1 /* GObject - GLib Type, Object, Parameter and Signal Library
2 * Copyright (C) 1998-1999, 2000-2001 Tim Janik and Red Hat, Inc.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General
15 * Public License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 * MT safe with regards to reference counting.
28 #include "gtype-private.h"
29 #include "gvaluecollector.h"
31 #include "gparamspecs.h"
32 #include "gvaluetypes.h"
33 #include "gobject_trace.h"
34 #include "gconstructor.h"
39 * @short_description: The base object type
40 * @see_also: #GParamSpecObject, g_param_spec_object()
42 * GObject is the fundamental type providing the common attributes and
43 * methods for all object types in GTK+, Pango and other libraries
44 * based on GObject. The GObject class provides methods for object
45 * construction and destruction, property access methods, and signal
46 * support. Signals are described in detail [here][gobject-Signals].
48 * For a tutorial on implementing a new GObject class, see [How to define and
49 * implement a new GObject][howto-gobject]. For a list of naming conventions for
50 * GObjects and their methods, see the [GType conventions][gtype-conventions].
51 * For the high-level concepts behind GObject, read [Instantiable classed types:
52 * Objects][gtype-instantiable-classed].
54 * ## Floating references # {#floating-ref}
56 * GInitiallyUnowned is derived from GObject. The only difference between
57 * the two is that the initial reference of a GInitiallyUnowned is flagged
58 * as a "floating" reference. This means that it is not specifically
59 * claimed to be "owned" by any code portion. The main motivation for
60 * providing floating references is C convenience. In particular, it
61 * allows code to be written as:
62 * |[<!-- language="C" -->
63 * container = create_container ();
64 * container_add_child (container, create_child());
66 * If container_add_child() calls g_object_ref_sink() on the passed-in child,
67 * no reference of the newly created child is leaked. Without floating
68 * references, container_add_child() can only g_object_ref() the new child,
69 * so to implement this code without reference leaks, it would have to be
71 * |[<!-- language="C" -->
73 * container = create_container ();
74 * child = create_child ();
75 * container_add_child (container, child);
76 * g_object_unref (child);
78 * The floating reference can be converted into an ordinary reference by
79 * calling g_object_ref_sink(). For already sunken objects (objects that
80 * don't have a floating reference anymore), g_object_ref_sink() is equivalent
81 * to g_object_ref() and returns a new reference.
83 * Since floating references are useful almost exclusively for C convenience,
84 * language bindings that provide automated reference and memory ownership
85 * maintenance (such as smart pointers or garbage collection) should not
86 * expose floating references in their API.
88 * Some object implementations may need to save an objects floating state
89 * across certain code portions (an example is #GtkMenu), to achieve this,
90 * the following sequence can be used:
92 * |[<!-- language="C" -->
93 * // save floating state
94 * gboolean was_floating = g_object_is_floating (object);
95 * g_object_ref_sink (object);
96 * // protected code portion
100 * // restore floating state
102 * g_object_force_floating (object);
104 * g_object_unref (object); // release previously acquired reference
110 #define PARAM_SPEC_PARAM_ID(pspec) ((pspec)->param_id)
111 #define PARAM_SPEC_SET_PARAM_ID(pspec, id) ((pspec)->param_id = (id))
113 #define OBJECT_HAS_TOGGLE_REF_FLAG 0x1
114 #define OBJECT_HAS_TOGGLE_REF(object) \
115 ((g_datalist_get_flags (&(object)->qdata) & OBJECT_HAS_TOGGLE_REF_FLAG) != 0)
116 #define OBJECT_FLOATING_FLAG 0x2
118 #define CLASS_HAS_PROPS_FLAG 0x1
119 #define CLASS_HAS_PROPS(class) \
120 ((class)->flags & CLASS_HAS_PROPS_FLAG)
121 #define CLASS_HAS_CUSTOM_CONSTRUCTOR(class) \
122 ((class)->constructor != g_object_constructor)
123 #define CLASS_HAS_CUSTOM_CONSTRUCTED(class) \
124 ((class)->constructed != g_object_constructed)
126 #define CLASS_HAS_DERIVED_CLASS_FLAG 0x2
127 #define CLASS_HAS_DERIVED_CLASS(class) \
128 ((class)->flags & CLASS_HAS_DERIVED_CLASS_FLAG)
130 /* --- signals --- */
137 /* --- properties --- */
143 /* --- prototypes --- */
144 static void g_object_base_class_init (GObjectClass
*class);
145 static void g_object_base_class_finalize (GObjectClass
*class);
146 static void g_object_do_class_init (GObjectClass
*class);
147 static void g_object_init (GObject
*object
,
148 GObjectClass
*class);
149 static GObject
* g_object_constructor (GType type
,
150 guint n_construct_properties
,
151 GObjectConstructParam
*construct_params
);
152 static void g_object_constructed (GObject
*object
);
153 static void g_object_real_dispose (GObject
*object
);
154 static void g_object_finalize (GObject
*object
);
155 static void g_object_do_set_property (GObject
*object
,
159 static void g_object_do_get_property (GObject
*object
,
163 static void g_value_object_init (GValue
*value
);
164 static void g_value_object_free_value (GValue
*value
);
165 static void g_value_object_copy_value (const GValue
*src_value
,
167 static void g_value_object_transform_value (const GValue
*src_value
,
169 static gpointer
g_value_object_peek_pointer (const GValue
*value
);
170 static gchar
* g_value_object_collect_value (GValue
*value
,
171 guint n_collect_values
,
172 GTypeCValue
*collect_values
,
173 guint collect_flags
);
174 static gchar
* g_value_object_lcopy_value (const GValue
*value
,
175 guint n_collect_values
,
176 GTypeCValue
*collect_values
,
177 guint collect_flags
);
178 static void g_object_dispatch_properties_changed (GObject
*object
,
180 GParamSpec
**pspecs
);
181 static guint
object_floating_flag_handler (GObject
*object
,
184 static void object_interface_check_properties (gpointer check_data
,
187 /* --- typedefs --- */
188 typedef struct _GObjectNotifyQueue GObjectNotifyQueue
;
190 struct _GObjectNotifyQueue
194 guint16 freeze_count
;
197 /* --- variables --- */
198 G_LOCK_DEFINE_STATIC (closure_array_mutex
);
199 G_LOCK_DEFINE_STATIC (weak_refs_mutex
);
200 G_LOCK_DEFINE_STATIC (toggle_refs_mutex
);
201 static GQuark quark_closure_array
= 0;
202 static GQuark quark_weak_refs
= 0;
203 static GQuark quark_toggle_refs
= 0;
204 static GQuark quark_notify_queue
;
205 static GQuark quark_in_construction
;
206 static GParamSpecPool
*pspec_pool
= NULL
;
207 static gulong gobject_signals
[LAST_SIGNAL
] = { 0, };
208 static guint (*floating_flag_handler
) (GObject
*, gint
) = object_floating_flag_handler
;
209 /* qdata pointing to GSList<GWeakRef *>, protected by weak_locations_lock */
210 static GQuark quark_weak_locations
= 0;
211 static GRWLock weak_locations_lock
;
213 G_LOCK_DEFINE_STATIC(notify_lock
);
215 /* --- functions --- */
217 g_object_notify_queue_free (gpointer data
)
219 GObjectNotifyQueue
*nqueue
= data
;
221 g_slist_free (nqueue
->pspecs
);
222 g_slice_free (GObjectNotifyQueue
, nqueue
);
225 static GObjectNotifyQueue
*
226 g_object_notify_queue_freeze (GObject
*object
,
227 gboolean conditional
)
229 GObjectNotifyQueue
*nqueue
;
232 nqueue
= g_datalist_id_get_data (&object
->qdata
, quark_notify_queue
);
237 G_UNLOCK(notify_lock
);
241 nqueue
= g_slice_new0 (GObjectNotifyQueue
);
242 g_datalist_id_set_data_full (&object
->qdata
, quark_notify_queue
,
243 nqueue
, g_object_notify_queue_free
);
246 if (nqueue
->freeze_count
>= 65535)
247 g_critical("Free queue for %s (%p) is larger than 65535,"
248 " called g_object_freeze_notify() too often."
249 " Forgot to call g_object_thaw_notify() or infinite loop",
250 G_OBJECT_TYPE_NAME (object
), object
);
252 nqueue
->freeze_count
++;
253 G_UNLOCK(notify_lock
);
259 g_object_notify_queue_thaw (GObject
*object
,
260 GObjectNotifyQueue
*nqueue
)
262 GParamSpec
*pspecs_mem
[16], **pspecs
, **free_me
= NULL
;
266 g_return_if_fail (nqueue
->freeze_count
> 0);
267 g_return_if_fail (g_atomic_int_get(&object
->ref_count
) > 0);
271 /* Just make sure we never get into some nasty race condition */
272 if (G_UNLIKELY(nqueue
->freeze_count
== 0)) {
273 G_UNLOCK(notify_lock
);
274 g_warning ("%s: property-changed notification for %s(%p) is not frozen",
275 G_STRFUNC
, G_OBJECT_TYPE_NAME (object
), object
);
279 nqueue
->freeze_count
--;
280 if (nqueue
->freeze_count
) {
281 G_UNLOCK(notify_lock
);
285 pspecs
= nqueue
->n_pspecs
> 16 ? free_me
= g_new (GParamSpec
*, nqueue
->n_pspecs
) : pspecs_mem
;
287 for (slist
= nqueue
->pspecs
; slist
; slist
= slist
->next
)
289 pspecs
[n_pspecs
++] = slist
->data
;
291 g_datalist_id_set_data (&object
->qdata
, quark_notify_queue
, NULL
);
293 G_UNLOCK(notify_lock
);
296 G_OBJECT_GET_CLASS (object
)->dispatch_properties_changed (object
, n_pspecs
, pspecs
);
301 g_object_notify_queue_add (GObject
*object
,
302 GObjectNotifyQueue
*nqueue
,
307 g_assert (nqueue
->n_pspecs
< 65535);
309 if (g_slist_find (nqueue
->pspecs
, pspec
) == NULL
)
311 nqueue
->pspecs
= g_slist_prepend (nqueue
->pspecs
, pspec
);
315 G_UNLOCK(notify_lock
);
318 #ifdef G_ENABLE_DEBUG
319 G_LOCK_DEFINE_STATIC (debug_objects
);
320 static guint debug_objects_count
= 0;
321 static GHashTable
*debug_objects_ht
= NULL
;
324 debug_objects_foreach (gpointer key
,
328 GObject
*object
= value
;
330 g_message ("[%p] stale %s\tref_count=%u",
332 G_OBJECT_TYPE_NAME (object
),
336 #ifdef G_HAS_CONSTRUCTORS
337 #ifdef G_DEFINE_DESTRUCTOR_NEEDS_PRAGMA
338 #pragma G_DEFINE_DESTRUCTOR_PRAGMA_ARGS(debug_objects_atexit)
340 G_DEFINE_DESTRUCTOR(debug_objects_atexit
)
341 #endif /* G_HAS_CONSTRUCTORS */
344 debug_objects_atexit (void)
346 GOBJECT_IF_DEBUG (OBJECTS
,
348 G_LOCK (debug_objects
);
349 g_message ("stale GObjects: %u", debug_objects_count
);
350 g_hash_table_foreach (debug_objects_ht
, debug_objects_foreach
, NULL
);
351 G_UNLOCK (debug_objects
);
354 #endif /* G_ENABLE_DEBUG */
357 _g_object_type_init (void)
359 static gboolean initialized
= FALSE
;
360 static const GTypeFundamentalInfo finfo
= {
361 G_TYPE_FLAG_CLASSED
| G_TYPE_FLAG_INSTANTIATABLE
| G_TYPE_FLAG_DERIVABLE
| G_TYPE_FLAG_DEEP_DERIVABLE
,
364 sizeof (GObjectClass
),
365 (GBaseInitFunc
) g_object_base_class_init
,
366 (GBaseFinalizeFunc
) g_object_base_class_finalize
,
367 (GClassInitFunc
) g_object_do_class_init
,
368 NULL
/* class_destroy */,
369 NULL
/* class_data */,
372 (GInstanceInitFunc
) g_object_init
,
373 NULL
, /* value_table */
375 static const GTypeValueTable value_table
= {
376 g_value_object_init
, /* value_init */
377 g_value_object_free_value
, /* value_free */
378 g_value_object_copy_value
, /* value_copy */
379 g_value_object_peek_pointer
, /* value_peek_pointer */
380 "p", /* collect_format */
381 g_value_object_collect_value
, /* collect_value */
382 "p", /* lcopy_format */
383 g_value_object_lcopy_value
, /* lcopy_value */
387 g_return_if_fail (initialized
== FALSE
);
392 info
.value_table
= &value_table
;
393 type
= g_type_register_fundamental (G_TYPE_OBJECT
, g_intern_static_string ("GObject"), &info
, &finfo
, 0);
394 g_assert (type
== G_TYPE_OBJECT
);
395 g_value_register_transform_func (G_TYPE_OBJECT
, G_TYPE_OBJECT
, g_value_object_transform_value
);
398 /* We cannot use GOBJECT_IF_DEBUG here because of the G_HAS_CONSTRUCTORS
399 * conditional in between, as the C spec leaves conditionals inside macro
400 * expansions as undefined behavior. Only GCC and Clang are known to work
401 * but compilation breaks on MSVC.
403 * See: https://bugzilla.gnome.org/show_bug.cgi?id=769504
405 if (_g_type_debug_flags
& G_TYPE_DEBUG_OBJECTS
) \
407 debug_objects_ht
= g_hash_table_new (g_direct_hash
, NULL
);
408 # ifndef G_HAS_CONSTRUCTORS
409 g_atexit (debug_objects_atexit
);
410 # endif /* G_HAS_CONSTRUCTORS */
412 #endif /* G_ENABLE_DEBUG */
416 g_object_base_class_init (GObjectClass
*class)
418 GObjectClass
*pclass
= g_type_class_peek_parent (class);
420 /* Don't inherit HAS_DERIVED_CLASS flag from parent class */
421 class->flags
&= ~CLASS_HAS_DERIVED_CLASS_FLAG
;
424 pclass
->flags
|= CLASS_HAS_DERIVED_CLASS_FLAG
;
426 /* reset instance specific fields and methods that don't get inherited */
427 class->construct_properties
= pclass
? g_slist_copy (pclass
->construct_properties
) : NULL
;
428 class->get_property
= NULL
;
429 class->set_property
= NULL
;
433 g_object_base_class_finalize (GObjectClass
*class)
437 _g_signals_destroy (G_OBJECT_CLASS_TYPE (class));
439 g_slist_free (class->construct_properties
);
440 class->construct_properties
= NULL
;
441 list
= g_param_spec_pool_list_owned (pspec_pool
, G_OBJECT_CLASS_TYPE (class));
442 for (node
= list
; node
; node
= node
->next
)
444 GParamSpec
*pspec
= node
->data
;
446 g_param_spec_pool_remove (pspec_pool
, pspec
);
447 PARAM_SPEC_SET_PARAM_ID (pspec
, 0);
448 g_param_spec_unref (pspec
);
454 g_object_do_class_init (GObjectClass
*class)
456 /* read the comment about typedef struct CArray; on why not to change this quark */
457 quark_closure_array
= g_quark_from_static_string ("GObject-closure-array");
459 quark_weak_refs
= g_quark_from_static_string ("GObject-weak-references");
460 quark_weak_locations
= g_quark_from_static_string ("GObject-weak-locations");
461 quark_toggle_refs
= g_quark_from_static_string ("GObject-toggle-references");
462 quark_notify_queue
= g_quark_from_static_string ("GObject-notify-queue");
463 quark_in_construction
= g_quark_from_static_string ("GObject-in-construction");
464 pspec_pool
= g_param_spec_pool_new (TRUE
);
466 class->constructor
= g_object_constructor
;
467 class->constructed
= g_object_constructed
;
468 class->set_property
= g_object_do_set_property
;
469 class->get_property
= g_object_do_get_property
;
470 class->dispose
= g_object_real_dispose
;
471 class->finalize
= g_object_finalize
;
472 class->dispatch_properties_changed
= g_object_dispatch_properties_changed
;
473 class->notify
= NULL
;
477 * @gobject: the object which received the signal.
478 * @pspec: the #GParamSpec of the property which changed.
480 * The notify signal is emitted on an object when one of its
481 * properties has been changed. Note that getting this signal
482 * doesn't guarantee that the value of the property has actually
483 * changed, it may also be emitted when the setter for the property
484 * is called to reinstate the previous value.
486 * This signal is typically used to obtain change notification for a
487 * single property, by specifying the property name as a detail in the
488 * g_signal_connect() call, like this:
489 * |[<!-- language="C" -->
490 * g_signal_connect (text_view->buffer, "notify::paste-target-list",
491 * G_CALLBACK (gtk_text_view_target_list_notify),
494 * It is important to note that you must use
495 * [canonical][canonical-parameter-name] parameter names as
496 * detail strings for the notify signal.
