * </para>
104 * <para>
105 * The memory allocated by #GVariant can be grouped into 4 broad
106 * purposes: memory for serialised data, memory for the type
107 * information cache, buffer management memory and memory for the
108 * #GVariant structure itself.
109 * </para>
110 * <refsect3 id="gvariant-serialised-data-memory">
111 * <title>Serialised Data Memory</title>
112 * <para>
113 * This is the memory that is used for storing GVariant data in
114 * serialised form. This is what would be sent over the network or
115 * what would end up on disk.
116 * </para>
117 * <para>
118 * The amount of memory required to store a boolean is 1 byte. 16,
119 * 32 and 64 bit integers and double precision floating point numbers
120 * use their "natural" size. Strings (including object path and
121 * signature strings) are stored with a nul terminator, and as such
122 * use the length of the string plus 1 byte.
123 * </para>
124 * <para>
125 * Maybe types use no space at all to represent the null value and
126 * use the same amount of space (sometimes plus one byte) as the
127 * equivalent non-maybe-typed value to represent the non-null case.
128 * </para>
129 * <para>
130 * Arrays use the amount of space required to store each of their
131 * members, concatenated. Additionally, if the items stored in an
132 * array are not of a fixed-size (ie: strings, other arrays, etc)
133 * then an additional framing offset is stored for each item. The
134 * size of this offset is either 1, 2 or 4 bytes depending on the
135 * overall size of the container. Additionally, extra padding bytes
136 * are added as required for alignment of child values.
137 * </para>
138 * <para>
139 * Tuples (including dictionary entries) use the amount of space
140 * required to store each of their members, concatenated, plus one
141 * framing offset (as per arrays) for each non-fixed-sized item in
142 * the tuple, except for the last one. Additionally, extra padding
143 * bytes are added as required for alignment of child values.
144 * </para>
145 * <para>
146 * Variants use the same amount of space as the item inside of the
147 * variant, plus 1 byte, plus the length of the type string for the
148 * item inside the variant.
149 * </para>
150 * <para>
151 * As an example, consider a dictionary mapping strings to variants.
152 * In the case that the dictionary is empty, 0 bytes are required for
153 * the serialisation.
154 * </para>
155 * <para>
156 * If we add an item "width" that maps to the int32 value of 500 then
157 * we will use 4 byte to store the int32 (so 6 for the variant
158 * containing it) and 6 bytes for the string. The variant must be
159 * aligned to 8 after the 6 bytes of the string, so that's 2 extra
160 * bytes. 6 (string) + 2 (padding) + 6 (variant) is 14 bytes used
161 * for the dictionary entry. An additional 1 byte is added to the
162 * array as a framing offset making a total of 15 bytes.
163 * </para>
164 * <para>
165 * If we add another entry, "title" that maps to a nullable string
166 * that happens to have a value of null, then we use 0 bytes for the
167 * null value (and 3 bytes for the variant to contain it along with
168 * its type string) plus 6 bytes for the string. Again, we need 2
169 * padding bytes. That makes a total of 6 + 2 + 3 = 11 bytes.
170 * </para>
171 * <para>
172 * We now require extra padding between the two items in the array.
173 * After the 14 bytes of the first item, that's 2 bytes required. We
174 * now require 2 framing offsets for an extra two bytes. 14 + 2 + 11
175 * + 2 = 29 bytes to encode the entire two-item dictionary.
176 * </para>
177 * </refsect3>
178 * <refsect3>
179 * <title>Type Information Cache</title>
180 * <para>
181 * For each GVariant type that currently exists in the program a type
182 * information structure is kept in the type information cache. The
183 * type information structure is required for rapid deserialisation.
184 * </para>
185 * <para>
186 * Continuing with the above example, if a #GVariant exists with the
187 * type "a{sv}" then a type information struct will exist for
188 * "a{sv}", "{sv}", "s", and "v". Multiple uses of the same type
189 * will share the same type information. Additionally, all
190 * single-digit types are stored in read-only static memory and do
191 * not contribute to the writable memory footprint of a program using
192 * #GVariant.
193 * </para>
194 * <para>
195 * Aside from the type information structures stored in read-only
196 * memory, there are two forms of type information. One is used for
197 * container types where there is a single element type: arrays and
198 * maybe types. The other is used for container types where there
199 * are multiple element types: tuples and dictionary entries.
200 * </para>
201 * <para>
202 * Array type info structures are 6 * sizeof (void *), plus the
203 * memory required to store the type string itself. This means that
204 * on 32bit systems, the cache entry for "a{sv}" would require 30
205 * bytes of memory (plus malloc overhead).
206 * </para>
207 * <para>
208 * Tuple type info structures are 6 * sizeof (void *), plus 4 *
209 * sizeof (void *) for each item in the tuple, plus the memory
210 * required to store the type string itself. A 2-item tuple, for
211 * example, would have a type information structure that consumed
212 * writable memory in the size of 14 * sizeof (void *) (plus type
213 * string) This means that on 32bit systems, the cache entry for
214 * "{sv}" would require 61 bytes of memory (plus malloc overhead).
215 * </para>
216 * <para>
217 * This means that in total, for our "a{sv}" example, 91 bytes of
218 * type information would be allocated.
219 * </para>
220 * <para>
221 * The type information cache, additionally, uses a #GHashTable to
222 * store and lookup the cached items and stores a pointer to this
223 * hash table in static storage. The hash table is freed when there
224 * are zero items in the type cache.
225 * </para>
226 * <para>
227 * Although these sizes may seem large it is important to remember
228 * that a program will probably only have a very small number of
229 * different types of values in it and that only one type information
230 * structure is required for many different values of the same type.
231 * </para>
232 * </refsect3>
233 * <refsect3>
234 * <title>Buffer Management Memory</title>
235 * <para>
236 * #GVariant uses an internal buffer management structure to deal
237 * with the various different possible sources of serialised data
238 * that it uses. The buffer is responsible for ensuring that the
239 * correct call is made when the data is no longer in use by
240 * #GVariant. This may involve a g_free() or a g_slice_free() or
241 * even g_mapped_file_unref().
242 * </para>
243 * <para>
244 * One buffer management structure is used for each chunk of
245 * serialised data. The size of the buffer management structure is 4
246 * * (void *). On 32bit systems, that's 16 bytes.
247 * </para>
248 * </refsect3>
249 * <refsect3>
250 * <title>GVariant structure</title>
251 * <para>
252 * The size of a #GVariant structure is 6 * (void *). On 32 bit
253 * systems, that's 24 bytes.
254 * </para>
255 * <para>
256 * #GVariant structures only exist if they are explicitly created
257 * with API calls. For example, if a #GVariant is constructed out of
258 * serialised data for the example given above (with the dictionary)
259 * then although there are 9 individual values that comprise the
260 * entire dictionary (two keys, two values, two variants containing
261 * the values, two dictionary entries, plus the dictionary itself),
262 * only 1 #GVariant instance exists -- the one referring to the
263 * dictionary.
264 * </para>
265 * <para>
266 * If calls are made to start accessing the other values then
267 * #GVariant instances will exist for those values only for as long
268 * as they are in use (ie: until you call g_variant_unref()). The
269 * type information is shared. The serialised data and the buffer
270 * management structure for that serialised data is shared by the
271 * child.
272 * </para>
273 * </refsect3>
274 * <refsect3>
275 * <title>Summary</title>
276 * <para>
277 * To put the entire example together, for our dictionary mapping
278 * strings to variants (with two entries, as given above), we are
279 * using 91 bytes of memory for type information, 29 byes of memory
280 * for the serialised data, 16 bytes for buffer management and 24
281 * bytes for the #GVariant instance, or a total of 160 bytes, plus
282 * malloc overhead. If we were to use g_variant_get_child_value() to
283 * access the two dictionary entries, we would use an additional 48
284 * bytes. If we were to have other dictionaries of the same type, we
285 * would use more memory for the serialised data and buffer
286 * management for those dictionaries, but the type information would
287 * be shared.
288 * </para>
289 * </refsect3>
290 * </refsect2>
293 /* definition of GVariant structure is in gvariant-core.c */
295 /* this is a g_return_val_if_fail() for making
296 * sure a (GVariant *) has the required type.
298 #define TYPE_CHECK(value, TYPE, val) \
299 if G_UNLIKELY (!g_variant_is_of_type (value, TYPE)) { \
300 g_return_if_fail_warning (G_LOG_DOMAIN, G_STRFUNC, \
301 "g_variant_is_of_type (" #value \
302 ", " #TYPE ")"); \
303 return val; \
306 /* Numeric Type Constructor/Getters {{{1 */
307 /* < private >
308 * g_variant_new_from_trusted:
309 * @type: the #GVariantType
310 * @data: the data to use
311 * @size: the size of @data
313 * Constructs a new trusted #GVariant instance from the provided data.
314 * This is used to implement g_variant_new_* for all the basic types.
316 * Returns: a new floating #GVariant
318 static GVariant *
319 g_variant_new_from_trusted (const GVariantType *type,
320 gconstpointer data,
321 gsize size)
323 GVariant *value;
324 GBytes *bytes;
326 bytes = g_bytes_new (data, size);
327 value = g_variant_new_from_bytes (type, bytes, TRUE);
328 g_bytes_unref (bytes);
330 return value;
334 * g_variant_new_boolean:
335 * @value: a #gboolean value
337 * Creates a new boolean #GVariant instance -- either %TRUE or %FALSE.
339 * Returns: (transfer none): a floating reference to a new boolean #GVariant instance
341 * Since: 2.24
343 GVariant *
344 g_variant_new_boolean (gboolean value)
346 guchar v = value;
348 return g_variant_new_from_trusted (G_VARIANT_TYPE_BOOLEAN, &v, 1);
352 * g_variant_get_boolean:
353 * @value: a boolean #GVariant instance
355 * Returns the boolean value of @value.
357 * It is an error to call this function with a @value of any type
358 * other than %G_VARIANT_TYPE_BOOLEAN.
360 * Returns: %TRUE or %FALSE
362 * Since: 2.24
364 gboolean
365 g_variant_get_boolean (GVariant *value)
367 const guchar *data;
369 TYPE_CHECK (value, G_VARIANT_TYPE_BOOLEAN, FALSE);
371 data = g_variant_get_data (value);
373 return data != NULL ? *data != 0 : FALSE;
376 /* the constructors and accessors for byte, int{16,32,64}, handles and
377 * doubles all look pretty much exactly the same, so we reduce
378 * copy/pasting here.
380 #define NUMERIC_TYPE(TYPE, type, ctype) \
381 GVariant *g_variant_new_##type (ctype value) { \
382 return g_variant_new_from_trusted (G_VARIANT_TYPE_##TYPE, \
383 &value, sizeof value); \
385 ctype g_variant_get_##type (GVariant *value) { \
386 const ctype *data; \
387 TYPE_CHECK (value, G_VARIANT_TYPE_ ## TYPE, 0); \
388 data = g_variant_get_data (value); \
389 return data != NULL ? *data : 0; \
394 * g_variant_new_byte:
395 * @value: a #guint8 value
397 * Creates a new byte #GVariant instance.
399 * Returns: (transfer none): a floating reference to a new byte #GVariant instance
401 * Since: 2.24
404 * g_variant_get_byte:
405 * @value: a byte #GVariant instance
407 * Returns the byte value of @value.
409 * It is an error to call this function with a @value of any type
410 * other than %G_VARIANT_TYPE_BYTE.
412 * Returns: a #guchar
414 * Since: 2.24
416 NUMERIC_TYPE (BYTE, byte, guchar)
419 * g_variant_new_int16:
420 * @value: a #gint16 value
422 * Creates a new int16 #GVariant instance.
424 * Returns: (transfer none): a floating reference to a new int16 #GVariant instance
426 * Since: 2.24
429 * g_variant_get_int16:
430 * @value: a int16 #GVariant instance
432 * Returns the 16-bit signed integer value of @value.
434 * It is an error to call this function with a @value of any type
435 * other than %G_VARIANT_TYPE_INT16.
437 * Returns: a #gint16
439 * Since: 2.24
441 NUMERIC_TYPE (INT16, int16, gint16)
444 * g_variant_new_uint16:
445 * @value: a #guint16 value
447 * Creates a new uint16 #GVariant instance.
449 * Returns: (transfer none): a floating reference to a new uint16 #GVariant instance
451 * Since: 2.24
454 * g_variant_get_uint16:
455 * @value: a uint16 #GVariant instance
457 * Returns the 16-bit unsigned integer value of @value.
459 * It is an error to call this function with a @value of any type
460 * other than %G_VARIANT_TYPE_UINT16.
462 * Returns: a #guint16
464 * Since: 2.24
466 NUMERIC_TYPE (UINT16, uint16, guint16)
469 * g_variant_new_int32:
470 * @value: a #gint32 value
472 * Creates a new int32 #GVariant instance.
474 * Returns: (transfer none): a floating reference to a new int32 #GVariant instance
476 * Since: 2.24
479 * g_variant_get_int32:
480 * @value: a int32 #GVariant instance
482 * Returns the 32-bit signed integer value of @value.
484 * It is an error to call this function with a @value of any type
485 * other than %G_VARIANT_TYPE_INT32.
487 * Returns: a #gint32
489 * Since: 2.24
491 NUMERIC_TYPE (INT32, int32, gint32)
494 * g_variant_new_uint32:
495 * @value: a #guint32 value
497 * Creates a new uint32 #GVariant instance.
499 * Returns: (transfer none): a floating reference to a new uint32 #GVariant instance
501 * Since: 2.24
504 * g_variant_get_uint32:
505 * @value: a uint32 #GVariant instance
507 * Returns the 32-bit unsigned integer value of @value.
509 * It is an error to call this function with a @value of any type
510 * other than %G_VARIANT_TYPE_UINT32.
512 * Returns: a #guint32
514 * Since: 2.24
516 NUMERIC_TYPE (UINT32, uint32, guint32)
519 * g_variant_new_int64:
520 * @value: a #gint64 value
522 * Creates a new int64 #GVariant instance.
524 * Returns: (transfer none): a floating reference to a new int64 #GVariant instance
526 * Since: 2.24
529 * g_variant_get_int64:
530 * @value: a int64 #GVariant instance
532 * Returns the 64-bit signed integer value of @value.
534 * It is an error to call this function with a @value of any type
535 * other than %G_VARIANT_TYPE_INT64.
537 * Returns: a #gint64
539 * Since: 2.24
541 NUMERIC_TYPE (INT64, int64, gint64)
544 * g_variant_new_uint64:
545 * @value: a #guint64 value
547 * Creates a new uint64 #GVariant instance.
549 * Returns: (transfer none): a floating reference to a new uint64 #GVariant instance
551 * Since: 2.24
554 * g_variant_get_uint64:
555 * @value: a uint64 #GVariant instance
557 * Returns the 64-bit unsigned integer value of @value.
559 * It is an error to call this function with a @value of any type
560 * other than %G_VARIANT_TYPE_UINT64.
562 * Returns: a #guint64
564 * Since: 2.24
566 NUMERIC_TYPE (UINT64, uint64, guint64)
569 * g_variant_new_handle:
570 * @value: a #gint32 value
572 * Creates a new handle #GVariant instance.
574 * By convention, handles are indexes into an array of file descriptors
575 * that are sent alongside a D-Bus message. If you're not interacting
576 * with D-Bus, you probably don't need them.
578 * Returns: (transfer none): a floating reference to a new handle #GVariant instance
580 * Since: 2.24
583 * g_variant_get_handle:
584 * @value: a handle #GVariant instance
586 * Returns the 32-bit signed integer value of @value.
588 * It is an error to call this function with a @value of any type other
589 * than %G_VARIANT_TYPE_HANDLE.
591 * By convention, handles are indexes into an array of file descriptors
592 * that are sent alongside a D-Bus message. If you're not interacting
593 * with D-Bus, you probably don't need them.
595 * Returns: a #gint32
597 * Since: 2.24
599 NUMERIC_TYPE (HANDLE, handle, gint32)
602 * g_variant_new_double:
603 * @value: a #gdouble floating point value
605 * Creates a new double #GVariant instance.
607 * Returns: (transfer none): a floating reference to a new double #GVariant instance
609 * Since: 2.24
612 * g_variant_get_double:
613 * @value: a double #GVariant instance
615 * Returns the double precision floating point value of @value.
617 * It is an error to call this function with a @value of any type
618 * other than %G_VARIANT_TYPE_DOUBLE.
620 * Returns: a #gdouble
622 * Since: 2.24
624 NUMERIC_TYPE (DOUBLE, double, gdouble)
626 /* Container type Constructor / Deconstructors {{{1 */
628 * g_variant_new_maybe:
629 * @child_type: (allow-none): the #GVariantType of the child, or %NULL
630 * @child: (allow-none): the child value, or %NULL
632 * Depending on if @child is %NULL, either wraps @child inside of a
633 * maybe container or creates a Nothing instance for the given @type.
635 * At least one of @child_type and @child must be non-%NULL.
636 * If @child_type is non-%NULL then it must be a definite type.
637 * If they are both non-%NULL then @child_type must be the type
638 * of @child.
640 * If @child is a floating reference (see g_variant_ref_sink()), the new
641 * instance takes ownership of @child.
643 * Returns: (transfer none): a floating reference to a new #GVariant maybe instance
645 * Since: 2.24
647 GVariant *
648 g_variant_new_maybe (const GVariantType *child_type,
649 GVariant *child)
651 GVariantType *maybe_type;
652 GVariant *value;
654 g_return_val_if_fail (child_type == NULL || g_variant_type_is_definite
655 (child_type), 0);
656 g_return_val_if_fail (child_type != NULL || child != NULL, NULL);
657 g_return_val_if_fail (child_type == NULL || child == NULL ||
658 g_variant_is_of_type (child, child_type),
659 NULL);
661 if (child_type == NULL)
662 child_type = g_variant_get_type (child);
664 maybe_type = g_variant_type_new_maybe (child_type);
666 if (child != NULL)
668 GVariant **children;
669 gboolean trusted;
671 children = g_new (GVariant *, 1);
672 children[0] = g_variant_ref_sink (child);
673 trusted = g_variant_is_trusted (children[0]);
675 value = g_variant_new_from_children (maybe_type, children, 1, trusted);
677 else
678 value = g_variant_new_from_children (maybe_type, NULL, 0, TRUE);
680 g_variant_type_free (maybe_type);
682 return value;
686 * g_variant_get_maybe:
687 * @value: a maybe-typed value
689 * Given a maybe-typed #GVariant instance, extract its value. If the
690 * value is Nothing, then this function returns %NULL.
692 * Returns: (allow-none) (transfer full): the contents of @value, or %NULL
694 * Since: 2.24
696 GVariant *
697 g_variant_get_maybe (GVariant *value)
699 TYPE_CHECK (value, G_VARIANT_TYPE_MAYBE, NULL);
701 if (g_variant_n_children (value))
702 return g_variant_get_child_value (value, 0);
704 return NULL;
708 * g_variant_new_variant: (constructor)
709 * @value: a #GVariant instance
711 * Boxes @value. The result is a #GVariant instance representing a
712 * variant containing the original value.