498 gobject_signals
[NOTIFY
] =
499 g_signal_new (g_intern_static_string ("notify"),
500 G_TYPE_FROM_CLASS (class),
501 G_SIGNAL_RUN_FIRST
| G_SIGNAL_NO_RECURSE
| G_SIGNAL_DETAILED
| G_SIGNAL_NO_HOOKS
| G_SIGNAL_ACTION
,
502 G_STRUCT_OFFSET (GObjectClass
, notify
),
504 g_cclosure_marshal_VOID__PARAM
,
508 /* Install a check function that we'll use to verify that classes that
509 * implement an interface implement all properties for that interface
511 g_type_add_interface_check (NULL
, object_interface_check_properties
);
515 install_property_internal (GType g_type
,
519 if (g_param_spec_pool_lookup (pspec_pool
, pspec
->name
, g_type
, FALSE
))
521 g_warning ("When installing property: type '%s' already has a property named '%s'",
522 g_type_name (g_type
),
527 g_param_spec_ref_sink (pspec
);
528 PARAM_SPEC_SET_PARAM_ID (pspec
, property_id
);
529 g_param_spec_pool_insert (pspec_pool
, pspec
, g_type
);
533 * g_object_class_install_property:
534 * @oclass: a #GObjectClass
535 * @property_id: the id for the new property
536 * @pspec: the #GParamSpec for the new property
538 * Installs a new property.
540 * All properties should be installed during the class initializer. It
541 * is possible to install properties after that, but doing so is not
542 * recommend, and specifically, is not guaranteed to be thread-safe vs.
543 * use of properties on the same type on other threads.
545 * Note that it is possible to redefine a property in a derived class,
546 * by installing a property with the same name. This can be useful at times,
547 * e.g. to change the range of allowed values or the default value.
550 g_object_class_install_property (GObjectClass
*class,
554 g_return_if_fail (G_IS_OBJECT_CLASS (class));
555 g_return_if_fail (G_IS_PARAM_SPEC (pspec
));
557 if (CLASS_HAS_DERIVED_CLASS (class))
558 g_error ("Attempt to add property %s::%s to class after it was derived", G_OBJECT_CLASS_NAME (class), pspec
->name
);
560 class->flags
|= CLASS_HAS_PROPS_FLAG
;
562 g_return_if_fail (pspec
->flags
& (G_PARAM_READABLE
| G_PARAM_WRITABLE
));
563 if (pspec
->flags
& G_PARAM_WRITABLE
)
564 g_return_if_fail (class->set_property
!= NULL
);
565 if (pspec
->flags
& G_PARAM_READABLE
)
566 g_return_if_fail (class->get_property
!= NULL
);
567 g_return_if_fail (property_id
> 0);
568 g_return_if_fail (PARAM_SPEC_PARAM_ID (pspec
) == 0); /* paranoid */
569 if (pspec
->flags
& G_PARAM_CONSTRUCT
)
570 g_return_if_fail ((pspec
->flags
& G_PARAM_CONSTRUCT_ONLY
) == 0);
571 if (pspec
->flags
& (G_PARAM_CONSTRUCT
| G_PARAM_CONSTRUCT_ONLY
))
572 g_return_if_fail (pspec
->flags
& G_PARAM_WRITABLE
);
574 install_property_internal (G_OBJECT_CLASS_TYPE (class), property_id
, pspec
);
576 if (pspec
->flags
& (G_PARAM_CONSTRUCT
| G_PARAM_CONSTRUCT_ONLY
))
577 class->construct_properties
= g_slist_append (class->construct_properties
, pspec
);
579 /* for property overrides of construct properties, we have to get rid
580 * of the overidden inherited construct property
582 pspec
= g_param_spec_pool_lookup (pspec_pool
, pspec
->name
, g_type_parent (G_OBJECT_CLASS_TYPE (class)), TRUE
);
583 if (pspec
&& pspec
->flags
& (G_PARAM_CONSTRUCT
| G_PARAM_CONSTRUCT_ONLY
))
584 class->construct_properties
= g_slist_remove (class->construct_properties
, pspec
);
588 * g_object_class_install_properties:
589 * @oclass: a #GObjectClass
590 * @n_pspecs: the length of the #GParamSpecs array
591 * @pspecs: (array length=n_pspecs): the #GParamSpecs array
592 * defining the new properties
594 * Installs new properties from an array of #GParamSpecs.
596 * All properties should be installed during the class initializer. It
597 * is possible to install properties after that, but doing so is not
598 * recommend, and specifically, is not guaranteed to be thread-safe vs.
599 * use of properties on the same type on other threads.
601 * The property id of each property is the index of each #GParamSpec in
604 * The property id of 0 is treated specially by #GObject and it should not
605 * be used to store a #GParamSpec.
607 * This function should be used if you plan to use a static array of
608 * #GParamSpecs and g_object_notify_by_pspec(). For instance, this
609 * class initialization:
611 * |[<!-- language="C" -->
613 * PROP_0, PROP_FOO, PROP_BAR, N_PROPERTIES
616 * static GParamSpec *obj_properties[N_PROPERTIES] = { NULL, };
619 * my_object_class_init (MyObjectClass *klass)
621 * GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
623 * obj_properties[PROP_FOO] =
624 * g_param_spec_int ("foo", "Foo", "Foo",
627 * G_PARAM_READWRITE);
629 * obj_properties[PROP_BAR] =
630 * g_param_spec_string ("bar", "Bar", "Bar",
632 * G_PARAM_READWRITE);
634 * gobject_class->set_property = my_object_set_property;
635 * gobject_class->get_property = my_object_get_property;
636 * g_object_class_install_properties (gobject_class,
642 * allows calling g_object_notify_by_pspec() to notify of property changes:
644 * |[<!-- language="C" -->
646 * my_object_set_foo (MyObject *self, gint foo)
648 * if (self->foo != foo)
651 * g_object_notify_by_pspec (G_OBJECT (self), obj_properties[PROP_FOO]);
659 g_object_class_install_properties (GObjectClass
*oclass
,
663 GType oclass_type
, parent_type
;
666 g_return_if_fail (G_IS_OBJECT_CLASS (oclass
));
667 g_return_if_fail (n_pspecs
> 1);
668 g_return_if_fail (pspecs
[0] == NULL
);
670 if (CLASS_HAS_DERIVED_CLASS (oclass
))
671 g_error ("Attempt to add properties to %s after it was derived",
672 G_OBJECT_CLASS_NAME (oclass
));
674 oclass_type
= G_OBJECT_CLASS_TYPE (oclass
);
675 parent_type
= g_type_parent (oclass_type
);
677 /* we skip the first element of the array as it would have a 0 prop_id */
678 for (i
= 1; i
< n_pspecs
; i
++)
680 GParamSpec
*pspec
= pspecs
[i
];
682 g_return_if_fail (pspec
!= NULL
);
684 if (pspec
->flags
& G_PARAM_WRITABLE
)
685 g_return_if_fail (oclass
->set_property
!= NULL
);
686 if (pspec
->flags
& G_PARAM_READABLE
)
687 g_return_if_fail (oclass
->get_property
!= NULL
);
688 g_return_if_fail (PARAM_SPEC_PARAM_ID (pspec
) == 0); /* paranoid */
689 if (pspec
->flags
& G_PARAM_CONSTRUCT
)
690 g_return_if_fail ((pspec
->flags
& G_PARAM_CONSTRUCT_ONLY
) == 0);
691 if (pspec
->flags
& (G_PARAM_CONSTRUCT
| G_PARAM_CONSTRUCT_ONLY
))
692 g_return_if_fail (pspec
->flags
& G_PARAM_WRITABLE
);
694 oclass
->flags
|= CLASS_HAS_PROPS_FLAG
;
695 install_property_internal (oclass_type
, i
, pspec
);
697 if (pspec
->flags
& (G_PARAM_CONSTRUCT
| G_PARAM_CONSTRUCT_ONLY
))
698 oclass
->construct_properties
= g_slist_append (oclass
->construct_properties
, pspec
);
700 /* for property overrides of construct properties, we have to get rid
701 * of the overidden inherited construct property
703 pspec
= g_param_spec_pool_lookup (pspec_pool
, pspec
->name
, parent_type
, TRUE
);
704 if (pspec
&& pspec
->flags
& (G_PARAM_CONSTRUCT
| G_PARAM_CONSTRUCT_ONLY
))
705 oclass
->construct_properties
= g_slist_remove (oclass
->construct_properties
, pspec
);
710 * g_object_interface_install_property:
711 * @g_iface: (type GObject.TypeInterface): any interface vtable for the
712 * interface, or the default
713 * vtable for the interface.
714 * @pspec: the #GParamSpec for the new property
716 * Add a property to an interface; this is only useful for interfaces
717 * that are added to GObject-derived types. Adding a property to an
718 * interface forces all objects classes with that interface to have a
719 * compatible property. The compatible property could be a newly
720 * created #GParamSpec, but normally
721 * g_object_class_override_property() will be used so that the object
722 * class only needs to provide an implementation and inherits the
723 * property description, default value, bounds, and so forth from the
724 * interface property.
726 * This function is meant to be called from the interface's default
727 * vtable initialization function (the @class_init member of
728 * #GTypeInfo.) It must not be called after after @class_init has
729 * been called for any object types implementing this interface.
734 g_object_interface_install_property (gpointer g_iface
,
737 GTypeInterface
*iface_class
= g_iface
;
739 g_return_if_fail (G_TYPE_IS_INTERFACE (iface_class
->g_type
));
740 g_return_if_fail (G_IS_PARAM_SPEC (pspec
));
741 g_return_if_fail (!G_IS_PARAM_SPEC_OVERRIDE (pspec
)); /* paranoid */
742 g_return_if_fail (PARAM_SPEC_PARAM_ID (pspec
) == 0); /* paranoid */
744 g_return_if_fail (pspec
->flags
& (G_PARAM_READABLE
| G_PARAM_WRITABLE
));
745 if (pspec
->flags
& G_PARAM_CONSTRUCT
)
746 g_return_if_fail ((pspec
->flags
& G_PARAM_CONSTRUCT_ONLY
) == 0);
747 if (pspec
->flags
& (G_PARAM_CONSTRUCT
| G_PARAM_CONSTRUCT_ONLY
))
748 g_return_if_fail (pspec
->flags
& G_PARAM_WRITABLE
);
750 install_property_internal (iface_class
->g_type
, 0, pspec
);
754 * g_object_class_find_property:
755 * @oclass: a #GObjectClass
756 * @property_name: the name of the property to look up
758 * Looks up the #GParamSpec for a property of a class.
760 * Returns: (transfer none): the #GParamSpec for the property, or
761 * %NULL if the class doesn't have a property of that name
764 g_object_class_find_property (GObjectClass
*class,
765 const gchar
*property_name
)
768 GParamSpec
*redirect
;
770 g_return_val_if_fail (G_IS_OBJECT_CLASS (class), NULL
);
771 g_return_val_if_fail (property_name
!= NULL
, NULL
);
773 pspec
= g_param_spec_pool_lookup (pspec_pool
,
775 G_OBJECT_CLASS_TYPE (class),
779 redirect
= g_param_spec_get_redirect_target (pspec
);
790 * g_object_interface_find_property:
791 * @g_iface: (type GObject.TypeInterface): any interface vtable for the
792 * interface, or the default vtable for the interface
793 * @property_name: name of a property to lookup.
795 * Find the #GParamSpec with the given name for an
796 * interface. Generally, the interface vtable passed in as @g_iface
797 * will be the default vtable from g_type_default_interface_ref(), or,
798 * if you know the interface has already been loaded,
799 * g_type_default_interface_peek().
803 * Returns: (transfer none): the #GParamSpec for the property of the
804 * interface with the name @property_name, or %NULL if no
805 * such property exists.
808 g_object_interface_find_property (gpointer g_iface
,
809 const gchar
*property_name
)
811 GTypeInterface
*iface_class
= g_iface
;
813 g_return_val_if_fail (G_TYPE_IS_INTERFACE (iface_class
->g_type
), NULL
);
814 g_return_val_if_fail (property_name
!= NULL
, NULL
);
816 return g_param_spec_pool_lookup (pspec_pool
,
823 * g_object_class_override_property:
824 * @oclass: a #GObjectClass
825 * @property_id: the new property ID
826 * @name: the name of a property registered in a parent class or
827 * in an interface of this class.
829 * Registers @property_id as referring to a property with the name
830 * @name in a parent class or in an interface implemented by @oclass.
831 * This allows this class to "override" a property implementation in
832 * a parent class or to provide the implementation of a property from
835 * Internally, overriding is implemented by creating a property of type
836 * #GParamSpecOverride; generally operations that query the properties of
837 * the object class, such as g_object_class_find_property() or
838 * g_object_class_list_properties() will return the overridden
839 * property. However, in one case, the @construct_properties argument of
840 * the @constructor virtual function, the #GParamSpecOverride is passed
841 * instead, so that the @param_id field of the #GParamSpec will be
842 * correct. For virtually all uses, this makes no difference. If you
843 * need to get the overridden property, you can call
844 * g_param_spec_get_redirect_target().
849 g_object_class_override_property (GObjectClass
*oclass
,
853 GParamSpec
*overridden
= NULL
;
857 g_return_if_fail (G_IS_OBJECT_CLASS (oclass
));
858 g_return_if_fail (property_id
> 0);
859 g_return_if_fail (name
!= NULL
);
861 /* Find the overridden property; first check parent types
863 parent_type
= g_type_parent (G_OBJECT_CLASS_TYPE (oclass
));
864 if (parent_type
!= G_TYPE_NONE
)
865 overridden
= g_param_spec_pool_lookup (pspec_pool
,
874 /* Now check interfaces
876 ifaces
= g_type_interfaces (G_OBJECT_CLASS_TYPE (oclass
), &n_ifaces
);
877 while (n_ifaces
-- && !overridden
)
879 overridden
= g_param_spec_pool_lookup (pspec_pool
,
890 g_warning ("%s: Can't find property to override for '%s::%s'",
891 G_STRFUNC
, G_OBJECT_CLASS_NAME (oclass
), name
);
895 new = g_param_spec_override (name
, overridden
);
896 g_object_class_install_property (oclass
, property_id
, new);
900 * g_object_class_list_properties:
901 * @oclass: a #GObjectClass
902 * @n_properties: (out): return location for the length of the returned array
904 * Get an array of #GParamSpec* for all properties of a class.
906 * Returns: (array length=n_properties) (transfer container): an array of
907 * #GParamSpec* which should be freed after use
909 GParamSpec
** /* free result */
910 g_object_class_list_properties (GObjectClass
*class,
911 guint
*n_properties_p
)
916 g_return_val_if_fail (G_IS_OBJECT_CLASS (class), NULL
);
918 pspecs
= g_param_spec_pool_list (pspec_pool
,
919 G_OBJECT_CLASS_TYPE (class),
928 * g_object_interface_list_properties:
929 * @g_iface: (type GObject.TypeInterface): any interface vtable for the
930 * interface, or the default vtable for the interface
931 * @n_properties_p: (out): location to store number of properties returned.
933 * Lists the properties of an interface.Generally, the interface
934 * vtable passed in as @g_iface will be the default vtable from
935 * g_type_default_interface_ref(), or, if you know the interface has
936 * already been loaded, g_type_default_interface_peek().
940 * Returns: (array length=n_properties_p) (transfer container): a
941 * pointer to an array of pointers to #GParamSpec
942 * structures. The paramspecs are owned by GLib, but the
943 * array should be freed with g_free() when you are done with
947 g_object_interface_list_properties (gpointer g_iface
,
948 guint
*n_properties_p
)
950 GTypeInterface
*iface_class
= g_iface
;
954 g_return_val_if_fail (G_TYPE_IS_INTERFACE (iface_class
->g_type
), NULL
);
956 pspecs
= g_param_spec_pool_list (pspec_pool
,
965 static inline gboolean
966 object_in_construction (GObject
*object
)
968 return g_datalist_id_get_data (&object
->qdata
, quark_in_construction
) != NULL
;
972 g_object_init (GObject
*object
,
975 object
->ref_count
= 1;
976 object
->qdata
= NULL
;
978 if (CLASS_HAS_PROPS (class))
980 /* freeze object's notification queue, g_object_newv() preserves pairedness */
981 g_object_notify_queue_freeze (object
, FALSE
);
984 if (CLASS_HAS_CUSTOM_CONSTRUCTOR (class))
986 /* mark object in-construction for notify_queue_thaw() and to allow construct-only properties */
987 g_datalist_id_set_data (&object
->qdata
, quark_in_construction
, object
);
990 GOBJECT_IF_DEBUG (OBJECTS
,
992 G_LOCK (debug_objects
);
993 debug_objects_count
++;
994 g_hash_table_insert (debug_objects_ht
, object
, object
);
995 G_UNLOCK (debug_objects
);
1000 g_object_do_set_property (GObject
*object
,
1002 const GValue
*value
,
1005 switch (property_id
)
1008 G_OBJECT_WARN_INVALID_PROPERTY_ID (object
, property_id
, pspec
);
1014 g_object_do_get_property (GObject
*object
,
1019 switch (property_id
)
1022 G_OBJECT_WARN_INVALID_PROPERTY_ID (object
, property_id
, pspec
);
1028 g_object_real_dispose (GObject
*object
)
1030 g_signal_handlers_destroy (object
);
1031 g_datalist_id_set_data (&object
->qdata
, quark_closure_array
, NULL
);
1032 g_datalist_id_set_data (&object
->qdata
, quark_weak_refs
, NULL
);
1036 g_object_finalize (GObject
*object
)
1038 if (object_in_construction (object
))
1040 g_critical ("object %s %p finalized while still in-construction",
1041 G_OBJECT_TYPE_NAME (object
), object
);
1044 g_datalist_clear (&object
->qdata
);
1046 GOBJECT_IF_DEBUG (OBJECTS
,
1048 G_LOCK (debug_objects
);
1049 g_assert (g_hash_table_lookup (debug_objects_ht
, object
) == object
);
1050 g_hash_table_remove (debug_objects_ht
, object
);
1051 debug_objects_count
--;
1052 G_UNLOCK (debug_objects
);
1057 g_object_dispatch_properties_changed (GObject
*object
,
1059 GParamSpec
**pspecs
)
1063 for (i
= 0; i
< n_pspecs
; i
++)
1064 g_signal_emit (object
, gobject_signals
[NOTIFY
], g_param_spec_get_name_quark (pspecs
[i
]), pspecs
[i
]);
1068 * g_object_run_dispose:
1069 * @object: a #GObject
1071 * Releases all references to other objects. This can be used to break
1074 * This function should only be called from object system implementations.