714 * If @child is a floating reference (see g_variant_ref_sink()), the new
715 * instance takes ownership of @child.
717 * Returns: (transfer none): a floating reference to a new variant #GVariant instance
719 * Since: 2.24
721 GVariant *
722 g_variant_new_variant (GVariant *value)
724 g_return_val_if_fail (value != NULL, NULL);
726 g_variant_ref_sink (value);
728 return g_variant_new_from_children (G_VARIANT_TYPE_VARIANT,
729 g_memdup (&value, sizeof value),
730 1, g_variant_is_trusted (value));
734 * g_variant_get_variant:
735 * @value: a variant #GVariant instance
737 * Unboxes @value. The result is the #GVariant instance that was
738 * contained in @value.
740 * Returns: (transfer full): the item contained in the variant
742 * Since: 2.24
744 GVariant *
745 g_variant_get_variant (GVariant *value)
747 TYPE_CHECK (value, G_VARIANT_TYPE_VARIANT, NULL);
749 return g_variant_get_child_value (value, 0);
753 * g_variant_new_array:
754 * @child_type: (allow-none): the element type of the new array
755 * @children: (allow-none) (array length=n_children): an array of
756 * #GVariant pointers, the children
757 * @n_children: the length of @children
759 * Creates a new #GVariant array from @children.
761 * @child_type must be non-%NULL if @n_children is zero. Otherwise, the
762 * child type is determined by inspecting the first element of the
763 * @children array. If @child_type is non-%NULL then it must be a
764 * definite type.
766 * The items of the array are taken from the @children array. No entry
767 * in the @children array may be %NULL.
769 * All items in the array must have the same type, which must be the
770 * same as @child_type, if given.
772 * If the @children are floating references (see g_variant_ref_sink()), the
773 * new instance takes ownership of them as if via g_variant_ref_sink().
775 * Returns: (transfer none): a floating reference to a new #GVariant array
777 * Since: 2.24
779 GVariant *
780 g_variant_new_array (const GVariantType *child_type,
781 GVariant * const *children,
782 gsize n_children)
784 GVariantType *array_type;
785 GVariant **my_children;
786 gboolean trusted;
787 GVariant *value;
788 gsize i;
790 g_return_val_if_fail (n_children > 0 || child_type != NULL, NULL);
791 g_return_val_if_fail (n_children == 0 || children != NULL, NULL);
792 g_return_val_if_fail (child_type == NULL ||
793 g_variant_type_is_definite (child_type), NULL);
795 my_children = g_new (GVariant *, n_children);
796 trusted = TRUE;
798 if (child_type == NULL)
799 child_type = g_variant_get_type (children[0]);
800 array_type = g_variant_type_new_array (child_type);
802 for (i = 0; i < n_children; i++)
804 TYPE_CHECK (children[i], child_type, NULL);
805 my_children[i] = g_variant_ref_sink (children[i]);
806 trusted &= g_variant_is_trusted (children[i]);
809 value = g_variant_new_from_children (array_type, my_children,
810 n_children, trusted);
811 g_variant_type_free (array_type);
813 return value;
816 /*< private >
817 * g_variant_make_tuple_type:
818 * @children: (array length=n_children): an array of GVariant *
819 * @n_children: the length of @children
821 * Return the type of a tuple containing @children as its items.
823 static GVariantType *
824 g_variant_make_tuple_type (GVariant * const *children,
825 gsize n_children)
827 const GVariantType **types;
828 GVariantType *type;
829 gsize i;
831 types = g_new (const GVariantType *, n_children);
833 for (i = 0; i < n_children; i++)
834 types[i] = g_variant_get_type (children[i]);
836 type = g_variant_type_new_tuple (types, n_children);
837 g_free (types);
839 return type;
843 * g_variant_new_tuple:
844 * @children: (array length=n_children): the items to make the tuple out of
845 * @n_children: the length of @children
847 * Creates a new tuple #GVariant out of the items in @children. The
848 * type is determined from the types of @children. No entry in the
849 * @children array may be %NULL.
851 * If @n_children is 0 then the unit tuple is constructed.
853 * If the @children are floating references (see g_variant_ref_sink()), the
854 * new instance takes ownership of them as if via g_variant_ref_sink().
856 * Returns: (transfer none): a floating reference to a new #GVariant tuple
858 * Since: 2.24
860 GVariant *
861 g_variant_new_tuple (GVariant * const *children,
862 gsize n_children)
864 GVariantType *tuple_type;
865 GVariant **my_children;
866 gboolean trusted;
867 GVariant *value;
868 gsize i;
870 g_return_val_if_fail (n_children == 0 || children != NULL, NULL);
872 my_children = g_new (GVariant *, n_children);
873 trusted = TRUE;
875 for (i = 0; i < n_children; i++)
877 my_children[i] = g_variant_ref_sink (children[i]);
878 trusted &= g_variant_is_trusted (children[i]);
881 tuple_type = g_variant_make_tuple_type (children, n_children);
882 value = g_variant_new_from_children (tuple_type, my_children,
883 n_children, trusted);
884 g_variant_type_free (tuple_type);
886 return value;
889 /*< private >
890 * g_variant_make_dict_entry_type:
891 * @key: a #GVariant, the key
892 * @val: a #GVariant, the value
894 * Return the type of a dictionary entry containing @key and @val as its
895 * children.
897 static GVariantType *
898 g_variant_make_dict_entry_type (GVariant *key,
899 GVariant *val)
901 return g_variant_type_new_dict_entry (g_variant_get_type (key),
902 g_variant_get_type (val));
906 * g_variant_new_dict_entry: (constructor)
907 * @key: a basic #GVariant, the key
908 * @value: a #GVariant, the value
910 * Creates a new dictionary entry #GVariant. @key and @value must be
911 * non-%NULL. @key must be a value of a basic type (ie: not a container).
913 * If the @key or @value are floating references (see g_variant_ref_sink()),
914 * the new instance takes ownership of them as if via g_variant_ref_sink().
916 * Returns: (transfer none): a floating reference to a new dictionary entry #GVariant
918 * Since: 2.24
920 GVariant *
921 g_variant_new_dict_entry (GVariant *key,
922 GVariant *value)
924 GVariantType *dict_type;
925 GVariant **children;
926 gboolean trusted;
928 g_return_val_if_fail (key != NULL && value != NULL, NULL);
929 g_return_val_if_fail (!g_variant_is_container (key), NULL);
931 children = g_new (GVariant *, 2);
932 children[0] = g_variant_ref_sink (key);
933 children[1] = g_variant_ref_sink (value);
934 trusted = g_variant_is_trusted (key) && g_variant_is_trusted (value);
936 dict_type = g_variant_make_dict_entry_type (key, value);
937 value = g_variant_new_from_children (dict_type, children, 2, trusted);
938 g_variant_type_free (dict_type);
940 return value;
944 * g_variant_lookup: (skip)
945 * @dictionary: a dictionary #GVariant
946 * @key: the key to lookup in the dictionary
947 * @format_string: a GVariant format string
948 * @...: the arguments to unpack the value into
950 * Looks up a value in a dictionary #GVariant.
952 * This function is a wrapper around g_variant_lookup_value() and
953 * g_variant_get(). In the case that %NULL would have been returned,
954 * this function returns %FALSE. Otherwise, it unpacks the returned
955 * value and returns %TRUE.
957 * See g_variant_get() for information about @format_string.
959 * Returns: %TRUE if a value was unpacked
961 * Since: 2.28
963 gboolean
964 g_variant_lookup (GVariant *dictionary,
965 const gchar *key,
966 const gchar *format_string,
967 ...)
969 GVariantType *type;
970 GVariant *value;
972 /* flatten */
973 g_variant_get_data (dictionary);
975 type = g_variant_format_string_scan_type (format_string, NULL, NULL);
976 value = g_variant_lookup_value (dictionary, key, type);
977 g_variant_type_free (type);
979 if (value)
981 va_list ap;
983 va_start (ap, format_string);
984 g_variant_get_va (value, format_string, NULL, &ap);
985 g_variant_unref (value);
986 va_end (ap);
988 return TRUE;
991 else
992 return FALSE;
996 * g_variant_lookup_value:
997 * @dictionary: a dictionary #GVariant
998 * @key: the key to lookup in the dictionary
999 * @expected_type: (allow-none): a #GVariantType, or %NULL
1001 * Looks up a value in a dictionary #GVariant.
1003 * This function works with dictionaries of the type
1004 * <literal>a{s*}</literal> (and equally well with type
1005 * <literal>a{o*}</literal>, but we only further discuss the string case
1006 * for sake of clarity).
1008 * In the event that @dictionary has the type <literal>a{sv}</literal>,
1009 * the @expected_type string specifies what type of value is expected to
1010 * be inside of the variant. If the value inside the variant has a
1011 * different type then %NULL is returned. In the event that @dictionary
1012 * has a value type other than <literal>v</literal> then @expected_type
1013 * must directly match the key type and it is used to unpack the value
1014 * directly or an error occurs.
1016 * In either case, if @key is not found in @dictionary, %NULL is
1017 * returned.
1019 * If the key is found and the value has the correct type, it is
1020 * returned. If @expected_type was specified then any non-%NULL return
1021 * value will have this type.
1023 * Returns: (transfer full): the value of the dictionary key, or %NULL
1025 * Since: 2.28
1027 GVariant *
1028 g_variant_lookup_value (GVariant *dictionary,
1029 const gchar *key,
1030 const GVariantType *expected_type)
1032 GVariantIter iter;
1033 GVariant *entry;
1034 GVariant *value;
1036 g_return_val_if_fail (g_variant_is_of_type (dictionary,
1037 G_VARIANT_TYPE ("a{s*}")) ||
1038 g_variant_is_of_type (dictionary,
1039 G_VARIANT_TYPE ("a{o*}")),
1040 NULL);
1042 g_variant_iter_init (&iter, dictionary);
1044 while ((entry = g_variant_iter_next_value (&iter)))
1046 GVariant *entry_key;
1047 gboolean matches;
1049 entry_key = g_variant_get_child_value (entry, 0);
1050 matches = strcmp (g_variant_get_string (entry_key, NULL), key) == 0;
1051 g_variant_unref (entry_key);
1053 if (matches)
1054 break;
1056 g_variant_unref (entry);
1059 if (entry == NULL)
1060 return NULL;
1062 value = g_variant_get_child_value (entry, 1);
1063 g_variant_unref (entry);
1065 if (g_variant_is_of_type (value, G_VARIANT_TYPE_VARIANT))
1067 GVariant *tmp;
1069 tmp = g_variant_get_variant (value);
1070 g_variant_unref (value);
1072 if (expected_type && !g_variant_is_of_type (tmp, expected_type))
1074 g_variant_unref (tmp);
1075 tmp = NULL;
1078 value = tmp;
1081 g_return_val_if_fail (expected_type == NULL || value == NULL ||
1082 g_variant_is_of_type (value, expected_type), NULL);
1084 return value;
1088 * g_variant_get_fixed_array:
1089 * @value: a #GVariant array with fixed-sized elements
1090 * @n_elements: (out): a pointer to the location to store the number of items
1091 * @element_size: the size of each element
1093 * Provides access to the serialised data for an array of fixed-sized
1094 * items.
1096 * @value must be an array with fixed-sized elements. Numeric types are
1097 * fixed-size, as are tuples containing only other fixed-sized types.
1099 * @element_size must be the size of a single element in the array,
1100 * as given by the section on
1101 * <link linkend='gvariant-serialised-data-memory'>Serialised Data
1102 * Memory</link>.
1104 * In particular, arrays of these fixed-sized types can be interpreted
1105 * as an array of the given C type, with @element_size set to
1106 * <code>sizeof</code> the appropriate type:
1108 * <informaltable>
1109 * <tgroup cols='2'>
1110 * <thead><row><entry>element type</entry> <entry>C type</entry></row></thead>
1111 * <tbody>
1112 * <row><entry>%G_VARIANT_TYPE_INT16 (etc.)</entry>
1113 * <entry>#gint16 (etc.)</entry></row>
1114 * <row><entry>%G_VARIANT_TYPE_BOOLEAN</entry>
1115 * <entry>#guchar (not #gboolean!)</entry></row>
1116 * <row><entry>%G_VARIANT_TYPE_BYTE</entry> <entry>#guchar</entry></row>
1117 * <row><entry>%G_VARIANT_TYPE_HANDLE</entry> <entry>#guint32</entry></row>
1118 * <row><entry>%G_VARIANT_TYPE_DOUBLE</entry> <entry>#gdouble</entry></row>
1119 * </tbody>
1120 * </tgroup>
1121 * </informaltable>
1123 * For example, if calling this function for an array of 32 bit integers,
1124 * you might say <code>sizeof (gint32)</code>. This value isn't used
1125 * except for the purpose of a double-check that the form of the
1126 * serialised data matches the caller's expectation.
1128 * @n_elements, which must be non-%NULL is set equal to the number of
1129 * items in the array.
1131 * Returns: (array length=n_elements) (transfer none): a pointer to
1132 * the fixed array
1134 * Since: 2.24
1136 gconstpointer
1137 g_variant_get_fixed_array (GVariant *value,
1138 gsize *n_elements,
1139 gsize element_size)
1141 GVariantTypeInfo *array_info;
1142 gsize array_element_size;
1143 gconstpointer data;
1144 gsize size;
1146 TYPE_CHECK (value, G_VARIANT_TYPE_ARRAY, NULL);
1148 g_return_val_if_fail (n_elements != NULL, NULL);
1149 g_return_val_if_fail (element_size > 0, NULL);
1151 array_info = g_variant_get_type_info (value);
1152 g_variant_type_info_query_element (array_info, NULL, &array_element_size);
1154 g_return_val_if_fail (array_element_size, NULL);
1156 if G_UNLIKELY (array_element_size != element_size)
1158 if (array_element_size)
1159 g_critical ("g_variant_get_fixed_array: assertion "
1160 "`g_variant_array_has_fixed_size (value, element_size)' "
1161 "failed: array size %"G_GSIZE_FORMAT" does not match "
1162 "given element_size %"G_GSIZE_FORMAT".",
1163 array_element_size, element_size);
1164 else
1165 g_critical ("g_variant_get_fixed_array: assertion "
1166 "`g_variant_array_has_fixed_size (value, element_size)' "
1167 "failed: array does not have fixed size.");
1170 data = g_variant_get_data (value);
1171 size = g_variant_get_size (value);
1173 if (size % element_size)
1174 *n_elements = 0;
1175 else
1176 *n_elements = size / element_size;
1178 if (*n_elements)
1179 return data;
1181 return NULL;
1185 * g_variant_new_fixed_array:
1186 * @element_type: the #GVariantType of each element
1187 * @elements: a pointer to the fixed array of contiguous elements
1188 * @n_elements: the number of elements
1189 * @element_size: the size of each element
1191 * Provides access to the serialised data for an array of fixed-sized
1192 * items.
1194 * @value must be an array with fixed-sized elements. Numeric types are
1195 * fixed-size as are tuples containing only other fixed-sized types.
1197 * @element_size must be the size of a single element in the array. For
1198 * example, if calling this function for an array of 32 bit integers,
1199 * you might say <code>sizeof (gint32)</code>. This value isn't used
1200 * except for the purpose of a double-check that the form of the
1201 * serialised data matches the caller's expectation.
1203 * @n_elements, which must be non-%NULL is set equal to the number of
1204 * items in the array.
1206 * Returns: (transfer none): a floating reference to a new array #GVariant instance
1208 * Since: 2.32
1210 GVariant *
1211 g_variant_new_fixed_array (const GVariantType *element_type,
1212 gconstpointer elements,
1213 gsize n_elements,
1214 gsize element_size)
1216 GVariantType *array_type;
1217 gsize array_element_size;
1218 GVariantTypeInfo *array_info;
1219 GVariant *value;
1220 gpointer data;
1222 g_return_val_if_fail (g_variant_type_is_definite (element_type), NULL);
1223 g_return_val_if_fail (element_size > 0, NULL);
1225 array_type = g_variant_type_new_array (element_type);
1226 array_info = g_variant_type_info_get (array_type);
1227 g_variant_type_info_query_element (array_info, NULL, &array_element_size);
1228 if G_UNLIKELY (array_element_size != element_size)
1230 if (array_element_size)
1231 g_critical ("g_variant_new_fixed_array: array size %" G_GSIZE_FORMAT
1232 " does not match given element_size %" G_GSIZE_FORMAT ".",
1233 array_element_size, element_size);
1234 else
1235 g_critical ("g_variant_get_fixed_array: array does not have fixed size.");
1236 return NULL;
1239 data = g_memdup (elements, n_elements * element_size);
1240 value = g_variant_new_from_data (array_type, data,
1241 n_elements * element_size,
1242 FALSE, g_free, data);
1244 g_variant_type_free (array_type);
1245 g_variant_type_info_unref (array_info);
1247 return value;
1250 /* String type constructor/getters/validation {{{1 */
1252 * g_variant_new_string:
1253 * @string: a normal utf8 nul-terminated string
1255 * Creates a string #GVariant with the contents of @string.
1257 * @string must be valid utf8.
1259 * Returns: (transfer none): a floating reference to a new string #GVariant instance
1261 * Since: 2.24
1263 GVariant *
1264 g_variant_new_string (const gchar *string)
1266 g_return_val_if_fail (string != NULL, NULL);
1267 g_return_val_if_fail (g_utf8_validate (string, -1, NULL), NULL);
1269 return g_variant_new_from_trusted (G_VARIANT_TYPE_STRING,
1270 string, strlen (string) + 1);
1274 * g_variant_new_object_path:
1275 * @object_path: a normal C nul-terminated string
1277 * Creates a D-Bus object path #GVariant with the contents of @string.
1278 * @string must be a valid D-Bus object path. Use
1279 * g_variant_is_object_path() if you're not sure.
1281 * Returns: (transfer none): a floating reference to a new object path #GVariant instance
1283 * Since: 2.24
1285 GVariant *
1286 g_variant_new_object_path (const gchar *object_path)
1288 g_return_val_if_fail (g_variant_is_object_path (object_path), NULL);
1290 return g_variant_new_from_trusted (G_VARIANT_TYPE_OBJECT_PATH,
1291 object_path, strlen (object_path) + 1);
1295 * g_variant_is_object_path:
1296 * @string: a normal C nul-terminated string
1298 * Determines if a given string is a valid D-Bus object path. You
1299 * should ensure that a string is a valid D-Bus object path before
1300 * passing it to g_variant_new_object_path().
1302 * A valid object path starts with '/' followed by zero or more
1303 * sequences of characters separated by '/' characters. Each sequence
1304 * must contain only the characters "[A-Z][a-z][0-9]_". No sequence
1305 * (including the one following the final '/' character) may be empty.
1307 * Returns: %TRUE if @string is a D-Bus object path
1309 * Since: 2.24
1311 gboolean
1312 g_variant_is_object_path (const gchar *string)
1314 g_return_val_if_fail (string != NULL, FALSE);
1316 return g_variant_serialiser_is_object_path (string, strlen (string) + 1);
1320 * g_variant_new_signature:
1321 * @signature: a normal C nul-terminated string
1323 * Creates a D-Bus type signature #GVariant with the contents of
1324 * @string. @string must be a valid D-Bus type signature. Use
1325 * g_variant_is_signature() if you're not sure.
1327 * Returns: (transfer none): a floating reference to a new signature #GVariant instance
1329 * Since: 2.24
1331 GVariant *
1332 g_variant_new_signature (const gchar *signature)
1334 g_return_val_if_fail (g_variant_is_signature (signature), NULL);
1336 return g_variant_new_from_trusted (G_VARIANT_TYPE_SIGNATURE,
1337 signature, strlen (signature) + 1);
1341 * g_variant_is_signature:
1342 * @string: a normal C nul-terminated string
1344 * Determines if a given string is a valid D-Bus type signature. You
1345 * should ensure that a string is a valid D-Bus type signature before
1346 * passing it to g_variant_new_signature().
1348 * D-Bus type signatures consist of zero or more definite #GVariantType
1349 * strings in sequence.
1351 * Returns: %TRUE if @string is a D-Bus type signature
1353 * Since: 2.24
1355 gboolean
1356 g_variant_is_signature (const gchar *string)
1358 g_return_val_if_fail (string != NULL, FALSE);
1360 return g_variant_serialiser_is_signature (string, strlen (string) + 1);
1364 * g_variant_get_string:
1365 * @value: a string #GVariant instance
1366 * @length: (allow-none) (default 0) (out): a pointer to a #gsize,
1367 * to store the length
1369 * Returns the string value of a #GVariant instance with a string
1370 * type. This includes the types %G_VARIANT_TYPE_STRING,
1371 * %G_VARIANT_TYPE_OBJECT_PATH and %G_VARIANT_TYPE_SIGNATURE.
1373 * The string will always be utf8 encoded.
1375 * If @length is non-%NULL then the length of the string (in bytes) is
1376 * returned there. For trusted values, this information is already
1377 * known. For untrusted values, a strlen() will be performed.
1379 * It is an error to call this function with a @value of any type
1380 * other than those three.
1382 * The return value remains valid as long as @value exists.
1384 * Returns: (transfer none): the constant string, utf8 encoded
1386 * Since: 2.24
1388 const gchar *
1389 g_variant_get_string (GVariant *value,
1390 gsize *length)
1392 gconstpointer data;
1393 gsize size;
1395 g_return_val_if_fail (value != NULL, NULL);
1396 g_return_val_if_fail (
1397 g_variant_is_of_type (value, G_VARIANT_TYPE_STRING) ||
1398 g_variant_is_of_type (value, G_VARIANT_TYPE_OBJECT_PATH) ||
1399 g_variant_is_of_type (value, G_VARIANT_TYPE_SIGNATURE), NULL);
1401 data = g_variant_get_data (value);
1402 size = g_variant_get_size (value);
1404 if (!g_variant_is_trusted (value))
1406 switch (g_variant_classify (value))
1408 case G_VARIANT_CLASS_STRING:
1409 if (g_variant_serialiser_is_string (data, size))
1410 break;
1412 data = "";
1413 size = 1;
1414 break;
1416 case G_VARIANT_CLASS_OBJECT_PATH:
1417 if (g_variant_serialiser_is_object_path (data, size))
1418 break;
1420 data = "/";
1421 size = 2;
1422 break;
1424 case G_VARIANT_CLASS_SIGNATURE:
1425 if (g_variant_serialiser_is_signature (data, size))
1426 break;
1428 data = "";
1429 size = 1;
1430 break;
1432 default:
1433 g_assert_not_reached ();
1437 if (length)
1438 *length = size - 1;
1440 return data;
1444 * g_variant_dup_string:
1445 * @value: a string #GVariant instance
1446 * @length: (out): a pointer to a #gsize, to store the length
1448 * Similar to g_variant_get_string() except that instead of returning
1449 * a constant string, the string is duplicated.
1451 * The string will always be utf8 encoded.
1453 * The return value must be freed using g_free().
1455 * Returns: (transfer full): a newly allocated string, utf8 encoded
1457 * Since: 2.24
1459 gchar *
1460 g_variant_dup_string (GVariant *value,
1461 gsize *length)
1463 return g_strdup (g_variant_get_string (value, length));
1467 * g_variant_new_strv:
1468 * @strv: (array length=length) (element-type utf8): an array of strings
1469 * @length: the length of @strv, or -1
1471 * Constructs an array of strings #GVariant from the given array of
1472 * strings.
1474 * If @length is -1 then @strv is %NULL-terminated.
1476 * Returns: (transfer none): a new floating #GVariant instance
1478 * Since: 2.24
1480 GVariant *
1481 g_variant_new_strv (const gchar * const *strv,
1482 gssize length)
1484 GVariant **strings;
1485 gsize i;
1487 g_return_val_if_fail (length == 0 || strv != NULL, NULL);
1489 if (length < 0)
1490 length = g_strv_length ((gchar **) strv);
1492 strings = g_new (GVariant *, length);
1493 for (i = 0; i < length; i++)
1494 strings[i] = g_variant_ref_sink (g_variant_new_string (strv[i]));
1496 return g_variant_new_from_children (G_VARIANT_TYPE_STRING_ARRAY,
1497 strings, length, TRUE);
1501 * g_variant_get_strv:
1502 * @value: an array of strings #GVariant
1503 * @length: (out) (allow-none): the length of the result, or %NULL
1505 * Gets the contents of an array of strings #GVariant. This call
1506 * makes a shallow copy; the return result should be released with
1507 * g_free(), but the individual strings must not be modified.
1509 * If @length is non-%NULL then the number of elements in the result
1510 * is stored there. In any case, the resulting array will be
1511 * %NULL-terminated.
1513 * For an empty array, @length will be set to 0 and a pointer to a
1514 * %NULL pointer will be returned.
1516 * Returns: (array length=length zero-terminated=1) (transfer container): an array of constant strings
1518 * Since: 2.24
1520 const gchar **
1521 g_variant_get_strv (GVariant *value,
1522 gsize *length)
1524 const gchar **strv;
1525 gsize n;
1526 gsize i;
1528 TYPE_CHECK (value, G_VARIANT_TYPE_STRING_ARRAY, NULL);
1530 g_variant_get_data (value);
1531 n = g_variant_n_children (value);
1532 strv = g_new (const gchar *, n + 1);
1534 for (i = 0; i < n; i++)
1536 GVariant *string;
1538 string = g_variant_get_child_value (value, i);
1539 strv[i] = g_variant_get_string (string, NULL);
1540 g_variant_unref (string);
1542 strv[i] = NULL;
1544 if (length)
1545 *length = n;
1547 return strv;
1551 * g_variant_dup_strv:
1552 * @value: an array of strings #GVariant
1553 * @length: (out) (allow-none): the length of the result, or %NULL
1555 * Gets the contents of an array of strings #GVariant. This call
1556 * makes a deep copy; the return result should be released with
1557 * g_strfreev().
1559 * If @length is non-%NULL then the number of elements in the result
1560 * is stored there. In any case, the resulting array will be
1561 * %NULL-terminated.
1563 * For an empty array, @length will be set to 0 and a pointer to a
1564 * %NULL pointer will be returned.
1566 * Returns: (array length=length zero-terminated=1) (transfer full): an array of strings
1568 * Since: 2.24
1570 gchar **
1571 g_variant_dup_strv (GVariant *value,
1572 gsize *length)
1574 gchar **strv;
1575 gsize n;
1576 gsize i;
1578 TYPE_CHECK (value, G_VARIANT_TYPE_STRING_ARRAY, NULL);
1580 n = g_variant_n_children (value);
1581 strv = g_new (gchar *, n + 1);
1583 for (i = 0; i < n; i++)
1585 GVariant *string;
1587 string = g_variant_get_child_value (value, i);
1588 strv[i] = g_variant_dup_string (string, NULL);
1589 g_variant_unref (string);
1591 strv[i] = NULL;
1593 if (length)
1594 *length = n;
1596 return strv;
1600 * g_variant_new_objv:
1601 * @strv: (array length=length) (element-type utf8): an array of strings
1602 * @length: the length of @strv, or -1
1604 * Constructs an array of object paths #GVariant from the given array of
1605 * strings.
1607 * Each string must be a valid #GVariant object path; see
1608 * g_variant_is_object_path().
1610 * If @length is -1 then @strv is %NULL-terminated.
1612 * Returns: (transfer none): a new floating #GVariant instance
1614 * Since: 2.30
1616 GVariant *
1617 g_variant_new_objv (const gchar * const *strv,
1618 gssize length)
1620 GVariant **strings;
1621 gsize i;
1623 g_return_val_if_fail (length == 0 || strv != NULL, NULL);
1625 if (length < 0)
1626 length = g_strv_length ((gchar **) strv);
1628 strings = g_new (GVariant *, length);
1629 for (i = 0; i < length; i++)
1630 strings[i] = g_variant_ref_sink (g_variant_new_object_path (strv[i]));
1632 return g_variant_new_from_children (G_VARIANT_TYPE_OBJECT_PATH_ARRAY,
1633 strings, length, TRUE);
1637 * g_variant_get_objv:
1638 * @value: an array of object paths #GVariant
1639 * @length: (out) (allow-none): the length of the result, or %NULL
1641 * Gets the contents of an array of object paths #GVariant. This call
1642 * makes a shallow copy; the return result should be released with
1643 * g_free(), but the individual strings must not be modified.
1645 * If @length is non-%NULL then the number of elements in the result
1646 * is stored there. In any case, the resulting array will be
1647 * %NULL-terminated.
1649 * For an empty array, @length will be set to 0 and a pointer to a
1650 * %NULL pointer will be returned.
1652 * Returns: (array length=length zero-terminated=1) (transfer container): an array of constant strings
1654 * Since: 2.30
1656 const gchar **
1657 g_variant_get_objv (GVariant *value,
1658 gsize *length)
1660 const gchar **strv;
1661 gsize n;
1662 gsize i;
1664 TYPE_CHECK (value, G_VARIANT_TYPE_OBJECT_PATH_ARRAY, NULL);
1666 g_variant_get_data (value);
1667 n = g_variant_n_children (value);
1668 strv = g_new (const gchar *, n + 1);
1670 for (i = 0; i < n; i++)
1672 GVariant *string;
1674 string = g_variant_get_child_value (value, i);
1675 strv[i] = g_variant_get_string (string, NULL);
1676 g_variant_unref (string);
1678 strv[i] = NULL;
1680 if (length)
1681 *length = n;
1683 return strv;
1687 * g_variant_dup_objv:
1688 * @value: an array of object paths #GVariant
1689 * @length: (out) (allow-none): the length of the result, or %NULL
1691 * Gets the contents of an array of object paths #GVariant. This call
1692 * makes a deep copy; the return result should be released with
1693 * g_strfreev().
1695 * If @length is non-%NULL then the number of elements in the result
1696 * is stored there. In any case, the resulting array will be
1697 * %NULL-terminated.
1699 * For an empty array, @length will be set to 0 and a pointer to a
1700 * %NULL pointer will be returned.
1702 * Returns: (array length=length zero-terminated=1) (transfer full): an array of strings
1704 * Since: 2.30
1706 gchar **
1707 g_variant_dup_objv (GVariant *value,
1708 gsize *length)
1710 gchar **strv;
1711 gsize n;
1712 gsize i;
1714 TYPE_CHECK (value, G_VARIANT_TYPE_OBJECT_PATH_ARRAY, NULL);
1716 n = g_variant_n_children (value);
1717 strv = g_new (gchar *, n + 1);
1719 for (i = 0; i < n; i++)
1721 GVariant *string;
1723 string = g_variant_get_child_value (value, i);
1724 strv[i] = g_variant_dup_string (string, NULL);
1725 g_variant_unref (string);
1727 strv[i] = NULL;
1729 if (length)
1730 *length = n;
1732 return strv;
1737 * g_variant_new_bytestring:
1738 * @string: (array zero-terminated=1) (element-type guint8): a normal
1739 * nul-terminated string in no particular encoding
1741 * Creates an array-of-bytes #GVariant with the contents of @string.
1742 * This function is just like g_variant_new_string() except that the
1743 * string need not be valid utf8.
1745 * The nul terminator character at the end of the string is stored in
1746 * the array.
1748 * Returns: (transfer none): a floating reference to a new bytestring #GVariant instance
1750 * Since: 2.26
1752 GVariant *
1753 g_variant_new_bytestring (const gchar *string)
1755 g_return_val_if_fail (string != NULL, NULL);
1757 return g_variant_new_from_trusted (G_VARIANT_TYPE_BYTESTRING,
1758 string, strlen (string) + 1);
1762 * g_variant_get_bytestring:
1763 * @value: an array-of-bytes #GVariant instance
1765 * Returns the string value of a #GVariant instance with an
1766 * array-of-bytes type. The string has no particular encoding.
1768 * If the array does not end with a nul terminator character, the empty
1769 * string is returned. For this reason, you can always trust that a
1770 * non-%NULL nul-terminated string will be returned by this function.
1772 * If the array contains a nul terminator character somewhere other than
1773 * the last byte then the returned string is the string, up to the first
1774 * such nul character.
1776 * It is an error to call this function with a @value that is not an
1777 * array of bytes.
1779 * The return value remains valid as long as @value exists.
1781 * Returns: (transfer none) (array zero-terminated=1) (element-type guint8):
1782 * the constant string
1784 * Since: 2.26
1786 const gchar *
1787 g_variant_get_bytestring (GVariant *value)
1789 const gchar *string;
1790 gsize size;
1792 TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING, NULL);
1794 /* Won't be NULL since this is an array type */
1795 string = g_variant_get_data (value);
1796 size = g_variant_get_size (value);
1798 if (size && string[size - 1] == '\0')
1799 return string;
1800 else
1801 return "";
1805 * g_variant_dup_bytestring:
1806 * @value: an array-of-bytes #GVariant instance
1807 * @length: (out) (allow-none) (default NULL): a pointer to a #gsize, to store
1808 * the length (not including the nul terminator)
1810 * Similar to g_variant_get_bytestring() except that instead of
1811 * returning a constant string, the string is duplicated.
1813 * The return value must be freed using g_free().
1815 * Returns: (transfer full) (array zero-terminated=1 length=length) (element-type guint8):
1816 * a newly allocated string
1818 * Since: 2.26
1820 gchar *
1821 g_variant_dup_bytestring (GVariant *value,
1822 gsize *length)
1824 const gchar *original = g_variant_get_bytestring (value);
1825 gsize size;
1827 /* don't crash in case get_bytestring() had an assert failure */
1828 if (original == NULL)
1829 return NULL;
1831 size = strlen (original);
1833 if (length)
1834 *length = size;
1836 return g_memdup (original, size + 1);
1840 * g_variant_new_bytestring_array:
1841 * @strv: (array length=length): an array of strings
1842 * @length: the length of @strv, or -1
1844 * Constructs an array of bytestring #GVariant from the given array of
1845 * strings.
1847 * If @length is -1 then @strv is %NULL-terminated.
1849 * Returns: (transfer none): a new floating #GVariant instance
1851 * Since: 2.26
1853 GVariant *
1854 g_variant_new_bytestring_array (const gchar * const *strv,
1855 gssize length)
1857 GVariant **strings;
1858 gsize i;
1860 g_return_val_if_fail (length == 0 || strv != NULL, NULL);
1862 if (length < 0)
1863 length = g_strv_length ((gchar **) strv);
1865 strings = g_new (GVariant *, length);
1866 for (i = 0; i < length; i++)
1867 strings[i] = g_variant_ref_sink (g_variant_new_bytestring (strv[i]));
1869 return g_variant_new_from_children (G_VARIANT_TYPE_BYTESTRING_ARRAY,
1870 strings, length, TRUE);
1874 * g_variant_get_bytestring_array:
1875 * @value: an array of array of bytes #GVariant ('aay')
1876 * @length: (out) (allow-none): the length of the result, or %NULL
1878 * Gets the contents of an array of array of bytes #GVariant. This call
1879 * makes a shallow copy; the return result should be released with
1880 * g_free(), but the individual strings must not be modified.
1882 * If @length is non-%NULL then the number of elements in the result is
1883 * stored there. In any case, the resulting array will be
1884 * %NULL-terminated.
1886 * For an empty array, @length will be set to 0 and a pointer to a
1887 * %NULL pointer will be returned.
1889 * Returns: (array length=length) (transfer container): an array of constant strings
1891 * Since: 2.26
1893 const gchar **
1894 g_variant_get_bytestring_array (GVariant *value,
1895 gsize *length)
1897 const gchar **strv;
1898 gsize n;
1899 gsize i;
1901 TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING_ARRAY, NULL);
1903 g_variant_get_data (value);
1904 n = g_variant_n_children (value);
1905 strv = g_new (const gchar *, n + 1);
1907 for (i = 0; i < n; i++)
1909 GVariant *string;
1911 string = g_variant_get_child_value (value, i);
1912 strv[i] = g_variant_get_bytestring (string);
1913 g_variant_unref (string);
1915 strv[i] = NULL;
1917 if (length)
1918 *length = n;
1920 return strv;
1924 * g_variant_dup_bytestring_array:
1925 * @value: an array of array of bytes #GVariant ('aay')
1926 * @length: (out) (allow-none): the length of the result, or %NULL
1928 * Gets the contents of an array of array of bytes #GVariant. This call
1929 * makes a deep copy; the return result should be released with
1930 * g_strfreev().
1932 * If @length is non-%NULL then the number of elements in the result is
1933 * stored there. In any case, the resulting array will be
1934 * %NULL-terminated.
1936 * For an empty array, @length will be set to 0 and a pointer to a
1937 * %NULL pointer will be returned.
1939 * Returns: (array length=length) (transfer full): an array of strings
1941 * Since: 2.26
1943 gchar **
1944 g_variant_dup_bytestring_array (GVariant *value,
1945 gsize *length)
1947 gchar **strv;
1948 gsize n;
1949 gsize i;
1951 TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING_ARRAY, NULL);
1953 g_variant_get_data (value);
1954 n = g_variant_n_children (value);
1955 strv = g_new (gchar *, n + 1);
1957 for (i = 0; i < n; i++)
1959 GVariant *string;
1961 string = g_variant_get_child_value (value, i);
1962 strv[i] = g_variant_dup_bytestring (string, NULL);
1963 g_variant_unref (string);
1965 strv[i] = NULL;
1967 if (length)
1968 *length = n;
1970 return strv;
1973 /* Type checking and querying {{{1 */
1975 * g_variant_get_type:
1976 * @value: a #GVariant
1978 * Determines the type of @value.
1980 * The return value is valid for the lifetime of @value and must not
1981 * be freed.