1077 g_object_run_dispose (GObject
*object
)
1079 g_return_if_fail (G_IS_OBJECT (object
));
1080 g_return_if_fail (object
->ref_count
> 0);
1082 g_object_ref (object
);
1083 TRACE (GOBJECT_OBJECT_DISPOSE(object
,G_TYPE_FROM_INSTANCE(object
), 0));
1084 G_OBJECT_GET_CLASS (object
)->dispose (object
);
1085 TRACE (GOBJECT_OBJECT_DISPOSE_END(object
,G_TYPE_FROM_INSTANCE(object
), 0));
1086 g_object_unref (object
);
1090 * g_object_freeze_notify:
1091 * @object: a #GObject
1093 * Increases the freeze count on @object. If the freeze count is
1094 * non-zero, the emission of "notify" signals on @object is
1095 * stopped. The signals are queued until the freeze count is decreased
1096 * to zero. Duplicate notifications are squashed so that at most one
1097 * #GObject::notify signal is emitted for each property modified while the
1100 * This is necessary for accessors that modify multiple properties to prevent
1101 * premature notification while the object is still being modified.
1104 g_object_freeze_notify (GObject
*object
)
1106 g_return_if_fail (G_IS_OBJECT (object
));
1108 if (g_atomic_int_get (&object
->ref_count
) == 0)
1111 g_object_ref (object
);
1112 g_object_notify_queue_freeze (object
, FALSE
);
1113 g_object_unref (object
);
1117 get_notify_pspec (GParamSpec
*pspec
)
1119 GParamSpec
*redirected
;
1121 /* we don't notify on non-READABLE parameters */
1122 if (~pspec
->flags
& G_PARAM_READABLE
)
1125 /* if the paramspec is redirected, notify on the target */
1126 redirected
= g_param_spec_get_redirect_target (pspec
);
1127 if (redirected
!= NULL
)
1130 /* else, notify normally */
1135 g_object_notify_by_spec_internal (GObject
*object
,
1138 GParamSpec
*notify_pspec
;
1140 notify_pspec
= get_notify_pspec (pspec
);
1142 if (notify_pspec
!= NULL
)
1144 GObjectNotifyQueue
*nqueue
;
1146 /* conditional freeze: only increase freeze count if already frozen */
1147 nqueue
= g_object_notify_queue_freeze (object
, TRUE
);
1151 /* we're frozen, so add to the queue and release our freeze */
1152 g_object_notify_queue_add (object
, nqueue
, notify_pspec
);
1153 g_object_notify_queue_thaw (object
, nqueue
);
1156 /* not frozen, so just dispatch the notification directly */
1157 G_OBJECT_GET_CLASS (object
)
1158 ->dispatch_properties_changed (object
, 1, ¬ify_pspec
);
1164 * @object: a #GObject
1165 * @property_name: the name of a property installed on the class of @object.
1167 * Emits a "notify" signal for the property @property_name on @object.
1169 * When possible, eg. when signaling a property change from within the class
1170 * that registered the property, you should use g_object_notify_by_pspec()
1173 * Note that emission of the notify signal may be blocked with
1174 * g_object_freeze_notify(). In this case, the signal emissions are queued
1175 * and will be emitted (in reverse order) when g_object_thaw_notify() is
1179 g_object_notify (GObject
*object
,
1180 const gchar
*property_name
)
1184 g_return_if_fail (G_IS_OBJECT (object
));
1185 g_return_if_fail (property_name
!= NULL
);
1186 if (g_atomic_int_get (&object
->ref_count
) == 0)
1189 g_object_ref (object
);
1190 /* We don't need to get the redirect target
1191 * (by, e.g. calling g_object_class_find_property())
1192 * because g_object_notify_queue_add() does that
1194 pspec
= g_param_spec_pool_lookup (pspec_pool
,
1196 G_OBJECT_TYPE (object
),
1200 g_warning ("%s: object class '%s' has no property named '%s'",
1202 G_OBJECT_TYPE_NAME (object
),
1205 g_object_notify_by_spec_internal (object
, pspec
);
1206 g_object_unref (object
);
1210 * g_object_notify_by_pspec:
1211 * @object: a #GObject
1212 * @pspec: the #GParamSpec of a property installed on the class of @object.
1214 * Emits a "notify" signal for the property specified by @pspec on @object.
1216 * This function omits the property name lookup, hence it is faster than
1217 * g_object_notify().
1219 * One way to avoid using g_object_notify() from within the
1220 * class that registered the properties, and using g_object_notify_by_pspec()
1221 * instead, is to store the GParamSpec used with
1222 * g_object_class_install_property() inside a static array, e.g.:
1224 *|[<!-- language="C" -->
1232 * static GParamSpec *properties[PROP_LAST];
1235 * my_object_class_init (MyObjectClass *klass)
1237 * properties[PROP_FOO] = g_param_spec_int ("foo", "Foo", "The foo",
1240 * G_PARAM_READWRITE);
1241 * g_object_class_install_property (gobject_class,
1243 * properties[PROP_FOO]);
1247 * and then notify a change on the "foo" property with:
1249 * |[<!-- language="C" -->
1250 * g_object_notify_by_pspec (self, properties[PROP_FOO]);
1256 g_object_notify_by_pspec (GObject
*object
,
1260 g_return_if_fail (G_IS_OBJECT (object
));
1261 g_return_if_fail (G_IS_PARAM_SPEC (pspec
));
1263 if (g_atomic_int_get (&object
->ref_count
) == 0)
1266 g_object_ref (object
);
1267 g_object_notify_by_spec_internal (object
, pspec
);
1268 g_object_unref (object
);
1272 * g_object_thaw_notify:
1273 * @object: a #GObject
1275 * Reverts the effect of a previous call to
1276 * g_object_freeze_notify(). The freeze count is decreased on @object
1277 * and when it reaches zero, queued "notify" signals are emitted.
1279 * Duplicate notifications for each property are squashed so that at most one
1280 * #GObject::notify signal is emitted for each property, in the reverse order
1281 * in which they have been queued.
1283 * It is an error to call this function when the freeze count is zero.
1286 g_object_thaw_notify (GObject
*object
)
1288 GObjectNotifyQueue
*nqueue
;
1290 g_return_if_fail (G_IS_OBJECT (object
));
1291 if (g_atomic_int_get (&object
->ref_count
) == 0)
1294 g_object_ref (object
);
1296 /* FIXME: Freezing is the only way to get at the notify queue.
1297 * So we freeze once and then thaw twice.
1299 nqueue
= g_object_notify_queue_freeze (object
, FALSE
);
1300 g_object_notify_queue_thaw (object
, nqueue
);
1301 g_object_notify_queue_thaw (object
, nqueue
);
1303 g_object_unref (object
);
1307 consider_issuing_property_deprecation_warning (const GParamSpec
*pspec
)
1309 static GHashTable
*already_warned_table
;
1310 static const gchar
*enable_diagnostic
;
1311 static GMutex already_warned_lock
;
1314 if (!(pspec
->flags
& G_PARAM_DEPRECATED
))
1317 if (g_once_init_enter (&enable_diagnostic
))
1319 const gchar
*value
= g_getenv ("G_ENABLE_DIAGNOSTIC");
1324 g_once_init_leave (&enable_diagnostic
, value
);
1327 if (enable_diagnostic
[0] == '0')
1330 /* We hash only on property names: this means that we could end up in
1331 * a situation where we fail to emit a warning about a pair of
1332 * same-named deprecated properties used on two separate types.
1333 * That's pretty unlikely to occur, and even if it does, you'll still
1334 * have seen the warning for the first one...
1336 * Doing it this way lets us hash directly on the (interned) property
1339 g_mutex_lock (&already_warned_lock
);
1341 if (already_warned_table
== NULL
)
1342 already_warned_table
= g_hash_table_new (NULL
, NULL
);
1344 already
= g_hash_table_contains (already_warned_table
, (gpointer
) pspec
->name
);
1346 g_hash_table_add (already_warned_table
, (gpointer
) pspec
->name
);
1348 g_mutex_unlock (&already_warned_lock
);
1351 g_warning ("The property %s:%s is deprecated and shouldn't be used "
1352 "anymore. It will be removed in a future version.",
1353 g_type_name (pspec
->owner_type
), pspec
->name
);
1357 object_get_property (GObject
*object
,
1361 GObjectClass
*class = g_type_class_peek (pspec
->owner_type
);
1362 guint param_id
= PARAM_SPEC_PARAM_ID (pspec
);
1363 GParamSpec
*redirect
;
1367 g_warning ("'%s::%s' is not a valid property name; '%s' is not a GObject subtype",
1368 g_type_name (pspec
->owner_type
), pspec
->name
, g_type_name (pspec
->owner_type
));
1372 redirect
= g_param_spec_get_redirect_target (pspec
);
1376 consider_issuing_property_deprecation_warning (pspec
);
1378 class->get_property (object
, param_id
, value
, pspec
);
1382 object_set_property (GObject
*object
,
1384 const GValue
*value
,
1385 GObjectNotifyQueue
*nqueue
)
1387 GValue tmp_value
= G_VALUE_INIT
;
1388 GObjectClass
*class = g_type_class_peek (pspec
->owner_type
);
1389 guint param_id
= PARAM_SPEC_PARAM_ID (pspec
);
1390 GParamSpec
*redirect
;
1394 g_warning ("'%s::%s' is not a valid property name; '%s' is not a GObject subtype",
1395 g_type_name (pspec
->owner_type
), pspec
->name
, g_type_name (pspec
->owner_type
));
1399 redirect
= g_param_spec_get_redirect_target (pspec
);
1403 /* provide a copy to work from, convert (if necessary) and validate */
1404 g_value_init (&tmp_value
, pspec
->value_type
);
1405 if (!g_value_transform (value
, &tmp_value
))
1406 g_warning ("unable to set property '%s' of type '%s' from value of type '%s'",
1408 g_type_name (pspec
->value_type
),
1409 G_VALUE_TYPE_NAME (value
));
1410 else if (g_param_value_validate (pspec
, &tmp_value
) && !(pspec
->flags
& G_PARAM_LAX_VALIDATION
))
1412 gchar
*contents
= g_strdup_value_contents (value
);
1414 g_warning ("value \"%s\" of type '%s' is invalid or out of range for property '%s' of type '%s'",
1416 G_VALUE_TYPE_NAME (value
),
1418 g_type_name (pspec
->value_type
));
1423 class->set_property (object
, param_id
, &tmp_value
, pspec
);
1425 if (~pspec
->flags
& G_PARAM_EXPLICIT_NOTIFY
)
1427 GParamSpec
*notify_pspec
;
1429 notify_pspec
= get_notify_pspec (pspec
);
1431 if (notify_pspec
!= NULL
)
1432 g_object_notify_queue_add (object
, nqueue
, notify_pspec
);
1435 g_value_unset (&tmp_value
);
1439 object_interface_check_properties (gpointer check_data
,
1442 GTypeInterface
*iface_class
= g_iface
;
1443 GObjectClass
*class;
1444 GType iface_type
= iface_class
->g_type
;
1445 GParamSpec
**pspecs
;
1448 class = g_type_class_ref (iface_class
->g_instance_type
);
1453 if (!G_IS_OBJECT_CLASS (class))
1456 pspecs
= g_param_spec_pool_list (pspec_pool
, iface_type
, &n
);
1460 GParamSpec
*class_pspec
= g_param_spec_pool_lookup (pspec_pool
,
1462 G_OBJECT_CLASS_TYPE (class),
1467 g_critical ("Object class %s doesn't implement property "
1468 "'%s' from interface '%s'",
1469 g_type_name (G_OBJECT_CLASS_TYPE (class)),
1471 g_type_name (iface_type
));
1476 /* We do a number of checks on the properties of an interface to
1477 * make sure that all classes implementing the interface are
1478 * overriding the properties in a sane way.
1480 * We do the checks in order of importance so that we can give
1481 * more useful error messages first.
1483 * First, we check that the implementation doesn't remove the
1484 * basic functionality (readability, writability) advertised by
1485 * the interface. Next, we check that it doesn't introduce
1486 * additional restrictions (such as construct-only). Finally, we
1487 * make sure the types are compatible.
1490 #define SUBSET(a,b,mask) (((a) & ~(b) & (mask)) == 0)
1491 /* If the property on the interface is readable then the
1492 * implementation must be readable. If the interface is writable
1493 * then the implementation must be writable.
1495 if (!SUBSET (pspecs
[n
]->flags
, class_pspec
->flags
, G_PARAM_READABLE
| G_PARAM_WRITABLE
))
1497 g_critical ("Flags for property '%s' on class '%s' remove functionality compared with the "
1498 "property on interface '%s'\n", pspecs
[n
]->name
,
1499 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (iface_type
));
1503 /* If the property on the interface is writable then we need to
1504 * make sure the implementation doesn't introduce new restrictions
1505 * on that writability (ie: construct-only).
1507 * If the interface was not writable to begin with then we don't
1508 * really have any problems here because "writable at construct
1509 * time only" is still more permissive than "read only".
1511 if (pspecs
[n
]->flags
& G_PARAM_WRITABLE
)
1513 if (!SUBSET (class_pspec
->flags
, pspecs
[n
]->flags
, G_PARAM_CONSTRUCT_ONLY
))
1515 g_critical ("Flags for property '%s' on class '%s' introduce additional restrictions on "
1516 "writability compared with the property on interface '%s'\n", pspecs
[n
]->name
,
1517 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (iface_type
));
1523 /* If the property on the interface is readable then we are
1524 * effectively advertising that reading the property will return a
1525 * value of a specific type. All implementations of the interface
1526 * need to return items of this type -- but may be more
1527 * restrictive. For example, it is legal to have:
1529 * GtkWidget *get_item();
1531 * that is implemented by a function that always returns a
1532 * GtkEntry. In short: readability implies that the
1533 * implementation value type must be equal or more restrictive.
1535 * Similarly, if the property on the interface is writable then
1536 * must be able to accept the property being set to any value of
1537 * that type, including subclasses. In this case, we may also be
1538 * less restrictive. For example, it is legal to have:
1540 * set_item (GtkEntry *);
1542 * that is implemented by a function that will actually work with
1543 * any GtkWidget. In short: writability implies that the
1544 * implementation value type must be equal or less restrictive.
1546 * In the case that the property is both readable and writable
1547 * then the only way that both of the above can be satisfied is
1548 * with a type that is exactly equal.
1550 switch (pspecs
[n
]->flags
& (G_PARAM_READABLE
| G_PARAM_WRITABLE
))
1552 case G_PARAM_READABLE
| G_PARAM_WRITABLE
:
1553 /* class pspec value type must have exact equality with interface */
1554 if (pspecs
[n
]->value_type
!= class_pspec
->value_type
)
1555 g_critical ("Read/writable property '%s' on class '%s' has type '%s' which is not exactly equal to the "
1556 "type '%s' of the property on the interface '%s'\n", pspecs
[n
]->name
,
1557 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (G_PARAM_SPEC_VALUE_TYPE (class_pspec
)),
1558 g_type_name (G_PARAM_SPEC_VALUE_TYPE (pspecs
[n
])), g_type_name (iface_type
));
1561 case G_PARAM_READABLE
:
1562 /* class pspec value type equal or more restrictive than interface */
1563 if (!g_type_is_a (class_pspec
->value_type
, pspecs
[n
]->value_type
))
1564 g_critical ("Read-only property '%s' on class '%s' has type '%s' which is not equal to or more "
1565 "restrictive than the type '%s' of the property on the interface '%s'\n", pspecs
[n
]->name
,
1566 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (G_PARAM_SPEC_VALUE_TYPE (class_pspec
)),
1567 g_type_name (G_PARAM_SPEC_VALUE_TYPE (pspecs
[n
])), g_type_name (iface_type
));
1570 case G_PARAM_WRITABLE
:
1571 /* class pspec value type equal or less restrictive than interface */
1572 if (!g_type_is_a (pspecs
[n
]->value_type
, class_pspec
->value_type
))
1573 g_critical ("Write-only property '%s' on class '%s' has type '%s' which is not equal to or less "
1574 "restrictive than the type '%s' of the property on the interface '%s' \n", pspecs
[n
]->name
,
1575 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (G_PARAM_SPEC_VALUE_TYPE (class_pspec
)),
1576 g_type_name (G_PARAM_SPEC_VALUE_TYPE (pspecs
[n
])), g_type_name (iface_type
));
1580 g_assert_not_reached ();
1587 g_type_class_unref (class);
1591 g_object_get_type (void)
1593 return G_TYPE_OBJECT
;
1597 * g_object_new: (skip)
1598 * @object_type: the type id of the #GObject subtype to instantiate
1599 * @first_property_name: the name of the first property
1600 * @...: the value of the first property, followed optionally by more
1601 * name/value pairs, followed by %NULL
1603 * Creates a new instance of a #GObject subtype and sets its properties.