1983 * Returns: a #GVariantType
1985 * Since: 2.24
1987 const GVariantType *
1988 g_variant_get_type (GVariant *value)
1990 GVariantTypeInfo *type_info;
1992 g_return_val_if_fail (value != NULL, NULL);
1994 type_info = g_variant_get_type_info (value);
1996 return (GVariantType *) g_variant_type_info_get_type_string (type_info);
2000 * g_variant_get_type_string:
2001 * @value: a #GVariant
2003 * Returns the type string of @value. Unlike the result of calling
2004 * g_variant_type_peek_string(), this string is nul-terminated. This
2005 * string belongs to #GVariant and must not be freed.
2007 * Returns: the type string for the type of @value
2009 * Since: 2.24
2011 const gchar *
2012 g_variant_get_type_string (GVariant *value)
2014 GVariantTypeInfo *type_info;
2016 g_return_val_if_fail (value != NULL, NULL);
2018 type_info = g_variant_get_type_info (value);
2020 return g_variant_type_info_get_type_string (type_info);
2024 * g_variant_is_of_type:
2025 * @value: a #GVariant instance
2026 * @type: a #GVariantType
2028 * Checks if a value has a type matching the provided type.
2030 * Returns: %TRUE if the type of @value matches @type
2032 * Since: 2.24
2034 gboolean
2035 g_variant_is_of_type (GVariant *value,
2036 const GVariantType *type)
2038 return g_variant_type_is_subtype_of (g_variant_get_type (value), type);
2042 * g_variant_is_container:
2043 * @value: a #GVariant instance
2045 * Checks if @value is a container.
2047 * Returns: %TRUE if @value is a container
2049 * Since: 2.24
2051 gboolean
2052 g_variant_is_container (GVariant *value)
2054 return g_variant_type_is_container (g_variant_get_type (value));
2059 * g_variant_classify:
2060 * @value: a #GVariant
2062 * Classifies @value according to its top-level type.
2064 * Returns: the #GVariantClass of @value
2066 * Since: 2.24
2069 * GVariantClass:
2070 * @G_VARIANT_CLASS_BOOLEAN: The #GVariant is a boolean.
2071 * @G_VARIANT_CLASS_BYTE: The #GVariant is a byte.
2072 * @G_VARIANT_CLASS_INT16: The #GVariant is a signed 16 bit integer.
2073 * @G_VARIANT_CLASS_UINT16: The #GVariant is an unsigned 16 bit integer.
2074 * @G_VARIANT_CLASS_INT32: The #GVariant is a signed 32 bit integer.
2075 * @G_VARIANT_CLASS_UINT32: The #GVariant is an unsigned 32 bit integer.
2076 * @G_VARIANT_CLASS_INT64: The #GVariant is a signed 64 bit integer.
2077 * @G_VARIANT_CLASS_UINT64: The #GVariant is an unsigned 64 bit integer.
2078 * @G_VARIANT_CLASS_HANDLE: The #GVariant is a file handle index.
2079 * @G_VARIANT_CLASS_DOUBLE: The #GVariant is a double precision floating
2080 * point value.
2081 * @G_VARIANT_CLASS_STRING: The #GVariant is a normal string.
2082 * @G_VARIANT_CLASS_OBJECT_PATH: The #GVariant is a D-Bus object path
2083 * string.
2084 * @G_VARIANT_CLASS_SIGNATURE: The #GVariant is a D-Bus signature string.
2085 * @G_VARIANT_CLASS_VARIANT: The #GVariant is a variant.
2086 * @G_VARIANT_CLASS_MAYBE: The #GVariant is a maybe-typed value.
2087 * @G_VARIANT_CLASS_ARRAY: The #GVariant is an array.
2088 * @G_VARIANT_CLASS_TUPLE: The #GVariant is a tuple.
2089 * @G_VARIANT_CLASS_DICT_ENTRY: The #GVariant is a dictionary entry.
2091 * The range of possible top-level types of #GVariant instances.
2093 * Since: 2.24
2095 GVariantClass
2096 g_variant_classify (GVariant *value)
2098 g_return_val_if_fail (value != NULL, 0);
2100 return *g_variant_get_type_string (value);
2103 /* Pretty printer {{{1 */
2104 /* This function is not introspectable because if @string is NULL,
2105 @returns is (transfer full), otherwise it is (transfer none), which
2106 is not supported by GObjectIntrospection */
2108 * g_variant_print_string: (skip)
2109 * @value: a #GVariant
2110 * @string: (allow-none) (default NULL): a #GString, or %NULL
2111 * @type_annotate: %TRUE if type information should be included in
2112 * the output
2114 * Behaves as g_variant_print(), but operates on a #GString.
2116 * If @string is non-%NULL then it is appended to and returned. Else,
2117 * a new empty #GString is allocated and it is returned.
2119 * Returns: a #GString containing the string
2121 * Since: 2.24
2123 GString *
2124 g_variant_print_string (GVariant *value,
2125 GString *string,
2126 gboolean type_annotate)
2128 if G_UNLIKELY (string == NULL)
2129 string = g_string_new (NULL);
2131 switch (g_variant_classify (value))
2133 case G_VARIANT_CLASS_MAYBE:
2134 if (type_annotate)
2135 g_string_append_printf (string, "@%s ",
2136 g_variant_get_type_string (value));
2138 if (g_variant_n_children (value))
2140 gchar *printed_child;
2141 GVariant *element;
2143 /* Nested maybes:
2145 * Consider the case of the type "mmi". In this case we could
2146 * write "just just 4", but "4" alone is totally unambiguous,
2147 * so we try to drop "just" where possible.
2149 * We have to be careful not to always drop "just", though,
2150 * since "nothing" needs to be distinguishable from "just
2151 * nothing". The case where we need to ensure we keep the
2152 * "just" is actually exactly the case where we have a nested
2153 * Nothing.
2155 * Instead of searching for that nested Nothing, we just print
2156 * the contained value into a separate string and see if we
2157 * end up with "nothing" at the end of it. If so, we need to
2158 * add "just" at our level.
2160 element = g_variant_get_child_value (value, 0);
2161 printed_child = g_variant_print (element, FALSE);
2162 g_variant_unref (element);
2164 if (g_str_has_suffix (printed_child, "nothing"))
2165 g_string_append (string, "just ");
2166 g_string_append (string, printed_child);
2167 g_free (printed_child);
2169 else
2170 g_string_append (string, "nothing");
2172 break;
2174 case G_VARIANT_CLASS_ARRAY:
2175 /* it's an array so the first character of the type string is 'a'
2177 * if the first two characters are 'ay' then it's a bytestring.
2178 * under certain conditions we print those as strings.
2180 if (g_variant_get_type_string (value)[1] == 'y')
2182 const gchar *str;
2183 gsize size;
2184 gsize i;
2186 /* first determine if it is a byte string.
2187 * that's when there's a single nul character: at the end.
2189 str = g_variant_get_data (value);
2190 size = g_variant_get_size (value);
2192 for (i = 0; i < size; i++)
2193 if (str[i] == '\0')
2194 break;
2196 /* first nul byte is the last byte -> it's a byte string. */
2197 if (i == size - 1)
2199 gchar *escaped = g_strescape (str, NULL);
2201 /* use double quotes only if a ' is in the string */
2202 if (strchr (str, '\''))
2203 g_string_append_printf (string, "b\"%s\"", escaped);
2204 else
2205 g_string_append_printf (string, "b'%s'", escaped);
2207 g_free (escaped);
2208 break;
2211 else
2212 /* fall through and handle normally... */;
2216 * if the first two characters are 'a{' then it's an array of
2217 * dictionary entries (ie: a dictionary) so we print that
2218 * differently.
2220 if (g_variant_get_type_string (value)[1] == '{')
2221 /* dictionary */
2223 const gchar *comma = "";
2224 gsize n, i;
2226 if ((n = g_variant_n_children (value)) == 0)
2228 if (type_annotate)
2229 g_string_append_printf (string, "@%s ",
2230 g_variant_get_type_string (value));
2231 g_string_append (string, "{}");
2232 break;
2235 g_string_append_c (string, '{');
2236 for (i = 0; i < n; i++)
2238 GVariant *entry, *key, *val;
2240 g_string_append (string, comma);
2241 comma = ", ";
2243 entry = g_variant_get_child_value (value, i);
2244 key = g_variant_get_child_value (entry, 0);
2245 val = g_variant_get_child_value (entry, 1);
2246 g_variant_unref (entry);
2248 g_variant_print_string (key, string, type_annotate);
2249 g_variant_unref (key);
2250 g_string_append (string, ": ");
2251 g_variant_print_string (val, string, type_annotate);
2252 g_variant_unref (val);
2253 type_annotate = FALSE;
2255 g_string_append_c (string, '}');
2257 else
2258 /* normal (non-dictionary) array */
2260 const gchar *comma = "";
2261 gsize n, i;
2263 if ((n = g_variant_n_children (value)) == 0)
2265 if (type_annotate)
2266 g_string_append_printf (string, "@%s ",
2267 g_variant_get_type_string (value));
2268 g_string_append (string, "[]");
2269 break;
2272 g_string_append_c (string, '[');
2273 for (i = 0; i < n; i++)
2275 GVariant *element;
2277 g_string_append (string, comma);
2278 comma = ", ";
2280 element = g_variant_get_child_value (value, i);
2282 g_variant_print_string (element, string, type_annotate);
2283 g_variant_unref (element);
2284 type_annotate = FALSE;
2286 g_string_append_c (string, ']');
2289 break;
2291 case G_VARIANT_CLASS_TUPLE:
2293 gsize n, i;
2295 n = g_variant_n_children (value);
2297 g_string_append_c (string, '(');
2298 for (i = 0; i < n; i++)
2300 GVariant *element;
2302 element = g_variant_get_child_value (value, i);
2303 g_variant_print_string (element, string, type_annotate);
2304 g_string_append (string, ", ");
2305 g_variant_unref (element);
2308 /* for >1 item: remove final ", "
2309 * for 1 item: remove final " ", but leave the ","
2310 * for 0 items: there is only "(", so remove nothing
2312 g_string_truncate (string, string->len - (n > 0) - (n > 1));
2313 g_string_append_c (string, ')');
2315 break;
2317 case G_VARIANT_CLASS_DICT_ENTRY:
2319 GVariant *element;
2321 g_string_append_c (string, '{');
2323 element = g_variant_get_child_value (value, 0);
2324 g_variant_print_string (element, string, type_annotate);
2325 g_variant_unref (element);
2327 g_string_append (string, ", ");
2329 element = g_variant_get_child_value (value, 1);
2330 g_variant_print_string (element, string, type_annotate);
2331 g_variant_unref (element);
2333 g_string_append_c (string, '}');
2335 break;
2337 case G_VARIANT_CLASS_VARIANT:
2339 GVariant *child = g_variant_get_variant (value);
2341 /* Always annotate types in nested variants, because they are
2342 * (by nature) of variable type.
2344 g_string_append_c (string, '<');
2345 g_variant_print_string (child, string, TRUE);
2346 g_string_append_c (string, '>');
2348 g_variant_unref (child);
2350 break;
2352 case G_VARIANT_CLASS_BOOLEAN:
2353 if (g_variant_get_boolean (value))
2354 g_string_append (string, "true");
2355 else
2356 g_string_append (string, "false");
2357 break;
2359 case G_VARIANT_CLASS_STRING:
2361 const gchar *str = g_variant_get_string (value, NULL);
2362 gunichar quote = strchr (str, '\'') ? '"' : '\'';
2364 g_string_append_c (string, quote);
2366 while (*str)
2368 gunichar c = g_utf8_get_char (str);
2370 if (c == quote || c == '\\')
2371 g_string_append_c (string, '\\');
2373 if (g_unichar_isprint (c))
2374 g_string_append_unichar (string, c);
2376 else
2378 g_string_append_c (string, '\\');
2379 if (c < 0x10000)
2380 switch (c)
2382 case '\a':
2383 g_string_append_c (string, 'a');
2384 break;
2386 case '\b':
2387 g_string_append_c (string, 'b');
2388 break;
2390 case '\f':
2391 g_string_append_c (string, 'f');
2392 break;
2394 case '\n':
2395 g_string_append_c (string, 'n');
2396 break;
2398 case '\r':
2399 g_string_append_c (string, 'r');
2400 break;
2402 case '\t':
2403 g_string_append_c (string, 't');
2404 break;
2406 case '\v':
2407 g_string_append_c (string, 'v');
2408 break;
2410 default:
2411 g_string_append_printf (string, "u%04x", c);
2412 break;
2414 else
2415 g_string_append_printf (string, "U%08x", c);
2418 str = g_utf8_next_char (str);
2421 g_string_append_c (string, quote);
2423 break;
2425 case G_VARIANT_CLASS_BYTE:
2426 if (type_annotate)
2427 g_string_append (string, "byte ");
2428 g_string_append_printf (string, "0x%02x",
2429 g_variant_get_byte (value));
2430 break;
2432 case G_VARIANT_CLASS_INT16:
2433 if (type_annotate)
2434 g_string_append (string, "int16 ");
2435 g_string_append_printf (string, "%"G_GINT16_FORMAT,
2436 g_variant_get_int16 (value));
2437 break;
2439 case G_VARIANT_CLASS_UINT16:
2440 if (type_annotate)
2441 g_string_append (string, "uint16 ");
2442 g_string_append_printf (string, "%"G_GUINT16_FORMAT,
2443 g_variant_get_uint16 (value));
2444 break;
2446 case G_VARIANT_CLASS_INT32:
2447 /* Never annotate this type because it is the default for numbers
2448 * (and this is a *pretty* printer)
2450 g_string_append_printf (string, "%"G_GINT32_FORMAT,
2451 g_variant_get_int32 (value));
2452 break;
2454 case G_VARIANT_CLASS_HANDLE:
2455 if (type_annotate)
2456 g_string_append (string, "handle ");
2457 g_string_append_printf (string, "%"G_GINT32_FORMAT,
2458 g_variant_get_handle (value));
2459 break;
2461 case G_VARIANT_CLASS_UINT32:
2462 if (type_annotate)
2463 g_string_append (string, "uint32 ");
2464 g_string_append_printf (string, "%"G_GUINT32_FORMAT,
2465 g_variant_get_uint32 (value));
2466 break;
2468 case G_VARIANT_CLASS_INT64:
2469 if (type_annotate)
2470 g_string_append (string, "int64 ");
2471 g_string_append_printf (string, "%"G_GINT64_FORMAT,
2472 g_variant_get_int64 (value));
2473 break;
2475 case G_VARIANT_CLASS_UINT64:
2476 if (type_annotate)
2477 g_string_append (string, "uint64 ");
2478 g_string_append_printf (string, "%"G_GUINT64_FORMAT,
2479 g_variant_get_uint64 (value));
2480 break;
2482 case G_VARIANT_CLASS_DOUBLE:
2484 gchar buffer[100];
2485 gint i;
2487 g_ascii_dtostr (buffer, sizeof buffer, g_variant_get_double (value));
2489 for (i = 0; buffer[i]; i++)
2490 if (buffer[i] == '.' || buffer[i] == 'e' ||
2491 buffer[i] == 'n' || buffer[i] == 'N')
2492 break;
2494 /* if there is no '.' or 'e' in the float then add one */
2495 if (buffer[i] == '\0')
2497 buffer[i++] = '.';
2498 buffer[i++] = '0';
2499 buffer[i++] = '\0';
2502 g_string_append (string, buffer);
2504 break;
2506 case G_VARIANT_CLASS_OBJECT_PATH:
2507 if (type_annotate)
2508 g_string_append (string, "objectpath ");
2509 g_string_append_printf (string, "\'%s\'",
2510 g_variant_get_string (value, NULL));
2511 break;
2513 case G_VARIANT_CLASS_SIGNATURE:
2514 if (type_annotate)
2515 g_string_append (string, "signature ");
2516 g_string_append_printf (string, "\'%s\'",
2517 g_variant_get_string (value, NULL));
2518 break;
2520 default:
2521 g_assert_not_reached ();
2524 return string;
2528 * g_variant_print:
2529 * @value: a #GVariant
2530 * @type_annotate: %TRUE if type information should be included in
2531 * the output
2533 * Pretty-prints @value in the format understood by g_variant_parse().
2535 * The format is described <link linkend='gvariant-text'>here</link>.
2537 * If @type_annotate is %TRUE, then type information is included in
2538 * the output.
2540 * Returns: (transfer full): a newly-allocated string holding the result.
2542 * Since: 2.24
2544 gchar *
2545 g_variant_print (GVariant *value,
2546 gboolean type_annotate)
2548 return g_string_free (g_variant_print_string (value, NULL, type_annotate),
2549 FALSE);
2552 /* Hash, Equal, Compare {{{1 */
2554 * g_variant_hash:
2555 * @value: (type GVariant): a basic #GVariant value as a #gconstpointer
2557 * Generates a hash value for a #GVariant instance.
2559 * The output of this function is guaranteed to be the same for a given
2560 * value only per-process. It may change between different processor
2561 * architectures or even different versions of GLib. Do not use this
2562 * function as a basis for building protocols or file formats.
2564 * The type of @value is #gconstpointer only to allow use of this
2565 * function with #GHashTable. @value must be a #GVariant.
2567 * Returns: a hash value corresponding to @value
2569 * Since: 2.24
2571 guint
2572 g_variant_hash (gconstpointer value_)
2574 GVariant *value = (GVariant *) value_;
2576 switch (g_variant_classify (value))
2578 case G_VARIANT_CLASS_STRING:
2579 case G_VARIANT_CLASS_OBJECT_PATH:
2580 case G_VARIANT_CLASS_SIGNATURE:
2581 return g_str_hash (g_variant_get_string (value, NULL));
2583 case G_VARIANT_CLASS_BOOLEAN:
2584 /* this is a very odd thing to hash... */
2585 return g_variant_get_boolean (value);
2587 case G_VARIANT_CLASS_BYTE:
2588 return g_variant_get_byte (value);
2590 case G_VARIANT_CLASS_INT16:
2591 case G_VARIANT_CLASS_UINT16:
2593 const guint16 *ptr;
2595 ptr = g_variant_get_data (value);
2597 if (ptr)
2598 return *ptr;
2599 else
2600 return 0;
2603 case G_VARIANT_CLASS_INT32:
2604 case G_VARIANT_CLASS_UINT32:
2605 case G_VARIANT_CLASS_HANDLE:
2607 const guint *ptr;
2609 ptr = g_variant_get_data (value);
2611 if (ptr)
2612 return *ptr;
2613 else
2614 return 0;
2617 case G_VARIANT_CLASS_INT64:
2618 case G_VARIANT_CLASS_UINT64:
2619 case G_VARIANT_CLASS_DOUBLE:
2620 /* need a separate case for these guys because otherwise
2621 * performance could be quite bad on big endian systems
2624 const guint *ptr;
2626 ptr = g_variant_get_data (value);
2628 if (ptr)
2629 return ptr[0] + ptr[1];
2630 else
2631 return 0;
2634 default:
2635 g_return_val_if_fail (!g_variant_is_container (value), 0);
2636 g_assert_not_reached ();
2641 * g_variant_equal:
2642 * @one: (type GVariant): a #GVariant instance
2643 * @two: (type GVariant): a #GVariant instance
2645 * Checks if @one and @two have the same type and value.
2647 * The types of @one and @two are #gconstpointer only to allow use of
2648 * this function with #GHashTable. They must each be a #GVariant.
2650 * Returns: %TRUE if @one and @two are equal
2652 * Since: 2.24
2654 gboolean
2655 g_variant_equal (gconstpointer one,
2656 gconstpointer two)
2658 gboolean equal;
2660 g_return_val_if_fail (one != NULL && two != NULL, FALSE);
2662 if (g_variant_get_type_info ((GVariant *) one) !=
2663 g_variant_get_type_info ((GVariant *) two))
2664 return FALSE;
2666 /* if both values are trusted to be in their canonical serialised form
2667 * then a simple memcmp() of their serialised data will answer the
2668 * question.
2670 * if not, then this might generate a false negative (since it is
2671 * possible for two different byte sequences to represent the same
2672 * value). for now we solve this by pretty-printing both values and
2673 * comparing the result.
2675 if (g_variant_is_trusted ((GVariant *) one) &&
2676 g_variant_is_trusted ((GVariant *) two))
2678 gconstpointer data_one, data_two;
2679 gsize size_one, size_two;
2681 size_one = g_variant_get_size ((GVariant *) one);
2682 size_two = g_variant_get_size ((GVariant *) two);
2684 if (size_one != size_two)
2685 return FALSE;
2687 data_one = g_variant_get_data ((GVariant *) one);
2688 data_two = g_variant_get_data ((GVariant *) two);
2690 equal = memcmp (data_one, data_two, size_one) == 0;
2692 else
2694 gchar *strone, *strtwo;
2696 strone = g_variant_print ((GVariant *) one, FALSE);
2697 strtwo = g_variant_print ((GVariant *) two, FALSE);
2698 equal = strcmp (strone, strtwo) == 0;
2699 g_free (strone);
2700 g_free (strtwo);
2703 return equal;
2707 * g_variant_compare:
2708 * @one: (type GVariant): a basic-typed #GVariant instance
2709 * @two: (type GVariant): a #GVariant instance of the same type
2711 * Compares @one and @two.
2713 * The types of @one and @two are #gconstpointer only to allow use of
2714 * this function with #GTree, #GPtrArray, etc. They must each be a
2715 * #GVariant.
2717 * Comparison is only defined for basic types (ie: booleans, numbers,
2718 * strings). For booleans, %FALSE is less than %TRUE. Numbers are
2719 * ordered in the usual way. Strings are in ASCII lexographical order.
2721 * It is a programmer error to attempt to compare container values or
2722 * two values that have types that are not exactly equal. For example,
2723 * you cannot compare a 32-bit signed integer with a 32-bit unsigned
2724 * integer. Also note that this function is not particularly
2725 * well-behaved when it comes to comparison of doubles; in particular,
2726 * the handling of incomparable values (ie: NaN) is undefined.
2728 * If you only require an equality comparison, g_variant_equal() is more
2729 * general.
2731 * Returns: negative value if a &lt; b;
2732 * zero if a = b;
2733 * positive value if a &gt; b.
2735 * Since: 2.26
2737 gint
2738 g_variant_compare (gconstpointer one,
2739 gconstpointer two)
2741 GVariant *a = (GVariant *) one;
2742 GVariant *b = (GVariant *) two;
2744 g_return_val_if_fail (g_variant_classify (a) == g_variant_classify (b), 0);
2746 switch (g_variant_classify (a))
2748 case G_VARIANT_CLASS_BYTE:
2749 return ((gint) g_variant_get_byte (a)) -
2750 ((gint) g_variant_get_byte (b));
2752 case G_VARIANT_CLASS_INT16:
2753 return ((gint) g_variant_get_int16 (a)) -
2754 ((gint) g_variant_get_int16 (b));
2756 case G_VARIANT_CLASS_UINT16:
2757 return ((gint) g_variant_get_uint16 (a)) -
2758 ((gint) g_variant_get_uint16 (b));
2760 case G_VARIANT_CLASS_INT32:
2762 gint32 a_val = g_variant_get_int32 (a);
2763 gint32 b_val = g_variant_get_int32 (b);
2765 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2768 case G_VARIANT_CLASS_UINT32:
2770 guint32 a_val = g_variant_get_uint32 (a);
2771 guint32 b_val = g_variant_get_uint32 (b);
2773 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2776 case G_VARIANT_CLASS_INT64:
2778 gint64 a_val = g_variant_get_int64 (a);
2779 gint64 b_val = g_variant_get_int64 (b);
2781 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2784 case G_VARIANT_CLASS_UINT64:
2786 guint64 a_val = g_variant_get_uint64 (a);
2787 guint64 b_val = g_variant_get_uint64 (b);
2789 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2792 case G_VARIANT_CLASS_DOUBLE:
2794 gdouble a_val = g_variant_get_double (a);
2795 gdouble b_val = g_variant_get_double (b);
2797 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2800 case G_VARIANT_CLASS_STRING:
2801 case G_VARIANT_CLASS_OBJECT_PATH:
2802 case G_VARIANT_CLASS_SIGNATURE:
2803 return strcmp (g_variant_get_string (a, NULL),
2804 g_variant_get_string (b, NULL));
2806 default:
2807 g_return_val_if_fail (!g_variant_is_container (a), 0);
2808 g_assert_not_reached ();
2812 /* GVariantIter {{{1 */
2814 * GVariantIter: (skip)
2816 * #GVariantIter is an opaque data structure and can only be accessed
2817 * using the following functions.
2819 struct stack_iter
2821 GVariant *value;
2822 gssize n, i;
2824 const gchar *loop_format;
2826 gsize padding[3];
2827 gsize magic;
2830 G_STATIC_ASSERT (sizeof (struct stack_iter) <= sizeof (GVariantIter));
2832 struct heap_iter
2834 struct stack_iter iter;
2836 GVariant *value_ref;
2837 gsize magic;
2840 #define GVSI(i) ((struct stack_iter *) (i))
2841 #define GVHI(i) ((struct heap_iter *) (i))
2842 #define GVSI_MAGIC ((gsize) 3579507750u)
2843 #define GVHI_MAGIC ((gsize) 1450270775u)
2844 #define is_valid_iter(i) (i != NULL && \
2845 GVSI(i)->magic == GVSI_MAGIC)
2846 #define is_valid_heap_iter(i) (GVHI(i)->magic == GVHI_MAGIC && \
2847 is_valid_iter(i))
2850 * g_variant_iter_new:
2851 * @value: a container #GVariant
2853 * Creates a heap-allocated #GVariantIter for iterating over the items
2854 * in @value.
2856 * Use g_variant_iter_free() to free the return value when you no longer
2857 * need it.
2859 * A reference is taken to @value and will be released only when
2860 * g_variant_iter_free() is called.
2862 * Returns: (transfer full): a new heap-allocated #GVariantIter
2864 * Since: 2.24
2866 GVariantIter *
2867 g_variant_iter_new (GVariant *value)
2869 GVariantIter *iter;
2871 iter = (GVariantIter *) g_slice_new (struct heap_iter);
2872 GVHI(iter)->value_ref = g_variant_ref (value);
2873 GVHI(iter)->magic = GVHI_MAGIC;
2875 g_variant_iter_init (iter, value);
2877 return iter;
2881 * g_variant_iter_init: (skip)
2882 * @iter: a pointer to a #GVariantIter
2883 * @value: a container #GVariant
2885 * Initialises (without allocating) a #GVariantIter. @iter may be
2886 * completely uninitialised prior to this call; its old value is
2887 * ignored.
2889 * The iterator remains valid for as long as @value exists, and need not
2890 * be freed in any way.
2892 * Returns: the number of items in @value
2894 * Since: 2.24
2896 gsize
2897 g_variant_iter_init (GVariantIter *iter,
2898 GVariant *value)
2900 GVSI(iter)->magic = GVSI_MAGIC;
2901 GVSI(iter)->value = value;
2902 GVSI(iter)->n = g_variant_n_children (value);
2903 GVSI(iter)->i = -1;
2904 GVSI(iter)->loop_format = NULL;
2906 return GVSI(iter)->n;
2910 * g_variant_iter_copy:
2911 * @iter: a #GVariantIter
2913 * Creates a new heap-allocated #GVariantIter to iterate over the
2914 * container that was being iterated over by @iter. Iteration begins on
2915 * the new iterator from the current position of the old iterator but
2916 * the two copies are independent past that point.
2918 * Use g_variant_iter_free() to free the return value when you no longer
2919 * need it.
2921 * A reference is taken to the container that @iter is iterating over
2922 * and will be releated only when g_variant_iter_free() is called.
2924 * Returns: (transfer full): a new heap-allocated #GVariantIter
2926 * Since: 2.24
2928 GVariantIter *
2929 g_variant_iter_copy (GVariantIter *iter)
2931 GVariantIter *copy;
2933 g_return_val_if_fail (is_valid_iter (iter), 0);
2935 copy = g_variant_iter_new (GVSI(iter)->value);
2936 GVSI(copy)->i = GVSI(iter)->i;
2938 return copy;
2942 * g_variant_iter_n_children:
2943 * @iter: a #GVariantIter
2945 * Queries the number of child items in the container that we are
2946 * iterating over. This is the total number of items -- not the number
2947 * of items remaining.
2949 * This function might be useful for preallocation of arrays.
2951 * Returns: the number of children in the container
2953 * Since: 2.24
2955 gsize
2956 g_variant_iter_n_children (GVariantIter *iter)
2958 g_return_val_if_fail (is_valid_iter (iter), 0);
2960 return GVSI(iter)->n;
2964 * g_variant_iter_free:
2965 * @iter: (transfer full): a heap-allocated #GVariantIter
2967 * Frees a heap-allocated #GVariantIter. Only call this function on
2968 * iterators that were returned by g_variant_iter_new() or
2969 * g_variant_iter_copy().
2971 * Since: 2.24
2973 void
2974 g_variant_iter_free (GVariantIter *iter)
2976 g_return_if_fail (is_valid_heap_iter (iter));
2978 g_variant_unref (GVHI(iter)->value_ref);
2979 GVHI(iter)->magic = 0;
2981 g_slice_free (struct heap_iter, GVHI(iter));
2985 * g_variant_iter_next_value:
2986 * @iter: a #GVariantIter
2988 * Gets the next item in the container. If no more items remain then
2989 * %NULL is returned.
2991 * Use g_variant_unref() to drop your reference on the return value when
2992 * you no longer need it.
2994 * <example>
2995 * <title>Iterating with g_variant_iter_next_value()</title>
2996 * <programlisting>
2997 * /<!-- -->* recursively iterate a container *<!-- -->/
2998 * void
2999 * iterate_container_recursive (GVariant *container)
3001 * GVariantIter iter;
3002 * GVariant *child;
3004 * g_variant_iter_init (&iter, container);
3005 * while ((child = g_variant_iter_next_value (&iter)))
3007 * g_print ("type '%s'\n", g_variant_get_type_string (child));
3009 * if (g_variant_is_container (child))
3010 * iterate_container_recursive (child);
3012 * g_variant_unref (child);
3015 * </programlisting>
3016 * </example>
3018 * Returns: (allow-none) (transfer full): a #GVariant, or %NULL
3020 * Since: 2.24
3022 GVariant *
3023 g_variant_iter_next_value (GVariantIter *iter)
3025 g_return_val_if_fail (is_valid_iter (iter), FALSE);
3027 if G_UNLIKELY (GVSI(iter)->i >= GVSI(iter)->n)
3029 g_critical ("g_variant_iter_next_value: must not be called again "
3030 "after NULL has already been returned.");
3031 return NULL;
3034 GVSI(iter)->i++;
3036 if (GVSI(iter)->i < GVSI(iter)->n)
3037 return g_variant_get_child_value (GVSI(iter)->value, GVSI(iter)->i);
3039 return NULL;
3042 /* GVariantBuilder {{{1 */
3044 * GVariantBuilder:
3046 * A utility type for constructing container-type #GVariant instances.
3048 * This is an opaque structure and may only be accessed using the
3049 * following functions.
3051 * #GVariantBuilder is not threadsafe in any way. Do not attempt to
3052 * access it from more than one thread.
3055 struct stack_builder
3057 GVariantBuilder *parent;
3058 GVariantType *type;
3060 /* type constraint explicitly specified by 'type'.
3061 * for tuple types, this moves along as we add more items.
3063 const GVariantType *expected_type;
3065 /* type constraint implied by previous array item.
3067 const GVariantType *prev_item_type;
3069 /* constraints on the number of children. max = -1 for unlimited. */
3070 gsize min_items;
3071 gsize max_items;
3073 /* dynamically-growing pointer array */
3074 GVariant **children;
3075 gsize allocated_children;
3076 gsize offset;
3078 /* set to '1' if all items in the container will have the same type
3079 * (ie: maybe, array, variant) '0' if not (ie: tuple, dict entry)
3081 guint uniform_item_types : 1;
3083 /* set to '1' initially and changed to '0' if an untrusted value is
3084 * added
3086 guint trusted : 1;
3088 gsize magic;
3091 G_STATIC_ASSERT (sizeof (struct stack_builder) <= sizeof (GVariantBuilder));
3093 struct heap_builder
3095 GVariantBuilder builder;
3096 gsize magic;
3098 gint ref_count;
3101 #define GVSB(b) ((struct stack_builder *) (b))
3102 #define GVHB(b) ((struct heap_builder *) (b))
3103 #define GVSB_MAGIC ((gsize) 1033660112u)
3104 #define GVHB_MAGIC ((gsize) 3087242682u)
3105 #define is_valid_builder(b) (b != NULL && \
3106 GVSB(b)->magic == GVSB_MAGIC)
3107 #define is_valid_heap_builder(b) (GVHB(b)->magic == GVHB_MAGIC)
3110 * g_variant_builder_new:
3111 * @type: a container type
3113 * Allocates and initialises a new #GVariantBuilder.
3115 * You should call g_variant_builder_unref() on the return value when it
3116 * is no longer needed. The memory will not be automatically freed by
3117 * any other call.
3119 * In most cases it is easier to place a #GVariantBuilder directly on
3120 * the stack of the calling function and initialise it with
3121 * g_variant_builder_init().
3123 * Returns: (transfer full): a #GVariantBuilder
3125 * Since: 2.24
3127 GVariantBuilder *
3128 g_variant_builder_new (const GVariantType *type)
3130 GVariantBuilder *builder;
3132 builder = (GVariantBuilder *) g_slice_new (struct heap_builder);
3133 g_variant_builder_init (builder, type);
3134 GVHB(builder)->magic = GVHB_MAGIC;
3135 GVHB(builder)->ref_count = 1;
3137 return builder;
3141 * g_variant_builder_unref:
3142 * @builder: (transfer full): a #GVariantBuilder allocated by g_variant_builder_new()
3144 * Decreases the reference count on @builder.
3146 * In the event that there are no more references, releases all memory
3147 * associated with the #GVariantBuilder.
3149 * Don't call this on stack-allocated #GVariantBuilder instances or bad
3150 * things will happen.
3152 * Since: 2.24
3154 void
3155 g_variant_builder_unref (GVariantBuilder *builder)
3157 g_return_if_fail (is_valid_heap_builder (builder));
3159 if (--GVHB(builder)->ref_count)
3160 return;
3162 g_variant_builder_clear (builder);
3163 GVHB(builder)->magic = 0;
3165 g_slice_free (struct heap_builder, GVHB(builder));
3169 * g_variant_builder_ref:
3170 * @builder: a #GVariantBuilder allocated by g_variant_builder_new()
3172 * Increases the reference count on @builder.
3174 * Don't call this on stack-allocated #GVariantBuilder instances or bad
3175 * things will happen.
3177 * Returns: (transfer full): a new reference to @builder
3179 * Since: 2.24
3181 GVariantBuilder *
3182 g_variant_builder_ref (GVariantBuilder *builder)
3184 g_return_val_if_fail (is_valid_heap_builder (builder), NULL);
3186 GVHB(builder)->ref_count++;
3188 return builder;
3192 * g_variant_builder_clear: (skip)
3193 * @builder: a #GVariantBuilder
3195 * Releases all memory associated with a #GVariantBuilder without
3196 * freeing the #GVariantBuilder structure itself.
3198 * It typically only makes sense to do this on a stack-allocated
3199 * #GVariantBuilder if you want to abort building the value part-way
3200 * through. This function need not be called if you call
3201 * g_variant_builder_end() and it also doesn't need to be called on
3202 * builders allocated with g_variant_builder_new (see
3203 * g_variant_builder_unref() for that).
3205 * This function leaves the #GVariantBuilder structure set to all-zeros.
3206 * It is valid to call this function on either an initialised
3207 * #GVariantBuilder or one that is set to all-zeros but it is not valid
3208 * to call this function on uninitialised memory.
3210 * Since: 2.24
3212 void
3213 g_variant_builder_clear (GVariantBuilder *builder)
3215 gsize i;
3217 if (GVSB(builder)->magic == 0)
3218 /* all-zeros case */
3219 return;
3221 g_return_if_fail (is_valid_builder (builder));
3223 g_variant_type_free (GVSB(builder)->type);
3225 for (i = 0; i < GVSB(builder)->offset; i++)
3226 g_variant_unref (GVSB(builder)->children[i]);
3228 g_free (GVSB(builder)->children);
3230 if (GVSB(builder)->parent)
3232 g_variant_builder_clear (GVSB(builder)->parent);
3233 g_slice_free (GVariantBuilder, GVSB(builder)->parent);
3236 memset (builder, 0, sizeof (GVariantBuilder));
3240 * g_variant_builder_init: (skip)
3241 * @builder: a #GVariantBuilder
3242 * @type: a container type
3244 * Initialises a #GVariantBuilder structure.
3246 * @type must be non-%NULL. It specifies the type of container to
3247 * construct. It can be an indefinite type such as
3248 * %G_VARIANT_TYPE_ARRAY or a definite type such as "as" or "(ii)".
3249 * Maybe, array, tuple, dictionary entry and variant-typed values may be
3250 * constructed.
3252 * After the builder is initialised, values are added using
3253 * g_variant_builder_add_value() or g_variant_builder_add().
3255 * After all the child values are added, g_variant_builder_end() frees
3256 * the memory associated with the builder and returns the #GVariant that
3257 * was created.
3259 * This function completely ignores the previous contents of @builder.
3260 * On one hand this means that it is valid to pass in completely
3261 * uninitialised memory. On the other hand, this means that if you are
3262 * initialising over top of an existing #GVariantBuilder you need to
3263 * first call g_variant_builder_clear() in order to avoid leaking
3264 * memory.