1605 * Construction parameters (see #G_PARAM_CONSTRUCT, #G_PARAM_CONSTRUCT_ONLY)
1606 * which are not explicitly specified are set to their default values.
1608 * Returns: (transfer full) (type GObject.Object) : a new instance of
1612 g_object_new (GType object_type
,
1613 const gchar
*first_property_name
,
1619 g_return_val_if_fail (G_TYPE_IS_OBJECT (object_type
), NULL
);
1621 /* short circuit for calls supplying no properties */
1622 if (!first_property_name
)
1623 return g_object_newv (object_type
, 0, NULL
);
1625 va_start (var_args
, first_property_name
);
1626 object
= g_object_new_valist (object_type
, first_property_name
, var_args
);
1633 g_object_new_with_custom_constructor (GObjectClass
*class,
1634 GObjectConstructParam
*params
,
1637 GObjectNotifyQueue
*nqueue
= NULL
;
1638 gboolean newly_constructed
;
1639 GObjectConstructParam
*cparams
;
1647 /* If we have ->constructed() then we have to do a lot more work.
1648 * It's possible that this is a singleton and it's also possible
1649 * that the user's constructor() will attempt to modify the values
1650 * that we pass in, so we'll need to allocate copies of them.
1651 * It's also possible that the user may attempt to call
1652 * g_object_set() from inside of their constructor, so we need to
1653 * add ourselves to a list of objects for which that is allowed
1654 * while their constructor() is running.
1657 /* Create the array of GObjectConstructParams for constructor() */
1658 n_cparams
= g_slist_length (class->construct_properties
);
1659 cparams
= g_new (GObjectConstructParam
, n_cparams
);
1660 cvalues
= g_new0 (GValue
, n_cparams
);
1664 /* As above, we may find the value in the passed-in params list.
1666 * If we have the value passed in then we can use the GValue from
1667 * it directly because it is safe to modify. If we use the
1668 * default value from the class, we had better not pass that in
1669 * and risk it being modified, so we create a new one.
1671 for (node
= class->construct_properties
; node
; node
= node
->next
)
1678 value
= NULL
; /* to silence gcc... */
1680 for (j
= 0; j
< n_params
; j
++)
1681 if (params
[j
].pspec
== pspec
)
1683 consider_issuing_property_deprecation_warning (pspec
);
1684 value
= params
[j
].value
;
1690 value
= &cvalues
[cvals_used
++];
1691 g_value_init (value
, pspec
->value_type
);
1692 g_param_value_set_default (pspec
, value
);
1695 cparams
[i
].pspec
= pspec
;
1696 cparams
[i
].value
= value
;
1700 /* construct object from construction parameters */
1701 object
= class->constructor (class->g_type_class
.g_type
, n_cparams
, cparams
);
1702 /* free construction values */
1704 while (cvals_used
--)
1705 g_value_unset (&cvalues
[cvals_used
]);
1708 /* There is code in the wild that relies on being able to return NULL
1709 * from its custom constructor. This was never a supported operation,
1710 * but since the code is already out there...
1714 g_critical ("Custom constructor for class %s returned NULL (which is invalid). "
1715 "Please use GInitable instead.", G_OBJECT_CLASS_NAME (class));
1719 /* g_object_init() will have marked the object as being in-construction.
1720 * Check if the returned object still is so marked, or if this is an
1721 * already-existing singleton (in which case we should not do 'constructed').
1723 newly_constructed
= object_in_construction (object
);
1724 if (newly_constructed
)
1725 g_datalist_id_set_data (&object
->qdata
, quark_in_construction
, NULL
);
1727 if (CLASS_HAS_PROPS (class))
1729 /* If this object was newly_constructed then g_object_init()
1730 * froze the queue. We need to freeze it here in order to get
1731 * the handle so that we can thaw it below (otherwise it will
1732 * be frozen forever).
1734 * We also want to do a freeze if we have any params to set,
1735 * even on a non-newly_constructed object.
1737 * It's possible that we have the case of non-newly created
1738 * singleton and all of the passed-in params were construct
1739 * properties so n_params > 0 but we will actually set no
1740 * properties. This is a pretty lame case to optimise, so
1741 * just ignore it and freeze anyway.
1743 if (newly_constructed
|| n_params
)
1744 nqueue
= g_object_notify_queue_freeze (object
, FALSE
);
1746 /* Remember: if it was newly_constructed then g_object_init()
1747 * already did a freeze, so we now have two. Release one.
1749 if (newly_constructed
)
1750 g_object_notify_queue_thaw (object
, nqueue
);
1753 /* run 'constructed' handler if there is a custom one */
1754 if (newly_constructed
&& CLASS_HAS_CUSTOM_CONSTRUCTED (class))
1755 class->constructed (object
);
1757 /* set remaining properties */
1758 for (i
= 0; i
< n_params
; i
++)
1759 if (!(params
[i
].pspec
->flags
& (G_PARAM_CONSTRUCT
| G_PARAM_CONSTRUCT_ONLY
)))
1761 consider_issuing_property_deprecation_warning (params
[i
].pspec
);
1762 object_set_property (object
, params
[i
].pspec
, params
[i
].value
, nqueue
);
1765 /* If nqueue is non-NULL then we are frozen. Thaw it. */
1767 g_object_notify_queue_thaw (object
, nqueue
);
1773 g_object_new_internal (GObjectClass
*class,
1774 GObjectConstructParam
*params
,
1777 GObjectNotifyQueue
*nqueue
= NULL
;
1780 if G_UNLIKELY (CLASS_HAS_CUSTOM_CONSTRUCTOR (class))
1781 return g_object_new_with_custom_constructor (class, params
, n_params
);
1783 object
= (GObject
*) g_type_create_instance (class->g_type_class
.g_type
);
1785 if (CLASS_HAS_PROPS (class))
1789 /* This will have been setup in g_object_init() */
1790 nqueue
= g_datalist_id_get_data (&object
->qdata
, quark_notify_queue
);
1791 g_assert (nqueue
!= NULL
);
1793 /* We will set exactly n_construct_properties construct
1794 * properties, but they may come from either the class default
1795 * values or the passed-in parameter list.
1797 for (node
= class->construct_properties
; node
; node
= node
->next
)
1799 const GValue
*value
;
1804 value
= NULL
; /* to silence gcc... */
1806 for (j
= 0; j
< n_params
; j
++)
1807 if (params
[j
].pspec
== pspec
)
1809 consider_issuing_property_deprecation_warning (pspec
);
1810 value
= params
[j
].value
;
1815 value
= g_param_spec_get_default_value (pspec
);
1817 object_set_property (object
, pspec
, value
, nqueue
);
1821 /* run 'constructed' handler if there is a custom one */
1822 if (CLASS_HAS_CUSTOM_CONSTRUCTED (class))
1823 class->constructed (object
);
1829 /* Set remaining properties. The construct properties will
1830 * already have been taken, so set only the non-construct
1833 for (i
= 0; i
< n_params
; i
++)
1834 if (!(params
[i
].pspec
->flags
& (G_PARAM_CONSTRUCT
| G_PARAM_CONSTRUCT_ONLY
)))
1836 consider_issuing_property_deprecation_warning (params
[i
].pspec
);
1837 object_set_property (object
, params
[i
].pspec
, params
[i
].value
, nqueue
);
1840 g_object_notify_queue_thaw (object
, nqueue
);
1847 * g_object_newv: (rename-to g_object_new)
1848 * @object_type: the type id of the #GObject subtype to instantiate
1849 * @n_parameters: the length of the @parameters array
1850 * @parameters: (array length=n_parameters): an array of #GParameter
1852 * Creates a new instance of a #GObject subtype and sets its properties.
1854 * Construction parameters (see #G_PARAM_CONSTRUCT, #G_PARAM_CONSTRUCT_ONLY)
1855 * which are not explicitly specified are set to their default values.
1857 * Returns: (type GObject.Object) (transfer full): a new instance of
1861 g_object_newv (GType object_type
,
1863 GParameter
*parameters
)
1865 GObjectClass
*class, *unref_class
= NULL
;
1868 g_return_val_if_fail (G_TYPE_IS_OBJECT (object_type
), NULL
);
1869 g_return_val_if_fail (n_parameters
== 0 || parameters
!= NULL
, NULL
);
1871 /* Try to avoid thrashing the ref_count if we don't need to (since
1872 * it's a locked operation).
1874 class = g_type_class_peek_static (object_type
);
1877 class = unref_class
= g_type_class_ref (object_type
);
1881 GObjectConstructParam
*cparams
;
1884 cparams
= g_newa (GObjectConstructParam
, n_parameters
);
1887 for (i
= 0; i
< n_parameters
; i
++)
1892 pspec
= g_param_spec_pool_lookup (pspec_pool
, parameters
[i
].name
, object_type
, TRUE
);
1894 if G_UNLIKELY (!pspec
)
1896 g_critical ("%s: object class '%s' has no property named '%s'",
1897 G_STRFUNC
, g_type_name (object_type
), parameters
[i
].name
);
1901 if G_UNLIKELY (~pspec
->flags
& G_PARAM_WRITABLE
)
1903 g_critical ("%s: property '%s' of object class '%s' is not writable",
1904 G_STRFUNC
, pspec
->name
, g_type_name (object_type
));
1908 if (pspec
->flags
& (G_PARAM_CONSTRUCT
| G_PARAM_CONSTRUCT_ONLY
))
1910 for (k
= 0; k
< j
; k
++)
1911 if (cparams
[k
].pspec
== pspec
)
1913 if G_UNLIKELY (k
!= j
)
1915 g_critical ("%s: construct property '%s' for type '%s' cannot be set twice",
1916 G_STRFUNC
, parameters
[i
].name
, g_type_name (object_type
));
1921 cparams
[j
].pspec
= pspec
;
1922 cparams
[j
].value
= ¶meters
[i
].value
;
1926 object
= g_object_new_internal (class, cparams
, j
);
1929 /* Fast case: no properties passed in. */
1930 object
= g_object_new_internal (class, NULL
, 0);
1933 g_type_class_unref (unref_class
);
1939 * g_object_new_valist: (skip)
1940 * @object_type: the type id of the #GObject subtype to instantiate
1941 * @first_property_name: the name of the first property
1942 * @var_args: the value of the first property, followed optionally by more
1943 * name/value pairs, followed by %NULL
1945 * Creates a new instance of a #GObject subtype and sets its properties.
1947 * Construction parameters (see #G_PARAM_CONSTRUCT, #G_PARAM_CONSTRUCT_ONLY)
1948 * which are not explicitly specified are set to their default values.
1950 * Returns: a new instance of @object_type
1953 g_object_new_valist (GType object_type
,
1954 const gchar
*first_property_name
,
1957 GObjectClass
*class, *unref_class
= NULL
;
1960 g_return_val_if_fail (G_TYPE_IS_OBJECT (object_type
), NULL
);
1962 /* Try to avoid thrashing the ref_count if we don't need to (since
1963 * it's a locked operation).
1965 class = g_type_class_peek_static (object_type
);
1968 class = unref_class
= g_type_class_ref (object_type
);
1970 if (first_property_name
)
1972 GObjectConstructParam stack_params
[16];
1973 GObjectConstructParam
*params
;
1977 name
= first_property_name
;
1978 params
= stack_params
;
1982 gchar
*error
= NULL
;
1986 pspec
= g_param_spec_pool_lookup (pspec_pool
, name
, object_type
, TRUE
);
1988 if G_UNLIKELY (!pspec
)
1990 g_critical ("%s: object class '%s' has no property named '%s'",
1991 G_STRFUNC
, g_type_name (object_type
), name
);
1992 /* Can't continue because arg list will be out of sync. */
1996 if G_UNLIKELY (~pspec
->flags
& G_PARAM_WRITABLE
)
1998 g_critical ("%s: property '%s' of object class '%s' is not writable",
1999 G_STRFUNC
, pspec
->name
, g_type_name (object_type
));
2003 if (pspec
->flags
& (G_PARAM_CONSTRUCT
| G_PARAM_CONSTRUCT_ONLY
))
2005 for (i
= 0; i
< n_params
; i
++)
2006 if (params
[i
].pspec
== pspec
)
2008 if G_UNLIKELY (i
!= n_params
)
2010 g_critical ("%s: property '%s' for type '%s' cannot be set twice",
2011 G_STRFUNC
, name
, g_type_name (object_type
));
2018 params
= g_new (GObjectConstructParam
, n_params
+ 1);
2019 memcpy (params
, stack_params
, sizeof stack_params
);
2021 else if (n_params
> 16)
2022 params
= g_renew (GObjectConstructParam
, params
, n_params
+ 1);
2024 params
[n_params
].pspec
= pspec
;
2025 params
[n_params
].value
= g_newa (GValue
, 1);
2026 memset (params
[n_params
].value
, 0, sizeof (GValue
));
2028 G_VALUE_COLLECT_INIT (params
[n_params
].value
, pspec
->value_type
, var_args
, 0, &error
);
2032 g_critical ("%s: %s", G_STRFUNC
, error
);
2033 g_value_unset (params
[n_params
].value
);
2040 while ((name
= va_arg (var_args
, const gchar
*)));
2042 object
= g_object_new_internal (class, params
, n_params
);
2045 g_value_unset (params
[n_params
].value
);
2047 if (params
!= stack_params
)
2051 /* Fast case: no properties passed in. */
2052 object
= g_object_new_internal (class, NULL
, 0);
2055 g_type_class_unref (unref_class
);
2061 g_object_constructor (GType type
,
2062 guint n_construct_properties
,
2063 GObjectConstructParam
*construct_params
)
2068 object
= (GObject
*) g_type_create_instance (type
);
2070 /* set construction parameters */
2071 if (n_construct_properties
)
2073 GObjectNotifyQueue
*nqueue
= g_object_notify_queue_freeze (object
, FALSE
);
2075 /* set construct properties */
2076 while (n_construct_properties
--)
2078 GValue
*value
= construct_params
->value
;
2079 GParamSpec
*pspec
= construct_params
->pspec
;
2082 object_set_property (object
, pspec
, value
, nqueue
);
2084 g_object_notify_queue_thaw (object
, nqueue
);
2085 /* the notification queue is still frozen from g_object_init(), so
2086 * we don't need to handle it here, g_object_newv() takes
2095 g_object_constructed (GObject
*object
)
2097 /* empty default impl to allow unconditional upchaining */
2101 * g_object_set_valist: (skip)
2102 * @object: a #GObject
2103 * @first_property_name: name of the first property to set
2104 * @var_args: value for the first property, followed optionally by more
2105 * name/value pairs, followed by %NULL
2107 * Sets properties on an object.
2110 g_object_set_valist (GObject
*object
,
2111 const gchar
*first_property_name
,
2114 GObjectNotifyQueue
*nqueue
;
2117 g_return_if_fail (G_IS_OBJECT (object
));
2119 g_object_ref (object
);
2120 nqueue
= g_object_notify_queue_freeze (object
, FALSE
);
2122 name
= first_property_name
;
2125 GValue value
= G_VALUE_INIT
;
2127 gchar
*error
= NULL
;
2129 pspec
= g_param_spec_pool_lookup (pspec_pool
,
2131 G_OBJECT_TYPE (object
),
2135 g_warning ("%s: object class '%s' has no property named '%s'",
2137 G_OBJECT_TYPE_NAME (object
),
2141 if (!(pspec
->flags
& G_PARAM_WRITABLE
))
2143 g_warning ("%s: property '%s' of object class '%s' is not writable",
2146 G_OBJECT_TYPE_NAME (object
));
2149 if ((pspec
->flags
& G_PARAM_CONSTRUCT_ONLY
) && !object_in_construction (object
))
2151 g_warning ("%s: construct property \"%s\" for object '%s' can't be set after construction",
2152 G_STRFUNC
, pspec
->name
, G_OBJECT_TYPE_NAME (object
));
2156 G_VALUE_COLLECT_INIT (&value
, pspec
->value_type
, var_args
,
2160 g_warning ("%s: %s", G_STRFUNC
, error
);
2162 g_value_unset (&value
);
2166 consider_issuing_property_deprecation_warning (pspec
);
2167 object_set_property (object
, pspec
, &value
, nqueue
);
2168 g_value_unset (&value
);
2170 name
= va_arg (var_args
, gchar
*);
2173 g_object_notify_queue_thaw (object
, nqueue
);
2174 g_object_unref (object
);
2178 * g_object_get_valist: (skip)
2179 * @object: a #GObject
2180 * @first_property_name: name of the first property to get
2181 * @var_args: return location for the first property, followed optionally by more
2182 * name/return location pairs, followed by %NULL
2184 * Gets properties of an object.