3266 * You must not call g_variant_builder_ref() or
3267 * g_variant_builder_unref() on a #GVariantBuilder that was initialised
3268 * with this function. If you ever pass a reference to a
3269 * #GVariantBuilder outside of the control of your own code then you
3270 * should assume that the person receiving that reference may try to use
3271 * reference counting; you should use g_variant_builder_new() instead of
3272 * this function.
3274 * Since: 2.24
3276 void
3277 g_variant_builder_init (GVariantBuilder *builder,
3278 const GVariantType *type)
3280 g_return_if_fail (type != NULL);
3281 g_return_if_fail (g_variant_type_is_container (type));
3283 memset (builder, 0, sizeof (GVariantBuilder));
3285 GVSB(builder)->type = g_variant_type_copy (type);
3286 GVSB(builder)->magic = GVSB_MAGIC;
3287 GVSB(builder)->trusted = TRUE;
3289 switch (*(const gchar *) type)
3291 case G_VARIANT_CLASS_VARIANT:
3292 GVSB(builder)->uniform_item_types = TRUE;
3293 GVSB(builder)->allocated_children = 1;
3294 GVSB(builder)->expected_type = NULL;
3295 GVSB(builder)->min_items = 1;
3296 GVSB(builder)->max_items = 1;
3297 break;
3299 case G_VARIANT_CLASS_ARRAY:
3300 GVSB(builder)->uniform_item_types = TRUE;
3301 GVSB(builder)->allocated_children = 8;
3302 GVSB(builder)->expected_type =
3303 g_variant_type_element (GVSB(builder)->type);
3304 GVSB(builder)->min_items = 0;
3305 GVSB(builder)->max_items = -1;
3306 break;
3308 case G_VARIANT_CLASS_MAYBE:
3309 GVSB(builder)->uniform_item_types = TRUE;
3310 GVSB(builder)->allocated_children = 1;
3311 GVSB(builder)->expected_type =
3312 g_variant_type_element (GVSB(builder)->type);
3313 GVSB(builder)->min_items = 0;
3314 GVSB(builder)->max_items = 1;
3315 break;
3317 case G_VARIANT_CLASS_DICT_ENTRY:
3318 GVSB(builder)->uniform_item_types = FALSE;
3319 GVSB(builder)->allocated_children = 2;
3320 GVSB(builder)->expected_type =
3321 g_variant_type_key (GVSB(builder)->type);
3322 GVSB(builder)->min_items = 2;
3323 GVSB(builder)->max_items = 2;
3324 break;
3326 case 'r': /* G_VARIANT_TYPE_TUPLE was given */
3327 GVSB(builder)->uniform_item_types = FALSE;
3328 GVSB(builder)->allocated_children = 8;
3329 GVSB(builder)->expected_type = NULL;
3330 GVSB(builder)->min_items = 0;
3331 GVSB(builder)->max_items = -1;
3332 break;
3334 case G_VARIANT_CLASS_TUPLE: /* a definite tuple type was given */
3335 GVSB(builder)->allocated_children = g_variant_type_n_items (type);
3336 GVSB(builder)->expected_type =
3337 g_variant_type_first (GVSB(builder)->type);
3338 GVSB(builder)->min_items = GVSB(builder)->allocated_children;
3339 GVSB(builder)->max_items = GVSB(builder)->allocated_children;
3340 GVSB(builder)->uniform_item_types = FALSE;
3341 break;
3343 default:
3344 g_assert_not_reached ();
3347 GVSB(builder)->children = g_new (GVariant *,
3348 GVSB(builder)->allocated_children);
3351 static void
3352 g_variant_builder_make_room (struct stack_builder *builder)
3354 if (builder->offset == builder->allocated_children)
3356 builder->allocated_children *= 2;
3357 builder->children = g_renew (GVariant *, builder->children,
3358 builder->allocated_children);
3363 * g_variant_builder_add_value:
3364 * @builder: a #GVariantBuilder
3365 * @value: a #GVariant
3367 * Adds @value to @builder.
3369 * It is an error to call this function in any way that would create an
3370 * inconsistent value to be constructed. Some examples of this are
3371 * putting different types of items into an array, putting the wrong
3372 * types or number of items in a tuple, putting more than one value into
3373 * a variant, etc.
3375 * If @value is a floating reference (see g_variant_ref_sink()),
3376 * the @builder instance takes ownership of @value.
3378 * Since: 2.24
3380 void
3381 g_variant_builder_add_value (GVariantBuilder *builder,
3382 GVariant *value)
3384 g_return_if_fail (is_valid_builder (builder));
3385 g_return_if_fail (GVSB(builder)->offset < GVSB(builder)->max_items);
3386 g_return_if_fail (!GVSB(builder)->expected_type ||
3387 g_variant_is_of_type (value,
3388 GVSB(builder)->expected_type));
3389 g_return_if_fail (!GVSB(builder)->prev_item_type ||
3390 g_variant_is_of_type (value,
3391 GVSB(builder)->prev_item_type));
3393 GVSB(builder)->trusted &= g_variant_is_trusted (value);
3395 if (!GVSB(builder)->uniform_item_types)
3397 /* advance our expected type pointers */
3398 if (GVSB(builder)->expected_type)
3399 GVSB(builder)->expected_type =
3400 g_variant_type_next (GVSB(builder)->expected_type);
3402 if (GVSB(builder)->prev_item_type)
3403 GVSB(builder)->prev_item_type =
3404 g_variant_type_next (GVSB(builder)->prev_item_type);
3406 else
3407 GVSB(builder)->prev_item_type = g_variant_get_type (value);
3409 g_variant_builder_make_room (GVSB(builder));
3411 GVSB(builder)->children[GVSB(builder)->offset++] =
3412 g_variant_ref_sink (value);
3416 * g_variant_builder_open:
3417 * @builder: a #GVariantBuilder
3418 * @type: a #GVariantType
3420 * Opens a subcontainer inside the given @builder. When done adding
3421 * items to the subcontainer, g_variant_builder_close() must be called.
3423 * It is an error to call this function in any way that would cause an
3424 * inconsistent value to be constructed (ie: adding too many values or
3425 * a value of an incorrect type).
3427 * Since: 2.24
3429 void
3430 g_variant_builder_open (GVariantBuilder *builder,
3431 const GVariantType *type)
3433 GVariantBuilder *parent;
3435 g_return_if_fail (is_valid_builder (builder));
3436 g_return_if_fail (GVSB(builder)->offset < GVSB(builder)->max_items);
3437 g_return_if_fail (!GVSB(builder)->expected_type ||
3438 g_variant_type_is_subtype_of (type,
3439 GVSB(builder)->expected_type));
3440 g_return_if_fail (!GVSB(builder)->prev_item_type ||
3441 g_variant_type_is_subtype_of (GVSB(builder)->prev_item_type,
3442 type));
3444 parent = g_slice_dup (GVariantBuilder, builder);
3445 g_variant_builder_init (builder, type);
3446 GVSB(builder)->parent = parent;
3448 /* push the prev_item_type down into the subcontainer */
3449 if (GVSB(parent)->prev_item_type)
3451 if (!GVSB(builder)->uniform_item_types)
3452 /* tuples and dict entries */
3453 GVSB(builder)->prev_item_type =
3454 g_variant_type_first (GVSB(parent)->prev_item_type);
3456 else if (!g_variant_type_is_variant (GVSB(builder)->type))
3457 /* maybes and arrays */
3458 GVSB(builder)->prev_item_type =
3459 g_variant_type_element (GVSB(parent)->prev_item_type);
3464 * g_variant_builder_close:
3465 * @builder: a #GVariantBuilder
3467 * Closes the subcontainer inside the given @builder that was opened by
3468 * the most recent call to g_variant_builder_open().
3470 * It is an error to call this function in any way that would create an
3471 * inconsistent value to be constructed (ie: too few values added to the
3472 * subcontainer).
3474 * Since: 2.24
3476 void
3477 g_variant_builder_close (GVariantBuilder *builder)
3479 GVariantBuilder *parent;
3481 g_return_if_fail (is_valid_builder (builder));
3482 g_return_if_fail (GVSB(builder)->parent != NULL);
3484 parent = GVSB(builder)->parent;
3485 GVSB(builder)->parent = NULL;
3487 g_variant_builder_add_value (parent, g_variant_builder_end (builder));
3488 *builder = *parent;
3490 g_slice_free (GVariantBuilder, parent);
3493 /*< private >
3494 * g_variant_make_maybe_type:
3495 * @element: a #GVariant
3497 * Return the type of a maybe containing @element.
3499 static GVariantType *
3500 g_variant_make_maybe_type (GVariant *element)
3502 return g_variant_type_new_maybe (g_variant_get_type (element));
3505 /*< private >
3506 * g_variant_make_array_type:
3507 * @element: a #GVariant
3509 * Return the type of an array containing @element.
3511 static GVariantType *
3512 g_variant_make_array_type (GVariant *element)
3514 return g_variant_type_new_array (g_variant_get_type (element));
3518 * g_variant_builder_end:
3519 * @builder: a #GVariantBuilder
3521 * Ends the builder process and returns the constructed value.
3523 * It is not permissible to use @builder in any way after this call
3524 * except for reference counting operations (in the case of a
3525 * heap-allocated #GVariantBuilder) or by reinitialising it with
3526 * g_variant_builder_init() (in the case of stack-allocated).
3528 * It is an error to call this function in any way that would create an
3529 * inconsistent value to be constructed (ie: insufficient number of
3530 * items added to a container with a specific number of children
3531 * required). It is also an error to call this function if the builder
3532 * was created with an indefinite array or maybe type and no children
3533 * have been added; in this case it is impossible to infer the type of
3534 * the empty array.
3536 * Returns: (transfer none): a new, floating, #GVariant
3538 * Since: 2.24
3540 GVariant *
3541 g_variant_builder_end (GVariantBuilder *builder)
3543 GVariantType *my_type;
3544 GVariant *value;
3546 g_return_val_if_fail (is_valid_builder (builder), NULL);
3547 g_return_val_if_fail (GVSB(builder)->offset >= GVSB(builder)->min_items,
3548 NULL);
3549 g_return_val_if_fail (!GVSB(builder)->uniform_item_types ||
3550 GVSB(builder)->prev_item_type != NULL ||
3551 g_variant_type_is_definite (GVSB(builder)->type),
3552 NULL);
3554 if (g_variant_type_is_definite (GVSB(builder)->type))
3555 my_type = g_variant_type_copy (GVSB(builder)->type);
3557 else if (g_variant_type_is_maybe (GVSB(builder)->type))
3558 my_type = g_variant_make_maybe_type (GVSB(builder)->children[0]);
3560 else if (g_variant_type_is_array (GVSB(builder)->type))
3561 my_type = g_variant_make_array_type (GVSB(builder)->children[0]);
3563 else if (g_variant_type_is_tuple (GVSB(builder)->type))
3564 my_type = g_variant_make_tuple_type (GVSB(builder)->children,
3565 GVSB(builder)->offset);
3567 else if (g_variant_type_is_dict_entry (GVSB(builder)->type))
3568 my_type = g_variant_make_dict_entry_type (GVSB(builder)->children[0],
3569 GVSB(builder)->children[1]);
3570 else
3571 g_assert_not_reached ();
3573 value = g_variant_new_from_children (my_type,
3574 g_renew (GVariant *,
3575 GVSB(builder)->children,
3576 GVSB(builder)->offset),
3577 GVSB(builder)->offset,
3578 GVSB(builder)->trusted);
3579 GVSB(builder)->children = NULL;
3580 GVSB(builder)->offset = 0;
3582 g_variant_builder_clear (builder);
3583 g_variant_type_free (my_type);
3585 return value;
3588 /* Format strings {{{1 */
3589 /*< private >
3590 * g_variant_format_string_scan:
3591 * @string: a string that may be prefixed with a format string
3592 * @limit: (allow-none) (default NULL): a pointer to the end of @string,
3593 * or %NULL
3594 * @endptr: (allow-none) (default NULL): location to store the end pointer,
3595 * or %NULL
3597 * Checks the string pointed to by @string for starting with a properly
3598 * formed #GVariant varargs format string. If no valid format string is
3599 * found then %FALSE is returned.
3601 * If @string does start with a valid format string then %TRUE is
3602 * returned. If @endptr is non-%NULL then it is updated to point to the
3603 * first character after the format string.
3605 * If @limit is non-%NULL then @limit (and any charater after it) will
3606 * not be accessed and the effect is otherwise equivalent to if the
3607 * character at @limit were nul.
3609 * See the section on <link linkend='gvariant-format-strings'>GVariant
3610 * Format Strings</link>.
3612 * Returns: %TRUE if there was a valid format string
3614 * Since: 2.24
3616 gboolean
3617 g_variant_format_string_scan (const gchar *string,
3618 const gchar *limit,
3619 const gchar **endptr)
3621 #define next_char() (string == limit ? '\0' : *string++)
3622 #define peek_char() (string == limit ? '\0' : *string)
3623 char c;
3625 switch (next_char())
3627 case 'b': case 'y': case 'n': case 'q': case 'i': case 'u':
3628 case 'x': case 't': case 'h': case 'd': case 's': case 'o':
3629 case 'g': case 'v': case '*': case '?': case 'r':
3630 break;
3632 case 'm':
3633 return g_variant_format_string_scan (string, limit, endptr);
3635 case 'a':
3636 case '@':
3637 return g_variant_type_string_scan (string, limit, endptr);
3639 case '(':
3640 while (peek_char() != ')')
3641 if (!g_variant_format_string_scan (string, limit, &string))
3642 return FALSE;
3644 next_char(); /* consume ')' */
3645 break;
3647 case '{':
3648 c = next_char();
3650 if (c == '&')
3652 c = next_char ();
3654 if (c != 's' && c != 'o' && c != 'g')
3655 return FALSE;
3657 else
3659 if (c == '@')
3660 c = next_char ();
3662 /* ISO/IEC 9899:1999 (C99) §7.21.5.2:
3663 * The terminating null character is considered to be
3664 * part of the string.
3666 if (c != '\0' && strchr ("bynqiuxthdsog?", c) == NULL)
3667 return FALSE;
3670 if (!g_variant_format_string_scan (string, limit, &string))
3671 return FALSE;
3673 if (next_char() != '}')
3674 return FALSE;
3676 break;
3678 case '^':
3679 if ((c = next_char()) == 'a')
3681 if ((c = next_char()) == '&')
3683 if ((c = next_char()) == 'a')
3685 if ((c = next_char()) == 'y')
3686 break; /* '^a&ay' */
3689 else if (c == 's' || c == 'o')
3690 break; /* '^a&s', '^a&o' */
3693 else if (c == 'a')
3695 if ((c = next_char()) == 'y')
3696 break; /* '^aay' */
3699 else if (c == 's' || c == 'o')
3700 break; /* '^as', '^ao' */
3702 else if (c == 'y')
3703 break; /* '^ay' */
3705 else if (c == '&')
3707 if ((c = next_char()) == 'a')
3709 if ((c = next_char()) == 'y')
3710 break; /* '^&ay' */
3714 return FALSE;
3716 case '&':
3717 c = next_char();
3719 if (c != 's' && c != 'o' && c != 'g')
3720 return FALSE;
3722 break;
3724 default:
3725 return FALSE;
3728 if (endptr != NULL)
3729 *endptr = string;
3731 #undef next_char
3732 #undef peek_char
3734 return TRUE;
3737 /*< private >
3738 * g_variant_format_string_scan_type:
3739 * @string: a string that may be prefixed with a format string
3740 * @limit: (allow-none) (default NULL): a pointer to the end of @string,
3741 * or %NULL
3742 * @endptr: (allow-none) (default NULL): location to store the end pointer,
3743 * or %NULL
3745 * If @string starts with a valid format string then this function will
3746 * return the type that the format string corresponds to. Otherwise
3747 * this function returns %NULL.
3749 * Use g_variant_type_free() to free the return value when you no longer
3750 * need it.
3752 * This function is otherwise exactly like
3753 * g_variant_format_string_scan().
3755 * Returns: (allow-none): a #GVariantType if there was a valid format string
3757 * Since: 2.24
3759 GVariantType *
3760 g_variant_format_string_scan_type (const gchar *string,
3761 const gchar *limit,
3762 const gchar **endptr)
3764 const gchar *my_end;
3765 gchar *dest;
3766 gchar *new;
3768 if (endptr == NULL)
3769 endptr = &my_end;
3771 if (!g_variant_format_string_scan (string, limit, endptr))
3772 return NULL;
3774 dest = new = g_malloc (*endptr - string + 1);
3775 while (string != *endptr)
3777 if (*string != '@' && *string != '&' && *string != '^')
3778 *dest++ = *string;
3779 string++;
3781 *dest = '\0';
3783 return (GVariantType *) G_VARIANT_TYPE (new);
3786 static gboolean
3787 valid_format_string (const gchar *format_string,
3788 gboolean single,
3789 GVariant *value)
3791 const gchar *endptr;
3792 GVariantType *type;
3794 type = g_variant_format_string_scan_type (format_string, NULL, &endptr);
3796 if G_UNLIKELY (type == NULL || (single && *endptr != '\0'))
3798 if (single)
3799 g_critical ("`%s' is not a valid GVariant format string",
3800 format_string);
3801 else
3802 g_critical ("`%s' does not have a valid GVariant format "
3803 "string as a prefix", format_string);
3805 if (type != NULL)
3806 g_variant_type_free (type);
3808 return FALSE;
3811 if G_UNLIKELY (value && !g_variant_is_of_type (value, type))
3813 gchar *fragment;
3814 gchar *typestr;
3816 fragment = g_strndup (format_string, endptr - format_string);
3817 typestr = g_variant_type_dup_string (type);
3819 g_critical ("the GVariant format string `%s' has a type of "
3820 "`%s' but the given value has a type of `%s'",
3821 fragment, typestr, g_variant_get_type_string (value));
3823 g_variant_type_free (type);
3825 return FALSE;
3828 g_variant_type_free (type);
3830 return TRUE;
3833 /* Variable Arguments {{{1 */
3834 /* We consider 2 main classes of format strings:
3836 * - recursive format strings
3837 * these are ones that result in recursion and the collection of
3838 * possibly more than one argument. Maybe types, tuples,
3839 * dictionary entries.
3841 * - leaf format string
3842 * these result in the collection of a single argument.
3844 * Leaf format strings are further subdivided into two categories:
3846 * - single non-null pointer ("nnp")
3847 * these either collect or return a single non-null pointer.
3849 * - other
3850 * these collect or return something else (bool, number, etc).
3852 * Based on the above, the varargs handling code is split into 4 main parts:
3854 * - nnp handling code
3855 * - leaf handling code (which may invoke nnp code)
3856 * - generic handling code (may be recursive, may invoke leaf code)
3857 * - user-facing API (which invokes the generic code)
3859 * Each section implements some of the following functions:
3861 * - skip:
3862 * collect the arguments for the format string as if
3863 * g_variant_new() had been called, but do nothing with them. used
3864 * for skipping over arguments when constructing a Nothing maybe
3865 * type.
3867 * - new:
3868 * create a GVariant *
3870 * - get:
3871 * unpack a GVariant *
3873 * - free (nnp only):
3874 * free a previously allocated item
3877 static gboolean
3878 g_variant_format_string_is_leaf (const gchar *str)
3880 return str[0] != 'm' && str[0] != '(' && str[0] != '{';
3883 static gboolean
3884 g_variant_format_string_is_nnp (const gchar *str)
3886 return str[0] == 'a' || str[0] == 's' || str[0] == 'o' || str[0] == 'g' ||
3887 str[0] == '^' || str[0] == '@' || str[0] == '*' || str[0] == '?' ||
3888 str[0] == 'r' || str[0] == 'v' || str[0] == '&';
3891 /* Single non-null pointer ("nnp") {{{2 */
3892 static void
3893 g_variant_valist_free_nnp (const gchar *str,
3894 gpointer ptr)
3896 switch (*str)
3898 case 'a':
3899 g_variant_iter_free (ptr);
3900 break;
3902 case '^':
3903 if (str[2] != '&') /* '^as', '^ao' */
3904 g_strfreev (ptr);
3905 else /* '^a&s', '^a&o' */
3906 g_free (ptr);
3907 break;
3909 case 's':
3910 case 'o':
3911 case 'g':
3912 g_free (ptr);
3913 break;
3915 case '@':
3916 case '*':
3917 case '?':
3918 case 'v':
3919 g_variant_unref (ptr);
3920 break;
3922 case '&':
3923 break;
3925 default:
3926 g_assert_not_reached ();
3930 static gchar
3931 g_variant_scan_convenience (const gchar **str,
3932 gboolean *constant,
3933 guint *arrays)
3935 *constant = FALSE;
3936 *arrays = 0;
3938 for (;;)
3940 char c = *(*str)++;
3942 if (c == '&')
3943 *constant = TRUE;
3945 else if (c == 'a')
3946 (*arrays)++;
3948 else
3949 return c;
3953 static GVariant *
3954 g_variant_valist_new_nnp (const gchar **str,
3955 gpointer ptr)
3957 if (**str == '&')
3958 (*str)++;
3960 switch (*(*str)++)
3962 case 'a':
3963 if (ptr != NULL)
3965 const GVariantType *type;
3966 GVariant *value;
3968 value = g_variant_builder_end (ptr);
3969 type = g_variant_get_type (value);
3971 if G_UNLIKELY (!g_variant_type_is_array (type))
3972 g_error ("g_variant_new: expected array GVariantBuilder but "
3973 "the built value has type `%s'",
3974 g_variant_get_type_string (value));
3976 type = g_variant_type_element (type);
3978 if G_UNLIKELY (!g_variant_type_is_subtype_of (type, (GVariantType *) *str))
3979 g_error ("g_variant_new: expected GVariantBuilder array element "
3980 "type `%s' but the built value has element type `%s'",
3981 g_variant_type_dup_string ((GVariantType *) *str),
3982 g_variant_get_type_string (value) + 1);
3984 g_variant_type_string_scan (*str, NULL, str);
3986 return value;
3988 else
3990 /* special case: NULL pointer for empty array */
3992 const GVariantType *type = (GVariantType *) *str;
3994 g_variant_type_string_scan (*str, NULL, str);
3996 if G_UNLIKELY (!g_variant_type_is_definite (type))
3997 g_error ("g_variant_new: NULL pointer given with indefinite "
3998 "array type; unable to determine which type of empty "
3999 "array to construct.");
4001 return g_variant_new_array (type, NULL, 0);
4004 case 's':
4006 GVariant *value;
4008 value = g_variant_new_string (ptr);
4010 if (value == NULL)
4011 value = g_variant_new_string ("[Invalid UTF-8]");
4013 return value;
4016 case 'o':
4017 return g_variant_new_object_path (ptr);
4019 case 'g':
4020 return g_variant_new_signature (ptr);
4022 case '^':
4024 gboolean constant;
4025 guint arrays;
4026 gchar type;
4028 type = g_variant_scan_convenience (str, &constant, &arrays);
4030 if (type == 's')
4031 return g_variant_new_strv (ptr, -1);
4033 if (type == 'o')
4034 return g_variant_new_objv (ptr, -1);
4036 if (arrays > 1)
4037 return g_variant_new_bytestring_array (ptr, -1);
4039 return g_variant_new_bytestring (ptr);
4042 case '@':
4043 if G_UNLIKELY (!g_variant_is_of_type (ptr, (GVariantType *) *str))
4044 g_error ("g_variant_new: expected GVariant of type `%s' but "
4045 "received value has type `%s'",
4046 g_variant_type_dup_string ((GVariantType *) *str),
4047 g_variant_get_type_string (ptr));
4049 g_variant_type_string_scan (*str, NULL, str);
4051 return ptr;
4053 case '*':
4054 return ptr;
4056 case '?':
4057 if G_UNLIKELY (!g_variant_type_is_basic (g_variant_get_type (ptr)))
4058 g_error ("g_variant_new: format string `?' expects basic-typed "
4059 "GVariant, but received value has type `%s'",
4060 g_variant_get_type_string (ptr));
4062 return ptr;
4064 case 'r':
4065 if G_UNLIKELY (!g_variant_type_is_tuple (g_variant_get_type (ptr)))
4066 g_error ("g_variant_new: format string `r` expects tuple-typed "
4067 "GVariant, but received value has type `%s'",
4068 g_variant_get_type_string (ptr));
4070 return ptr;
4072 case 'v':
4073 return g_variant_new_variant (ptr);
4075 default:
4076 g_assert_not_reached ();
4080 static gpointer
4081 g_variant_valist_get_nnp (const gchar **str,
4082 GVariant *value)
4084 switch (*(*str)++)
4086 case 'a':
4087 g_variant_type_string_scan (*str, NULL, str);
4088 return g_variant_iter_new (value);
4090 case '&':
4091 (*str)++;
4092 return (gchar *) g_variant_get_string (value, NULL);
4094 case 's':
4095 case 'o':
4096 case 'g':
4097 return g_variant_dup_string (value, NULL);
4099 case '^':
4101 gboolean constant;
4102 guint arrays;
4103 gchar type;
4105 type = g_variant_scan_convenience (str, &constant, &arrays);
4107 if (type == 's')
4109 if (constant)
4110 return g_variant_get_strv (value, NULL);
4111 else
4112 return g_variant_dup_strv (value, NULL);
4115 else if (type == 'o')
4117 if (constant)
4118 return g_variant_get_objv (value, NULL);
4119 else
4120 return g_variant_dup_objv (value, NULL);
4123 else if (arrays > 1)
4125 if (constant)
4126 return g_variant_get_bytestring_array (value, NULL);
4127 else
4128 return g_variant_dup_bytestring_array (value, NULL);
4131 else
4133 if (constant)
4134 return (gchar *) g_variant_get_bytestring (value);
4135 else
4136 return g_variant_dup_bytestring (value, NULL);
4140 case '@':
4141 g_variant_type_string_scan (*str, NULL, str);
4142 /* fall through */
4144 case '*':
4145 case '?':
4146 case 'r':
4147 return g_variant_ref (value);
4149 case 'v':
4150 return g_variant_get_variant (value);
4152 default:
4153 g_assert_not_reached ();
4157 /* Leaves {{{2 */
4158 static void
4159 g_variant_valist_skip_leaf (const gchar **str,
4160 va_list *app)
4162 if (g_variant_format_string_is_nnp (*str))
4164 g_variant_format_string_scan (*str, NULL, str);
4165 va_arg (*app, gpointer);
4166 return;
4169 switch (*(*str)++)
4171 case 'b':
4172 case 'y':
4173 case 'n':
4174 case 'q':
4175 case 'i':
4176 case 'u':
4177 case 'h':
4178 va_arg (*app, int);
4179 return;
4181 case 'x':
4182 case 't':
4183 va_arg (*app, guint64);
4184 return;
4186 case 'd':
4187 va_arg (*app, gdouble);
4188 return;
4190 default:
4191 g_assert_not_reached ();
4195 static GVariant *
4196 g_variant_valist_new_leaf (const gchar **str,
4197 va_list *app)
4199 if (g_variant_format_string_is_nnp (*str))
4200 return g_variant_valist_new_nnp (str, va_arg (*app, gpointer));
4202 switch (*(*str)++)
4204 case 'b':
4205 return g_variant_new_boolean (va_arg (*app, gboolean));
4207 case 'y':
4208 return g_variant_new_byte (va_arg (*app, guint));
4210 case 'n':
4211 return g_variant_new_int16 (va_arg (*app, gint));
4213 case 'q':
4214 return g_variant_new_uint16 (va_arg (*app, guint));
4216 case 'i':
4217 return g_variant_new_int32 (va_arg (*app, gint));
4219 case 'u':
4220 return g_variant_new_uint32 (va_arg (*app, guint));
4222 case 'x':
4223 return g_variant_new_int64 (va_arg (*app, gint64));
4225 case 't':
4226 return g_variant_new_uint64 (va_arg (*app, guint64));
4228 case 'h':
4229 return g_variant_new_handle (va_arg (*app, gint));
4231 case 'd':
4232 return g_variant_new_double (va_arg (*app, gdouble));
4234 default:
4235 g_assert_not_reached ();
4239 /* The code below assumes this */
4240 G_STATIC_ASSERT (sizeof (gboolean) == sizeof (guint32));
4241 G_STATIC_ASSERT (sizeof (gdouble) == sizeof (guint64));
4243 static void
4244 g_variant_valist_get_leaf (const gchar **str,
4245 GVariant *value,
4246 gboolean free,
4247 va_list *app)
4249 gpointer ptr = va_arg (*app, gpointer);
4251 if (ptr == NULL)
4253 g_variant_format_string_scan (*str, NULL, str);
4254 return;
4257 if (g_variant_format_string_is_nnp (*str))
4259 gpointer *nnp = (gpointer *) ptr;
4261 if (free && *nnp != NULL)
4262 g_variant_valist_free_nnp (*str, *nnp);
4264 *nnp = NULL;
4266 if (value != NULL)
4267 *nnp = g_variant_valist_get_nnp (str, value);
4268 else
4269 g_variant_format_string_scan (*str, NULL, str);
4271 return;
4274 if (value != NULL)
4276 switch (*(*str)++)
4278 case 'b':
4279 *(gboolean *) ptr = g_variant_get_boolean (value);
4280 return;
4282 case 'y':
4283 *(guchar *) ptr = g_variant_get_byte (value);
4284 return;
4286 case 'n':
4287 *(gint16 *) ptr = g_variant_get_int16 (value);
4288 return;
4290 case 'q':
4291 *(guint16 *) ptr = g_variant_get_uint16 (value);
4292 return;
4294 case 'i':
4295 *(gint32 *) ptr = g_variant_get_int32 (value);
4296 return;
4298 case 'u':
4299 *(guint32 *) ptr = g_variant_get_uint32 (value);
4300 return;
4302 case 'x':
4303 *(gint64 *) ptr = g_variant_get_int64 (value);
4304 return;
4306 case 't':
4307 *(guint64 *) ptr = g_variant_get_uint64 (value);
4308 return;
4310 case 'h':
4311 *(gint32 *) ptr = g_variant_get_handle (value);
4312 return;
4314 case 'd':
4315 *(gdouble *) ptr = g_variant_get_double (value);
4316 return;
4319 else
4321 switch (*(*str)++)
4323 case 'y':
4324 *(guchar *) ptr = 0;
4325 return;
4327 case 'n':
4328 case 'q':
4329 *(guint16 *) ptr = 0;
4330 return;
4332 case 'i':
4333 case 'u':
4334 case 'h':
4335 case 'b':
4336 *(guint32 *) ptr = 0;
4337 return;
4339 case 'x':
4340 case 't':
4341 case 'd':
4342 *(guint64 *) ptr = 0;
4343 return;
4347 g_assert_not_reached ();
4350 /* Generic (recursive) {{{2 */
4351 static void
4352 g_variant_valist_skip (const gchar **str,
4353 va_list *app)
4355 if (g_variant_format_string_is_leaf (*str))
4356 g_variant_valist_skip_leaf (str, app);
4358 else if (**str == 'm') /* maybe */
4360 (*str)++;
4362 if (!g_variant_format_string_is_nnp (*str))
4363 va_arg (*app, gboolean);
4365 g_variant_valist_skip (str, app);
4367 else /* tuple, dictionary entry */
4369 g_assert (**str == '(' || **str == '{');
4370 (*str)++;
4371 while (**str != ')' && **str != '}')
4372 g_variant_valist_skip (str, app);
4373 (*str)++;
4377 static GVariant *
4378 g_variant_valist_new (const gchar **str,
4379 va_list *app)
4381 if (g_variant_format_string_is_leaf (*str))
4382 return g_variant_valist_new_leaf (str, app);
4384 if (**str == 'm') /* maybe */
4386 GVariantType *type = NULL;
4387 GVariant *value = NULL;
4389 (*str)++;
4391 if (g_variant_format_string_is_nnp (*str))
4393 gpointer nnp = va_arg (*app, gpointer);
4395 if (nnp != NULL)
4396 value = g_variant_valist_new_nnp (str, nnp);
4397 else
4398 type = g_variant_format_string_scan_type (*str, NULL, str);
4400 else
4402 gboolean just = va_arg (*app, gboolean);
4404 if (just)
4405 value = g_variant_valist_new (str, app);
4406 else
4408 type = g_variant_format_string_scan_type (*str, NULL, NULL);
4409 g_variant_valist_skip (str, app);
4413 value = g_variant_new_maybe (type, value);
4415 if (type != NULL)
4416 g_variant_type_free (type);
4418 return value;
4420 else /* tuple, dictionary entry */
4422 GVariantBuilder b;
4424 if (**str == '(')
4425 g_variant_builder_init (&b, G_VARIANT_TYPE_TUPLE);
4426 else
4428 g_assert (**str == '{');
4429 g_variant_builder_init (&b, G_VARIANT_TYPE_DICT_ENTRY);
4432 (*str)++; /* '(' */
4433 while (**str != ')' && **str != '}')
4434 g_variant_builder_add_value (&b, g_variant_valist_new (str, app));
4435 (*str)++; /* ')' */
4437 return g_variant_builder_end (&b);
4441 static void
4442 g_variant_valist_get (const gchar **str,
4443 GVariant *value,
4444 gboolean free,
4445 va_list *app)
4447 if (g_variant_format_string_is_leaf (*str))
4448 g_variant_valist_get_leaf (str, value, free, app);
4450 else if (**str == 'm')
4452 (*str)++;
4454 if (value != NULL)
4455 value = g_variant_get_maybe (value);
4457 if (!g_variant_format_string_is_nnp (*str))
4459 gboolean *ptr = va_arg (*app, gboolean *);
4461 if (ptr != NULL)
4462 *ptr = value != NULL;
4465 g_variant_valist_get (str, value, free, app);
4467 if (value != NULL)
4468 g_variant_unref (value);
4471 else /* tuple, dictionary entry */
4473 gint index = 0;
4475 g_assert (**str == '(' || **str == '{');
4477 (*str)++;
4478 while (**str != ')' && **str != '}')
4480 if (value != NULL)
4482 GVariant *child = g_variant_get_child_value (value, index++);
4483 g_variant_valist_get (str, child, free, app);
4484 g_variant_unref (child);
4486 else
4487 g_variant_valist_get (str, NULL, free, app);
4489 (*str)++;
4493 /* User-facing API {{{2 */
4495 * g_variant_new: (skip)
4496 * @format_string: a #GVariant format string
4497 * @...: arguments, as per @format_string
4499 * Creates a new #GVariant instance.
4501 * Think of this function as an analogue to g_strdup_printf().
4503 * The type of the created instance and the arguments that are
4504 * expected by this function are determined by @format_string. See the
4505 * section on <link linkend='gvariant-format-strings'>GVariant Format
4506 * Strings</link>. Please note that the syntax of the format string is
4507 * very likely to be extended in the future.
4509 * The first character of the format string must not be '*' '?' '@' or
4510 * 'r'; in essence, a new #GVariant must always be constructed by this
4511 * function (and not merely passed through it unmodified).
4513 * Returns: a new floating #GVariant instance
4515 * Since: 2.24
4517 GVariant *
4518 g_variant_new (const gchar *format_string,
4519 ...)
4521 GVariant *value;
4522 va_list ap;
4524 g_return_val_if_fail (valid_format_string (format_string, TRUE, NULL) &&
4525 format_string[0] != '?' && format_string[0] != '@' &&
4526 format_string[0] != '*' && format_string[0] != 'r',
4527 NULL);
4529 va_start (ap, format_string);
4530 value = g_variant_new_va (format_string, NULL, &ap);
4531 va_end (ap);
4533 return value;
4537 * g_variant_new_va: (skip)
4538 * @format_string: a string that is prefixed with a format string
4539 * @endptr: (allow-none) (default NULL): location to store the end pointer,
4540 * or %NULL
4541 * @app: a pointer to a #va_list
4543 * This function is intended to be used by libraries based on
4544 * #GVariant that want to provide g_variant_new()-like functionality
4545 * to their users.
4547 * The API is more general than g_variant_new() to allow a wider range
4548 * of possible uses.
4550 * @format_string must still point to a valid format string, but it only
4551 * needs to be nul-terminated if @endptr is %NULL. If @endptr is
4552 * non-%NULL then it is updated to point to the first character past the
4553 * end of the format string.
4555 * @app is a pointer to a #va_list. The arguments, according to
4556 * @format_string, are collected from this #va_list and the list is left
4557 * pointing to the argument following the last.
4559 * These two generalisations allow mixing of multiple calls to
4560 * g_variant_new_va() and g_variant_get_va() within a single actual
4561 * varargs call by the user.
4563 * The return value will be floating if it was a newly created GVariant
4564 * instance (for example, if the format string was "(ii)"). In the case
4565 * that the format_string was '*', '?', 'r', or a format starting with
4566 * '@' then the collected #GVariant pointer will be returned unmodified,
4567 * without adding any additional references.
4569 * In order to behave correctly in all cases it is necessary for the
4570 * calling function to g_variant_ref_sink() the return result before
4571 * returning control to the user that originally provided the pointer.
4572 * At this point, the caller will have their own full reference to the
4573 * result. This can also be done by adding the result to a container,
4574 * or by passing it to another g_variant_new() call.
4576 * Returns: a new, usually floating, #GVariant
4578 * Since: 2.24
4580 GVariant *
4581 g_variant_new_va (const gchar *format_string,
4582 const gchar **endptr,
4583 va_list *app)
4585 GVariant *value;
4587 g_return_val_if_fail (valid_format_string (format_string, !endptr, NULL),
4588 NULL);
4589 g_return_val_if_fail (app != NULL, NULL);
4591 value = g_variant_valist_new (&format_string, app);
4593 if (endptr != NULL)
4594 *endptr = format_string;
4596 return value;
4600 * g_variant_get: (skip)
4601 * @value: a #GVariant instance
4602 * @format_string: a #GVariant format string
4603 * @...: arguments, as per @format_string
4605 * Deconstructs a #GVariant instance.