2186 * In general, a copy is made of the property contents and the caller
2187 * is responsible for freeing the memory in the appropriate manner for
2188 * the type, for instance by calling g_free() or g_object_unref().
2190 * See g_object_get().
2193 g_object_get_valist (GObject
*object
,
2194 const gchar
*first_property_name
,
2199 g_return_if_fail (G_IS_OBJECT (object
));
2201 g_object_ref (object
);
2203 name
= first_property_name
;
2207 GValue value
= G_VALUE_INIT
;
2211 pspec
= g_param_spec_pool_lookup (pspec_pool
,
2213 G_OBJECT_TYPE (object
),
2217 g_warning ("%s: object class '%s' has no property named '%s'",
2219 G_OBJECT_TYPE_NAME (object
),
2223 if (!(pspec
->flags
& G_PARAM_READABLE
))
2225 g_warning ("%s: property '%s' of object class '%s' is not readable",
2228 G_OBJECT_TYPE_NAME (object
));
2232 g_value_init (&value
, pspec
->value_type
);
2234 object_get_property (object
, pspec
, &value
);
2236 G_VALUE_LCOPY (&value
, var_args
, 0, &error
);
2239 g_warning ("%s: %s", G_STRFUNC
, error
);
2241 g_value_unset (&value
);
2245 g_value_unset (&value
);
2247 name
= va_arg (var_args
, gchar
*);
2250 g_object_unref (object
);
2254 * g_object_set: (skip)
2255 * @object: (type GObject.Object): a #GObject
2256 * @first_property_name: name of the first property to set
2257 * @...: value for the first property, followed optionally by more
2258 * name/value pairs, followed by %NULL
2260 * Sets properties on an object.
2262 * Note that the "notify" signals are queued and only emitted (in
2263 * reverse order) after all properties have been set. See
2264 * g_object_freeze_notify().
2267 g_object_set (gpointer _object
,
2268 const gchar
*first_property_name
,
2271 GObject
*object
= _object
;
2274 g_return_if_fail (G_IS_OBJECT (object
));
2276 va_start (var_args
, first_property_name
);
2277 g_object_set_valist (object
, first_property_name
, var_args
);
2282 * g_object_get: (skip)
2283 * @object: (type GObject.Object): a #GObject
2284 * @first_property_name: name of the first property to get
2285 * @...: return location for the first property, followed optionally by more
2286 * name/return location pairs, followed by %NULL
2288 * Gets properties of an object.
2290 * In general, a copy is made of the property contents and the caller
2291 * is responsible for freeing the memory in the appropriate manner for
2292 * the type, for instance by calling g_free() or g_object_unref().
2294 * Here is an example of using g_object_get() to get the contents
2295 * of three properties: an integer, a string and an object:
2296 * |[<!-- language="C" -->
2301 * g_object_get (my_object,
2302 * "int-property", &intval,
2303 * "str-property", &strval,
2304 * "obj-property", &objval,
2307 * // Do something with intval, strval, objval
2310 * g_object_unref (objval);
2314 g_object_get (gpointer _object
,
2315 const gchar
*first_property_name
,
2318 GObject
*object
= _object
;
2321 g_return_if_fail (G_IS_OBJECT (object
));
2323 va_start (var_args
, first_property_name
);
2324 g_object_get_valist (object
, first_property_name
, var_args
);
2329 * g_object_set_property:
2330 * @object: a #GObject
2331 * @property_name: the name of the property to set
2334 * Sets a property on an object.
2337 g_object_set_property (GObject
*object
,
2338 const gchar
*property_name
,
2339 const GValue
*value
)
2341 GObjectNotifyQueue
*nqueue
;
2344 g_return_if_fail (G_IS_OBJECT (object
));
2345 g_return_if_fail (property_name
!= NULL
);
2346 g_return_if_fail (G_IS_VALUE (value
));
2348 g_object_ref (object
);
2349 nqueue
= g_object_notify_queue_freeze (object
, FALSE
);
2351 pspec
= g_param_spec_pool_lookup (pspec_pool
,
2353 G_OBJECT_TYPE (object
),
2356 g_warning ("%s: object class '%s' has no property named '%s'",
2358 G_OBJECT_TYPE_NAME (object
),
2360 else if (!(pspec
->flags
& G_PARAM_WRITABLE
))
2361 g_warning ("%s: property '%s' of object class '%s' is not writable",
2364 G_OBJECT_TYPE_NAME (object
));
2365 else if ((pspec
->flags
& G_PARAM_CONSTRUCT_ONLY
) && !object_in_construction (object
))
2366 g_warning ("%s: construct property \"%s\" for object '%s' can't be set after construction",
2367 G_STRFUNC
, pspec
->name
, G_OBJECT_TYPE_NAME (object
));
2370 consider_issuing_property_deprecation_warning (pspec
);
2371 object_set_property (object
, pspec
, value
, nqueue
);
2374 g_object_notify_queue_thaw (object
, nqueue
);
2375 g_object_unref (object
);
2379 * g_object_get_property:
2380 * @object: a #GObject
2381 * @property_name: the name of the property to get
2382 * @value: return location for the property value
2384 * Gets a property of an object. @value must have been initialized to the
2385 * expected type of the property (or a type to which the expected type can be
2386 * transformed) using g_value_init().
2388 * In general, a copy is made of the property contents and the caller is
2389 * responsible for freeing the memory by calling g_value_unset().
2391 * Note that g_object_get_property() is really intended for language
2392 * bindings, g_object_get() is much more convenient for C programming.
2395 g_object_get_property (GObject
*object
,
2396 const gchar
*property_name
,
2401 g_return_if_fail (G_IS_OBJECT (object
));
2402 g_return_if_fail (property_name
!= NULL
);
2403 g_return_if_fail (G_IS_VALUE (value
));
2405 g_object_ref (object
);
2407 pspec
= g_param_spec_pool_lookup (pspec_pool
,
2409 G_OBJECT_TYPE (object
),
2412 g_warning ("%s: object class '%s' has no property named '%s'",
2414 G_OBJECT_TYPE_NAME (object
),
2416 else if (!(pspec
->flags
& G_PARAM_READABLE
))
2417 g_warning ("%s: property '%s' of object class '%s' is not readable",
2420 G_OBJECT_TYPE_NAME (object
));
2423 GValue
*prop_value
, tmp_value
= G_VALUE_INIT
;
2425 /* auto-conversion of the callers value type
2427 if (G_VALUE_TYPE (value
) == pspec
->value_type
)
2429 g_value_reset (value
);
2432 else if (!g_value_type_transformable (pspec
->value_type
, G_VALUE_TYPE (value
)))
2434 g_warning ("%s: can't retrieve property '%s' of type '%s' as value of type '%s'",
2435 G_STRFUNC
, pspec
->name
,
2436 g_type_name (pspec
->value_type
),
2437 G_VALUE_TYPE_NAME (value
));
2438 g_object_unref (object
);
2443 g_value_init (&tmp_value
, pspec
->value_type
);
2444 prop_value
= &tmp_value
;
2446 object_get_property (object
, pspec
, prop_value
);
2447 if (prop_value
!= value
)
2449 g_value_transform (prop_value
, value
);
2450 g_value_unset (&tmp_value
);
2454 g_object_unref (object
);
2458 * g_object_connect: (skip)
2459 * @object: (type GObject.Object): a #GObject
2460 * @signal_spec: the spec for the first signal
2461 * @...: #GCallback for the first signal, followed by data for the
2462 * first signal, followed optionally by more signal
2463 * spec/callback/data triples, followed by %NULL
2465 * A convenience function to connect multiple signals at once.
2467 * The signal specs expected by this function have the form
2468 * "modifier::signal_name", where modifier can be one of the following:
2469 * * - signal: equivalent to g_signal_connect_data (..., NULL, 0)
2470 * - object-signal, object_signal: equivalent to g_signal_connect_object (..., 0)
2471 * - swapped-signal, swapped_signal: equivalent to g_signal_connect_data (..., NULL, G_CONNECT_SWAPPED)
2472 * - swapped_object_signal, swapped-object-signal: equivalent to g_signal_connect_object (..., G_CONNECT_SWAPPED)
2473 * - signal_after, signal-after: equivalent to g_signal_connect_data (..., NULL, G_CONNECT_AFTER)
2474 * - object_signal_after, object-signal-after: equivalent to g_signal_connect_object (..., G_CONNECT_AFTER)
2475 * - swapped_signal_after, swapped-signal-after: equivalent to g_signal_connect_data (..., NULL, G_CONNECT_SWAPPED | G_CONNECT_AFTER)
2476 * - swapped_object_signal_after, swapped-object-signal-after: equivalent to g_signal_connect_object (..., G_CONNECT_SWAPPED | G_CONNECT_AFTER)
2478 * |[<!-- language="C" -->
2479 * menu->toplevel = g_object_connect (g_object_new (GTK_TYPE_WINDOW,
2480 * "type", GTK_WINDOW_POPUP,
2483 * "signal::event", gtk_menu_window_event, menu,
2484 * "signal::size_request", gtk_menu_window_size_request, menu,
2485 * "signal::destroy", gtk_widget_destroyed, &menu->toplevel,
2489 * Returns: (transfer none) (type GObject.Object): @object
2492 g_object_connect (gpointer _object
,
2493 const gchar
*signal_spec
,
2496 GObject
*object
= _object
;
2499 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
2500 g_return_val_if_fail (object
->ref_count
> 0, object
);
2502 va_start (var_args
, signal_spec
);
2505 GCallback callback
= va_arg (var_args
, GCallback
);
2506 gpointer data
= va_arg (var_args
, gpointer
);
2508 if (strncmp (signal_spec
, "signal::", 8) == 0)
2509 g_signal_connect_data (object
, signal_spec
+ 8,
2510 callback
, data
, NULL
,
2512 else if (strncmp (signal_spec
, "object_signal::", 15) == 0 ||
2513 strncmp (signal_spec
, "object-signal::", 15) == 0)
2514 g_signal_connect_object (object
, signal_spec
+ 15,
2517 else if (strncmp (signal_spec
, "swapped_signal::", 16) == 0 ||
2518 strncmp (signal_spec
, "swapped-signal::", 16) == 0)
2519 g_signal_connect_data (object
, signal_spec
+ 16,
2520 callback
, data
, NULL
,
2522 else if (strncmp (signal_spec
, "swapped_object_signal::", 23) == 0 ||
2523 strncmp (signal_spec
, "swapped-object-signal::", 23) == 0)
2524 g_signal_connect_object (object
, signal_spec
+ 23,
2527 else if (strncmp (signal_spec
, "signal_after::", 14) == 0 ||
2528 strncmp (signal_spec
, "signal-after::", 14) == 0)
2529 g_signal_connect_data (object
, signal_spec
+ 14,
2530 callback
, data
, NULL
,
2532 else if (strncmp (signal_spec
, "object_signal_after::", 21) == 0 ||
2533 strncmp (signal_spec
, "object-signal-after::", 21) == 0)
2534 g_signal_connect_object (object
, signal_spec
+ 21,
2537 else if (strncmp (signal_spec
, "swapped_signal_after::", 22) == 0 ||
2538 strncmp (signal_spec
, "swapped-signal-after::", 22) == 0)
2539 g_signal_connect_data (object
, signal_spec
+ 22,
2540 callback
, data
, NULL
,
2541 G_CONNECT_SWAPPED
| G_CONNECT_AFTER
);
2542 else if (strncmp (signal_spec
, "swapped_object_signal_after::", 29) == 0 ||
2543 strncmp (signal_spec
, "swapped-object-signal-after::", 29) == 0)
2544 g_signal_connect_object (object
, signal_spec
+ 29,
2546 G_CONNECT_SWAPPED
| G_CONNECT_AFTER
);
2549 g_warning ("%s: invalid signal spec \"%s\"", G_STRFUNC
, signal_spec
);
2552 signal_spec
= va_arg (var_args
, gchar
*);
2560 * g_object_disconnect: (skip)
2561 * @object: (type GObject.Object): a #GObject
2562 * @signal_spec: the spec for the first signal
2563 * @...: #GCallback for the first signal, followed by data for the first signal,
2564 * followed optionally by more signal spec/callback/data triples,
2567 * A convenience function to disconnect multiple signals at once.
2569 * The signal specs expected by this function have the form
2570 * "any_signal", which means to disconnect any signal with matching
2571 * callback and data, or "any_signal::signal_name", which only
2572 * disconnects the signal named "signal_name".
2575 g_object_disconnect (gpointer _object
,
2576 const gchar
*signal_spec
,
2579 GObject
*object
= _object
;
2582 g_return_if_fail (G_IS_OBJECT (object
));
2583 g_return_if_fail (object
->ref_count
> 0);
2585 va_start (var_args
, signal_spec
);
2588 GCallback callback
= va_arg (var_args
, GCallback
);
2589 gpointer data
= va_arg (var_args
, gpointer
);
2590 guint sid
= 0, detail
= 0, mask
= 0;
2592 if (strncmp (signal_spec
, "any_signal::", 12) == 0 ||
2593 strncmp (signal_spec
, "any-signal::", 12) == 0)
2596 mask
= G_SIGNAL_MATCH_ID
| G_SIGNAL_MATCH_FUNC
| G_SIGNAL_MATCH_DATA
;
2598 else if (strcmp (signal_spec
, "any_signal") == 0 ||
2599 strcmp (signal_spec
, "any-signal") == 0)
2602 mask
= G_SIGNAL_MATCH_FUNC
| G_SIGNAL_MATCH_DATA
;
2606 g_warning ("%s: invalid signal spec \"%s\"", G_STRFUNC
, signal_spec
);
2610 if ((mask
& G_SIGNAL_MATCH_ID
) &&
2611 !g_signal_parse_name (signal_spec
, G_OBJECT_TYPE (object
), &sid
, &detail
, FALSE
))
2612 g_warning ("%s: invalid signal name \"%s\"", G_STRFUNC
, signal_spec
);
2613 else if (!g_signal_handlers_disconnect_matched (object
, mask
| (detail
? G_SIGNAL_MATCH_DETAIL
: 0),
2615 NULL
, (gpointer
)callback
, data
))
2616 g_warning ("%s: signal handler %p(%p) is not connected", G_STRFUNC
, callback
, data
);
2617 signal_spec
= va_arg (var_args
, gchar
*);
2628 } weak_refs
[1]; /* flexible array */
2632 weak_refs_notify (gpointer data
)
2634 WeakRefStack
*wstack
= data
;
2637 for (i
= 0; i
< wstack
->n_weak_refs
; i
++)
2638 wstack
->weak_refs
[i
].notify (wstack
->weak_refs
[i
].data
, wstack
->object
);
2643 * g_object_weak_ref: (skip)
2644 * @object: #GObject to reference weakly
2645 * @notify: callback to invoke before the object is freed
2646 * @data: extra data to pass to notify
2648 * Adds a weak reference callback to an object. Weak references are
2649 * used for notification when an object is finalized. They are called
2650 * "weak references" because they allow you to safely hold a pointer
2651 * to an object without calling g_object_ref() (g_object_ref() adds a
2652 * strong reference, that is, forces the object to stay alive).
2654 * Note that the weak references created by this method are not
2655 * thread-safe: they cannot safely be used in one thread if the
2656 * object's last g_object_unref() might happen in another thread.
2657 * Use #GWeakRef if thread-safety is required.
2660 g_object_weak_ref (GObject
*object
,
2664 WeakRefStack
*wstack
;
2667 g_return_if_fail (G_IS_OBJECT (object
));
2668 g_return_if_fail (notify
!= NULL
);
2669 g_return_if_fail (object
->ref_count
>= 1);
2671 G_LOCK (weak_refs_mutex
);
2672 wstack
= g_datalist_id_remove_no_notify (&object
->qdata
, quark_weak_refs
);
2675 i
= wstack
->n_weak_refs
++;
2676 wstack
= g_realloc (wstack
, sizeof (*wstack
) + sizeof (wstack
->weak_refs
[0]) * i
);
2680 wstack
= g_renew (WeakRefStack
, NULL
, 1);
2681 wstack
->object
= object
;
2682 wstack
->n_weak_refs
= 1;
2685 wstack
->weak_refs
[i
].notify
= notify
;
2686 wstack
->weak_refs
[i
].data
= data
;
2687 g_datalist_id_set_data_full (&object
->qdata
, quark_weak_refs
, wstack
, weak_refs_notify
);
2688 G_UNLOCK (weak_refs_mutex
);
2692 * g_object_weak_unref: (skip)
2693 * @object: #GObject to remove a weak reference from
2694 * @notify: callback to search for
2695 * @data: data to search for
2697 * Removes a weak reference callback to an object.