4607 * Think of this function as an analogue to scanf().
4609 * The arguments that are expected by this function are entirely
4610 * determined by @format_string. @format_string also restricts the
4611 * permissible types of @value. It is an error to give a value with
4612 * an incompatible type. See the section on <link
4613 * linkend='gvariant-format-strings'>GVariant Format Strings</link>.
4614 * Please note that the syntax of the format string is very likely to be
4615 * extended in the future.
4617 * Since: 2.24
4619 void
4620 g_variant_get (GVariant *value,
4621 const gchar *format_string,
4622 ...)
4624 va_list ap;
4626 g_return_if_fail (valid_format_string (format_string, TRUE, value));
4628 /* if any direct-pointer-access formats are in use, flatten first */
4629 if (strchr (format_string, '&'))
4630 g_variant_get_data (value);
4632 va_start (ap, format_string);
4633 g_variant_get_va (value, format_string, NULL, &ap);
4634 va_end (ap);
4638 * g_variant_get_va: (skip)
4639 * @value: a #GVariant
4640 * @format_string: a string that is prefixed with a format string
4641 * @endptr: (allow-none) (default NULL): location to store the end pointer,
4642 * or %NULL
4643 * @app: a pointer to a #va_list
4645 * This function is intended to be used by libraries based on #GVariant
4646 * that want to provide g_variant_get()-like functionality to their
4647 * users.
4649 * The API is more general than g_variant_get() to allow a wider range
4650 * of possible uses.
4652 * @format_string must still point to a valid format string, but it only
4653 * need to be nul-terminated if @endptr is %NULL. If @endptr is
4654 * non-%NULL then it is updated to point to the first character past the
4655 * end of the format string.
4657 * @app is a pointer to a #va_list. The arguments, according to
4658 * @format_string, are collected from this #va_list and the list is left
4659 * pointing to the argument following the last.
4661 * These two generalisations allow mixing of multiple calls to
4662 * g_variant_new_va() and g_variant_get_va() within a single actual
4663 * varargs call by the user.
4665 * Since: 2.24
4667 void
4668 g_variant_get_va (GVariant *value,
4669 const gchar *format_string,
4670 const gchar **endptr,
4671 va_list *app)
4673 g_return_if_fail (valid_format_string (format_string, !endptr, value));
4674 g_return_if_fail (value != NULL);
4675 g_return_if_fail (app != NULL);
4677 /* if any direct-pointer-access formats are in use, flatten first */
4678 if (strchr (format_string, '&'))
4679 g_variant_get_data (value);
4681 g_variant_valist_get (&format_string, value, FALSE, app);
4683 if (endptr != NULL)
4684 *endptr = format_string;
4687 /* Varargs-enabled Utility Functions {{{1 */
4690 * g_variant_builder_add: (skp)
4691 * @builder: a #GVariantBuilder
4692 * @format_string: a #GVariant varargs format string
4693 * @...: arguments, as per @format_string
4695 * Adds to a #GVariantBuilder.
4697 * This call is a convenience wrapper that is exactly equivalent to
4698 * calling g_variant_new() followed by g_variant_builder_add_value().
4700 * This function might be used as follows:
4702 * <programlisting>
4703 * GVariant *
4704 * make_pointless_dictionary (void)
4706 * GVariantBuilder *builder;
4707 * int i;
4709 * builder = g_variant_builder_new (G_VARIANT_TYPE_ARRAY);
4710 * for (i = 0; i < 16; i++)
4712 * gchar buf[3];
4714 * sprintf (buf, "%d", i);
4715 * g_variant_builder_add (builder, "{is}", i, buf);
4718 * return g_variant_builder_end (builder);
4720 * </programlisting>
4722 * Since: 2.24
4724 void
4725 g_variant_builder_add (GVariantBuilder *builder,
4726 const gchar *format_string,
4727 ...)
4729 GVariant *variant;
4730 va_list ap;
4732 va_start (ap, format_string);
4733 variant = g_variant_new_va (format_string, NULL, &ap);
4734 va_end (ap);
4736 g_variant_builder_add_value (builder, variant);
4740 * g_variant_get_child: (skip)
4741 * @value: a container #GVariant
4742 * @index_: the index of the child to deconstruct
4743 * @format_string: a #GVariant format string
4744 * @...: arguments, as per @format_string
4746 * Reads a child item out of a container #GVariant instance and
4747 * deconstructs it according to @format_string. This call is
4748 * essentially a combination of g_variant_get_child_value() and
4749 * g_variant_get().
4751 * Since: 2.24
4753 void
4754 g_variant_get_child (GVariant *value,
4755 gsize index_,
4756 const gchar *format_string,
4757 ...)
4759 GVariant *child;
4760 va_list ap;
4762 child = g_variant_get_child_value (value, index_);
4763 g_return_if_fail (valid_format_string (format_string, TRUE, child));
4765 va_start (ap, format_string);
4766 g_variant_get_va (child, format_string, NULL, &ap);
4767 va_end (ap);
4769 g_variant_unref (child);
4773 * g_variant_iter_next: (skip)
4774 * @iter: a #GVariantIter
4775 * @format_string: a GVariant format string
4776 * @...: the arguments to unpack the value into
4778 * Gets the next item in the container and unpacks it into the variable
4779 * argument list according to @format_string, returning %TRUE.
4781 * If no more items remain then %FALSE is returned.
4783 * All of the pointers given on the variable arguments list of this
4784 * function are assumed to point at uninitialised memory. It is the
4785 * responsibility of the caller to free all of the values returned by
4786 * the unpacking process.
4788 * See the section on <link linkend='gvariant-format-strings'>GVariant
4789 * Format Strings</link>.
4791 * <example>
4792 * <title>Memory management with g_variant_iter_next()</title>
4793 * <programlisting>
4794 * /<!-- -->* Iterates a dictionary of type 'a{sv}' *<!-- -->/
4795 * void
4796 * iterate_dictionary (GVariant *dictionary)
4798 * GVariantIter iter;
4799 * GVariant *value;
4800 * gchar *key;
4802 * g_variant_iter_init (&iter, dictionary);
4803 * while (g_variant_iter_next (&iter, "{sv}", &key, &value))
4805 * g_print ("Item '%s' has type '%s'\n", key,
4806 * g_variant_get_type_string (value));
4808 * /<!-- -->* must free data for ourselves *<!-- -->/
4809 * g_variant_unref (value);
4810 * g_free (key);
4813 * </programlisting>
4814 * </example>
4816 * For a solution that is likely to be more convenient to C programmers
4817 * when dealing with loops, see g_variant_iter_loop().
4819 * Returns: %TRUE if a value was unpacked, or %FALSE if there as no value
4821 * Since: 2.24
4823 gboolean
4824 g_variant_iter_next (GVariantIter *iter,
4825 const gchar *format_string,
4826 ...)
4828 GVariant *value;
4830 value = g_variant_iter_next_value (iter);
4832 g_return_val_if_fail (valid_format_string (format_string, TRUE, value),
4833 FALSE);
4835 if (value != NULL)
4837 va_list ap;
4839 va_start (ap, format_string);
4840 g_variant_valist_get (&format_string, value, FALSE, &ap);
4841 va_end (ap);
4843 g_variant_unref (value);
4846 return value != NULL;
4850 * g_variant_iter_loop: (skip)
4851 * @iter: a #GVariantIter
4852 * @format_string: a GVariant format string
4853 * @...: the arguments to unpack the value into
4855 * Gets the next item in the container and unpacks it into the variable
4856 * argument list according to @format_string, returning %TRUE.
4858 * If no more items remain then %FALSE is returned.
4860 * On the first call to this function, the pointers appearing on the
4861 * variable argument list are assumed to point at uninitialised memory.
4862 * On the second and later calls, it is assumed that the same pointers
4863 * will be given and that they will point to the memory as set by the
4864 * previous call to this function. This allows the previous values to
4865 * be freed, as appropriate.
4867 * This function is intended to be used with a while loop as
4868 * demonstrated in the following example. This function can only be
4869 * used when iterating over an array. It is only valid to call this
4870 * function with a string constant for the format string and the same
4871 * string constant must be used each time. Mixing calls to this
4872 * function and g_variant_iter_next() or g_variant_iter_next_value() on
4873 * the same iterator causes undefined behavior.
4875 * If you break out of a such a while loop using g_variant_iter_loop() then
4876 * you must free or unreference all the unpacked values as you would with
4877 * g_variant_get(). Failure to do so will cause a memory leak.
4879 * See the section on <link linkend='gvariant-format-strings'>GVariant
4880 * Format Strings</link>.
4882 * <example>
4883 * <title>Memory management with g_variant_iter_loop()</title>
4884 * <programlisting>
4885 * /<!-- -->* Iterates a dictionary of type 'a{sv}' *<!-- -->/
4886 * void
4887 * iterate_dictionary (GVariant *dictionary)
4889 * GVariantIter iter;
4890 * GVariant *value;
4891 * gchar *key;
4893 * g_variant_iter_init (&iter, dictionary);
4894 * while (g_variant_iter_loop (&iter, "{sv}", &key, &value))
4896 * g_print ("Item '%s' has type '%s'\n", key,
4897 * g_variant_get_type_string (value));
4899 * /<!-- -->* no need to free 'key' and 'value' here *<!-- -->/
4900 * /<!-- -->* unless breaking out of this loop *<!-- -->/
4903 * </programlisting>
4904 * </example>
4906 * For most cases you should use g_variant_iter_next().
4908 * This function is really only useful when unpacking into #GVariant or
4909 * #GVariantIter in order to allow you to skip the call to
4910 * g_variant_unref() or g_variant_iter_free().
4912 * For example, if you are only looping over simple integer and string
4913 * types, g_variant_iter_next() is definitely preferred. For string
4914 * types, use the '&' prefix to avoid allocating any memory at all (and
4915 * thereby avoiding the need to free anything as well).
4917 * Returns: %TRUE if a value was unpacked, or %FALSE if there was no
4918 * value
4920 * Since: 2.24
4922 gboolean
4923 g_variant_iter_loop (GVariantIter *iter,
4924 const gchar *format_string,
4925 ...)
4927 gboolean first_time = GVSI(iter)->loop_format == NULL;
4928 GVariant *value;
4929 va_list ap;
4931 g_return_val_if_fail (first_time ||
4932 format_string == GVSI(iter)->loop_format,
4933 FALSE);
4935 if (first_time)
4937 TYPE_CHECK (GVSI(iter)->value, G_VARIANT_TYPE_ARRAY, FALSE);
4938 GVSI(iter)->loop_format = format_string;
4940 if (strchr (format_string, '&'))
4941 g_variant_get_data (GVSI(iter)->value);
4944 value = g_variant_iter_next_value (iter);
4946 g_return_val_if_fail (!first_time ||
4947 valid_format_string (format_string, TRUE, value),
4948 FALSE);
4950 va_start (ap, format_string);
4951 g_variant_valist_get (&format_string, value, !first_time, &ap);
4952 va_end (ap);
4954 if (value != NULL)
4955 g_variant_unref (value);
4957 return value != NULL;
4960 /* Serialised data {{{1 */
4961 static GVariant *
4962 g_variant_deep_copy (GVariant *value)
4964 switch (g_variant_classify (value))
4966 case G_VARIANT_CLASS_MAYBE:
4967 case G_VARIANT_CLASS_ARRAY:
4968 case G_VARIANT_CLASS_TUPLE:
4969 case G_VARIANT_CLASS_DICT_ENTRY:
4970 case G_VARIANT_CLASS_VARIANT:
4972 GVariantBuilder builder;
4973 GVariantIter iter;
4974 GVariant *child;
4976 g_variant_builder_init (&builder, g_variant_get_type (value));
4977 g_variant_iter_init (&iter, value);
4979 while ((child = g_variant_iter_next_value (&iter)))
4981 g_variant_builder_add_value (&builder, g_variant_deep_copy (child));
4982 g_variant_unref (child);
4985 return g_variant_builder_end (&builder);
4988 case G_VARIANT_CLASS_BOOLEAN:
4989 return g_variant_new_boolean (g_variant_get_boolean (value));
4991 case G_VARIANT_CLASS_BYTE:
4992 return g_variant_new_byte (g_variant_get_byte (value));
4994 case G_VARIANT_CLASS_INT16:
4995 return g_variant_new_int16 (g_variant_get_int16 (value));
4997 case G_VARIANT_CLASS_UINT16:
4998 return g_variant_new_uint16 (g_variant_get_uint16 (value));
5000 case G_VARIANT_CLASS_INT32:
5001 return g_variant_new_int32 (g_variant_get_int32 (value));
5003 case G_VARIANT_CLASS_UINT32:
5004 return g_variant_new_uint32 (g_variant_get_uint32 (value));
5006 case G_VARIANT_CLASS_INT64:
5007 return g_variant_new_int64 (g_variant_get_int64 (value));
5009 case G_VARIANT_CLASS_UINT64:
5010 return g_variant_new_uint64 (g_variant_get_uint64 (value));
5012 case G_VARIANT_CLASS_HANDLE:
5013 return g_variant_new_handle (g_variant_get_handle (value));
5015 case G_VARIANT_CLASS_DOUBLE:
5016 return g_variant_new_double (g_variant_get_double (value));
5018 case G_VARIANT_CLASS_STRING:
5019 return g_variant_new_string (g_variant_get_string (value, NULL));
5021 case G_VARIANT_CLASS_OBJECT_PATH:
5022 return g_variant_new_object_path (g_variant_get_string (value, NULL));
5024 case G_VARIANT_CLASS_SIGNATURE:
5025 return g_variant_new_signature (g_variant_get_string (value, NULL));
5028 g_assert_not_reached ();
5032 * g_variant_get_normal_form:
5033 * @value: a #GVariant
5035 * Gets a #GVariant instance that has the same value as @value and is
5036 * trusted to be in normal form.
5038 * If @value is already trusted to be in normal form then a new
5039 * reference to @value is returned.
5041 * If @value is not already trusted, then it is scanned to check if it
5042 * is in normal form. If it is found to be in normal form then it is
5043 * marked as trusted and a new reference to it is returned.
5045 * If @value is found not to be in normal form then a new trusted
5046 * #GVariant is created with the same value as @value.
5048 * It makes sense to call this function if you've received #GVariant
5049 * data from untrusted sources and you want to ensure your serialised
5050 * output is definitely in normal form.
5052 * Returns: (transfer full): a trusted #GVariant
5054 * Since: 2.24
5056 GVariant *
5057 g_variant_get_normal_form (GVariant *value)
5059 GVariant *trusted;
5061 if (g_variant_is_normal_form (value))
5062 return g_variant_ref (value);
5064 trusted = g_variant_deep_copy (value);
5065 g_assert (g_variant_is_trusted (trusted));
5067 return g_variant_ref_sink (trusted);
5071 * g_variant_byteswap:
5072 * @value: a #GVariant
5074 * Performs a byteswapping operation on the contents of @value. The
5075 * result is that all multi-byte numeric data contained in @value is
5076 * byteswapped. That includes 16, 32, and 64bit signed and unsigned
5077 * integers as well as file handles and double precision floating point
5078 * values.
5080 * This function is an identity mapping on any value that does not
5081 * contain multi-byte numeric data. That include strings, booleans,
5082 * bytes and containers containing only these things (recursively).
5084 * The returned value is always in normal form and is marked as trusted.
5086 * Returns: (transfer full): the byteswapped form of @value
5088 * Since: 2.24
5090 GVariant *
5091 g_variant_byteswap (GVariant *value)
5093 GVariantTypeInfo *type_info;
5094 guint alignment;
5095 GVariant *new;
5097 type_info = g_variant_get_type_info (value);
5099 g_variant_type_info_query (type_info, &alignment, NULL);
5101 if (alignment)
5102 /* (potentially) contains multi-byte numeric data */
5104 GVariantSerialised serialised;
5105 GVariant *trusted;
5106 GBytes *bytes;
5108 trusted = g_variant_get_normal_form (value);
5109 serialised.type_info = g_variant_get_type_info (trusted);
5110 serialised.size = g_variant_get_size (trusted);
5111 serialised.data = g_malloc (serialised.size);
5112 g_variant_store (trusted, serialised.data);
5113 g_variant_unref (trusted);
5115 g_variant_serialised_byteswap (serialised);
5117 bytes = g_bytes_new_take (serialised.data, serialised.size);
5118 new = g_variant_new_from_bytes (g_variant_get_type (value), bytes, TRUE);
5119 g_bytes_unref (bytes);
5121 else
5122 /* contains no multi-byte data */
5123 new = value;
5125 return g_variant_ref_sink (new);
5129 * g_variant_new_from_data:
5130 * @type: a definite #GVariantType
5131 * @data: (array length=size) (element-type guint8): the serialised data
5132 * @size: the size of @data
5133 * @trusted: %TRUE if @data is definitely in normal form
5134 * @notify: (scope async): function to call when @data is no longer needed
5135 * @user_data: data for @notify
5137 * Creates a new #GVariant instance from serialised data.
5139 * @type is the type of #GVariant instance that will be constructed.
5140 * The interpretation of @data depends on knowing the type.
5142 * @data is not modified by this function and must remain valid with an
5143 * unchanging value until such a time as @notify is called with
5144 * @user_data. If the contents of @data change before that time then
5145 * the result is undefined.
5147 * If @data is trusted to be serialised data in normal form then
5148 * @trusted should be %TRUE. This applies to serialised data created
5149 * within this process or read from a trusted location on the disk (such
5150 * as a file installed in /usr/lib alongside your application). You
5151 * should set trusted to %FALSE if @data is read from the network, a
5152 * file in the user's home directory, etc.
5154 * If @data was not stored in this machine's native endianness, any multi-byte
5155 * numeric values in the returned variant will also be in non-native
5156 * endianness. g_variant_byteswap() can be used to recover the original values.
5158 * @notify will be called with @user_data when @data is no longer
5159 * needed. The exact time of this call is unspecified and might even be
5160 * before this function returns.
5162 * Returns: (transfer none): a new floating #GVariant of type @type
5164 * Since: 2.24
5166 GVariant *
5167 g_variant_new_from_data (const GVariantType *type,
5168 gconstpointer data,
5169 gsize size,
5170 gboolean trusted,
5171 GDestroyNotify notify,
5172 gpointer user_data)
5174 GVariant *value;
5175 GBytes *bytes;
5177 g_return_val_if_fail (g_variant_type_is_definite (type), NULL);
5178 g_return_val_if_fail (data != NULL || size == 0, NULL);
5180 if (notify)
5181 bytes = g_bytes_new_with_free_func (data, size, notify, user_data);
5182 else
5183 bytes = g_bytes_new_static (data, size);
5185 value = g_variant_new_from_bytes (type, bytes, trusted);
5186 g_bytes_unref (bytes);
5188 return value;
5191 /* Epilogue {{{1 */
5192 /* vim:set foldmethod=marker: */