2700 g_object_weak_unref (GObject
*object
,
2704 WeakRefStack
*wstack
;
2705 gboolean found_one
= FALSE
;
2707 g_return_if_fail (G_IS_OBJECT (object
));
2708 g_return_if_fail (notify
!= NULL
);
2710 G_LOCK (weak_refs_mutex
);
2711 wstack
= g_datalist_id_get_data (&object
->qdata
, quark_weak_refs
);
2716 for (i
= 0; i
< wstack
->n_weak_refs
; i
++)
2717 if (wstack
->weak_refs
[i
].notify
== notify
&&
2718 wstack
->weak_refs
[i
].data
== data
)
2721 wstack
->n_weak_refs
-= 1;
2722 if (i
!= wstack
->n_weak_refs
)
2723 wstack
->weak_refs
[i
] = wstack
->weak_refs
[wstack
->n_weak_refs
];
2728 G_UNLOCK (weak_refs_mutex
);
2730 g_warning ("%s: couldn't find weak ref %p(%p)", G_STRFUNC
, notify
, data
);
2734 * g_object_add_weak_pointer: (skip)
2735 * @object: The object that should be weak referenced.
2736 * @weak_pointer_location: (inout) (not optional): The memory address
2739 * Adds a weak reference from weak_pointer to @object to indicate that
2740 * the pointer located at @weak_pointer_location is only valid during
2741 * the lifetime of @object. When the @object is finalized,
2742 * @weak_pointer will be set to %NULL.
2744 * Note that as with g_object_weak_ref(), the weak references created by
2745 * this method are not thread-safe: they cannot safely be used in one
2746 * thread if the object's last g_object_unref() might happen in another
2747 * thread. Use #GWeakRef if thread-safety is required.
2750 g_object_add_weak_pointer (GObject
*object
,
2751 gpointer
*weak_pointer_location
)
2753 g_return_if_fail (G_IS_OBJECT (object
));
2754 g_return_if_fail (weak_pointer_location
!= NULL
);
2756 g_object_weak_ref (object
,
2757 (GWeakNotify
) g_nullify_pointer
,
2758 weak_pointer_location
);
2762 * g_object_remove_weak_pointer: (skip)
2763 * @object: The object that is weak referenced.
2764 * @weak_pointer_location: (inout) (not optional): The memory address
2767 * Removes a weak reference from @object that was previously added
2768 * using g_object_add_weak_pointer(). The @weak_pointer_location has
2769 * to match the one used with g_object_add_weak_pointer().
2772 g_object_remove_weak_pointer (GObject
*object
,
2773 gpointer
*weak_pointer_location
)
2775 g_return_if_fail (G_IS_OBJECT (object
));
2776 g_return_if_fail (weak_pointer_location
!= NULL
);
2778 g_object_weak_unref (object
,
2779 (GWeakNotify
) g_nullify_pointer
,
2780 weak_pointer_location
);
2784 object_floating_flag_handler (GObject
*object
,
2790 case +1: /* force floating if possible */
2792 oldvalue
= g_atomic_pointer_get (&object
->qdata
);
2793 while (!g_atomic_pointer_compare_and_exchange ((void**) &object
->qdata
, oldvalue
,
2794 (gpointer
) ((gsize
) oldvalue
| OBJECT_FLOATING_FLAG
)));
2795 return (gsize
) oldvalue
& OBJECT_FLOATING_FLAG
;
2796 case -1: /* sink if possible */
2798 oldvalue
= g_atomic_pointer_get (&object
->qdata
);
2799 while (!g_atomic_pointer_compare_and_exchange ((void**) &object
->qdata
, oldvalue
,
2800 (gpointer
) ((gsize
) oldvalue
& ~(gsize
) OBJECT_FLOATING_FLAG
)));
2801 return (gsize
) oldvalue
& OBJECT_FLOATING_FLAG
;
2802 default: /* check floating */
2803 return 0 != ((gsize
) g_atomic_pointer_get (&object
->qdata
) & OBJECT_FLOATING_FLAG
);
2808 * g_object_is_floating:
2809 * @object: (type GObject.Object): a #GObject
2811 * Checks whether @object has a [floating][floating-ref] reference.
2815 * Returns: %TRUE if @object has a floating reference
2818 g_object_is_floating (gpointer _object
)
2820 GObject
*object
= _object
;
2821 g_return_val_if_fail (G_IS_OBJECT (object
), FALSE
);
2822 return floating_flag_handler (object
, 0);
2826 * g_object_ref_sink:
2827 * @object: (type GObject.Object): a #GObject
2829 * Increase the reference count of @object, and possibly remove the
2830 * [floating][floating-ref] reference, if @object has a floating reference.
2832 * In other words, if the object is floating, then this call "assumes
2833 * ownership" of the floating reference, converting it to a normal
2834 * reference by clearing the floating flag while leaving the reference
2835 * count unchanged. If the object is not floating, then this call
2836 * adds a new normal reference increasing the reference count by one.
2840 * Returns: (type GObject.Object) (transfer none): @object
2843 g_object_ref_sink (gpointer _object
)
2845 GObject
*object
= _object
;
2846 gboolean was_floating
;
2847 g_return_val_if_fail (G_IS_OBJECT (object
), object
);
2848 g_return_val_if_fail (object
->ref_count
>= 1, object
);
2849 g_object_ref (object
);
2850 was_floating
= floating_flag_handler (object
, -1);
2852 g_object_unref (object
);
2857 * g_object_force_floating:
2858 * @object: a #GObject
2860 * This function is intended for #GObject implementations to re-enforce
2861 * a [floating][floating-ref] object reference. Doing this is seldom
2862 * required: all #GInitiallyUnowneds are created with a floating reference
2863 * which usually just needs to be sunken by calling g_object_ref_sink().
2868 g_object_force_floating (GObject
*object
)
2870 g_return_if_fail (G_IS_OBJECT (object
));
2871 g_return_if_fail (object
->ref_count
>= 1);
2873 floating_flag_handler (object
, +1);
2878 guint n_toggle_refs
;
2880 GToggleNotify notify
;
2882 } toggle_refs
[1]; /* flexible array */
2886 toggle_refs_notify (GObject
*object
,
2887 gboolean is_last_ref
)
2889 ToggleRefStack tstack
, *tstackptr
;
2891 G_LOCK (toggle_refs_mutex
);
2892 tstackptr
= g_datalist_id_get_data (&object
->qdata
, quark_toggle_refs
);
2893 tstack
= *tstackptr
;
2894 G_UNLOCK (toggle_refs_mutex
);
2896 /* Reentrancy here is not as tricky as it seems, because a toggle reference
2897 * will only be notified when there is exactly one of them.
2899 g_assert (tstack
.n_toggle_refs
== 1);
2900 tstack
.toggle_refs
[0].notify (tstack
.toggle_refs
[0].data
, tstack
.object
, is_last_ref
);
2904 * g_object_add_toggle_ref: (skip)
2905 * @object: a #GObject
2906 * @notify: a function to call when this reference is the
2907 * last reference to the object, or is no longer
2908 * the last reference.
2909 * @data: data to pass to @notify
2911 * Increases the reference count of the object by one and sets a
2912 * callback to be called when all other references to the object are
2913 * dropped, or when this is already the last reference to the object
2914 * and another reference is established.
2916 * This functionality is intended for binding @object to a proxy
2917 * object managed by another memory manager. This is done with two
2918 * paired references: the strong reference added by
2919 * g_object_add_toggle_ref() and a reverse reference to the proxy
2920 * object which is either a strong reference or weak reference.
2922 * The setup is that when there are no other references to @object,
2923 * only a weak reference is held in the reverse direction from @object
2924 * to the proxy object, but when there are other references held to
2925 * @object, a strong reference is held. The @notify callback is called
2926 * when the reference from @object to the proxy object should be
2927 * "toggled" from strong to weak (@is_last_ref true) or weak to strong
2928 * (@is_last_ref false).
2930 * Since a (normal) reference must be held to the object before
2931 * calling g_object_add_toggle_ref(), the initial state of the reverse
2932 * link is always strong.
2934 * Multiple toggle references may be added to the same gobject,
2935 * however if there are multiple toggle references to an object, none
2936 * of them will ever be notified until all but one are removed. For
2937 * this reason, you should only ever use a toggle reference if there
2938 * is important state in the proxy object.
2943 g_object_add_toggle_ref (GObject
*object
,
2944 GToggleNotify notify
,
2947 ToggleRefStack
*tstack
;
2950 g_return_if_fail (G_IS_OBJECT (object
));
2951 g_return_if_fail (notify
!= NULL
);
2952 g_return_if_fail (object
->ref_count
>= 1);
2954 g_object_ref (object
);
2956 G_LOCK (toggle_refs_mutex
);
2957 tstack
= g_datalist_id_remove_no_notify (&object
->qdata
, quark_toggle_refs
);
2960 i
= tstack
->n_toggle_refs
++;
2961 /* allocate i = tstate->n_toggle_refs - 1 positions beyond the 1 declared
2962 * in tstate->toggle_refs */
2963 tstack
= g_realloc (tstack
, sizeof (*tstack
) + sizeof (tstack
->toggle_refs
[0]) * i
);
2967 tstack
= g_renew (ToggleRefStack
, NULL
, 1);
2968 tstack
->object
= object
;
2969 tstack
->n_toggle_refs
= 1;
2973 /* Set a flag for fast lookup after adding the first toggle reference */
2974 if (tstack
->n_toggle_refs
== 1)
2975 g_datalist_set_flags (&object
->qdata
, OBJECT_HAS_TOGGLE_REF_FLAG
);
2977 tstack
->toggle_refs
[i
].notify
= notify
;
2978 tstack
->toggle_refs
[i
].data
= data
;
2979 g_datalist_id_set_data_full (&object
->qdata
, quark_toggle_refs
, tstack
,
2980 (GDestroyNotify
)g_free
);
2981 G_UNLOCK (toggle_refs_mutex
);
2985 * g_object_remove_toggle_ref: (skip)
2986 * @object: a #GObject
2987 * @notify: a function to call when this reference is the
2988 * last reference to the object, or is no longer
2989 * the last reference.
2990 * @data: data to pass to @notify
2992 * Removes a reference added with g_object_add_toggle_ref(). The
2993 * reference count of the object is decreased by one.
2998 g_object_remove_toggle_ref (GObject
*object
,
2999 GToggleNotify notify
,
3002 ToggleRefStack
*tstack
;
3003 gboolean found_one
= FALSE
;
3005 g_return_if_fail (G_IS_OBJECT (object
));
3006 g_return_if_fail (notify
!= NULL
);
3008 G_LOCK (toggle_refs_mutex
);
3009 tstack
= g_datalist_id_get_data (&object
->qdata
, quark_toggle_refs
);
3014 for (i
= 0; i
< tstack
->n_toggle_refs
; i
++)
3015 if (tstack
->toggle_refs
[i
].notify
== notify
&&
3016 tstack
->toggle_refs
[i
].data
== data
)
3019 tstack
->n_toggle_refs
-= 1;
3020 if (i
!= tstack
->n_toggle_refs
)
3021 tstack
->toggle_refs
[i
] = tstack
->toggle_refs
[tstack
->n_toggle_refs
];
3023 if (tstack
->n_toggle_refs
== 0)
3024 g_datalist_unset_flags (&object
->qdata
, OBJECT_HAS_TOGGLE_REF_FLAG
);
3029 G_UNLOCK (toggle_refs_mutex
);
3032 g_object_unref (object
);
3034 g_warning ("%s: couldn't find toggle ref %p(%p)", G_STRFUNC
, notify
, data
);
3039 * @object: (type GObject.Object): a #GObject
3041 * Increases the reference count of @object.
3043 * Returns: (type GObject.Object) (transfer none): the same @object
3046 g_object_ref (gpointer _object
)
3048 GObject
*object
= _object
;
3051 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
3052 g_return_val_if_fail (object
->ref_count
> 0, NULL
);
3054 old_val
= g_atomic_int_add (&object
->ref_count
, 1);
3056 if (old_val
== 1 && OBJECT_HAS_TOGGLE_REF (object
))
3057 toggle_refs_notify (object
, FALSE
);
3059 TRACE (GOBJECT_OBJECT_REF(object
,G_TYPE_FROM_INSTANCE(object
),old_val
));
3066 * @object: (type GObject.Object): a #GObject
3068 * Decreases the reference count of @object. When its reference count
3069 * drops to 0, the object is finalized (i.e. its memory is freed).
3071 * If the pointer to the #GObject may be reused in future (for example, if it is
3072 * an instance variable of another object), it is recommended to clear the
3073 * pointer to %NULL rather than retain a dangling pointer to a potentially
3074 * invalid #GObject instance. Use g_clear_object() for this.
3077 g_object_unref (gpointer _object
)
3079 GObject
*object
= _object
;
3082 g_return_if_fail (G_IS_OBJECT (object
));
3083 g_return_if_fail (object
->ref_count
> 0);
3085 /* here we want to atomically do: if (ref_count>1) { ref_count--; return; } */
3086 retry_atomic_decrement1
:
3087 old_ref
= g_atomic_int_get (&object
->ref_count
);
3090 /* valid if last 2 refs are owned by this call to unref and the toggle_ref */
3091 gboolean has_toggle_ref
= OBJECT_HAS_TOGGLE_REF (object
);
3093 if (!g_atomic_int_compare_and_exchange ((int *)&object
->ref_count
, old_ref
, old_ref
- 1))
3094 goto retry_atomic_decrement1
;
3096 TRACE (GOBJECT_OBJECT_UNREF(object
,G_TYPE_FROM_INSTANCE(object
),old_ref
));
3098 /* if we went from 2->1 we need to notify toggle refs if any */
3099 if (old_ref
== 2 && has_toggle_ref
) /* The last ref being held in this case is owned by the toggle_ref */
3100 toggle_refs_notify (object
, TRUE
);
3104 GSList
**weak_locations
;
3106 /* The only way that this object can live at this point is if
3107 * there are outstanding weak references already established
3108 * before we got here.
3110 * If there were not already weak references then no more can be
3111 * established at this time, because the other thread would have
3112 * to hold a strong ref in order to call
3113 * g_object_add_weak_pointer() and then we wouldn't be here.
3115 weak_locations
= g_datalist_id_get_data (&object
->qdata
, quark_weak_locations
);
3117 if (weak_locations
!= NULL
)
3119 g_rw_lock_writer_lock (&weak_locations_lock
);
3121 /* It is possible that one of the weak references beat us to
3122 * the lock. Make sure the refcount is still what we expected
3125 old_ref
= g_atomic_int_get (&object
->ref_count
);
3128 g_rw_lock_writer_unlock (&weak_locations_lock
);
3129 goto retry_atomic_decrement1
;
3132 /* We got the lock first, so the object will definitely die
3133 * now. Clear out all the weak references.
3135 while (*weak_locations
)
3137 GWeakRef
*weak_ref_location
= (*weak_locations
)->data
;
3139 weak_ref_location
->priv
.p
= NULL
;
3140 *weak_locations
= g_slist_delete_link (*weak_locations
, *weak_locations
);
3143 g_rw_lock_writer_unlock (&weak_locations_lock
);
3146 /* we are about to remove the last reference */
3147 TRACE (GOBJECT_OBJECT_DISPOSE(object
,G_TYPE_FROM_INSTANCE(object
), 1));
3148 G_OBJECT_GET_CLASS (object
)->dispose (object
);
3149 TRACE (GOBJECT_OBJECT_DISPOSE_END(object
,G_TYPE_FROM_INSTANCE(object
), 1));
3151 /* may have been re-referenced meanwhile */
3152 retry_atomic_decrement2
:
3153 old_ref
= g_atomic_int_get ((int *)&object
->ref_count
);
3156 /* valid if last 2 refs are owned by this call to unref and the toggle_ref */
3157 gboolean has_toggle_ref
= OBJECT_HAS_TOGGLE_REF (object
);
3159 if (!g_atomic_int_compare_and_exchange ((int *)&object
->ref_count
, old_ref
, old_ref
- 1))
3160 goto retry_atomic_decrement2
;
3162 TRACE (GOBJECT_OBJECT_UNREF(object
,G_TYPE_FROM_INSTANCE(object
),old_ref
));
3164 /* if we went from 2->1 we need to notify toggle refs if any */
3165 if (old_ref
== 2 && has_toggle_ref
) /* The last ref being held in this case is owned by the toggle_ref */
3166 toggle_refs_notify (object
, TRUE
);
3171 /* we are still in the process of taking away the last ref */
3172 g_datalist_id_set_data (&object
->qdata
, quark_closure_array
, NULL
);
3173 g_signal_handlers_destroy (object
);
3174 g_datalist_id_set_data (&object
->qdata
, quark_weak_refs
, NULL
);
3176 /* decrement the last reference */
3177 old_ref
= g_atomic_int_add (&object
->ref_count
, -1);
3179 TRACE (GOBJECT_OBJECT_UNREF(object
,G_TYPE_FROM_INSTANCE(object
),old_ref
));
3181 /* may have been re-referenced meanwhile */
3182 if (G_LIKELY (old_ref
== 1))
3184 TRACE (GOBJECT_OBJECT_FINALIZE(object
,G_TYPE_FROM_INSTANCE(object
)));
3185 G_OBJECT_GET_CLASS (object
)->finalize (object
);
3187 TRACE (GOBJECT_OBJECT_FINALIZE_END(object
,G_TYPE_FROM_INSTANCE(object
)));
3189 GOBJECT_IF_DEBUG (OBJECTS
,
3191 /* catch objects not chaining finalize handlers */
3192 G_LOCK (debug_objects
);
3193 g_assert (g_hash_table_lookup (debug_objects_ht
, object
) == NULL
);
3194 G_UNLOCK (debug_objects
);
3196 g_type_free_instance ((GTypeInstance
*) object
);
3202 * g_clear_object: (skip)
3203 * @object_ptr: a pointer to a #GObject reference
3205 * Clears a reference to a #GObject.
3207 * @object_ptr must not be %NULL.
3209 * If the reference is %NULL then this function does nothing.
3210 * Otherwise, the reference count of the object is decreased and the
3211 * pointer is set to %NULL.
3213 * A macro is also included that allows this function to be used without
3218 #undef g_clear_object
3220 g_clear_object (volatile GObject
**object_ptr
)
3222 g_clear_pointer (object_ptr
, g_object_unref
);
3226 * g_object_get_qdata:
3227 * @object: The GObject to get a stored user data pointer from
3228 * @quark: A #GQuark, naming the user data pointer
3230 * This function gets back user data pointers stored via
3231 * g_object_set_qdata().
3233 * Returns: (transfer none): The user data pointer set, or %NULL
3236 g_object_get_qdata (GObject
*object
,
3239 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
3241 return quark
? g_datalist_id_get_data (&object
->qdata
, quark
) : NULL
;
3245 * g_object_set_qdata: (skip)
3246 * @object: The GObject to set store a user data pointer
3247 * @quark: A #GQuark, naming the user data pointer
3248 * @data: An opaque user data pointer
3250 * This sets an opaque, named pointer on an object.
3251 * The name is specified through a #GQuark (retrived e.g. via
3252 * g_quark_from_static_string()), and the pointer
3253 * can be gotten back from the @object with g_object_get_qdata()
3254 * until the @object is finalized.
3255 * Setting a previously set user data pointer, overrides (frees)
3256 * the old pointer set, using #NULL as pointer essentially
3257 * removes the data stored.
3260 g_object_set_qdata (GObject
*object
,
3264 g_return_if_fail (G_IS_OBJECT (object
));
3265 g_return_if_fail (quark
> 0);
3267 g_datalist_id_set_data (&object
->qdata
, quark
, data
);
3271 * g_object_dup_qdata:
3272 * @object: the #GObject to store user data on
3273 * @quark: a #GQuark, naming the user data pointer
3274 * @dup_func: (nullable): function to dup the value
3275 * @user_data: (nullable): passed as user_data to @dup_func
3277 * This is a variant of g_object_get_qdata() which returns
3278 * a 'duplicate' of the value. @dup_func defines the
3279 * meaning of 'duplicate' in this context, it could e.g.
3280 * take a reference on a ref-counted object.
3282 * If the @quark is not set on the object then @dup_func
3283 * will be called with a %NULL argument.
3285 * Note that @dup_func is called while user data of @object
3288 * This function can be useful to avoid races when multiple
3289 * threads are using object data on the same key on the same
3292 * Returns: the result of calling @dup_func on the value
3293 * associated with @quark on @object, or %NULL if not set.
3294 * If @dup_func is %NULL, the value is returned
3300 g_object_dup_qdata (GObject
*object
,
3302 GDuplicateFunc dup_func
,
3305 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
3306 g_return_val_if_fail (quark
> 0, NULL
);
3308 return g_datalist_id_dup_data (&object
->qdata
, quark
, dup_func
, user_data
);
3312 * g_object_replace_qdata:
3313 * @object: the #GObject to store user data on
3314 * @quark: a #GQuark, naming the user data pointer
3315 * @oldval: (nullable): the old value to compare against
3316 * @newval: (nullable): the new value
3317 * @destroy: (nullable): a destroy notify for the new value
3318 * @old_destroy: (nullable): destroy notify for the existing value
3320 * Compares the user data for the key @quark on @object with
3321 * @oldval, and if they are the same, replaces @oldval with
3324 * This is like a typical atomic compare-and-exchange
3325 * operation, for user data on an object.
3327 * If the previous value was replaced then ownership of the
3328 * old value (@oldval) is passed to the caller, including
3329 * the registered destroy notify for it (passed out in @old_destroy).
3330 * Its up to the caller to free this as he wishes, which may
3331 * or may not include using @old_destroy as sometimes replacement
3332 * should not destroy the object in the normal way.
3334 * Returns: %TRUE if the existing value for @quark was replaced
3335 * by @newval, %FALSE otherwise.
3340 g_object_replace_qdata (GObject
*object
,
3344 GDestroyNotify destroy
,
3345 GDestroyNotify
*old_destroy
)
3347 g_return_val_if_fail (G_IS_OBJECT (object
), FALSE
);
3348 g_return_val_if_fail (quark
> 0, FALSE
);
3350 return g_datalist_id_replace_data (&object
->qdata
, quark
,
3351 oldval
, newval
, destroy
,
3356 * g_object_set_qdata_full: (skip)
3357 * @object: The GObject to set store a user data pointer
3358 * @quark: A #GQuark, naming the user data pointer
3359 * @data: An opaque user data pointer
3360 * @destroy: Function to invoke with @data as argument, when @data
3363 * This function works like g_object_set_qdata(), but in addition,
3364 * a void (*destroy) (gpointer) function may be specified which is
3365 * called with @data as argument when the @object is finalized, or
3366 * the data is being overwritten by a call to g_object_set_qdata()
3367 * with the same @quark.
3370 g_object_set_qdata_full (GObject
*object
,
3373 GDestroyNotify destroy
)
3375 g_return_if_fail (G_IS_OBJECT (object
));
3376 g_return_if_fail (quark
> 0);
3378 g_datalist_id_set_data_full (&object
->qdata
, quark
, data
,
3379 data
? destroy
: (GDestroyNotify
) NULL
);
3383 * g_object_steal_qdata:
3384 * @object: The GObject to get a stored user data pointer from
3385 * @quark: A #GQuark, naming the user data pointer
3387 * This function gets back user data pointers stored via
3388 * g_object_set_qdata() and removes the @data from object
3389 * without invoking its destroy() function (if any was
3391 * Usually, calling this function is only required to update
3392 * user data pointers with a destroy notifier, for example:
3393 * |[<!-- language="C" -->
3395 * object_add_to_user_list (GObject *object,
3396 * const gchar *new_string)
3398 * // the quark, naming the object data
3399 * GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
3400 * // retrive the old string list
3401 * GList *list = g_object_steal_qdata (object, quark_string_list);
3403 * // prepend new string
3404 * list = g_list_prepend (list, g_strdup (new_string));
3405 * // this changed 'list', so we need to set it again
3406 * g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
3409 * free_string_list (gpointer data)
3411 * GList *node, *list = data;
3413 * for (node = list; node; node = node->next)
3414 * g_free (node->data);
3415 * g_list_free (list);
3418 * Using g_object_get_qdata() in the above example, instead of
3419 * g_object_steal_qdata() would have left the destroy function set,
3420 * and thus the partial string list would have been freed upon
3421 * g_object_set_qdata_full().
3423 * Returns: (transfer full): The user data pointer set, or %NULL
3426 g_object_steal_qdata (GObject
*object
,
3429 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
3430 g_return_val_if_fail (quark
> 0, NULL
);
3432 return g_datalist_id_remove_no_notify (&object
->qdata
, quark
);
3436 * g_object_get_data:
3437 * @object: #GObject containing the associations
3438 * @key: name of the key for that association
3440 * Gets a named field from the objects table of associations (see g_object_set_data()).
3442 * Returns: (transfer none): the data if found, or %NULL if no such data exists.
3445 g_object_get_data (GObject
*object
,
3448 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
3449 g_return_val_if_fail (key
!= NULL
, NULL
);
3451 return g_datalist_get_data (&object
->qdata
, key
);
3455 * g_object_set_data:
3456 * @object: #GObject containing the associations.
3457 * @key: name of the key
3458 * @data: data to associate with that key
3460 * Each object carries around a table of associations from
3461 * strings to pointers. This function lets you set an association.
3463 * If the object already had an association with that name,
3464 * the old association will be destroyed.
3467 g_object_set_data (GObject
*object
,
3471 g_return_if_fail (G_IS_OBJECT (object
));
3472 g_return_if_fail (key
!= NULL
);
3474 g_datalist_id_set_data (&object
->qdata
, g_quark_from_string (key
), data
);
3478 * g_object_dup_data:
3479 * @object: the #GObject to store user data on
3480 * @key: a string, naming the user data pointer
3481 * @dup_func: (nullable): function to dup the value
3482 * @user_data: (nullable): passed as user_data to @dup_func
3484 * This is a variant of g_object_get_data() which returns
3485 * a 'duplicate' of the value. @dup_func defines the
3486 * meaning of 'duplicate' in this context, it could e.g.
3487 * take a reference on a ref-counted object.
3489 * If the @key is not set on the object then @dup_func
3490 * will be called with a %NULL argument.
3492 * Note that @dup_func is called while user data of @object
3495 * This function can be useful to avoid races when multiple
3496 * threads are using object data on the same key on the same
3499 * Returns: the result of calling @dup_func on the value
3500 * associated with @key on @object, or %NULL if not set.
3501 * If @dup_func is %NULL, the value is returned
3507 g_object_dup_data (GObject
*object
,
3509 GDuplicateFunc dup_func
,
3512 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
3513 g_return_val_if_fail (key
!= NULL
, NULL
);
3515 return g_datalist_id_dup_data (&object
->qdata
,
3516 g_quark_from_string (key
),
3517 dup_func
, user_data
);
3521 * g_object_replace_data:
3522 * @object: the #GObject to store user data on
3523 * @key: a string, naming the user data pointer
3524 * @oldval: (nullable): the old value to compare against
3525 * @newval: (nullable): the new value
3526 * @destroy: (nullable): a destroy notify for the new value
3527 * @old_destroy: (nullable): destroy notify for the existing value
3529 * Compares the user data for the key @key on @object with
3530 * @oldval, and if they are the same, replaces @oldval with
3533 * This is like a typical atomic compare-and-exchange
3534 * operation, for user data on an object.
3536 * If the previous value was replaced then ownership of the
3537 * old value (@oldval) is passed to the caller, including
3538 * the registered destroy notify for it (passed out in @old_destroy).
3539 * Its up to the caller to free this as he wishes, which may
3540 * or may not include using @old_destroy as sometimes replacement
3541 * should not destroy the object in the normal way.
3543 * Returns: %TRUE if the existing value for @key was replaced
3544 * by @newval, %FALSE otherwise.
3549 g_object_replace_data (GObject
*object
,
3553 GDestroyNotify destroy
,
3554 GDestroyNotify
*old_destroy
)
3556 g_return_val_if_fail (G_IS_OBJECT (object
), FALSE
);
3557 g_return_val_if_fail (key
!= NULL
, FALSE
);
3559 return g_datalist_id_replace_data (&object
->qdata
,
3560 g_quark_from_string (key
),
3561 oldval
, newval
, destroy
,
3566 * g_object_set_data_full: (skip)
3567 * @object: #GObject containing the associations
3568 * @key: name of the key
3569 * @data: data to associate with that key
3570 * @destroy: function to call when the association is destroyed
3572 * Like g_object_set_data() except it adds notification
3573 * for when the association is destroyed, either by setting it
3574 * to a different value or when the object is destroyed.
3576 * Note that the @destroy callback is not called if @data is %NULL.
3579 g_object_set_data_full (GObject
*object
,
3582 GDestroyNotify destroy
)
3584 g_return_if_fail (G_IS_OBJECT (object
));
3585 g_return_if_fail (key
!= NULL
);
3587 g_datalist_id_set_data_full (&object
->qdata
, g_quark_from_string (key
), data
,
3588 data
? destroy
: (GDestroyNotify
) NULL
);
3592 * g_object_steal_data:
3593 * @object: #GObject containing the associations
3594 * @key: name of the key
3596 * Remove a specified datum from the object's data associations,
3597 * without invoking the association's destroy handler.
3599 * Returns: (transfer full): the data if found, or %NULL if no such data exists.
3602 g_object_steal_data (GObject
*object
,
3607 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
3608 g_return_val_if_fail (key
!= NULL
, NULL
);
3610 quark
= g_quark_try_string (key
);
3612 return quark
? g_datalist_id_remove_no_notify (&object
->qdata
, quark
) : NULL
;
3616 g_value_object_init (GValue
*value
)
3618 value
->data
[0].v_pointer
= NULL
;
3622 g_value_object_free_value (GValue
*value
)
3624 if (value
->data
[0].v_pointer
)
3625 g_object_unref (value
->data
[0].v_pointer
);
3629 g_value_object_copy_value (const GValue
*src_value
,
3632 if (src_value
->data
[0].v_pointer
)
3633 dest_value
->data
[0].v_pointer
= g_object_ref (src_value
->data
[0].v_pointer
);
3635 dest_value
->data
[0].v_pointer
= NULL
;
3639 g_value_object_transform_value (const GValue
*src_value
,
3642 if (src_value
->data
[0].v_pointer
&& g_type_is_a (G_OBJECT_TYPE (src_value
->data
[0].v_pointer
), G_VALUE_TYPE (dest_value
)))
3643 dest_value
->data
[0].v_pointer
= g_object_ref (src_value
->data
[0].v_pointer
);
3645 dest_value
->data
[0].v_pointer
= NULL
;
3649 g_value_object_peek_pointer (const GValue
*value
)
3651 return value
->data
[0].v_pointer
;
3655 g_value_object_collect_value (GValue
*value
,
3656 guint n_collect_values
,
3657 GTypeCValue
*collect_values
,
3658 guint collect_flags
)
3660 if (collect_values
[0].v_pointer
)
3662 GObject
*object
= collect_values
[0].v_pointer
;
3664 if (object
->g_type_instance
.g_class
== NULL
)
3665 return g_strconcat ("invalid unclassed object pointer for value type '",
3666 G_VALUE_TYPE_NAME (value
),
3669 else if (!g_value_type_compatible (G_OBJECT_TYPE (object
), G_VALUE_TYPE (value
)))
3670 return g_strconcat ("invalid object type '",
3671 G_OBJECT_TYPE_NAME (object
),
3672 "' for value type '",
3673 G_VALUE_TYPE_NAME (value
),
3676 /* never honour G_VALUE_NOCOPY_CONTENTS for ref-counted types */
3677 value
->data
[0].v_pointer
= g_object_ref (object
);
3680 value
->data
[0].v_pointer
= NULL
;
3686 g_value_object_lcopy_value (const GValue
*value
,
3687 guint n_collect_values
,
3688 GTypeCValue
*collect_values
,
3689 guint collect_flags
)
3691 GObject
**object_p
= collect_values
[0].v_pointer
;
3694 return g_strdup_printf ("value location for '%s' passed as NULL", G_VALUE_TYPE_NAME (value
));
3696 if (!value
->data
[0].v_pointer
)
3698 else if (collect_flags
& G_VALUE_NOCOPY_CONTENTS
)
3699 *object_p
= value
->data
[0].v_pointer
;
3701 *object_p
= g_object_ref (value
->data
[0].v_pointer
);
3707 * g_value_set_object:
3708 * @value: a valid #GValue of %G_TYPE_OBJECT derived type
3709 * @v_object: (type GObject.Object) (nullable): object value to be set
3711 * Set the contents of a %G_TYPE_OBJECT derived #GValue to @v_object.
3713 * g_value_set_object() increases the reference count of @v_object
3714 * (the #GValue holds a reference to @v_object). If you do not wish
3715 * to increase the reference count of the object (i.e. you wish to
3716 * pass your current reference to the #GValue because you no longer
3717 * need it), use g_value_take_object() instead.
3719 * It is important that your #GValue holds a reference to @v_object (either its
3720 * own, or one it has taken) to ensure that the object won't be destroyed while
3721 * the #GValue still exists).
3724 g_value_set_object (GValue
*value
,
3729 g_return_if_fail (G_VALUE_HOLDS_OBJECT (value
));
3731 old
= value
->data
[0].v_pointer
;
3735 g_return_if_fail (G_IS_OBJECT (v_object
));
3736 g_return_if_fail (g_value_type_compatible (G_OBJECT_TYPE (v_object
), G_VALUE_TYPE (value
)));
3738 value
->data
[0].v_pointer
= v_object
;
3739 g_object_ref (value
->data
[0].v_pointer
);
3742 value
->data
[0].v_pointer
= NULL
;
3745 g_object_unref (old
);
3749 * g_value_set_object_take_ownership: (skip)
3750 * @value: a valid #GValue of %G_TYPE_OBJECT derived type
3751 * @v_object: (nullable): object value to be set
3753 * This is an internal function introduced mainly for C marshallers.
3755 * Deprecated: 2.4: Use g_value_take_object() instead.
3758 g_value_set_object_take_ownership (GValue
*value
,
3761 g_value_take_object (value
, v_object
);
3765 * g_value_take_object: (skip)
3766 * @value: a valid #GValue of %G_TYPE_OBJECT derived type
3767 * @v_object: (nullable): object value to be set
3769 * Sets the contents of a %G_TYPE_OBJECT derived #GValue to @v_object
3770 * and takes over the ownership of the callers reference to @v_object;
3771 * the caller doesn't have to unref it any more (i.e. the reference
3772 * count of the object is not increased).
3774 * If you want the #GValue to hold its own reference to @v_object, use
3775 * g_value_set_object() instead.
3780 g_value_take_object (GValue
*value
,
3783 g_return_if_fail (G_VALUE_HOLDS_OBJECT (value
));
3785 if (value
->data
[0].v_pointer
)
3787 g_object_unref (value
->data
[0].v_pointer
);
3788 value
->data
[0].v_pointer
= NULL
;
3793 g_return_if_fail (G_IS_OBJECT (v_object
));
3794 g_return_if_fail (g_value_type_compatible (G_OBJECT_TYPE (v_object
), G_VALUE_TYPE (value
)));
3796 value
->data
[0].v_pointer
= v_object
; /* we take over the reference count */
3801 * g_value_get_object:
3802 * @value: a valid #GValue of %G_TYPE_OBJECT derived type
3804 * Get the contents of a %G_TYPE_OBJECT derived #GValue.
3806 * Returns: (type GObject.Object) (transfer none): object contents of @value
3809 g_value_get_object (const GValue
*value
)
3811 g_return_val_if_fail (G_VALUE_HOLDS_OBJECT (value
), NULL
);
3813 return value
->data
[0].v_pointer
;
3817 * g_value_dup_object:
3818 * @value: a valid #GValue whose type is derived from %G_TYPE_OBJECT
3820 * Get the contents of a %G_TYPE_OBJECT derived #GValue, increasing
3821 * its reference count. If the contents of the #GValue are %NULL, then
3822 * %NULL will be returned.
3824 * Returns: (type GObject.Object) (transfer full): object content of @value,
3825 * should be unreferenced when no longer needed.
3828 g_value_dup_object (const GValue
*value
)
3830 g_return_val_if_fail (G_VALUE_HOLDS_OBJECT (value
), NULL
);
3832 return value
->data
[0].v_pointer
? g_object_ref (value
->data
[0].v_pointer
) : NULL
;
3836 * g_signal_connect_object: (skip)
3837 * @instance: (type GObject.TypeInstance): the instance to connect to.
3838 * @detailed_signal: a string of the form "signal-name::detail".
3839 * @c_handler: the #GCallback to connect.
3840 * @gobject: (type GObject.Object) (nullable): the object to pass as data
3842 * @connect_flags: a combination of #GConnectFlags.
3844 * This is similar to g_signal_connect_data(), but uses a closure which
3845 * ensures that the @gobject stays alive during the call to @c_handler
3846 * by temporarily adding a reference count to @gobject.
3848 * When the @gobject is destroyed the signal handler will be automatically
3849 * disconnected. Note that this is not currently threadsafe (ie:
3850 * emitting a signal while @gobject is being destroyed in another thread
3853 * Returns: the handler id.
3856 g_signal_connect_object (gpointer instance
,
3857 const gchar
*detailed_signal
,
3858 GCallback c_handler
,
3860 GConnectFlags connect_flags
)
3862 g_return_val_if_fail (G_TYPE_CHECK_INSTANCE (instance
), 0);
3863 g_return_val_if_fail (detailed_signal
!= NULL
, 0);
3864 g_return_val_if_fail (c_handler
!= NULL
, 0);
3870 g_return_val_if_fail (G_IS_OBJECT (gobject
), 0);
3872 closure
= ((connect_flags
& G_CONNECT_SWAPPED
) ? g_cclosure_new_object_swap
: g_cclosure_new_object
) (c_handler
, gobject
);
3874 return g_signal_connect_closure (instance
, detailed_signal
, closure
, connect_flags
& G_CONNECT_AFTER
);
3877 return g_signal_connect_data (instance
, detailed_signal
, c_handler
, NULL
, NULL
, connect_flags
);
3883 GClosure
*closures
[1]; /* flexible array */
3885 /* don't change this structure without supplying an accessor for
3886 * watched closures, e.g.:
3887 * GSList* g_object_list_watched_closures (GObject *object)
3890 * g_return_val_if_fail (G_IS_OBJECT (object), NULL);
3891 * carray = g_object_get_data (object, "GObject-closure-array");
3894 * GSList *slist = NULL;
3896 * for (i = 0; i < carray->n_closures; i++)
3897 * slist = g_slist_prepend (slist, carray->closures[i]);
3905 object_remove_closure (gpointer data
,
3908 GObject
*object
= data
;
3912 G_LOCK (closure_array_mutex
);
3913 carray
= g_object_get_qdata (object
, quark_closure_array
);
3914 for (i
= 0; i
< carray
->n_closures
; i
++)
3915 if (carray
->closures
[i
] == closure
)
3917 carray
->n_closures
--;
3918 if (i
< carray
->n_closures
)
3919 carray
->closures
[i
] = carray
->closures
[carray
->n_closures
];
3920 G_UNLOCK (closure_array_mutex
);
3923 G_UNLOCK (closure_array_mutex
);
3924 g_assert_not_reached ();
3928 destroy_closure_array (gpointer data
)
3930 CArray
*carray
= data
;
3931 GObject
*object
= carray
->object
;
3932 guint i
, n
= carray
->n_closures
;
3934 for (i
= 0; i
< n
; i
++)
3936 GClosure
*closure
= carray
->closures
[i
];
3938 /* removing object_remove_closure() upfront is probably faster than
3939 * letting it fiddle with quark_closure_array which is empty anyways
3941 g_closure_remove_invalidate_notifier (closure
, object
, object_remove_closure
);
3942 g_closure_invalidate (closure
);
3948 * g_object_watch_closure:
3949 * @object: GObject restricting lifetime of @closure
3950 * @closure: GClosure to watch
3952 * This function essentially limits the life time of the @closure to
3953 * the life time of the object. That is, when the object is finalized,
3954 * the @closure is invalidated by calling g_closure_invalidate() on
3955 * it, in order to prevent invocations of the closure with a finalized
3956 * (nonexisting) object. Also, g_object_ref() and g_object_unref() are
3957 * added as marshal guards to the @closure, to ensure that an extra
3958 * reference count is held on @object during invocation of the
3959 * @closure. Usually, this function will be called on closures that
3960 * use this @object as closure data.
3963 g_object_watch_closure (GObject
*object
,
3969 g_return_if_fail (G_IS_OBJECT (object
));
3970 g_return_if_fail (closure
!= NULL
);
3971 g_return_if_fail (closure
->is_invalid
== FALSE
);
3972 g_return_if_fail (closure
->in_marshal
== FALSE
);
3973 g_return_if_fail (object
->ref_count
> 0); /* this doesn't work on finalizing objects */
3975 g_closure_add_invalidate_notifier (closure
, object
, object_remove_closure
);
3976 g_closure_add_marshal_guards (closure
,
3977 object
, (GClosureNotify
) g_object_ref
,
3978 object
, (GClosureNotify
) g_object_unref
);
3979 G_LOCK (closure_array_mutex
);
3980 carray
= g_datalist_id_remove_no_notify (&object
->qdata
, quark_closure_array
);
3983 carray
= g_renew (CArray
, NULL
, 1);
3984 carray
->object
= object
;
3985 carray
->n_closures
= 1;
3990 i
= carray
->n_closures
++;
3991 carray
= g_realloc (carray
, sizeof (*carray
) + sizeof (carray
->closures
[0]) * i
);
3993 carray
->closures
[i
] = closure
;
3994 g_datalist_id_set_data_full (&object
->qdata
, quark_closure_array
, carray
, destroy_closure_array
);
3995 G_UNLOCK (closure_array_mutex
);
3999 * g_closure_new_object:
4000 * @sizeof_closure: the size of the structure to allocate, must be at least
4001 * `sizeof (GClosure)`
4002 * @object: a #GObject pointer to store in the @data field of the newly
4003 * allocated #GClosure
4005 * A variant of g_closure_new_simple() which stores @object in the
4006 * @data field of the closure and calls g_object_watch_closure() on
4007 * @object and the created closure. This function is mainly useful
4008 * when implementing new types of closures.
4010 * Returns: (transfer full): a newly allocated #GClosure
4013 g_closure_new_object (guint sizeof_closure
,
4018 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
4019 g_return_val_if_fail (object
->ref_count
> 0, NULL
); /* this doesn't work on finalizing objects */
4021 closure
= g_closure_new_simple (sizeof_closure
, object
);
4022 g_object_watch_closure (object
, closure
);
4028 * g_cclosure_new_object: (skip)
4029 * @callback_func: the function to invoke
4030 * @object: a #GObject pointer to pass to @callback_func
4032 * A variant of g_cclosure_new() which uses @object as @user_data and
4033 * calls g_object_watch_closure() on @object and the created
4034 * closure. This function is useful when you have a callback closely
4035 * associated with a #GObject, and want the callback to no longer run
4036 * after the object is is freed.
4038 * Returns: a new #GCClosure
4041 g_cclosure_new_object (GCallback callback_func
,
4046 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
4047 g_return_val_if_fail (object
->ref_count
> 0, NULL
); /* this doesn't work on finalizing objects */
4048 g_return_val_if_fail (callback_func
!= NULL
, NULL
);
4050 closure
= g_cclosure_new (callback_func
, object
, NULL
);
4051 g_object_watch_closure (object
, closure
);
4057 * g_cclosure_new_object_swap: (skip)
4058 * @callback_func: the function to invoke
4059 * @object: a #GObject pointer to pass to @callback_func
4061 * A variant of g_cclosure_new_swap() which uses @object as @user_data
4062 * and calls g_object_watch_closure() on @object and the created
4063 * closure. This function is useful when you have a callback closely
4064 * associated with a #GObject, and want the callback to no longer run
4065 * after the object is is freed.
4067 * Returns: a new #GCClosure
4070 g_cclosure_new_object_swap (GCallback callback_func
,
4075 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
4076 g_return_val_if_fail (object
->ref_count
> 0, NULL
); /* this doesn't work on finalizing objects */
4077 g_return_val_if_fail (callback_func
!= NULL
, NULL
);
4079 closure
= g_cclosure_new_swap (callback_func
, object
, NULL
);
4080 g_object_watch_closure (object
, closure
);
4086 g_object_compat_control (gsize what
,
4092 case 1: /* floating base type */
4093 return G_TYPE_INITIALLY_UNOWNED
;
4094 case 2: /* FIXME: remove this once GLib/Gtk+ break ABI again */
4095 floating_flag_handler
= (guint(*)(GObject
*,gint
)) data
;
4097 case 3: /* FIXME: remove this once GLib/Gtk+ break ABI again */
4099 *pp
= floating_flag_handler
;
4106 G_DEFINE_TYPE (GInitiallyUnowned
, g_initially_unowned
, G_TYPE_OBJECT
);
4109 g_initially_unowned_init (GInitiallyUnowned
*object
)
4111 g_object_force_floating (object
);
4115 g_initially_unowned_class_init (GInitiallyUnownedClass
*klass
)
4122 * A structure containing a weak reference to a #GObject. It can either
4123 * be empty (i.e. point to %NULL), or point to an object for as long as
4124 * at least one "strong" reference to that object exists. Before the
4125 * object's #GObjectClass.dispose method is called, every #GWeakRef
4126 * associated with becomes empty (i.e. points to %NULL).
4128 * Like #GValue, #GWeakRef can be statically allocated, stack- or
4129 * heap-allocated, or embedded in larger structures.
4131 * Unlike g_object_weak_ref() and g_object_add_weak_pointer(), this weak
4132 * reference is thread-safe: converting a weak pointer to a reference is
4133 * atomic with respect to invalidation of weak pointers to destroyed
4136 * If the object's #GObjectClass.dispose method results in additional
4137 * references to the object being held, any #GWeakRefs taken
4138 * before it was disposed will continue to point to %NULL. If
4139 * #GWeakRefs are taken after the object is disposed and
4140 * re-referenced, they will continue to point to it until its refcount
4141 * goes back to zero, at which point they too will be invalidated.
4145 * g_weak_ref_init: (skip)
4146 * @weak_ref: (inout): uninitialized or empty location for a weak
4148 * @object: (type GObject.Object) (nullable): a #GObject or %NULL
4150 * Initialise a non-statically-allocated #GWeakRef.
4152 * This function also calls g_weak_ref_set() with @object on the
4153 * freshly-initialised weak reference.
4155 * This function should always be matched with a call to
4156 * g_weak_ref_clear(). It is not necessary to use this function for a
4157 * #GWeakRef in static storage because it will already be
4158 * properly initialised. Just use g_weak_ref_set() directly.
4163 g_weak_ref_init (GWeakRef
*weak_ref
,
4166 weak_ref
->priv
.p
= NULL
;
4168 g_weak_ref_set (weak_ref
, object
);
4172 * g_weak_ref_clear: (skip)
4173 * @weak_ref: (inout): location of a weak reference, which
4176 * Frees resources associated with a non-statically-allocated #GWeakRef.
4177 * After this call, the #GWeakRef is left in an undefined state.
4179 * You should only call this on a #GWeakRef that previously had
4180 * g_weak_ref_init() called on it.
4185 g_weak_ref_clear (GWeakRef
*weak_ref
)
4187 g_weak_ref_set (weak_ref
, NULL
);
4190 weak_ref
->priv
.p
= (void *) 0xccccccccu
;
4194 * g_weak_ref_get: (skip)
4195 * @weak_ref: (inout): location of a weak reference to a #GObject
4197 * If @weak_ref is not empty, atomically acquire a strong
4198 * reference to the object it points to, and return that reference.
4200 * This function is needed because of the potential race between taking
4201 * the pointer value and g_object_ref() on it, if the object was losing
4202 * its last reference at the same time in a different thread.
4204 * The caller should release the resulting reference in the usual way,
4205 * by using g_object_unref().
4207 * Returns: (transfer full) (type GObject.Object): the object pointed to
4208 * by @weak_ref, or %NULL if it was empty
4213 g_weak_ref_get (GWeakRef
*weak_ref
)
4215 gpointer object_or_null
;
4217 g_return_val_if_fail (weak_ref
!= NULL
, NULL
);
4219 g_rw_lock_reader_lock (&weak_locations_lock
);
4221 object_or_null
= weak_ref
->priv
.p
;
4223 if (object_or_null
!= NULL
)
4224 g_object_ref (object_or_null
);
4226 g_rw_lock_reader_unlock (&weak_locations_lock
);
4228 return object_or_null
;
4232 * g_weak_ref_set: (skip)
4233 * @weak_ref: location for a weak reference
4234 * @object: (type GObject.Object) (nullable): a #GObject or %NULL
4236 * Change the object to which @weak_ref points, or set it to
4239 * You must own a strong reference on @object while calling this
4245 g_weak_ref_set (GWeakRef
*weak_ref
,
4248 GSList
**weak_locations
;
4249 GObject
*new_object
;
4250 GObject
*old_object
;
4252 g_return_if_fail (weak_ref
!= NULL
);
4253 g_return_if_fail (object
== NULL
|| G_IS_OBJECT (object
));
4255 new_object
= object
;
4257 g_rw_lock_writer_lock (&weak_locations_lock
);
4259 /* We use the extra level of indirection here so that if we have ever
4260 * had a weak pointer installed at any point in time on this object,
4261 * we can see that there is a non-NULL value associated with the
4262 * weak-pointer quark and know that this value will not change at any
4263 * point in the object's lifetime.
4265 * Both properties are important for reducing the amount of times we
4266 * need to acquire locks and for decreasing the duration of time the
4267 * lock is held while avoiding some rather tricky races.
4269 * Specifically: we can avoid having to do an extra unconditional lock
4270 * in g_object_unref() without worrying about some extremely tricky
4274 old_object
= weak_ref
->priv
.p
;
4275 if (new_object
!= old_object
)
4277 weak_ref
->priv
.p
= new_object
;
4279 /* Remove the weak ref from the old object */
4280 if (old_object
!= NULL
)
4282 weak_locations
= g_datalist_id_get_data (&old_object
->qdata
, quark_weak_locations
);
4283 /* for it to point to an object, the object must have had it added once */
4284 g_assert (weak_locations
!= NULL
);
4286 *weak_locations
= g_slist_remove (*weak_locations
, weak_ref
);
4289 /* Add the weak ref to the new object */
4290 if (new_object
!= NULL
)
4292 weak_locations
= g_datalist_id_get_data (&new_object
->qdata
, quark_weak_locations
);
4294 if (weak_locations
== NULL
)
4296 weak_locations
= g_new0 (GSList
*, 1);
4297 g_datalist_id_set_data_full (&new_object
->qdata
, quark_weak_locations
, weak_locations
, g_free
);
4300 *weak_locations
= g_slist_prepend (*weak_locations
, weak_ref
);
4304 g_rw_lock_writer_unlock (&weak_locations_lock
);